Skip navigation
Skip navigation

Operator Integrals, Spectral Shift, and Spectral Flow

Azamov, N A; Carey, Alan; Dodds, Peter; Sukochev, Fedor A

Description

We present a new and simple approach to the theory of multiple operator integrals that applies to unbounded operators affiliated with general von Neumann algebras. For semifinite von Neumann algebras we give applications to the Fréchet differentiation of

dc.contributor.authorAzamov, N A
dc.contributor.authorCarey, Alan
dc.contributor.authorDodds, Peter
dc.contributor.authorSukochev, Fedor A
dc.date.accessioned2015-12-08T22:41:45Z
dc.date.available2015-12-08T22:41:45Z
dc.identifier.issn0008-414X
dc.identifier.urihttp://hdl.handle.net/1885/36787
dc.description.abstractWe present a new and simple approach to the theory of multiple operator integrals that applies to unbounded operators affiliated with general von Neumann algebras. For semifinite von Neumann algebras we give applications to the Fréchet differentiation of
dc.publisherCanadian Mathematical Society
dc.sourceCanadian Journal of Mathematics
dc.titleOperator Integrals, Spectral Shift, and Spectral Flow
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume61
dc.date.issued2009
local.identifier.absfor010199 - Pure Mathematics not elsewhere classified
local.identifier.ariespublicationu9209279xPUB140
local.type.statusPublished Version
local.contributor.affiliationAzamov, N A, Flinders University
local.contributor.affiliationCarey, Alan, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationDodds, Peter, Flinders University
local.contributor.affiliationSukochev, Fedor A, University of New South Wales
local.bibliographicCitation.issue2
local.bibliographicCitation.startpage241
local.bibliographicCitation.lastpage263
local.identifier.doi10.4153/CJM-2009-012-0
dc.date.updated2015-12-08T10:30:26Z
local.identifier.scopusID2-s2.0-65349154626
local.identifier.thomsonID000264974600001
CollectionsANU Research Publications

Download

There are no files associated with this item.


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator