Skip navigation
Skip navigation

Twitter content classification

Dann, Stephen

Description

This paper delivers a new Twitter content classification framework based 16 existing Twitter studies and a grounded theory analysis of a personal Twitter history. It expands the existing understanding of Twitter as a multifunction tool for personal, profession, commercial and phatic communications with a split level classification scheme that offers broad categorization and specific sub categories for deeper insight into the real world application of the service.

dc.contributor.authorDann, Stephen
dc.date.accessioned2015-12-08T22:38:53Z
dc.identifier.issn1396-0466
dc.identifier.urihttp://hdl.handle.net/1885/36006
dc.description.abstractThis paper delivers a new Twitter content classification framework based 16 existing Twitter studies and a grounded theory analysis of a personal Twitter history. It expands the existing understanding of Twitter as a multifunction tool for personal, profession, commercial and phatic communications with a split level classification scheme that offers broad categorization and specific sub categories for deeper insight into the real world application of the service.
dc.publisherUniversity of Illinois
dc.sourceFirst Monday
dc.source.urihttp://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/issue/view/326
dc.titleTwitter content classification
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume15
dc.date.issued2010
local.identifier.absfor150505 - Marketing Research Methodology
local.identifier.ariespublicationu4024396xPUB131
local.type.statusPublished Version
local.contributor.affiliationDann, Stephen, College of Business and Economics, ANU
local.description.embargo2037-12-31
local.bibliographicCitation.issue12
local.bibliographicCitation.startpage1
local.bibliographicCitation.lastpage13
local.identifier.absseo910403 - Marketing
dc.date.updated2016-02-24T10:28:04Z
local.identifier.scopusID2-s2.0-78650009557
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Dann_Twitter_content__2010.pdf29.1 kBAdobe PDFThumbnail
02_Dann_Twitter_content__2010.pdf785.4 kBAdobe PDFThumbnail


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator