Skip navigation
Skip navigation

Riesz Transforms in One Dimension

Hassell, Andrew; Sikora, Adam

Description

We study the boundedness on Lp of the Riesz transform δL-1/2, where I is one of several operators defined on ℝ or ℝ+, endowed with the measure rd-1 dr, d > 1, where dr is Lebesgue measure. For integer d, this mimics the measure on Euclidean d-dimensi

dc.contributor.authorHassell, Andrew
dc.contributor.authorSikora, Adam
dc.date.accessioned2015-12-08T22:37:17Z
dc.date.available2015-12-08T22:37:17Z
dc.identifier.issn0022-2518
dc.identifier.urihttp://hdl.handle.net/1885/35462
dc.description.abstractWe study the boundedness on Lp of the Riesz transform δL-1/2, where I is one of several operators defined on ℝ or ℝ+, endowed with the measure rd-1 dr, d > 1, where dr is Lebesgue measure. For integer d, this mimics the measure on Euclidean d-dimensi
dc.publisherIndiana University Press
dc.sourceIndiana University Mathematics Journal
dc.subjectKeywords: Modified bessel functions; Resolvent kernels; Riesz transform
dc.titleRiesz Transforms in One Dimension
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume58
dc.date.issued2009
local.identifier.absfor010199 - Pure Mathematics not elsewhere classified
local.identifier.ariespublicationu9209279xPUB124
local.type.statusPublished Version
local.contributor.affiliationHassell, Andrew, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationSikora, Adam, College of Physical and Mathematical Sciences, ANU
local.bibliographicCitation.issue2
local.bibliographicCitation.startpage823
local.bibliographicCitation.lastpage852
local.identifier.doi10.1512/iumj.2009.58.3514
dc.date.updated2016-02-24T11:54:35Z
local.identifier.scopusID2-s2.0-67249085966
CollectionsANU Research Publications

Download

There are no files associated with this item.


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator