Skip navigation
Skip navigation

Majorizing measures and proprtional subsets of bounded orthonormal systems

Guedon, Olivier; Mendelson, Shahar; Pajor, Alain; Tomczak-Jaegermann, Nicole

Description

In this article we prove that for any orthonormal system (φj)j=1n ⊂ L2. that is bounded in L∞, and any 1 < k < n, there exists a subset I of cardinality greater than n - k such that on span{φi} i∈I, the L1 norm and the L2 norm are equivalent up to

dc.contributor.authorGuedon, Olivier
dc.contributor.authorMendelson, Shahar
dc.contributor.authorPajor, Alain
dc.contributor.authorTomczak-Jaegermann, Nicole
dc.date.accessioned2015-12-08T22:36:06Z
dc.date.available2015-12-08T22:36:06Z
dc.identifier.issn0213-2230
dc.identifier.urihttp://hdl.handle.net/1885/35114
dc.description.abstractIn this article we prove that for any orthonormal system (φj)j=1n ⊂ L2. that is bounded in L∞, and any 1 < k < n, there exists a subset I of cardinality greater than n - k such that on span{φi} i∈I, the L1 norm and the L2 norm are equivalent up to
dc.publisherUniversidad Autonoma de Madrid
dc.sourceRevista Matematica Iberoamericana
dc.subjectKeywords: Empirical process; Majorizing measure; Orthonormal system
dc.titleMajorizing measures and proprtional subsets of bounded orthonormal systems
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume24
dc.date.issued2008
local.identifier.absfor010199 - Pure Mathematics not elsewhere classified
local.identifier.ariespublicationu9209279xPUB120
local.type.statusPublished Version
local.contributor.affiliationGuedon, Olivier, Universite Pierre et Marie Curie, Paris 6
local.contributor.affiliationMendelson, Shahar, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationPajor, Alain, Universite de Marne-la-Vallee
local.contributor.affiliationTomczak-Jaegermann, Nicole, University of Alberta
local.bibliographicCitation.issue3
local.bibliographicCitation.startpage1075
local.bibliographicCitation.lastpage1095
dc.date.updated2016-02-24T11:54:34Z
local.identifier.scopusID2-s2.0-58549112203
CollectionsANU Research Publications

Download

There are no files associated with this item.


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator