Skip navigation
Skip navigation

Imaginary powers of Laplace operators

Sikora, Adam; Wright, James

Description

We show that if L is a second-order uniformly elliptic operator in divergence form on Rd, then C1(1+|a|)d/2 < \\Lia\\Li→L1,∞ ≥ C2(1+|a|)d/2. We also prove that the upper bounds remain true for any operator with the finite speed propagation property.

dc.contributor.authorSikora, Adam
dc.contributor.authorWright, James
dc.date.accessioned2015-12-08T22:26:48Z
dc.identifier.issn0002-9939
dc.identifier.urihttp://hdl.handle.net/1885/33791
dc.description.abstractWe show that if L is a second-order uniformly elliptic operator in divergence form on Rd, then C1(1+|a|)d/2 < \\Lia\\Li→L1,∞ ≥ C2(1+|a|)d/2. We also prove that the upper bounds remain true for any operator with the finite speed propagation property.
dc.publisherAmerican Mathematical Society
dc.sourceProceedings of the American Mathematical Society
dc.titleImaginary powers of Laplace operators
dc.typeJournal article
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.citationvolume129
dc.date.issued2000
local.identifier.absfor010106 - Lie Groups, Harmonic and Fourier Analysis
local.identifier.absfor010110 - Partial Differential Equations
local.identifier.ariespublicationMigratedxPub106
local.type.statusPublished Version
local.contributor.affiliationSikora, Adam, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationWright, James, University of Edinburgh
local.description.embargo2037-12-31
local.bibliographicCitation.issue6
local.bibliographicCitation.startpage1745
local.bibliographicCitation.lastpage1754
dc.date.updated2015-12-08T09:14:46Z
local.identifier.scopusID2-s2.0-23044526117
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Sikora_Imaginary_powers_of_Laplace_2000.pdf196.83 kBAdobe PDFThumbnail


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator