Skip navigation
Skip navigation
The system will be down for maintenance between 8:00 and 8:15am on Thursday 13, December 2018

Quasi-perfect scheme-maps and boundedness of the twisted inverse image functor

Lipman, Joseph; Neeman, Amnon

Description

For a map f : X → Y of quasi-compact quasi-separated schemes, we discuss quasi-perfection, i.e., the right adjoint fx of Rf* respects small direct sums. This is equivalent to the existence of a functorial isomorphism fxOY ⊗L Lf*( - ) →∼ fx( - ); t

dc.contributor.authorLipman, Joseph
dc.contributor.authorNeeman, Amnon
dc.date.accessioned2015-12-08T22:19:21Z
dc.identifier.issn0019-2082
dc.identifier.urihttp://hdl.handle.net/1885/31535
dc.description.abstractFor a map f : X → Y of quasi-compact quasi-separated schemes, we discuss quasi-perfection, i.e., the right adjoint fx of Rf* respects small direct sums. This is equivalent to the existence of a functorial isomorphism fxOY ⊗L Lf*( - ) →∼ fx( - ); t
dc.publisherUniversity of Illinois Press
dc.sourceIllinois Journal of Mathematics
dc.titleQuasi-perfect scheme-maps and boundedness of the twisted inverse image functor
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume51
dc.date.issued2007
local.identifier.absfor010108 - Operator Algebras and Functional Analysis
local.identifier.ariespublicationu3169606xPUB84
local.type.statusPublished Version
local.contributor.affiliationLipman, Joseph, Purdue University
local.contributor.affiliationNeeman, Amnon, College of Physical and Mathematical Sciences, ANU
local.description.embargo2037-12-31
local.bibliographicCitation.issue1
local.bibliographicCitation.startpage209
local.bibliographicCitation.lastpage236
dc.date.updated2015-12-08T08:21:37Z
local.identifier.scopusID2-s2.0-38949088918
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Lipman_Quasi-perfect_scheme-maps_and_2007.pdf348.91 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  27 November 2018/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator