Skip navigation
Skip navigation

A Fast Optimal Algorithm for L2 Triangulation

Lu, Fangfang; Hartley, Richard

Description

This paper presents a practical method for obtaining the global minimum to the least-squares (L2) triangulation problem. Although optimal algorithms for the triangulation problem under L∞-norm have been given, finding an optimal solution to the L2 trian

dc.contributor.authorLu, Fangfang
dc.contributor.authorHartley, Richard
dc.coverage.spatialTokyo Japan
dc.date.accessioned2015-12-08T22:18:13Z
dc.date.createdNovember 18-22 2007
dc.identifier.isbn9783540763857
dc.identifier.urihttp://hdl.handle.net/1885/31249
dc.description.abstractThis paper presents a practical method for obtaining the global minimum to the least-squares (L2) triangulation problem. Although optimal algorithms for the triangulation problem under L∞-norm have been given, finding an optimal solution to the L2 trian
dc.publisherSpringer
dc.relation.ispartofseriesAsian Conference on Computer Vision (ACCV 2007)
dc.sourceComputer Vision - Proceedings of the 8th Asian Conference on Computer Vision (ACCV 2007)
dc.source.urihttp://www.springerlink.com/content/w6g7782211725845/fulltext.pdf
dc.subjectKeywords: Global estimate; Global optimality; Algorithms; Branch and bound method; Cost functions; Iterative methods; Linear programming; Problem solving; Triangulation
dc.titleA Fast Optimal Algorithm for L2 Triangulation
dc.typeConference paper
local.description.notesImported from ARIES
local.description.refereedYes
dc.date.issued2007
local.identifier.absfor080104 - Computer Vision
local.identifier.ariespublicationu4334215xPUB81
local.type.statusPublished Version
local.contributor.affiliationLu, Fangfang, College of Engineering and Computer Science, ANU
local.contributor.affiliationHartley, Richard, College of Engineering and Computer Science, ANU
local.description.embargo2037-12-31
local.bibliographicCitation.startpage279
local.bibliographicCitation.lastpage288
dc.date.updated2015-12-08T08:14:08Z
local.identifier.scopusID2-s2.0-38149131747
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Lu_A_Fast_Optimal_Algorithm_for_2007.pdf134.26 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator