Skip navigation
Skip navigation

On Uniqueness of Boundary Blow-Up Solutions of a Class of Nonlinear Elliptic Equations

Dong, Hongjie; Kim, Seick; Safonov, Mikhail

Description

We study boundary blow-up solutions of semilinear elliptic equations Lu=u+p with p1, or Lu=eau with a0, where L is a second order elliptic operator with measurable coefficients. Several uniqueness theorems and an existence theorem are obtained.

dc.contributor.authorDong, Hongjie
dc.contributor.authorKim, Seick
dc.contributor.authorSafonov, Mikhail
dc.date.accessioned2015-12-08T22:17:40Z
dc.identifier.issn0360-5302
dc.identifier.urihttp://hdl.handle.net/1885/31009
dc.description.abstractWe study boundary blow-up solutions of semilinear elliptic equations Lu=u+p with p1, or Lu=eau with a0, where L is a second order elliptic operator with measurable coefficients. Several uniqueness theorems and an existence theorem are obtained.
dc.publisherMarcel Dekker Inc.
dc.sourceCommunications in Partial Differential Equations
dc.subjectKeywords: Boundary blow-up; Nonlinear elliptic equations; Uniqueness
dc.titleOn Uniqueness of Boundary Blow-Up Solutions of a Class of Nonlinear Elliptic Equations
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume33
dc.date.issued2008
local.identifier.absfor010110 - Partial Differential Equations
local.identifier.ariespublicationu4085724xPUB79
local.type.statusPublished Version
local.contributor.affiliationDong, Hongjie, Brown University
local.contributor.affiliationKim, Seick, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationSafonov, Mikhail, University of Minnesota
local.description.embargo2037-12-31
local.bibliographicCitation.issue2
local.bibliographicCitation.startpage177
local.bibliographicCitation.lastpage188
local.identifier.doi10.1080/03605300601188748
dc.date.updated2015-12-08T08:09:41Z
local.identifier.scopusID2-s2.0-38949214702
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Dong_On_Uniqueness_of_Boundary_2008.pdf124.25 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator