Skip navigation
Skip navigation

Boundary regularity for the Monge-Ampere and affine maximal surface equations

Trudinger, Neil; Wang, Xu-Jia

Description

In this paper, we prove global second derivative estimates for solutions of the Dirichlet problem for the Monge-Ampère equation when the inhomogeneous term is only assumed to be Hölder continuous. As a consequence of our approach, we also establish the

dc.contributor.authorTrudinger, Neil
dc.contributor.authorWang, Xu-Jia
dc.date.accessioned2015-12-08T22:09:24Z
dc.identifier.issn0003-486X
dc.identifier.urihttp://hdl.handle.net/1885/29015
dc.description.abstractIn this paper, we prove global second derivative estimates for solutions of the Dirichlet problem for the Monge-Ampère equation when the inhomogeneous term is only assumed to be Hölder continuous. As a consequence of our approach, we also establish the
dc.publisherPrinceton University Press
dc.sourceAnnals of Mathematics
dc.source.urihttp://www.jstor.org/stable/40345368
dc.titleBoundary regularity for the Monge-Ampere and affine maximal surface equations
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume167
dc.date.issued2008
local.identifier.absfor010110 - Partial Differential Equations
local.identifier.ariespublicationu4085724xPUB62
local.type.statusPublished Version
local.contributor.affiliationTrudinger, Neil, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationWang, Xu-Jia, College of Physical and Mathematical Sciences, ANU
local.description.embargo2037-12-31
local.bibliographicCitation.issue3
local.bibliographicCitation.startpage993
local.bibliographicCitation.lastpage1028
dc.date.updated2015-12-08T07:24:51Z
local.identifier.scopusID2-s2.0-49749101596
local.identifier.thomsonID000262300600006
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Trudinger_Boundary_regularity_for_the_2008.pdf264.44 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator