Skip navigation
Skip navigation

A Conjectured Integer Sequence Arising From the Exponential Integral

Brent, Richard; Glasser, M. L.; Guttmann, Anthony J

Description

Let f0(z)=exp(z/(1−z)), f1(z)=exp(1/(1−z))E1(1/(1−z)), where E1(x)=∫∞xe−tt−1dt. Let an=[zn]f0(z) and bn=[zn]f1(z) be the corresponding Maclaurin series coefficients. We show that an and bn may be expressed in terms of confluent hypergeometric functions. We consider the asymptotic behaviour of the sequences (an) and (bn) as n→∞, showing that they are closely related, and proving a conjecture of Bruno Salvy regarding (bn). Let ρn=anbn, so ∑ρnzn=(f0⊙f1)(z) is a Hadamard product. We obtain an...[Show more]

dc.contributor.authorBrent, Richard
dc.contributor.authorGlasser, M. L.
dc.contributor.authorGuttmann, Anthony J
dc.date.accessioned2022-11-30T22:29:48Z
dc.identifier.issn1530-7638
dc.identifier.urihttp://hdl.handle.net/1885/281430
dc.description.abstractLet f0(z)=exp(z/(1−z)), f1(z)=exp(1/(1−z))E1(1/(1−z)), where E1(x)=∫∞xe−tt−1dt. Let an=[zn]f0(z) and bn=[zn]f1(z) be the corresponding Maclaurin series coefficients. We show that an and bn may be expressed in terms of confluent hypergeometric functions. We consider the asymptotic behaviour of the sequences (an) and (bn) as n→∞, showing that they are closely related, and proving a conjecture of Bruno Salvy regarding (bn). Let ρn=anbn, so ∑ρnzn=(f0⊙f1)(z) is a Hadamard product. We obtain an asymptotic expansion 2n3/2ρn∼−∑dkn−k as n→∞, where the dk∈Q, d0=1. We conjecture that 26kdk∈Z. This has been verified for k≤1000.
dc.format.mimetypeapplication/pdf
dc.language.isoen_AU
dc.publisherUniversity of Waterloo
dc.rights© Journal of Integer Sequences
dc.sourceJournal of Integer Sequences
dc.titleA Conjectured Integer Sequence Arising From the Exponential Integral
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume22
dc.date.issued2019
local.identifier.absfor490409 - Ordinary differential equations, difference equations and dynamical systems
local.identifier.absfor490411 - Real and complex functions (incl. several variables)
local.identifier.absfor490303 - Numerical solution of differential and integral equations
local.identifier.ariespublicationu3102795xPUB5011
local.publisher.urlhttps://cs.uwaterloo.ca/
local.type.statusPublished Version
local.contributor.affiliationBrent, Richard, College of Science, ANU
local.contributor.affiliationGlasser, M. L., Clarkson University
local.contributor.affiliationGuttmann , Anthony J, University of Melbourne
local.description.embargo2099-12-31
local.bibliographicCitation.issue4
local.bibliographicCitation.startpage1
local.bibliographicCitation.lastpage18
dc.date.updated2021-11-28T07:30:13Z
local.identifier.thomsonIDWOS:000483311800001
dcterms.accessRightsFree Access via publisher website
CollectionsANU Research Publications

Download

File Description SizeFormat Image
brent21.pdf209.54 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator