Skip navigation
Skip navigation

Enclosed convex hypersurfaces with maximal affine area

Sheng, Weimin; Trudinger, Neil; Wang, Xu-Jia

Description

In this paper we study the regularity of closed, convex surfaces which achieve maximal affine area among all the closed, convex surfaces enclosed in a given domain in the Euclidean 3-space. We prove the C1,α regularity for general domains and C1,1 regula

dc.contributor.authorSheng, Weimin
dc.contributor.authorTrudinger, Neil
dc.contributor.authorWang, Xu-Jia
dc.date.accessioned2015-12-07T22:52:20Z
dc.identifier.issn0025-5874
dc.identifier.urihttp://hdl.handle.net/1885/27400
dc.description.abstractIn this paper we study the regularity of closed, convex surfaces which achieve maximal affine area among all the closed, convex surfaces enclosed in a given domain in the Euclidean 3-space. We prove the C1,α regularity for general domains and C1,1 regula
dc.publisherSpringer
dc.sourceMathematische Zeitschrift
dc.titleEnclosed convex hypersurfaces with maximal affine area
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume252
dc.date.issued2006
local.identifier.absfor010110 - Partial Differential Equations
local.identifier.ariespublicationu3488905xPUB51
local.type.statusPublished Version
local.contributor.affiliationSheng, Weimin, Zhejiang University
local.contributor.affiliationTrudinger, Neil, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationWang, Xu-Jia, College of Physical and Mathematical Sciences, ANU
local.description.embargo2037-12-31
local.bibliographicCitation.startpage497
local.bibliographicCitation.lastpage510
local.identifier.doi10.1007/s00209-005-0862-1
dc.date.updated2015-12-07T12:28:34Z
local.identifier.scopusID2-s2.0-31444434530
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Sheng_Enclosed_convex_hypersurfaces_2006.pdf183.65 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator