Skip navigation
Skip navigation

Learning to Enhance RGB and Depth Images with Guidance

Lu, Kaiyue

Description

Image enhancement improves the visual quality of the input image to better identify key features and make it more suitable for other vision applications. Structure degradation remains a challenging problem in image enhancement, which refers to blurry edges or discontinuous structures due to unbalanced or inconsistent intensity transitions on structural regions. To overcome this issue, it is popular to make use of a guidance image to provide additional structural cues. In this thesis, we focus...[Show more]

dc.contributor.authorLu, Kaiyue
dc.date.accessioned2022-01-20T07:28:11Z
dc.date.available2022-01-20T07:28:11Z
dc.identifier.urihttp://hdl.handle.net/1885/258498
dc.description.abstractImage enhancement improves the visual quality of the input image to better identify key features and make it more suitable for other vision applications. Structure degradation remains a challenging problem in image enhancement, which refers to blurry edges or discontinuous structures due to unbalanced or inconsistent intensity transitions on structural regions. To overcome this issue, it is popular to make use of a guidance image to provide additional structural cues. In this thesis, we focus on two image enhancement tasks, i.e., RGB image smoothing and depth image completion. Through the two research problems, we aim to have a better understanding of what constitutes suitable guidance and how its proper use can benefit the reduction of structure degradation in image enhancement. Image smoothing retains salient structures and removes insignificant textures in an image. Structure degradation results from the difficulty in distinguishing structures and textures with low-level cues. Structures may be inevitably blurred if the filter tries to remove some strong textures that have high contrast. Moreover, these strong textures may also be mistakenly retained as structures. We address this issue by applying two forms of guidance for structures and textures respectively. We first design a kernel-based double-guided filter (DGF), where we adopt semantic edge detection as structure guidance, and texture decomposition as texture guidance. The DGF is the first kernel filter that simultaneously leverages structure guidance and texture guidance to be both ''structure-aware'' and ''texture-aware''. Considering that textures present high randomness and variations in spatial distribution and intensities, it is not robust to localize and identify textures with hand-crafted features. Hence, we take advantage of deep learning for richer feature extraction and better generalization. Specifically, we generate synthetic data by blending natural textures with clean structure-only images. With the data, we build a texture prediction network (TPN) that estimates the location and magnitude of textures. We then combine the texture prediction results from TPN with a semantic structure prediction network so that the final texture and structure aware filtering network (TSAFN) is able to distinguish structures and textures more effectively. Our model achieves superior smoothing results than existing filters. Depth completion recovers dense depth from sparse measurements, e.g., LiDAR. Existing depth-only methods use sparse depth as the only input and suffer from structure degradation, i.e., failing to recover semantically consistent boundaries or small/thin objects due to (1) the sparse nature of depth points and (2) the lack of images to provide structural cues. In the thesis, we deal with the structure degradation issue by using RGB image guidance in both supervised and unsupervised depth-only settings. For the supervised model, the unique design is that it simultaneously outputs a reconstructed image and a dense depth map. Specifically, we treat image reconstruction from sparse depth as an auxiliary task during training that is supervised by the image. For the unsupervised model, we regard dense depth as a reconstructed result of the sparse input, and formulate our model as an auto-encoder. To reduce structure degradation, we employ the image to guide latent features by penalizing their difference in the training process. The image guidance loss in both models enables them to acquire more dense and structural cues that are beneficial for producing more accurate and consistent depth values. For inference, the two models only take sparse depth as input and no image is required. On the KITTI Depth Completion Benchmark, we validate the effectiveness of the proposed image guidance through extensive experiments and achieve competitive performance over state-of-the-art supervised and unsupervised methods. Our approach is also applicable to indoor scenes.
dc.language.isoen_AU
dc.titleLearning to Enhance RGB and Depth Images with Guidance
dc.typeThesis (PhD)
local.contributor.supervisorBarnes, Nicholas
local.contributor.supervisorcontactu4591576@anu.edu.au
dc.date.issued2022
local.identifier.doi10.25911/KCNZ-3K31
local.identifier.proquestNo
local.thesisANUonly.authorc34939d8-ee64-4203-baf5-18293091f3e4
local.thesisANUonly.title000000015418_TC_1
local.thesisANUonly.key95947cf5-6ebc-beb0-1361-5d1efe1db88d
local.mintdoimint
CollectionsOpen Access Theses

Download

File Description SizeFormat Image
Kaiyue Lu_Thesis_2022.pdfThesis Material21.44 MBAdobe PDFThumbnail


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator