Skip navigation
Skip navigation

On the least square-free primitive root modulo p

Cohen, Stephen. D; Trudgian, Timothy

Description

Let g^□(p) denote the least square-free primitive root modulo p. We show that g^□(p) < p^(0.96) for all p.

dc.contributor.authorCohen, Stephen. D
dc.contributor.authorTrudgian, Timothy
dc.date.accessioned2021-08-24T01:36:49Z
dc.identifier.issn0022-314X
dc.identifier.urihttp://hdl.handle.net/1885/245017
dc.description.abstractLet g^□(p) denote the least square-free primitive root modulo p. We show that g^□(p) < p^(0.96) for all p.
dc.description.sponsorshipSupported by Australian Research Council DECRA Grant DE120100173.
dc.format.mimetypeapplication/pdf
dc.language.isoen_AU
dc.publisherAcademic Press
dc.rights© 2016 Elsevier Inc.
dc.sourceJournal of Number Theory
dc.subjectCharacter sums
dc.subjectPrimitive roots
dc.subjectSquare-free integers
dc.titleOn the least square-free primitive root modulo p
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume170
dc.date.issued2017
local.identifier.absfor010101 - Algebra and Number Theory
local.identifier.ariespublicationu4485658xPUB946
local.publisher.urlhttps://www.elsevier.com/en-au
local.type.statusPublished Version
local.contributor.affiliationCohen, Stephen. D, University of Glasgow
local.contributor.affiliationTrudgian, Timothy, College of Science, ANU
local.description.embargo2099-12-31
dc.relationhttp://purl.org/au-research/grants/arc/DE120100173
local.bibliographicCitation.startpage10
local.bibliographicCitation.lastpage16
local.identifier.doi10.1016/j.jnt.2016.06.011
local.identifier.absseo970101 - Expanding Knowledge in the Mathematical Sciences
dc.date.updated2020-11-23T10:54:16Z
local.identifier.scopusID2-s2.0-84982733913
local.identifier.thomsonID000384394100003
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Cohen_On_the_least_square-free_2017.pdf250.61 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator