Skip navigation
Skip navigation

Topological Hochschild homology of ℓ and k o

Angeltveit, Vigleik; Hill, Michael. A; Lawson, Tyler

Description

We calculate the integral homotopy groups of THH (ℓ) at any prime and of THH (ko) at p = 2, where ℓ is the Adams summand of the connective complex p-local K-theory spectrum and ko is the connective real K-theory spectrum.

dc.contributor.authorAngeltveit, Vigleik
dc.contributor.authorHill, Michael. A
dc.contributor.authorLawson, Tyler
dc.date.accessioned2015-12-07T22:41:46Z
dc.identifier.issn0002-9327
dc.identifier.urihttp://hdl.handle.net/1885/24472
dc.description.abstractWe calculate the integral homotopy groups of THH (ℓ) at any prime and of THH (ko) at p = 2, where ℓ is the Adams summand of the connective complex p-local K-theory spectrum and ko is the connective real K-theory spectrum.
dc.publisherJohns Hopkins University Press
dc.sourceAmerican Journal of Mathematics
dc.titleTopological Hochschild homology of ℓ and k o
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume132
dc.date.issued2010
local.identifier.absfor010101 - Algebra and Number Theory
local.identifier.ariespublicationu5035478xPUB32
local.type.statusPublished Version
local.contributor.affiliationAngeltveit, Vigleik, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationHill, Michael. A, UNIVERSITY OF VIRGINIA
local.contributor.affiliationLawson, Tyler, UNIVERSITY OF MINNESOTA
local.description.embargo2037-12-31
local.bibliographicCitation.issue2
local.bibliographicCitation.startpage297
local.bibliographicCitation.lastpage330
local.identifier.doi10.1353/ajm.0.0105
dc.date.updated2015-12-07T11:04:39Z
local.identifier.scopusID2-s2.0-77951088583
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Angeltveit_Topological_Hochschild_2010.pdf571.77 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator