Skip navigation
Skip navigation

Hardy spaces of differential forms and Riesz transforms on Riemannian manifolds

Auscher, Pascal; McIntosh, Alan; Russ, Emmanuel

Description

Let M be a complete Riemannian manifold. Assuming that the Riemannian measure is doubling, we define, for all 1 ≤ p ≤ + ∞, a Hardy space Hp (Λ T* M) of differential forms on M, and give two alternative characterizations of H1 (Λ T* M). We also pro

dc.contributor.authorAuscher, Pascal
dc.contributor.authorMcIntosh, Alan
dc.contributor.authorRuss, Emmanuel
dc.date.accessioned2015-12-07T22:41:10Z
dc.identifier.issn1631-073X
dc.identifier.urihttp://hdl.handle.net/1885/24192
dc.description.abstractLet M be a complete Riemannian manifold. Assuming that the Riemannian measure is doubling, we define, for all 1 ≤ p ≤ + ∞, a Hardy space Hp (Λ T* M) of differential forms on M, and give two alternative characterizations of H1 (Λ T* M). We also pro
dc.publisherElsevier
dc.sourceAcademie des Sciences Comptes Rendus: Mathematique
dc.titleHardy spaces of differential forms and Riesz transforms on Riemannian manifolds
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume344
dc.date.issued2007
local.identifier.absfor010110 - Partial Differential Equations
local.identifier.ariespublicationu3488905xPUB31
local.type.statusPublished Version
local.contributor.affiliationAuscher, Pascal, Universite Paris-Sud
local.contributor.affiliationMcIntosh, Alan, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationRuss, Emmanuel, Universite Paul-Cezanne
local.description.embargo2037-12-31
local.bibliographicCitation.issue2
local.bibliographicCitation.startpage103
local.bibliographicCitation.lastpage108
local.identifier.doi10.1016/j.crma.2006.11.023
dc.date.updated2015-12-07T10:57:49Z
local.identifier.scopusID2-s2.0-33846031582
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Auscher_Hardy_spaces_of_differential_2007.pdf152.04 kBAdobe PDFThumbnail


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator