Skip navigation
Skip navigation

Galois theory and integral models of Λ-rings

Borger, James; de Smit, Bart

Description

We show that any Λ-ring, in the sense of Riemann-Roch theory, which is finite étale over the rational numbers and has an integral model as a Λ-ring is contained in a product of cyclotomic fields. In fact, we show that the category of such Λ-rings is d

dc.contributor.authorBorger, James
dc.contributor.authorde Smit, Bart
dc.date.accessioned2015-12-07T22:27:27Z
dc.identifier.issn0024-6093
dc.identifier.urihttp://hdl.handle.net/1885/21905
dc.description.abstractWe show that any Λ-ring, in the sense of Riemann-Roch theory, which is finite étale over the rational numbers and has an integral model as a Λ-ring is contained in a product of cyclotomic fields. In fact, we show that the category of such Λ-rings is d
dc.publisherCambridge University Press
dc.sourceLondon Mathematical society. Bulletin
dc.titleGalois theory and integral models of Λ-rings
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume40
dc.date.issued2008
local.identifier.absfor010101 - Algebra and Number Theory
local.identifier.ariespublicationu4085724xPUB19
local.type.statusPublished Version
local.contributor.affiliationBorger, James, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationde Smit, Bart , Universiteit Leiden
local.description.embargo2037-12-31
local.bibliographicCitation.issue3
local.bibliographicCitation.startpage436
local.bibliographicCitation.lastpage446
local.identifier.doi10.1112/blms/bdn024
dc.date.updated2015-12-07T09:53:30Z
local.identifier.scopusID2-s2.0-44649141316
local.identifier.thomsonID000256169800009
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Borger_Galois_theory_and_integral_2008.pdf147 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator