Skip navigation
Skip navigation

Precise wave-function engineering with magnetic resonance

Wigley, Paul; Starkey, L. M.; Szigeti, S. S.; Jasperse, M.; Hope, Joseph; Turner, L. D.; Anderson, R. P.

Description

Controlling quantum fluids at their fundamental length scale will yield superlative quantum simulators, precision sensors, and spintronic devices. This scale is typically below the optical diffraction limit, precluding precise wave-function engineering using optical potentials alone. We present a protocol to rapidly control the phase and density of a quantum fluid down to the healing length scale using strong time-dependent coupling between internal states of the fluid in a magnetic field...[Show more]

dc.contributor.authorWigley, Paul
dc.contributor.authorStarkey, L. M.
dc.contributor.authorSzigeti, S. S.
dc.contributor.authorJasperse, M.
dc.contributor.authorHope, Joseph
dc.contributor.authorTurner, L. D.
dc.contributor.authorAnderson, R. P.
dc.date.accessioned2020-12-20T20:57:38Z
dc.date.available2020-12-20T20:57:38Z
dc.identifier.issn1094-1622
dc.identifier.urihttp://hdl.handle.net/1885/218332
dc.description.abstractControlling quantum fluids at their fundamental length scale will yield superlative quantum simulators, precision sensors, and spintronic devices. This scale is typically below the optical diffraction limit, precluding precise wave-function engineering using optical potentials alone. We present a protocol to rapidly control the phase and density of a quantum fluid down to the healing length scale using strong time-dependent coupling between internal states of the fluid in a magnetic field gradient. We demonstrate this protocol by simulating the creation of a single stationary soliton and double soliton states in a Bose-Einstein condensate with control over the individual soliton positions and trajectories, using experimentally feasible parameters. Such states are yet to be realized experimentally, and are a path towards engineering soliton gases and exotic topological excitations.
dc.description.sponsorshipThis work was supported by the Australian Research Council (ARC) Centre of Excellence for Engineered Quantum Systems (Project No. CE110001013), the Australian Postgraduate Award Scheme, and ARC Grants No. DP1094399, No. DP130101613, and No. FT120100291.
dc.format.mimetypeapplication/pdf
dc.language.isoen_AU
dc.publisherAmerican Physical Society
dc.rights© 2017 American Physical Society
dc.sourcePhysical Review A - Atomic, Molecular, and Optical Physics
dc.titlePrecise wave-function engineering with magnetic resonance
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume96
dc.date.issued2017
local.identifier.absfor020699 - Quantum Physics not elsewhere classified
local.identifier.ariespublicationa383154xPUB8211
local.type.statusPublished Version
local.contributor.affiliationWigley, Paul, College of Science, ANU
local.contributor.affiliationStarkey, L. M., Monash University
local.contributor.affiliationSzigeti, S. S., The University of Queensland
local.contributor.affiliationJasperse, M., Monash University
local.contributor.affiliationHope, Joseph, College of Science, ANU
local.contributor.affiliationTurner, L. D., Monash University
local.contributor.affiliationAnderson, R. P., Monash University
local.bibliographicCitation.issue1
local.bibliographicCitation.startpage013612
local.identifier.doi10.1103/PhysRevA.96.013612
dc.date.updated2020-11-23T10:58:06Z
local.identifier.scopusID2-s2.0-85026853962
local.identifier.thomsonID000405178500009
dcterms.accessRightsOpen Access
dc.relation.urihttp://purl.org/au-research/grants/arc/CE1101013
dc.relation.urihttp://purl.org/au-research/grants/arc/DP1094399
dc.relation.urihttp://purl.org/au-research/grants/arc/DP130101613
dc.relation.urihttp://purl.org/au-research/grants/arc/FT120100291
dc.provenancehttps://v2.sherpa.ac.uk/id/publication/13634..."Published version can be made open access on institutional repository" from SHERPA/RoMEO site (as at 5.4.2022)
CollectionsANU Research Publications

Download

File Description SizeFormat Image
TMP370573037202245124750.pdf657.28 kBAdobe PDFThumbnail


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator