Skip navigation
Skip navigation

Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer

Schuller, Jan M.; Birrell, James; Tanaka, Hideaki; Konuma, Tsuyoshi; Wulfhorst, Hannes; Cox, Nicholas; Schuller, Sandra K.; Thiemann, Jacqueline; Lubitz, Wolfgang; Sétif, Pierre; Ikegami, Takahisa

Description

Photosynthetic complex I enables cyclic electron flow around photosystem I, a regulatory mechanism for photosynthetic energy conversion. We report a 3.3-angstrom-resolution cryo–electron microscopy structure of photosynthetic complex I from the cyanobacterium Thermosynechococcus elongatus. The model reveals structural adaptations that facilitate binding and electron transfer from the photosynthetic electron carrier ferredoxin. By mimicking cyclic electron flow with isolated components in vitro,...[Show more]

dc.contributor.authorSchuller, Jan M.
dc.contributor.authorBirrell, James
dc.contributor.authorTanaka, Hideaki
dc.contributor.authorKonuma, Tsuyoshi
dc.contributor.authorWulfhorst, Hannes
dc.contributor.authorCox, Nicholas
dc.contributor.authorSchuller, Sandra K.
dc.contributor.authorThiemann, Jacqueline
dc.contributor.authorLubitz, Wolfgang
dc.contributor.authorSétif, Pierre
dc.contributor.authorIkegami, Takahisa
dc.date.accessioned2020-03-26T04:20:55Z
dc.identifier.issn0036-8075
dc.identifier.urihttp://hdl.handle.net/1885/202477
dc.description.abstractPhotosynthetic complex I enables cyclic electron flow around photosystem I, a regulatory mechanism for photosynthetic energy conversion. We report a 3.3-angstrom-resolution cryo–electron microscopy structure of photosynthetic complex I from the cyanobacterium Thermosynechococcus elongatus. The model reveals structural adaptations that facilitate binding and electron transfer from the photosynthetic electron carrier ferredoxin. By mimicking cyclic electron flow with isolated components in vitro, we demonstrate that ferredoxin directly mediates electron transfer between photosystem I and complex I, instead of using intermediates such as NADPH (the reduced form of nicotinamide adenine dinucleotide phosphate). A large rate constant for association of ferredoxin to complex I indicates efficient recognition, with the protein subunit NdhS being the key component in this process.
dc.description.sponsorshipFinancial support was provided by the Max Planck Society, the Cluster of Excellence RESOLV (EXC 1069 to W.L., N.C., and M.M.N.) funded by the German Research Council (DFG), the DFG research unit FOR2092 (EN 1194/1-1 to B.D.E. and NO 836/3-2 to M.M.N.), the DFG priority program 2002 (NO 836/4-1 to M.M.N.), DFG grant NO 836/1-1 (to M.M.N.), the Australian Research Council (FT140100834 to N.C.), JST-CREST (JPMJCR13M4 to G.K.), MEXT-KAKENHI (16H06560 to G.K.), the French Infrastructure for Integrated Structural Biology/FRISBI ANR-10-INSB-05 (P.S.), and the International Joint Research Promotion Program, Osaka University (G.K. and M.M.N.).
dc.format.mimetypeapplication/pdf
dc.language.isoen_AU
dc.publisherAmerican Association for the Advancement of Science
dc.rights© The Authors, some rights reserved; exclusive
dc.sourceScience
dc.titleStructural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume363
dc.date.issued2019
local.identifier.absfor030606 - Structural Chemistry and Spectroscopy
local.identifier.absfor060107 - Enzymes
local.identifier.absfor060112 - Structural Biology (incl. Macromolecular Modelling)
local.identifier.ariespublicationu3102795xPUB559
local.publisher.urlhttps://www.aaas.org/
local.type.statusPublished Version
local.contributor.affiliationSchuller, Jan M., Max Planck Institute of Biochemistry
local.contributor.affiliationBirrell, James, Max-Planck Institute for Chemical Energy
local.contributor.affiliationTanaka, Hideaki, Osaka University
local.contributor.affiliationKonuma, Tsuyoshi, Yokohama City University
local.contributor.affiliationWulfhorst, Hannes, Ruhr University Bochum
local.contributor.affiliationCox, Nicholas, College of Science, ANU
local.contributor.affiliationSchuller, Sandra K., Ludwig-Maximilians-Universität München
local.contributor.affiliationThiemann, Jacqueline, Ruhr University Bochum
local.contributor.affiliationLubitz, Wolfgang , Max Planck Institute for Bioinorganic Chemistry
local.contributor.affiliationSétif, Pierre, Université Paris-Saclay
local.contributor.affiliationIkegami, Takahisa, Osaka University
local.description.embargo2037-12-31
dc.relationhttp://purl.org/au-research/grants/arc/FT140100834
local.bibliographicCitation.issue6424
local.bibliographicCitation.startpage257
local.bibliographicCitation.lastpage260
local.identifier.doi10.1126/science.aau3613
local.identifier.absseo970103 - Expanding Knowledge in the Chemical Sciences
dc.date.updated2019-11-25T07:44:50Z
local.identifier.scopusID2-s2.0-85059062865
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Schuller_Structural_adaptations_of_2019.pdf1.01 MBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  22 January 2019/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator