Skip navigation
Skip navigation

Spin and orbital angular momenta of acoustic beams

Bliokh, Konstantin; Nori, Franco

Description

We analyze spin and orbital angular momenta in monochromatic acoustic wave fields in a homogeneous medium. Despite being purely longitudinal (curl-free), inhomogeneous acoustic waves generically possess nonzero spin angular momentum density caused by the local rotation of the vector velocity field. We show that the integral spin of a localized acoustic wave vanishes in agreement with the spin-0 nature of longitudinal phonons. We also show that the helicity or chirality density vanishes...[Show more]

dc.contributor.authorBliokh, Konstantin
dc.contributor.authorNori, Franco
dc.date.accessioned2020-02-13T02:53:24Z
dc.date.available2020-02-13T02:53:24Z
dc.identifier.issn2469-9950
dc.identifier.urihttp://hdl.handle.net/1885/201689
dc.description.abstractWe analyze spin and orbital angular momenta in monochromatic acoustic wave fields in a homogeneous medium. Despite being purely longitudinal (curl-free), inhomogeneous acoustic waves generically possess nonzero spin angular momentum density caused by the local rotation of the vector velocity field. We show that the integral spin of a localized acoustic wave vanishes in agreement with the spin-0 nature of longitudinal phonons. We also show that the helicity or chirality density vanishes identically in acoustic fields. As an example, we consider nonparaxial acoustic Bessel beams carrying well-defined integer orbital angular momentum, as well as nonzero local spin density, with both transverse and longitudinal components. We describe the nontrivial polarization structure in acoustic Bessel beams and indicate a number of observable phenomena, such as nonzero energy density and purely circular transverse polarization in the center of the first-order vortex beams.
dc.description.sponsorshipThis work was partially supported by MURI Center for Dynamic Magneto-Optics via the Air Force Office of Scientific Research (AFOSR) (FA9550-14-1-0040), Army Research Office (ARO) (Grant No. W911NF-18-1-0358), Asian Office of Aerospace Research and Development (AOARD) (Grant No. FA2386-18-1-4045), Japan Science and Technology Agency (JST) (Q-LEAP program, ImPACT program, and CREST Grant No. JPMJCR1676), Japan Society for the Promotion of Science (JSPS) (JSPS-RFBR Grant No. 17-52-50023, and JSPS-FWO Grant No. VS.059.18N), RIKEN-AIST Challenge Research Fund, the John Templeton Foundation, and the Australian Research Council.
dc.format.mimetypeapplication/pdf
dc.language.isoen_AU
dc.publisherAmerican Physical Society
dc.rights© 2019 American Physical Society
dc.sourcePhysical Review B
dc.titleSpin and orbital angular momenta of acoustic beams
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume99
dc.date.issued2019
local.identifier.absfor020503 - Nonlinear Optics and Spectroscopy
local.identifier.ariespublicationu3102795xPUB1961
local.publisher.urlhttps://www.aps.org/
local.type.statusPublished Version
local.contributor.affiliationBliokh, Konstantin, College of Science, ANU
local.contributor.affiliationNori, Franco, University of Michigan
local.bibliographicCitation.issue17
local.bibliographicCitation.startpage1
local.bibliographicCitation.lastpage9
local.identifier.doi10.1103/PhysRevB.99.174310
local.identifier.absseo970102 - Expanding Knowledge in the Physical Sciences
dc.date.updated2019-11-25T07:33:04Z
local.identifier.scopusID2-s2.0-85066400741
local.identifier.thomsonID4.69052E+11
dcterms.accessRightsOpen Access
dc.provenancehttp://sherpa.ac.uk/romeo/issn/2469-9950/..."author can archive publisher's version/PDF" from SHERPA/RoMEO site (as at 13/02/2020). Bliokh, Konstantin Y., and Franco Nori. "Spin and orbital angular momenta of acoustic beams." Physical Review B 99.17 (2019): 174310.
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Bliokh_Spin_and_orbital_angular_2019.pdf1.87 MBAdobe PDFThumbnail


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  22 January 2019/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator