Skip navigation
Skip navigation

On aggregation for heavy-tailed classes

Mendelson, Shahar


We introduce an alternative to the notion of ‘fast rate’ in Learning Theory, which coincides with the optimal error rate when the given class happens to be convex and regular in some sense. While it is well known that such a rate cannot always be attained by a learning procedure (i.e., a procedure that selects a function in the given class), we introduce an aggregation procedure that attains that rate under rather minimal assumptions—for example, that the Lq and L2 norms are equivalent on the...[Show more]

CollectionsANU Research Publications
Date published: 2017-08
Type: Journal article
Source: Probability Theory and Related Fields
DOI: 10.1007/s00440-016-0720-6


File Description SizeFormat Image
01_Mendelson_On_aggregation_for_2017.pdf315.33 kBAdobe PDF    Request a copy
02_Mendelson_On_aggregation_for_2017.pdf478.01 kBAdobe PDF    Request a copy

Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator