Skip navigation
Skip navigation
Open Research will be down for maintenance between 8:00am and 8:15am on Thursday, 22 August 2019

Event-Triggered Consensus and Formation Control in Multi-Agent Coordination

Liu, Qingchen

Description

The focus of this thesis is to study distributed event-triggered control for multi-agent systems (MASs) facing constraints in practical applications. We consider several problems in the field, ranging from event-triggered consensus with information quantization, event-triggered edge agreement under synchronized/unsynchronized clocks, event-triggered leader-follower consensus with Euler-Lagrange agent dynamics and cooperative event-triggered rigid formation...[Show more]

dc.contributor.authorLiu, Qingchen
dc.date.accessioned2018-05-30T00:42:17Z
dc.date.available2018-05-30T00:42:17Z
dc.identifier.urihttp://hdl.handle.net/1885/143661
dc.description.abstractThe focus of this thesis is to study distributed event-triggered control for multi-agent systems (MASs) facing constraints in practical applications. We consider several problems in the field, ranging from event-triggered consensus with information quantization, event-triggered edge agreement under synchronized/unsynchronized clocks, event-triggered leader-follower consensus with Euler-Lagrange agent dynamics and cooperative event-triggered rigid formation control. The first topic is named as event-triggered consensus with quantized relative state measurements. In this topic, we develop two event-triggered controllers with quantized relative state measurements to achieve consensus for an undirected network where each agent is modelled by single integrator dynamics. Both uniform and logarithmic quantizers are considered, which, together with two different controllers, yield four cases of study in this topic. The quantized information is used to update the control input as well as to determine the next trigger event. We show that approximate consensus can be achieved by the proposed algorithms and Zeno behaviour can be completely excluded if constant offsets with some computable lower bounds are added to the trigger conditions. The second topic considers event-triggered edge agreement problems. Two cases, namely the synchronized clock case and the unsynchronized clock case, are studied. In the synchronized clock case, all agents are activated simultaneously to measure the relative state information over edge links under a global clock. Edge events are defined and their occurrences trigger the update of control inputs for the two agents sharing the link. We show that average consensus can be achieved with our proposed algorithm. In the unsynchronized clock case, each agent executes control algorithms under its own clock which is not synchronized with other agents' clocks. An edge event only triggers control input update for an individual agent. It is shown that all agents will reach consensus in a totally asynchronous manner. In the third topic, we propose three different distributed event-triggered control algorithms to achieve leader-follower consensus for a network of Euler-Lagrange agents. We firstly propose two model-independent algorithms for a subclass of Euler-Lagrange agents without the vector of gravitational potential forces. A variable-gain algorithm is employed when the sensing graph is undirected; algorithm parameters are selected in a fully distributed manner with much greater flexibility compared to all previous work concerning event-triggered consensus problems. When the sensing graph is directed, a constant-gain algorithm is employed. The control gains must be centrally designed to exceed several lower bounding inequalities which require limited knowledge of bounds on the matrices describing the agent dynamics, bounds on network topology information and bounds on the initial conditions. When the Euler-Lagrange agents have dynamics which include the vector of gravitational potential forces, an adaptive algorithm is proposed. This requires more information about the agent dynamics but allows for the estimation of uncertain agent parameters. The last topic discusses cooperative stabilization control of rigid formations via an event-triggered approach. We first design a centralized event-triggered formation control system, in which a central event controller determines the next triggering time and broadcasts the event signal to all the agents for control input update. We then build on this approach to propose a distributed event control strategy, in which each agent can use its local event trigger and local information to update the control input at its own event time. For both cases, the trigger condition, event function and trigger behaviour are discussed in detail, and the exponential convergence of the formation system is guaranteed.
dc.language.isoen
dc.subjectMulti-agent system
dc.subjectEvent-triggered control
dc.titleEvent-Triggered Consensus and Formation Control in Multi-Agent Coordination
dc.typeThesis (PhD)
local.contributor.supervisorYu, Changbin (Brad)
local.contributor.supervisorcontactbrad.yu@anu.edu.au
dcterms.valid2018
local.description.notesthe author deposited 30/05/18
local.type.degreeDoctor of Philosophy (PhD)
dc.date.issued2018
local.contributor.affiliationCollege of Engineering and Computer Science, The Australian National University
local.mintdoimint
CollectionsOpen Access Theses

Download

File Description SizeFormat Image
Liu Thesis 2018.pdf3.91 MBAdobe PDFThumbnail


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  22 January 2019/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator