Haw, Jing Yan
Description
In the past decade, quantum communication protocols based on
continuous variables (CV) has seen considerable development in
both theoretical and experimental aspects.
Nonetheless, challenges remain in both the practical security and
the operating range for CV systems, before such systems may be
used extensively. In this thesis, we present
the optimisation of experimental parameters for secure randomness
generation and propose a non-deterministic approach to...[Show more] enhance
amplification of CV quantum state.
The first part of this thesis examines the security of quantum
devices: in particular, we investigate quantum random number
generators (QRNG) and quantum key distribution
(QKD) schemes. In a realistic scenario, the output of a quantum
random number generator is inevitably tainted by classical
technical noise, which potentially compromises
the security of such a device. To safeguard against this, we
propose and experimentally demonstrate an approach that produces
side-information independent randomness. We present a method for
maximising such randomness contained in a number sequence
generated from a given quantum-to-classical-noise ratio. The
detected photocurrent
in our experiment is shown to have a real-time random-number
generation rate of 14 (Mbit/s)/MHz.
Next, we study the one-sided device-independent (1sDI) quantum
key distribution scheme in the context of continuous variables.
By exploiting recently proven entropic
uncertainty relations, one may bound the information leaked to an
eavesdropper. We use such a bound to further derive the secret
key rate, that depends only upon the
conditional Shannon entropies accessible to Alice and Bob, the
two honest communicating parties. We identify and experimentally
demonstrate such a protocol, using only
coherent states as the resource. We measure the correlations
necessary for 1sDI key distribution up to an applied loss
equivalent to 3.5 km of fibre transmission.
The second part of this thesis concerns the improvement in the
transmission of a quantum state. We study two approximate
implementations of a probabilistic noiseless
linear amplifier (NLA): a physical implementation that truncates
the working space of the NLA or a measurement-based
implementation that realises the truncation
by a bounded postselection filter. We do this by conducting a
full analysis on the measurement-based NLA (MB-NLA), making
explicit the relationship between its various
operating parameters, such as amplification gain and the cut-off
of operating domain. We compare it with its physical counterpart
in terms of the Husimi Q-distribution and
their probability of success.
We took our investigations further by combining a probabilistic
NLA with an ideal deterministic linear amplifier (DLA). In
particular, we show that when NLA gain is strictly lesser than
the DLA gain, this combination can be realised by integrating an
MB-NLA in an optical DLA setup. This results in a hybrid device
which we refer to as the heralded hybrid quantum amplifier. A
quantum cloning machine based on this hybrid amplifier is
constructed through an amplify-then-split method. We perform
probabilistic cloning of arbitrary coherent states, and
demonstrate the production of up to five clones, with the
fidelity of each clone clearly exceeding the corresponding
no-cloning limit.
Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.