Skip navigation
Skip navigation

Hydrothermal syntheses of tungsten doped TiO 2 and TiO 2 /WO 3 composite using metal oxide precursors for charge storage applications

Pal, Bhupender; Vijayan, Bincy Lathakumary; Krishnan, Syam G.; Harilal, Midhun; Basirun, Wan Jeffrey; Lowe, Adrian; Yusoff, Mashitah M.; Jose, Rajan

Description

Synthesis of advanced functional materials through scalable processing routes using greener approaches is essential for process and product sustainability. In this article, syntheses of nanoparticles of titanium dioxide (TiO₂), tungsten trioxide (WO₃), WO₃-doped titanium dioxide (W-TiO₂) and TiO₂/WO₃ composite at hydrothermal conditions using corresponding metal oxide precursors are described. Electrochemical charge storage capabilities of the above materials are measured using cyclic...[Show more]

dc.contributor.authorPal, Bhupender
dc.contributor.authorVijayan, Bincy Lathakumary
dc.contributor.authorKrishnan, Syam G.
dc.contributor.authorHarilal, Midhun
dc.contributor.authorBasirun, Wan Jeffrey
dc.contributor.authorLowe, Adrian
dc.contributor.authorYusoff, Mashitah M.
dc.contributor.authorJose, Rajan
dc.date.accessioned2018-01-18T00:56:35Z
dc.identifier.issn0925-8388
dc.identifier.urihttp://hdl.handle.net/1885/139435
dc.description.abstractSynthesis of advanced functional materials through scalable processing routes using greener approaches is essential for process and product sustainability. In this article, syntheses of nanoparticles of titanium dioxide (TiO₂), tungsten trioxide (WO₃), WO₃-doped titanium dioxide (W-TiO₂) and TiO₂/WO₃ composite at hydrothermal conditions using corresponding metal oxide precursors are described. Electrochemical charge storage capabilities of the above materials are measured using cyclic voltammetry, charge-discharge cycling and electrochemical impedance spectroscopy in aqueous KOH electrolyte. The TiO₂ and the WO₃ nanoparticle showed a specific charge (Q) of ∼12 and ∼36 mA h g⁻¹ at a current density of 2 A g⁻¹ in 6 M KOH, respectively. The Q of TiO₂ increased upon W doping up to 25 mA h g−1 for 5 wt% W-TiO2 and the WO₃/TiO₂ composite showed the highest storage capability (Q ∼40 mA h g⁻¹). Changes in the charge storage capabilities of the doped and composite materials have been correlated to materials properties.
dc.description.sponsorshipBhupender Pal acknowledges the Research & Innovation Department of Universiti Malaysia Pahang (http://ump.edu.my) for award of Postdoctoral Fellowship. This project is funded under Flagship Strategic Leap 3 of Universiti Malaysia Pahang (Grant Number # RDU 172201).
dc.format.mimetypeapplication/pdf
dc.publisherElsevier
dc.rights© 2018 Elsevier B.V.
dc.sourceJournal of Alloys and Compounds
dc.subjectGreen synthesis
dc.subjectEnergy Storage Materials
dc.subjectRenewable energy
dc.subjectBattery type electrode
dc.subjectSupercapacitors
dc.titleHydrothermal syntheses of tungsten doped TiO 2 and TiO 2 /WO 3 composite using metal oxide precursors for charge storage applications
dc.typeJournal article
local.identifier.citationvolume740
dc.date.issued2018
local.publisher.urlhttps://www.elsevier.com/
local.type.statusAccepted Version
local.contributor.affiliationLowe, A., Research School of Engineering, The Australian National University
local.bibliographicCitation.startpage703
local.bibliographicCitation.lastpage710
local.identifier.doi10.1016/j.jallcom.2018.01.065
dcterms.accessRightsOpen Access
dc.provenancehttp://www.sherpa.ac.uk/romeo/issn/0925-8388/..."Author's post-print on open access repository after an embargo period of between 12 months and 48 months" from SHERPA/RoMEO site (as at 18/01/18).
CollectionsANU Research Publications

Download

File Description SizeFormat Image
1-s2.0-S0925838818300665-main.pdf1.1 MBAdobe PDFThumbnail


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator