Skip navigation
Skip navigation

Yang–Baxter maps, discrete integrable equations and quantum groups

Bazhanov, Vladimir V.; Sergeev, Sergey M.

Description

For every quantized Lie algebra there exists a map from the tensor square of the algebra to itself, which by construction satisfies the set-theoretic Yang–Baxter equation. This map allows one to define an integrable discrete quantum evolution system on quadrilateral lattices, where local degrees of freedom (dynamical variables) take values in a tensor power of the quantized Lie algebra. The corresponding equations of motion admit the zero curvature representation. The commuting Integrals of...[Show more]

CollectionsANU Research Publications
Date published: 2018
Type: Journal article
URI: http://hdl.handle.net/1885/139155
Source: Nuclear Physics B
DOI: 10.1016/j.nuclphysb.2017.11.017

Download

File Description SizeFormat Image
1-s2.0-S055032131730384X-main.pdf597.72 kBAdobe PDFThumbnail


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  23 August 2018/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator