Skip navigation
Skip navigation

Lytic gene expression Is frequent in HSV-1 latent infection and correlates with the engagement of a cell-intrinsic transcriptional response

Ma, Joel Z.; Russell, Tiffany A.; Spelman, Tim; Carbone, Francis R.; Tscharke, David C.

Description

Herpes simplex viruses (HSV) are significant human pathogens that provide one of the best-described examples of viral latency and reactivation. HSV latency occurs in sensory neurons, being characterized by the absence of virus replication and only fragmentary evidence of protein production. In mouse models, HSV latency is especially stable but the detection of some lytic gene transcription and the ongoing presence of activated immune cells in latent ganglia have been used to suggest that...[Show more]

dc.contributor.authorMa, Joel Z.
dc.contributor.authorRussell, Tiffany A.
dc.contributor.authorSpelman, Tim
dc.contributor.authorCarbone, Francis R.
dc.contributor.authorTscharke, David C.
dc.date.accessioned2015-03-05T00:29:40Z
dc.date.available2015-03-05T00:29:40Z
dc.identifier.issn1553-7366
dc.identifier.urihttp://hdl.handle.net/1885/12812
dc.description.abstractHerpes simplex viruses (HSV) are significant human pathogens that provide one of the best-described examples of viral latency and reactivation. HSV latency occurs in sensory neurons, being characterized by the absence of virus replication and only fragmentary evidence of protein production. In mouse models, HSV latency is especially stable but the detection of some lytic gene transcription and the ongoing presence of activated immune cells in latent ganglia have been used to suggest that this state is not entirely quiescent. Alternatively, these findings can be interpreted as signs of a low, but constant level of abortive reactivation punctuating otherwise silent latency. Using single cell analysis of transcription in mouse dorsal root ganglia, we reveal that HSV-1 latency is highly dynamic in the majority of neurons. Specifically, transcription from areas of the HSV genome associated with at least one viral lytic gene occurs in nearly two thirds of latently-infected neurons and more than half of these have RNA from more than one lytic gene locus. Further, bioinformatics analyses of host transcription showed that progressive appearance of these lytic transcripts correlated with alterations in expression of cellular genes. These data show for the first time that transcription consistent with lytic gene expression is a frequent event, taking place in the majority of HSV latently-infected neurons. Furthermore, this transcription is of biological significance in that it influences host gene expression. We suggest that the maintenance of HSV latency involves an active host response to frequent viral activity.
dc.description.sponsorshipThis work was funded by NHMRC Project Grant APP1005846 (http://www.nhmrc.gov.au). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
dc.format14 pages
dc.publisherPublic Library of Science
dc.rights© 2014 Ma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
dc.sourcePLoS Pathogens
dc.subjectherpes simplex virus
dc.subjectlatency
dc.subjecttranscription
dc.subjectsingle cell analysis
dc.titleLytic gene expression Is frequent in HSV-1 latent infection and correlates with the engagement of a cell-intrinsic transcriptional response
dc.typeJournal article
local.identifier.citationvolume10
dcterms.dateAccepted2014-05-23
dc.date.issued2014-07
local.identifier.absfor060506 - Virology
local.identifier.ariespublicationu4008405xPUB40
local.publisher.urlhttp://www.plos.org/
local.type.statusPublished Version
local.contributor.affiliationTscharke, David C., Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University
local.contributor.affiliationRussell, Tiffany A., Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University
dc.relationhttp://purl.org/au-research/grants/nhmrc/1005846
dc.relationhttp://purl.org/au-research/grants/arc/ft110100310
local.identifier.essn1553-7374
local.bibliographicCitation.issue7
local.bibliographicCitation.startpagee1004237
local.bibliographicCitation.lastpage14
local.identifier.doi10.1371/journal.ppat.1004237
local.identifier.absseo920109 - Infectious Diseases
dc.date.updated2015-12-08T03:33:25Z
local.identifier.scopusID2-s2.0-84905367433
local.identifier.thomsonID000340551000029
CollectionsANU Research Publications

Download

File Description SizeFormat Image
Ma, J. Z. et al Lytic gene expression is frequent 2014.pdf1.32 MBAdobe PDFThumbnail


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator