Skip navigation
Skip navigation

Development of a registration framework to validate MRI with histology for prostate focal therapy

Reynolds, H M; Williams, S; Zhang, A; Chakravorty, R; Rawlinson, D; Ong, C S; Esteva, M; Mitchell, C; Parameswaran, B; Finnegan, M; Liney, G; Haworth, A

Description

PURPOSE Focal therapy has been proposed as an alternative method to whole-gland treatment for prostate cancer when aiming to reduce treatment side effects. The authors recently validated a radiobiological model which takes into account tumor location and tumor characteristics including tumor cell density, Gleason score, and hypoxia in order to plan optimal dose distributions for focal therapy. The authors propose that this model can be informed using multiparametric MRI (mpMRI) and in this...[Show more]

dc.contributor.authorReynolds, H M
dc.contributor.authorWilliams, S
dc.contributor.authorZhang, A
dc.contributor.authorChakravorty, R
dc.contributor.authorRawlinson, D
dc.contributor.authorOng, C S
dc.contributor.authorEsteva, M
dc.contributor.authorMitchell, C
dc.contributor.authorParameswaran, B
dc.contributor.authorFinnegan, M
dc.contributor.authorLiney, G
dc.contributor.authorHaworth, A
dc.date.accessioned2017-02-15T05:54:34Z
dc.date.available2017-02-15T05:54:34Z
dc.identifier.issn0094-2405
dc.identifier.urihttp://hdl.handle.net/1885/112384
dc.description.abstractPURPOSE Focal therapy has been proposed as an alternative method to whole-gland treatment for prostate cancer when aiming to reduce treatment side effects. The authors recently validated a radiobiological model which takes into account tumor location and tumor characteristics including tumor cell density, Gleason score, and hypoxia in order to plan optimal dose distributions for focal therapy. The authors propose that this model can be informed using multiparametric MRI (mpMRI) and in this study present a registration framework developed to map prostate mpMRI and histology data, where histology will provide the "ground truth" data regarding tumor location and biology. The authors aim to apply this framework to a growing database to develop a prostate biological atlas which will enable MRI based planning for prostate focal therapy treatment. METHODS Six patients scheduled for routine radical prostatectomy were used in this proof-of-concept study. Each patient underwent mpMRI scanning prior to surgery, after which the excised prostate specimen was formalin fixed and mounted in agarose gel in a custom designed sectioning box. T2-weighted MRI of the specimen in the sectioning box was acquired, after which 5 mm sections of the prostate were cut and histology sections were microtomed. A number of image processing and registration steps were used to register histology images with ex vivo MRI and deformable image registration (DIR) was applied to 3D T2w images to align the in vivo and ex vivo MRI data. Dice coefficient metrics and corresponding feature points from two independent annotators were selected in order to assess the DIR accuracy. RESULTS Images from all six patients were registered, providing histology and in vivo MRI in the ex vivo MRI frame of reference for each patient. Results demonstrated that their DIR methodology to register in vivo and ex vivo 3D T2w MRI improved accuracy in comparison with an initial manual alignment for prostates containing features which were readily visible on MRI. The average estimated uncertainty between in vivo MRI and histology was 3.3 mm, which included an average error of 3.1 mm between in vivo and ex vivo MRI after applying DIR. The mean dice coefficient for the prostate contour between in vivo and ex vivo MRI increased from 0.83 before DIR to 0.93 after DIR. CONCLUSIONS The authors have developed a registration framework for mapping in vivo MRI data of the prostate with histology by implementing a number of processing steps and ex vivo MRI of the prostate specimen. Validation of DIR was challenging, particularly in prostates with few or mostly linear rather than spherical shaped features. Refinement of their MR imaging protocols to improve the data quality is currently underway which may improve registration accuracy. Additional mpMRI sequences will be registered within this framework to quantify prostate tumor location and biology.
dc.description.sponsorshipDr. Reynolds is funded by a Movember Young Investi-gator Grant awarded through Prostate Cancer Foundation ofAustralia’s Research Program. Dr. Williams was partially sup-ported by a Victorian Cancer Agency Fellowship. Work wassupported by PdCCRS Grant No. 628592 with funding part-ners: Prostate Cancer Foundation of Australia and the Radia-tion Oncology Section of the Australian Government of Healthand Aging and Cancer Australia. NICTA is funded by theAustralian Government through the Department of Communi-cations and the Australian Research Council through the ICTCentre of Excellence Program.
dc.format.mimetypeapplication/pdf
dc.publisherAmerican Association of Physicists in Medicine
dc.rights© 2015 American Association of Physicists in Medicine.
dc.sourceMedical physics
dc.subjectaged
dc.subjectatlases as topic
dc.subjectcell count
dc.subjectfixatives
dc.subjectformaldehyde
dc.subjectgels
dc.subjecthistological techniques
dc.subjecthumans
dc.subjectimaging, three-dimensional
dc.subjectmagnetic resonance imaging
dc.subjectmale
dc.subjectmicrotomy
dc.subjectmiddle aged
dc.subjectprostate
dc.subjectprostatectomy
dc.subjectprostatic neoplasms
dc.subjectsepharose
dc.titleDevelopment of a registration framework to validate MRI with histology for prostate focal therapy
dc.typeJournal article
local.identifier.citationvolume42
dc.date.issued2015-12
local.publisher.urlhttp://www.aapm.org/default.asp
local.type.statusPublished Version
local.contributor.affiliationOng, C. S., Research Schoolof Computer Science, The Australian National University
local.bibliographicCitation.issue12
local.bibliographicCitation.startpage7078
local.bibliographicCitation.lastpage7089
local.identifier.doi10.1118/1.4935343
dcterms.accessRightsOpen Access
CollectionsANU Research Publications

Download

There are no files associated with this item.


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator