Skip navigation
Skip navigation

Reactivity of a Terminal Methylidyne

CollectionsANU Student Research Conference (2nd : 2016 : Canberra, ACT)
Title: Reactivity of a Terminal Methylidyne
Author(s): Kong, Richard Yuze
Keywords: student research conference;reactivity;chemistry;Honours;3MT;organometallic;catalysis
Date published: 14-Jul-2016
Publisher: Australian National University
Can we teach a new molecule old tricks? In late 2015, Hill et al. reported the synthesis of an organometallic compound unique in its stability and bond arrangement, a terminal methylidyne complex. Up until this point, only a few examples of terminal methylidynes had been reported in the literature, which decomposed at room temperature and were only achievable in milligram quantities. With access to gram-scale quantities of compound through the Hill group synthesis, we have been afforded the opportunity to thoroughly probe their reactivity. The research I am undertaking during my Honours year involves elucidating the reactivity of this molecule by subjecting it to a range of different conditions and reagents. Beginning with results reported by Templeton et al., our first course of investigation was to deprotonate the molecule and subsequently functionalise the deprotonated molecule. Several different reagents were tried to achieve this outcome with little success, however upon treatment with an incredibly aggressive deprotonation reagent, radically unexpected reactivity emerged. Organometallic chemistry, while foreign in name, pervades almost every aspect of our lives from the catalytic converters in our cars to playing a key role in the industrial production of vinegar, plastics and fertilizer. The amazing utility of metals to catalyse a host of useful reactions has provided an impetus to investigate the mechanisms by which these reactions take place. My research thus falls within this broader narrative of contributing to the wealth of knowledge on inorganic chemistry which has proved critical to the modern world.


File Description SizeFormat Image
Richard Kong.pdf3 Minute Thesis596.54 kBAdobe PDFThumbnail

Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator