Skip navigation
Skip navigation

Modified Futaki invariant and equivariant Riemann-Roch formula

Wang, Feng; Zhou, Bin; Zhu, Xiaohua

Description

In this paper, we give a new version of the modified Futaki invariant for a test configuration associated to the soliton action on a Fano manifold. Our version will naturally come from toric test configurations defined by Donaldson for toric manifolds. As an application, we show that the modified K-energy is proper for toric invariant Kähler potentials on a toric Fano manifold.

dc.contributor.authorWang, Feng
dc.contributor.authorZhou, Bin
dc.contributor.authorZhu, Xiaohua
dc.date.accessioned2016-06-14T23:20:41Z
dc.identifier.issn0001-8708
dc.identifier.urihttp://hdl.handle.net/1885/103503
dc.description.abstractIn this paper, we give a new version of the modified Futaki invariant for a test configuration associated to the soliton action on a Fano manifold. Our version will naturally come from toric test configurations defined by Donaldson for toric manifolds. As an application, we show that the modified K-energy is proper for toric invariant Kähler potentials on a toric Fano manifold.
dc.publisherAcademic Press
dc.sourceAdvances in Mathematics
dc.titleModified Futaki invariant and equivariant Riemann-Roch formula
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume289
dc.date.issued2016
local.identifier.absfor010101 - Algebra and Number Theory
local.identifier.ariespublicationU3488905xPUB8283
local.type.statusPublished Version
local.contributor.affiliationWang, Feng, Zhejiang University
local.contributor.affiliationZhou, Bin, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationZhu, Xiaohua, Peking University
local.description.embargo2037-12-31
local.bibliographicCitation.startpage1205
local.bibliographicCitation.lastpage1235
local.identifier.doi10.1016/j.aim.2015.11.036
dc.date.updated2016-06-14T08:51:38Z
local.identifier.scopusID2-s2.0-84949908184
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Wang_Modified_Futaki_invariant_and_2016.pdf498.24 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator