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We predict analytically and confirm with numerical simu-
lations that intermode dispersion in nanowire waveguide
arrays can be tailored through periodic waveguide bending,
facilitating flexible spatiotemporal reshaping without
breakup of femtosecond pulses. This approach allows
simultaneous and independent control of temporal
dispersion and spatial diffraction that are often strongly
connected in nanophotonic structures. © 2015 Optical
Society of America

OCIS codes: (080.1238) Array waveguide devices; (320.5540) Pulse

shaping.

http://dx.doi.org/10.1364/OL.40.004078

Light control in dispersive coupled waveguides is an area of
growing interest [1–6]. High-index-contrast nanowires based
on semiconductors [7], glasses [8], and metals [9–11] offer
unique advantages for the manipulation of optical pulses in
compact photonic circuits, providing high field confinement
and enabling precise dispersion engineering. In particular, op-
tical chips based on silicon subwavelength waveguides allow for
efficient frequency conversion [12,13], all-optical pulse control
[14], and all-optical switching [15]. Furthermore, couplers [16]
and arrays of coupled nanowire waveguides [17,18] open pos-
sibilities for efficient spatiotemporal shaping of optical pulses.
In order to harness these opportunities, it is essential to develop
approaches to simultaneously and independently control tem-
poral and spatial dispersion, as these characteristics can be
strongly connected in nanophotonic structures. This connec-
tivity can lead to difficulties designing a waveguide array sup-
porting propagation of ultrashort pulses, since pulses either
disperse due to strong temporal dispersion or breakup due
to strong spatial diffraction [18].

One possible approach to achieve required spatiotemporal
dispersion is to carefully design waveguide array geometry
and use complex photonic crystal structures [19]. However,
that is a very complicated method. Another way to tailor
dispersion is by introducing periodic waveguide bending
[11,20,21]. This approach allows relatively simple fabrication
and offers substantial design flexibility. Periodic waveguide
bending was introduced as an effective tool for polychromatic
diffraction management [20–22]; however, it has only been

studied in the context of continuous light illumination and
conventional microscale waveguides. In this work, we develop
an approach to simultaneously control spatial and temporal
dispersion and demonstrate through numerical simulations
the application of this concept to the suppression of ultrashort
pulse distortion and breakup in nanowaveguide arrays.

We analyze the propagation of ultrashort pulses in wave-
guide arrays associated with the excitation of only the
fundamental modes of individual nanowires. Then, the spatio-
temporal propagation dynamics can be modeled by coupled
equations for the mode amplitudes [10]. Ultrashort pulses have
a broad spectrum encompassing a large range of frequencies ω.
Therefore, temporal dispersion characterized by a propagation
constant βs�ω� has a significant influence on the pulse dynam-
ics. In waveguide arrays pulses can also switch between different
waveguides. One of the most important parameters character-
izing waveguide arrays is a coupling coefficient Cs�ω�, which
determines the rate at which light couples between the neigh-
boring waveguides and thus regulates the spatial dispersion.
The coupling coefficient for straight lossless waveguides is real:
Cs�ω� � Re�Cs�ω��.

In waveguide arrays with a relatively small waveguide cur-
vature, when the mode profiles of individual nanowires are not
perturbed, the coupled-mode approach is also applicable [11].
The main effect of bending appears to be due to the geometrical
effect of tilting the mode phase fronts. This leads to the appear-
ance of the effective phase shift in the coupling coefficients be-
tween the waveguides, which is directly proportional to the
light frequency [21]. If all waveguides in an array have the same
bending profile x0�z�, where x0 is a transverse coordinate of the
waveguide center and z is the propagation direction, then
the complex electric field amplitude En in nth waveguide of
the array satisfies the following coupled-mode equations [21]:

i∂zEn�z;ω� � βs�ω�En�z;ω�
� −Cs�ω� exp�in0dw _x0�z�ω∕c�En−1�z;ω�
− Cs�ω� exp�−in0dw _x0�z�ω∕c�En�1�z;ω�: (1)

Here, n0 is an effective refractive index, ω � 2πc∕λ is the
angular frequency, λ is the light wavelength in vacuum, and dw
is the distance between the coupled waveguides.

We extend this method to consider the dynamics of
ultrashort pulses and study its applicability to nanophotonic
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structures. In low-index waveguide arrays both the propagation
constant of individual waveguides and the coefficient character-
izing coupling between the neighboring waveguides are mildly
dispersive. In contrast, in nanowire high-index waveguides the
dispersion can be much stronger, and also small changes in the
waveguide cross section dramatically affect both temporal
dispersion and spatial diffraction [18].

To investigate the pulse dynamics in the coupled nanowires,
we combine the approaches previously developed for the
description of nanowire arrays [18] and curved conventional
waveguide arrays [20,22]. We derive the following system of
equations by applying to Eq. (1) the Fourier transform
En�z; t� �

R
dωEn�z;ω� exp�−iωt�, where t is time, and

perform a Taylor expansion of coupling and propagation
coefficients:

i∂zEn�z; t� � β̂En�z; t�
� −Ĉ�z�En−1�z; t� − Ĉ��z�En�1�z; t�: (2)

We note that this set of equations describes linear propaga-
tion of light, although it would be of interest to consider the
extension of this method to include nonlinear effects in
future works. Here, β̂ determines the temporal dispersion in
a waveguide, and Ĉ characterizes the coupling between the
neighboring waveguides:

β̂ �
XM
m�0

βm
m!

�i∂t�m; Ĉ�z� �
XM
m�0

cm�z�
m!

�i∂t�m; (3)

whereM is a sufficiently large number to capture the dispersion
features over the pulse bandwidth. The Taylor coefficients are

βm � �∂ω�mβs�ω�jω�ω0
;

cm�z� � �∂ω�m�Cs�ω� exp�in0dw _x0�z�ω∕c��ω�ω0
; (4)

where ω0 is the central pulse frequency. Note that the
dispersion coefficients (βm) do not depend on the coupling.
On the other hand, the coupling coefficients (cm) depend non-
trivially on the propagation distance (z) through an interplay
between the dispersion of coupling between the straight wave-
guides (Cs) and the bending profile [x0�z�] induced dispersion.

It was shown [21] that for polychromatic light propagation
in periodically curved waveguide arrays, after the full bending

period the beam diffraction is the same as in a straight array
with the effective coupling coefficient. We check that the same
approach can be applied to the pulse propagation when x0�z� ≡
x0�z � Lb� and Lb is a modulation period, and the effective
coupling is

C eff �ω� � Cs�ω�L−1b
Z

Lb

0

cos�n0dw _x0�z�ω∕c�dz: (5)

The corresponding Taylor expansion coefficients are

ceffm � �∂ω�mC eff �ω�jω�ω0
: (6)

We see that diffraction of beams is defined by an interplay of
the additional bending-induced dispersion introduced through
the frequency dependence of the integral in Eq. (5), and the
intrinsic frequency dependence of the coupling coefficient in
a straight waveguide array Cs�ω�.

We investigate the influence of the periodic waveguide
bending on the pulse reshaping and consider a representative
example of a cosine profile with the amplitude A and period Lb:

x0�z� � A cos�2πz∕Lb�: (7)

The cosine profile enables flexible control of linear
dispersion while avoiding sharp bends. Below we show that
a special combination of the modulation parameters allows
us to suppress the dispersion of the effective coupling coeffi-
cient and accordingly avoid the pulse distortion.

To demonstrate our approach, we consider coupled Si nano-
wire waveguides and use the COMSOL RF module for vecto-
rial calculations of linear electromagnetic modes and their
dispersion, while fully taking into account transverse and longi-
tudinal field components. These calculations allow us to find
the propagation and coupling constants introduced in Eq. (6).
We focus on gradual bending that preserves the overall vectorial
structure of the modes and does not introduce additional losses.
The wires are 220 nm high and 330 nm wide, placed on a silica
slab. There is a 100 nm high etching mask with a refractive
index of 1.35 on top of wires. Otherwise, the wires are sur-
rounded by air. We choose these parameters to obtain nearly
zero group velocity dispersion β2 ≈ 0 in the proximity of
λ0 � 1.5 μm wavelength for a single nanowire, as this would
minimize the pulse distortion. However, we emphasize that

Fig. 1. (a) Scheme of three straight coupled nanowires.
(b) Coupling coefficient versus wavelength between the neighboring
waveguides. (c) Supermode propagation constants versus wavelength
(solid lines), and the corresponding profiles of the dominant electric
field x-components of the supermodes (cross sections of three coupled
waveguides).

Fig. 2. Pulse intensity evolution along straight coupled nanowires:
(a) left, (b) central, and (c) right nanowire. The temporal axis corre-
sponds to a moving time frame with the group velocity at the central
wavelength, τ � t − zβ1.
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even in this regime, a pulse can exhibit distortion in an array of
nanowires due to the dispersion of coupling [18].

To determine the coupling strength between the neighbor-
ing waveguides, we follow the approach of Ref. [18] and ana-
lyze a two-waveguide coupler with wire-to-wire separation of
330 nm. We calculate the propagation constants for symmetric
and antisymmetric supermodes of the coupler, βsym�ω� and
βasym�ω�, respectively. The propagation constant for a single
waveguide can be well approximated by the average of the sym-
metric and antisymmetric supermode propagation constants
βs�ω� ≈ �βsym�ω� � βasym�ω��∕2, while the difference defines
the coupling coefficient Cs�ω� � �βsym�ω� − βasym�ω��∕2.
The coefficients of the Taylor expansion of the propagation
constant are found as β0 � 7.85 μm−1, β1 � 17 fs μm−1,
and β2 � 1.4 fs2 μm−1. Accordingly, we find that the group
velocity dispersion is indeed largely suppressed for pulses with
duration down to 100 fs propagating in sub-mm long struc-
tures. We also check that higher-order dispersion does not
substantially affect such pulses at these distances.

To show that our approach works not only with two-wave-
guide couplers, we choose a three-waveguide structure for the
following illustrations with all parameters as noted before; see
Fig. 1(a). We note that this method works well with an arbi-
trary number of waveguides. In agreement with predictions of
Ref. [18], we notice that the variations of the coupling coeffi-
cient for such waveguide arrays are significant across a relatively
narrow spectrum [see Fig. 1(b)], which could lead to temporal
reshaping of short pulses during propagation. The Taylor ex-
pansion of the coupling coefficient for straight waveguides is
c0 � 69.7 mm−1, c1 � −0.71 fs μm−1, and c2 � 3.6 fs2 μm−1,
which reveals strong linear dispersion and small quadratic
dispersion in the wavelength range between 1.46 and
1.54 μm. The coupled waveguides support three supermodes,
and we present the calculated dependence of their propagation
constants on the wavelength in Fig. 1(c). The insets show
the characteristic spatial profiles of the supermodes. The
dispersion dependencies have different slopes corresponding
to different supermode velocities. We show below that this
leads to pulse splitting, which can be suppressed via periodic
waveguide bending.

First, we analyze the pulse dynamics in straight waveguides
with length L � 20LC � 315 μm, where LC � 15.75 μm is

the length required for full coupling from one waveguide to
another at the wavelength λ0. As an input, we consider a single
100 fs long nonchirped Gaussian pulse with the central wave-
length λ0 coupled to the left nanowire of the straight waveguide
array. Figures 2(a)–2(c) demonstrate that initially the pulse cou-
ples from the left (a), to the central (b), and then to right (c)
nanowire without significant distortions. Then the pulse starts
to split into three separate pulses in the edge waveguides [(a)
and (c)] and into two pulses in the central waveguide (b), in
agreement with the previous study [18]. These pulses propagate
with different group velocities, which correspond to three dif-
ferent supermode velocities supported in the structure [see
Fig. 1(c)]. Such behavior demonstrates that although the single
nanowire dispersion can be engineered, spatial diffraction in
arrays of nanowires is still strongly affected by the coupling
dispersion. Moreover, the supermode dispersion and the cou-
pling dispersion in nanowire waveguide arrays are intercon-
nected. Therefore, an approach allowing for the independent
control of these characteristics would offer essential benefits
for various applications.

Next, we investigate the influence of the periodic waveguide
bending on the pulse reshaping. We choose a bending profile
according to Eq. (7). We vary the bending amplitude A and
search for the minima of the coupling dispersion ∂C eff∕∂ω
in the vicinity of λ0. We choose the bending period
Lb � LC � 15.75 μm, as it allows us to consider nanowires
with smaller curvature for the purposes of easier potential fab-
rication and reduction of propagation losses. As we show below,
one can choose a bending profile that simultaneously allows for
a strong coupling dispersion control and does not introduce
bending propagation losses.

We calculate the effective coupling coefficient C eff using
Eq. (5). We choose the value of A � Amin corresponding to
the first minimum of ∂C eff∕∂ω and accordingly the smallest
suitable bending curvature. The optimal bending amplitude
is found to be equal to Amin � 1.3 μm. The bending losses
for the corresponding curvature value should be practically ab-
sent according to the previous studies of bent nanowire wave-
guides [23]. The resulting effective coupling coefficient C eff

Fig. 3. (a) The scheme of three periodically bent coupled nanowires
with the bending period Lb � LC � 15.75 μm. (b) Effective coupling
coefficient over one bending period between the neighboring nano-
wires versus wavelength. (c) Average supermode propagation constants
over one bending period versus wavelength.

Fig. 4. Pulse intensity evolution along periodically curved coupled
nanowires: (a) left edge nanowire, (b) central nanowire, and (c) right
edge nanowire. The temporal axis corresponds to a moving time frame
with the group velocity at the central wavelength, τ � t − zβ1. The
length of the modulated waveguide array has been increased by a factor
of three compared to the straight waveguide array to show that the
dispersion is mostly compensated even at longer distances.
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shown in Fig. 3(b) becomes almost constant over a broad spec-
tral region in comparison to that for the straight waveguides
[c.f. Fig. 1(b)]. The Taylor expansion of the effective coupling
coefficient is ceff0 � 9.96 mm−1, ceff1 � −0.0076 fsμm−1, and
ceff2 � −14.2 fs2 μm−1. Although the quadratic coupling
dispersion is slightly increased in comparison to the straight
waveguide array, the linear coupling dispersion, which is the
main temporal reshaping driver for 100 fs long pulses in such
structures, is suppressed by two orders of magnitude compared
to the straight waveguides. In Fig. 3(c), we plot the supermode
propagation constants for the curved waveguide arrays with
three coupled nanowires calculated with the use of the effective
coupling coefficient. The propagation constants for the three
supermodes now have similar slopes, which suggests that
short-pulse breakup due to coupling would be suppressed.

We now calculate the intensity evolution of a 100 fs
transform-limited pulse coupled to the left nanowire of the
periodically curved waveguide array using the Eqs. (2)–(4). We
show in Figs. 4(a)–4(c) that as a result of vanishing coupling
dispersion the temporal pulse breakup is suppressed, and a
pulse can now be switched as a whole between the waveguides.
Thus, the temporal and the spatial dispersion in nanowire
waveguide arrays can be controlled independently via single
waveguide dispersion engineering and periodic waveguide
bending.

These results demonstrate that spatiotemporal dispersion
engineering in high-index-contrast nanowire waveguide arrays
can be efficiently realized through the introduction of periodic
waveguide bending, which can enable flexible spatiotemporal
manipulation of femtosecond pulses. We anticipate that these
results will open novel approaches to on-chip all-optical light
control [17]. This approach can also be useful for enhanced
parametric frequency conversion [8] and broadband photon-
pair generation and quantum walks [24].
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