Timing Synchronization for Cooperative Wireless Communications

Md Tofazzal Hossain

Master of Information and Communication Technology
(The Australian National University)

January 2011

A thesis submitted for the degree of Doctor of Philosophy of The Australian National University

School of Engineering
College of Engineering and Computer Science
The Australian National University
Declaration

The contents of this thesis are to the best of the candidate’s knowledge and belief, the results of original research, except as acknowledged in the text, and the materials have not been submitted for a higher degree at The Australian National University or to any other university or institution.

Much of the work in this thesis has been published or has been submitted for publication as journal papers or conference proceedings. These papers are:

Journal Articles

5. Md. Tofazzal Hossain, Sithamparanathan Kandeepan and David Smith, “Timing Synchronization for Fading Channels with Different Characterizations us-
ing Near ML Techniques”, *Academy Publisher Journal of Communications*, vol. 4, no. 6, pp. 404–413, July 2009.

Conference Papers

The research work presented in this thesis has been performed jointly with David B. Smith (National ICT Australia), Prof. Rodney Kennedy (The Australian National University) and Kandeepan Sithamparanathan (CREATE-NET International Research Centre, Trento, Italy). The substantial majority of this work was my own.

Md Tofazzal Hossain
School of Engineering,
College of Engineering and Computer Science,
The Australian National University,
Canberra,
ACT 0200,
Australia.
I wish to express my gratitude to all those who provided valuable assistance and support throughout my PhD. The work presented in this thesis would not have been possible without the support of a number of individuals and organizations and they are gratefully acknowledged below:

I would first like to thank my academic supervisors David B. Smith, Prof. Rodney Kennedy and Kandeepan Sithamparanathan for their guidance, insight, support and encouragement throughout my PhD. Thank goes to my principle supervisor David B. Smith for his inspiration, constant encouragement, many helpful and stimulating discussions. I am grateful to David B. Smith for his comments and proofreading which helped me a lot in improving the presentation of this thesis. I have been very fortunate to work with Prof. Rodney Kennedy who provided invaluable instruction, suggestions, technical advice, sound judgement and support. I would like to thank Kandeepan Sithamparanathan for defining the early directions of my research, his endless flow of ideas and his continuous generous support along the way.

Special thanks go to Tharaka Lamahewa (Australian National University), Salman Durrani (Australian National University) and Leif Hanlen (National ICT Australia) for many fruitful discussions during my PhD studies.

Thanks to everyone in the National ICT Australia Human Performance Improvement (HPI) group (former BANESH Group) for their efforts for providing a friendly research environment.

Many thanks to my parents and siblings for everything they have provided for me in terms of education, guidance, encouragement and continuous mental support.

I thank my wife Presila Israt for her love, understanding, unwavering support and patience throughout my PhD studies. It would not be possible to complete this work without her fortitude during the hard times throughout the pathway of my research. Also, special thanks to my wife’s parents for their continual support and encouragement.

I gratefully acknowledge and convey thanks to the Australian National Univer-
sity and National ICT Australia for the PhD scholarship, travel grants and other research grants.
Abstract

In this work the effect of perfect and imperfect synchronization on the performance of single-link and cooperative communication is investigated. A feedforward non-data-aided near maximum likelihood (NDA-NML) timing estimator which is effective for an additive white Gaussian noise (AWGN) channel and also for a flat-fading channel, is developed. The Cramer Rao bound (CRB) and modified Cramer Rao bound (MCRB) for the estimator for a single-link transmission over an AWGN channel is derived. A closed form expression for the probability distribution of the timing estimator is also derived. The bit-error-rate (BER) degradation of the NDA-NML timing estimator with raised cosine pulse shaping for static timing errors over an AWGN channel is characterized. A closed form expression is derived for the conditional bit error probability (BEP) with static timing errors of binary phase shift keying modulation over a Rayleigh fading channel using rectangular pulse shaping.

The NDA-NML timing estimator is applied to a cooperative communication system with a source, a relay and a destination. A CRB for the estimator for asymptotically low signal-to-noise-ratio case is derived. The timing complexity of the NDA-NML estimator is derived and compared with a feedforward correlation based data-aided maximum likelihood (DA-ML) estimator. The BER performance of this system operating with a detect-and-forward relaying is studied, where the symbol timings are estimated independently for each channel. A feedforward data and channel aided maximum likelihood (DCA-ML) symbol timing estimator for cooperative communication operating over flat fading channels is then developed. For more severe fading the DCA-ML estimator performs better than the NDA-NML estimator and the DA-ML estimator. The performance gains of the DCA-ML estimator over that of the DA-ML estimator become more significant in cooperative transmission than in single-link node-to-node transmission.

The NDA-NML symbol timing estimator is applied to three-node cooperative communication in fast flat-fading conditions with various signal constellations. It is found that timing errors have significant effect on performance in fast flat-fading conditions.
channels. The lower complexity NDA-NML estimator performs well for larger signal constellations in fast fading, when compared to DA-ML estimator. The application of cooperative techniques for saving transmit power is discussed along with the related performance analysis with timing synchronization errors. It is found that power allocations at the source and relay nodes for transmissions, and the related timing errors at the relay and the destination nodes, have considerable effect on the BER performance for power constrained cooperative communication.

The performance of multi-node multi-relay decode-and-forward cooperative communication system, of various architectures, operating under different fading conditions, with timing synchronization and various combining methods, is presented. Switch-and-stay combining and switch-and-examine combining are proposed for multi-node cooperative communication. Apart from the proposed two combining methods equal gain combining, maximal ratio combining and selection combining are also used. It is demonstrated that synchronization error has significant effect on performance in cooperative communication with a range of system architectures, and it is also demonstrated that performance degradation due to synchronization error increases with increasing diversity. It is demonstrated that decode-and-forward relaying strategy with timing synchronization, using a very simple coding scheme, performs better than detect-and-forward relaying with timing synchronization.

Analytical expressions are derived for BEP with static and dynamic timing synchronization errors over Rayleigh fading channels using rectangular pulse shaping for amplify-and-forward and detect-and-forward cooperative communications. Moment generating function (MGF) based approach is utilized to find the analytical expressions. It is found that timing synchronization errors have an antagonistic effect on the BEP performance of cooperative communication. With the relay intelligence of knowing whether symbols are detected correctly or not, detect-and-forward cooperative communication performs better than the low complexity amplify-and-forward cooperative communication.
List of Acronyms

AAF amplify-and-forward
ABER average bit-error-rate
AWGN additive white Gaussian noise
BEP bit error probability
BER bit-error-rate
BPSK binary phase shift keying
CRB Cramer Rao bound
DA data-aided
DAF detect-and-forward
DCA data and channel aided
DF decode-and-forward
CSI channel state information
DPSK differential phase shift keying
EGC equal gain combining
ERC equal ratio combining
FM frequency modulation
IF intermediate frequency
ISI inter-symbol interference
MAC medium access control
MCRB modified Cramer Rao bound
MIMO multiple input multiple output
MISO multiple input single output
ML maximum likelihood
MLE maximum likelihood estimation
\(M \)-PSK \(M \)-ary phase shift keying
\(M \)-QAM \(M \)-ary quadrature amplitude modulation
MRC maximal ratio combining
NDA non-data-aided
NML near maximum likelihood
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRZ</td>
<td>non-return-to-zero</td>
</tr>
<tr>
<td>OFDM</td>
<td>orthogonal frequency division multiplexing</td>
</tr>
<tr>
<td>PAM</td>
<td>pulse amplitude modulation</td>
</tr>
<tr>
<td>pdf</td>
<td>probability density function</td>
</tr>
<tr>
<td>pmf</td>
<td>probability mass function</td>
</tr>
<tr>
<td>PSK</td>
<td>phase shift keying</td>
</tr>
<tr>
<td>QAM</td>
<td>quadrature amplitude modulation</td>
</tr>
<tr>
<td>QoS</td>
<td>quality-of-service</td>
</tr>
<tr>
<td>QPSK</td>
<td>quadrature phase shift keying</td>
</tr>
<tr>
<td>RC</td>
<td>raised cosine</td>
</tr>
<tr>
<td>RF</td>
<td>radio frequency</td>
</tr>
<tr>
<td>SC</td>
<td>selection combining</td>
</tr>
<tr>
<td>SEC</td>
<td>switch-and-examine combining</td>
</tr>
<tr>
<td>SNR</td>
<td>signal-to-noise ratio</td>
</tr>
<tr>
<td>SNRC</td>
<td>signal-to-noise ratio combining</td>
</tr>
<tr>
<td>SoMRC</td>
<td>sub-optimal maximal ratio combining</td>
</tr>
<tr>
<td>SoSC</td>
<td>sub-optimal selection combining</td>
</tr>
<tr>
<td>SRC</td>
<td>square root raised cosine</td>
</tr>
<tr>
<td>SSC</td>
<td>switch-and-stay combining</td>
</tr>
</tbody>
</table>
Notations and Symbols

α
roll-off factor

E_b
average energy per bit

E_s
energy of a symbol

$E_z\{\cdot\}$
statistical expectation with respect to the subscripted variable

f_D
maximum Doppler shift

f_s
sample rate

$g(t)$
continuous time impulse response of a Nyquist filter with the raised cosine characteristic

$g_{src}(t)$
continuous time impulse response of a square root raised cosine filter

$G(f)$
frequency response of $g(t)$

$h(t)$
fading channel gains

$I_0(\cdot)$
modified Bessel function of the first kind and zero-th order

K
samples per symbol

L
number of symbols to estimate timing offset

M
number of parallel branches in cooperative network

N_0
noise power spectral density

N
number of relays in each parallel branch in cooperative network

$p(t)$
continuous time impulse response of a pulse shaping filter

$P(f)$
frequency response of $p(t)$

P_b
thoretical bit error probability over AWGN channel

$r(t)$
received signal before passing through matched filter

γ
instantaneous-signal-to-noise ratio

$\bar{\gamma}$
average signal-to-noise ratio

t
time
\(\tau \) timing offset
\(\hat{\tau} \) timing offset estimate
\(T_c \) coherence time
\(T_s \) sample period
\(T \) symbol period
\(\nu_\xi \) standard deviation of the Tikhonov distribution
\(z(t) \) received signal after passing through matched filter
\(\xi \) normalized static timing error
\(\ln(\cdot) \) natural logarithm
\(Q(\cdot) \) Gaussian Q-function
\(\Re[\cdot] \) real part
Contents

Declaration i
Acknowledgments iii
Abstract v
List of Acronyms vii
Notations and Symbols ix
List of Figures xvii

1 Introduction 1
 1.1 Research Motivation and Background 1
 1.2 Research Objectives 4
 1.3 Thesis Structure 5
 1.4 Research Contributions 9
 1.5 Research Publications 11

2 Timing Synchronization for Single Link Transmission 13
 2.1 Synopsis 13
 2.2 The Role of Symbol Timing Synchronization 14
 2.3 Review of Existing Schemes and Strategies 15
 2.4 System and Signal Model 19
 2.5 Non-Data-Aided Near Maximum Likelihood (NDA-NML) Timing Estimator 22
 2.6 Statistical Analysis of the Timing Estimator 24
 2.6.1 Distribution of Maxima 25
 2.6.2 Probability Distribution of the Timing Estimator 25
 2.7 Performance of the Estimator 27
 2.7.1 Cramer Rao Bound (CRB) 29
3 Analytical Error Probability Performances for Imperfect Timing in Single Link Transmission

3.1 Synopsis 41
3.2 Introduction 42
3.3 System and Signal Model 44
3.4 BEP due to Timing Errors for AWGN Channel with Raised Cosine Filter 45
3.5 Error Probability due to Timing Error in Fading Channels with Rectangular Pulse Shaping 48
3.6 Conclusion 55

4 Timing Estimation Techniques for Three-Node Cooperative Communication in Slow Flat Fading Channels

4.1 Synopsis 57
4.2 Introduction 58
4.3 Overview of Cooperative Communication 59
4.4 System Model 63
4.5 Cooperative Diversity Protocols 64
4.5.1 Relaying Strategy 64
4.5.2 Combining Methods 65
4.6 Non-Channel-Aided Timing Estimators 67
4.6.1 NDA-NML Timing Estimator 67
4.6.2 Correlator Based DA-ML Timing Estimator 68
4.6.3 Computational Complexities of NDA-NML and DA-ML Estimators 69
4.6.4 Performance Bound 70
4.6.5 Performance Analysis of Three-Node Detect-and-Forward Cooperative Communication with NDA-NML Timing Estimation 74
5 Timing Issues for Three-Node Cooperative Communication for
Fast Fading Channels and Power Allocations

5.1 Synopsis .. 93
5.2 Introduction .. 94
 5.2.1 Cooperative Communication with Higher Order Modulation
 in Fast Fading Channels ... 94
 5.2.2 Power Efficient Cooperative Communication System 95
5.3 Timing Synchronization for Three-Node Detect-and-Forward Cooper-
ative Communication in Fast Flat-Fading Channels with Various
Signal Constellations .. 98
 5.3.1 System Model: Timing Synchronization of Cooperative Com-
 munication in Fast Flat-Fading Channels 98
 5.3.2 Timing Estimators ... 99
 5.3.3 Signal Constellations 100
 5.3.4 Cooperative Diversity Transmission 102
 5.3.5 Effect of Timing Error in Cooperative Communication in
 Fast Flat-Fading Channels 103
 5.3.6 Performance of Cooperative Communication for Various Sig-
 nal Constellations in Fast and Quasi-Static Flat Fading Chan-
 nels .. 105
5.4 Performance of Three-Node Detect-and-forward Cooperative Com-
unication with Power Constraints in Presence of Timing Errors 111
 5.4.1 System Model: Power Constrained Three-Node Cooperative
 Communication .. 111
5.4.2 Power Constraint and Cooperative Scenarios 112
5.4.3 BER Performance of 3-Node Cooperative Communication with Various Power Allocations 116
5.4.4 BER Performance of 3-Node Cooperative Communication with Various Timing Errors with Power Constraints 117
5.4.5 BER Performance of 3-Node Cooperative Communication with Various Power Allocations and Timing Errors 118
5.5 Conclusion 119

6 Timing Synchronization in Multi-node Cooperative Communication with Various Architectures 121
6.1 Synopsis 121
6.2 Introduction 122
6.3 System Model 123
6.4 Timing Estimators for Multi-node Cooperative Communication 127
6.5 Cooperative Relaying 128
6.6 Combining Methods 131
 6.6.1 Equal Gain Combining (EGC) 132
 6.6.2 Maximal Ratio Combining (MRC) 132
 6.6.3 Selection Combining (SC) 132
 6.6.4 Switch-and-Stay Combining (SSC) 133
 6.6.5 Switch-and-Examine Combining (SEC) 133
6.7 Cooperative Systems with Fading Channels with Timing Synchronization 134
 6.7.1 Performance of the Cooperative Communication Systems Operating over Rayleigh Fading Channels 134
 6.7.2 Performance of Cooperative Communication Systems Operating over Weibull Fading Channels 136
 6.7.3 Performance of Cooperative Communication Systems Operating over Lognormal Fading Channels 138
6.8 Performance of Various Cooperative Communications Architectures 140
6.9 Conclusion 145

7 Analytical Error Probability Performance for Imperfect Timing in Cooperative Communication 149
7.1 Synopsis 149
7.2 Introduction 150
7.3 System Model of Cooperative Communication with Parallel Relays 151
7.4 Signal-to-Noise Ratio in Presence of Timing Errors ... 153
7.5 BEP Performance of Cooperative Communication in Presence of Timing Errors ... 155
7.6 Performance Analysis of Amplify-and-Forward Cooperative Communication with Timing Errors .. 156
7.7 Performance Analysis of Detect-and-Forward Cooperative Communication with Timing Errors .. 162
7.8 Comparison of Amplify-and-Forward and Detect-and-Forward Cooperative Communications .. 165
7.9 Conclusion .. 166

8 Conclusions and Future Work .. 169
8.1 Summary .. 169
8.2 Conclusion ... 170
8.3 Future Work .. 175
 8.3.1 Joint Channel Estimation and Timing Synchronization for Cooperative Communication Where There are Multiple Timing Offset in the Receiver ... 175
 8.3.2 Power Efficiency of Cooperative Communication Considering Timing Jitter ... 175
 8.3.3 Theoretical Performance Degradation of Cooperative Communication due to Timing Synchronization Errors in Fading Channels with Generalized Pulse Shaping ... 176
 8.3.4 Timing Synchronization for Cooperative Communication with Moving Relays .. 176
 8.3.5 Hardware Implementation of Timing Synchronization Techniques for Cooperative Communication System .. 177
 8.3.6 Other Future Work .. 177

Appendices

Appendix A .. 179
 A.1 Distribution of Maxima .. 179
 A.2 Probability Distribution of Timing Estimates ... 181

Appendix B ... 183
 B.1 Error Probability due to Timing Error in Fading Channels with Rectangular Pulse Shaping ... 183
Appendix C \hspace{1cm} 185
C.1 End-to-End Average Bit-Error-Rate for Three-hop Transmission \hspace{5mm} 185

Appendix D \hspace{1cm} 189
D.1 Bit Error Probability of Amplify-and-Forward Cooperative Communication in the Presence of Timing Errors \hspace{5mm} 189

Bibliography \hspace{1cm} 193
List of Figures

1.1 Three-node cooperative communication with timing synchronization issues. ... 3
1.2 Baseband receiver structure with timing recovery. 3
1.3 Multi-node cooperative communication with timing synchronization issues. ... 4
1.4 Flowchart of how the chapters are related. 9
2.1 Timing recovery in a receiver structure. 14
2.2 Synchronous and non-synchronous sampling. 17
2.3 Structure of feedforward symbol timing recovery. 17
2.4 Structure of feedback symbol timing recovery. 18
2.5 Block diagram of signal detection using symbol timing recovery. 19
2.6 Square root raised cosine impulse response with roll-off factor, $\alpha = 0.6$, demonstrating non zero-ISI property. 22
2.7 Impulse response of raised cosine filter with various roll-off factors. ... 23
2.8 Probability density function of maximum energy of signals. 26
2.9 Analytical and simulated probability distribution function for timing estimates. ... 27
2.10 Bit error performance: NDA-NML estimator in an AWGN channel. 28
2.11 NDA-NML estimator error variance performance. 32
2.12 Bit error performance of NDA-NML estimator in Rayleigh fading. 34
2.13 Bit error performance of NDA-NML estimator in Weibull fading. 35
2.14 Bit error performance of NDA-NML estimator in Lognormal fading. 37
2.15 Bit error performance of NDA-NML estimator in various fading. 38
3.1 Timing error in received signal. 43
3.2 Bit error probability (BEP) characterization due to static timing error in AWGN channel considering no ISI. 45
3.3 BER due to static timing error over AWGN channel with raised cosine pulse shaping. ... 47
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>Probability of bit error for dynamic timing errors in AWGN channel with raised cosine filter when timing errors have a Gaussian pdf.</td>
</tr>
<tr>
<td>3.5</td>
<td>Probability of bit error for dynamic timing errors in AWGN channel with raised cosine filter when timing errors have a Tikhonov pdf.</td>
</tr>
<tr>
<td>3.6</td>
<td>Conditional bit error probability for various static timing errors for BPSK over a Rayleigh fading channel with rectangular pulse shaping.</td>
</tr>
<tr>
<td>3.7</td>
<td>Average BER with imperfect synchronization for BPSK over a Rayleigh fading channel considering timing errors have a Gaussian distribution.</td>
</tr>
<tr>
<td>3.8</td>
<td>Average BER with timing errors for BPSK over a Rayleigh fading channel considering timing errors have a Tikhonov distribution.</td>
</tr>
<tr>
<td>4.1</td>
<td>Single link and two-hop communications.</td>
</tr>
<tr>
<td>4.2</td>
<td>Three-node cooperative communication with relay.</td>
</tr>
<tr>
<td>4.3</td>
<td>Timing complexities for NDA-NML estimator and correlator based DA-ML estimator.</td>
</tr>
<tr>
<td>4.4</td>
<td>Timing complexities for NDA-NML estimator and correlator based DA-ML estimator in linear scale for larger number of symbols.</td>
</tr>
<tr>
<td>4.5</td>
<td>Estimator variance performance of NDA-NML estimator with CRB with $x^2/2$ approximation.</td>
</tr>
<tr>
<td>4.6</td>
<td>Effect of static timing error on BER performance of cooperative communication.</td>
</tr>
<tr>
<td>4.7</td>
<td>Bit error performance with timing estimation and correction for various combining methods.</td>
</tr>
<tr>
<td>4.8</td>
<td>Signal detection using data and channel aided maximum likelihood timing estimator.</td>
</tr>
<tr>
<td>4.9</td>
<td>DCA-ML timing estimator variance performance.</td>
</tr>
<tr>
<td>4.10</td>
<td>BER performances for the DCA-ML estimator and the NDA-ML estimator for node-to-node communication in Rayleigh fading channels.</td>
</tr>
<tr>
<td>4.11</td>
<td>BER performance comparison of the DCA-ML estimator and the DA-ML estimator for node-to-node communication in Rayleigh fading channels.</td>
</tr>
<tr>
<td>4.12</td>
<td>Performances of the DCA-ML estimator and the DA-ML estimator for node-to-node communication operating over Weibull fading channels.</td>
</tr>
<tr>
<td>4.13</td>
<td>Performance comparison of the DCA-ML estimator and the NDA-NML estimator for node-to-node communication operating over Weibull fading channels.</td>
</tr>
</tbody>
</table>
4.14 Performances of the DCA-ML estimator and the DA-ML estimator for node-to-node communication operating over Lognormal fading channels. ... 84
4.15 Performance comparison of the DCA-ML estimator to the NDA-NML estimator for node-to-node communication operating over Lognormal fading channels. 85
4.16 Performances of DCA-ML timing estimator applied in 3-node cooperative communication operating over Rayleigh fading channels for various combining strategies and detect-and-forward relaying. 87
4.17 Performance of DCA-ML timing estimator applied in 3-node detect-and-forward cooperative communication operating over Weibull fading channels for various combining methods. ... 88
4.18 BER performance comparison of the DCA-ML timing estimator and the NDA-NML timing estimator applied in 3-node detect-and-forward cooperative communication operating over Weibull fading channels for maximal ratio combining. .. 89
4.19 Performances of DCA-ML timing estimator applied in 3-node detect-and-forward cooperative communication for Lognormal fading channels for various combining methods. ... 90
4.20 Performance comparison of the DCA-ML timing estimator to the NDA-NML timing estimator applied in 3-node detect-and-forward cooperative communication for Lognormal fading channels for MRC and SC. .. 91

5.1 4-HEX constellation. ... 101
5.2 8-HEX constellation. ... 101
5.3 Rotated 8-QAM constellation. .. 102
5.4 16-HEX constellation. ... 102
5.5 BER performance of cooperative communication using r-8-QAM with various combining methods in fast fading channels. ... 105
5.6 BER for detect-and-forward cooperative communication operating in fast and quasi-static fading with sub-optimal MRC. ... 106
5.7 BER for various modulation schemes for detect-and-forward cooperative communication with selection combining. ... 108
5.8 BER for detect-and-forward cooperative communication operating in fast fading for 16-PSK for sub-optimal MRC. ... 108
5.9 SER for detect-and-forward cooperative communication operating in fast fading for r-8-QAM and 8-HEX for SC and sub-optimal MRC. 109
5.10 BER performance comparison of NDA-NML estimator and DA-ML estimator for detect-and-forward cooperative communication operating in Rayleigh fast fading for 8-HEX, 16-HEX and 16-QAM constellations and sub-optimal MRC. .. 109
5.11 Optimization of transmit power by means of cooperation. 112
5.12 Optimization of local transmit power at the selfish node by means of cooperation. ... 113
5.13 BER for cooperative communication over fading channels with $3T_s$ timing error with various power allocations for lower values of P_1/P. 115
5.14 BER performance of cooperative communication over fading channels with $3T_s$ timing error with various power allocations for higher values of P_1/P. .. 115
5.15 BER for cooperative communication over fading channels with various timing errors. .. 117
5.16 BER for cooperative communication for various power allocations and timing errors. ... 118

6.1 Generic cooperative communication system architecture with relays — $C(M, N, 1, 1)$. .. 124
6.2 Cooperative communication architecture with one parallel multi-hop branch, two relays for the multi-hop branch and source to destination transmission — $C(1, 2, 0, 1)$. .. 125
6.3 Cooperative communication architecture with one parallel multi-hop branch, two relays for the multi-hop branch, intermediate relay sends signal directly to the destination and source to destination transmission — $C(1, 2, 1, 1)$. ... 126
6.4 Cooperative communication system architecture with one relay — $C(1, 1, 0, 1)$. ... 135
6.5 Performance of $C(1, 1, 0, 1)$ cooperative communication architecture operating over Rayleigh fading channels with various combining techniques with and without synchronization. 136
6.6 Cooperative communication architecture with two parallel multi-hop branches, one relay for each parallel multi-hop branch and a direct link from source to destination $C(2, 1, 0, 1)$. 137
6.7 Performance of $C(2, 1, 0, 1)$ cooperative communication architecture operating in Weibull fading conditions with timing synchronization using MRC. .. 138
6.8 Cooperative communication architecture with three parallel multi-hop branches, one relay for each parallel multi-hop branch and a direct link from source to destination — $C(3, 1, 0, 1)$. 139
6.9 Performance of $C(3, 1, 0, 1)$ cooperative communication architecture operating under Lognormal fading conditions with different fading parameters using MRC and SC techniques with NDA-NML timing synchronization. 140
6.10 Performance of $C(1, 1, 0, 1)$, $C(1, 2, 0, 1)$, $C(1, 2, 1, 1)$ and $C(2, 1, 0, 1)$ cooperative communication architectures with decode-and-forward relaying, operating over Rayleigh fading channels, with NDA-NML timing estimation and correction using MRC. 142
6.11 Performance of $C(1, 1, 0, 1)$ and $C(2, 1, 0, 1)$ cooperative communication architectures with decode-and-forward relaying, operating over Lognormal fading channels, using MRC and EGC. 143
6.12 Performance of $C(2, 1, 0, 1)$, $C(4, 1, 0, 1)$ and $C(8, 1, 0, 1)$ cooperative communication architecture with decode-and-forward relaying, operating over Rayleigh fading channels, using MRC. 145
6.13 Performance of $C(6, 1, 0, 1)$ cooperative communication system architecture with decode-and-forward relaying vs $C(6, 1, 0, 1)$ cooperative communication system architecture with detect-and-forward relaying operating over Rayleigh fading channels. 146
7.1 A typical cooperative communication system with parallel relays. 151
7.2 Bit error probability for amplify-and-forward cooperative communication with static timing errors. 159
7.3 Bit error probability for amplify-and-forward cooperative communication with static timing errors with multiple relays. 159
7.4 Bit error probability for amplify-and-forward cooperative communication with dynamic timing errors. 160
7.5 Bit error probability for amplify-and-forward cooperative communication with dynamic timing errors with multiple relays. 161
7.6 Bit error probability for detect-and-forward cooperative communication with static timing errors. 164
7.7 Bit error probability for detect-and-forward cooperative communication with dynamic timing errors. 164
7.8 Comparison of bit error probabilities in the presence of static timing errors of amplify-and-forward cooperative communication and detect-and-forward cooperative communication. 166
7.9 Comparison of bit error probabilities in the presence of dynamic timing errors of amplify-and-forward cooperative communication and detect-and-forward cooperative communication. 167

8.1 Example of relay mobility in a cooperative wireless network. 177

C.1 Three-hop transmission using two relays. 185