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We propose new bounds on the error of learning algorithms in
terms of a data-dependent notion of complexity. The estimates we
establish give optimal rates and are based on a local and empirical
version of Rademacher averages, in the sense that the Rademacher
averages are computed from the data, on a subset of functions with
small empirical error. We present some applications to classification
and prediction with convex function classes, and with kernel classes
in particular.

1. Introduction. Estimating the performance of statistical procedures
is useful for providing a better understanding of the factors that influence
their behavior, as well as for suggesting ways to improve them. Although
asymptotic analysis is a crucial first step toward understanding the behavior,
finite sample error bounds are of more value as they allow the design of model
selection (or parameter tuning) procedures. These error bounds typically
have the following form: with high probability, the error of the estimator
(typically a function in a certain class) is bounded by an empirical estimate
of error plus a penalty term depending on the complexity of the class of
functions that can be chosen by the algorithm. The differences between the
true and empirical errors of functions in that class can be viewed as an
empirical process. Many tools have been developed for understanding the
behavior of such objects, and especially for evaluating their suprema—which
can be thought of as a measure of how hard it is to estimate functions in
the class at hand. The goal is thus to obtain the sharpest possible estimates
on the complexity of function classes. A problem arises since the notion of
complexity might depend on the (unknown) underlying probability measure
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according to which the data is produced. Distribution-free notions of the
complexity, such as the Vapnik–Chervonenkis dimension [35] or the metric
entropy [28], typically give conservative estimates. Distribution-dependent
estimates, based for example on entropy numbers in the L2(P ) distance,
where P is the underlying distribution, are not useful when P is unknown.
Thus, it is desirable to obtain data-dependent estimates which can readily
be computed from the sample.

One of the most interesting data-dependent complexity estimates is the
so-called Rademacher average associated with the class. Although known for
a long time to be related to the expected supremum of the empirical process
(thanks to symmetrization inequalities), it was first proposed as an effective
complexity measure by Koltchinskii [15], Bartlett, Boucheron and Lugosi
[1] and Mendelson [25] and then further studied in [3]. Unfortunately, one
of the shortcomings of the Rademacher averages is that they provide global
estimates of the complexity of the function class, that is, they do not reflect
the fact that the algorithm will likely pick functions that have a small error,
and in particular, only a small subset of the function class will be used. As
a result, the best error rate that can be obtained via the global Rademacher
averages is at least of the order of 1/

√
n (where n is the sample size), which

is suboptimal in some situations. Indeed, the type of algorithms we consider
here are known in the statistical literature as M -estimators. They minimize
an empirical loss criterion in a fixed class of functions. They have been
extensively studied and their rate of convergence is known to be related
to the modulus of continuity of the empirical process associated with the
class of functions (rather than to the expected supremum of that empirical
process). This modulus of continuity is well understood from the empirical
processes theory viewpoint (see, e.g., [33, 34]). Also, from the point of view
of M -estimators, the quantity which determines the rate of convergence is
actually a fixed point of this modulus of continuity. Results of this type have
been obtained by van de Geer [31, 32] (among others), who also provides
nonasymptotic exponential inequalities. Unfortunately, these are in terms
of entropy (or random entropy) and hence might not be useful when the
probability distribution is unknown.

The key property that allows one to prove fast rates of convergence is
the fact that around the best function in the class, the variance of the incre-
ments of the empirical process [or the L2(P ) distance to the best function] is
upper bounded by a linear function of the expectation of these increments.
In the context of regression with squared loss, this happens as soon as the
functions are bounded and the class of functions is convex. In the context of
classification, Mammen and Tsybakov have shown [20] that this also hap-
pens under conditions on the conditional distribution (especially about its
behavior around 1/2). They actually do not require the relationship between
variance and expectation (of the increments) to be linear but allow for more
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general, power type inequalities. Their results, like those of van de Geer, are
asymptotic.

In order to exploit this key property and have finite sample bounds, rather
than considering the Rademacher averages of the entire class as the complex-
ity measure, it is possible to consider the Rademacher averages of a small
subset of the class, usually the intersection of the class with a ball centered
at a function of interest. These local Rademacher averages can serve as a
complexity measure; clearly, they are always smaller than the corresponding
global averages. Several authors have considered the use of local estimates
of the complexity of the function class in order to obtain better bounds.
Before presenting their results, we introduce some notation which is used
throughout the paper.

Let (X , P ) be a probability space. Denote by F a class of measurable func-
tions from X to R, and set X1, . . . ,Xn to be independent random variables
distributed according to P . Let σ1, . . . , σn be n independent Rademacher
random variables, that is, independent random variables for which Pr(σi =
1) = Pr(σi =−1) = 1/2.

For a function f :X →R, define

Pnf =
1

n

n∑

i=1

f(Xi), Pf = Ef(X), Rnf =
1

n

n∑

i=1

σif(Xi).

For a class F , set

RnF = sup
f∈F

Rnf.

Define Eσ to be the expectation with respect to the random variables σ1, . . . , σn,
conditioned on all of the other random variables. The Rademacher average
of F is ERnF , and the empirical (or conditional) Rademacher averages of F
are

EσRnF =
1

n
E

(

sup
f∈F

n∑

i=1

σif(Xi)|X1, . . . ,Xn

)

.

Some classical properties of Rademacher averages and some simple lemmas
(which we use often) are listed in Appendix A.1.

The simplest way to obtain the property allowing for fast rates of conver-
gence is to consider nonnegative uniformly bounded functions (or increments
with respect to a fixed null function). In this case, one trivially has for all f ∈
F , Var[f ]≤ cPf . This is exploited by Koltchinskii and Panchenko [16], who
consider the case of prediction with absolute loss when functions in F have
values in [0,1] and there is a perfect function f∗ in the class, that is, Pf∗ = 0.
They introduce an iterative method involving local empirical Rademacher
averages. They first construct a function φn(r) = c1Rn{f :Pnf ≤ 2r}+c2

√
rx/n+
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c3/n, which can be computed from the data. For r̂N defined by r̂0 = 1,
r̂k+1 = φn(r̂k), they show that with probability at least 1− 2Ne−x,

P f̂ ≤ r̂N +
2x

n
,

where f̂ is a minimizer of the empirical error, that is, a function in F
satisfying Pnf̂ = inff∈F Pnf . Hence, this nonincreasing sequence of local
Rademacher averages can be used as upper bounds on the error of the
empirical minimizer f̂ . Furthermore, if ψn is a concave function such that
ψ(

√
r )≥ EσRn{f ∈ F :Pnf ≤ r}, and if the number of iterations N is at

least 1 + ⌈log2 log2 n/x⌉, then with probability at least 1−Ne−x,

r̂N ≤ c

(
r̂∗ +

x

n

)
,

where r∗ is a solution of the fixed-point equation ψ(
√
r ) = r. Combining the

above results, one has a procedure to obtain data-dependent error bounds
that are of the order of the fixed point of the modulus of continuity at 0 of
the empirical Rademacher averages. One limitation of this result is that it
assumes that there is a function f∗ in the class with Pf∗ = 0. In contrast, we
are interested in prediction problems where Pf is the error of an estimator,
and in the presence of noise there may not be any perfect estimator (even
the best in the class can have nonzero error).

More recently, Bousquet, Koltchinskii and Panchenko [9] have obtained a
more general result avoiding the iterative procedure. Their result is that for
functions with values in [0,1], with probability at least 1− e−x,

∀ f ∈ F Pf ≤ c

(
Pnf + r̂∗ +

t+ log logn

n

)
,(1.1)

where r̂∗ is the fixed point of a concave function ψn satisfying ψn(0) = 0 and

ψn(
√
r )≥ EσRn{f ∈ F :Pnf ≤ r}.

The main difference between this and the results of [16] is that there is no
requirement that the class contain a perfect function. However, the local
Rademacher averages are centered around the zero function instead of the
one that minimizes Pf . As a consequence, the fixed point r̂∗ cannot be
expected to converge to zero when inff∈F Pf > 0.

In order to remove this limitation, Lugosi and Wegkamp [19] use localized

Rademacher averages of a small ball around the minimizer f̂ of Pn. However,
their result is restricted to nonnegative functions, and in particular functions
with values in {0,1}. Moreover, their bounds also involve some global in-
formation, in the form of the shatter coefficients SF (Xn

1 ) of the function
class (i.e., the cardinality of the coordinate projections of the class F on
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the data Xn
1 ). They show that there are constants c1, c2 such that, with

probability at least 1− 8/n, the empirical minimizer f̂ satisfies

P f̂ ≤ inf
f∈F

Pf + 2ψ̂n(r̂n),

where

ψ̂n(r) = c1

(

EσRn{f ∈ F :Pnf ≤ 16Pnf̂ + 15r}+
logn

n
+

√
logn

n

√
Pnf̂ + r

)

and r̂n = c2(logSF (Xn
1 ) + logn)/n. The limitation of this result is that r̂n

has to be chosen according to the (empirically measured) complexity of the
whole class, which may not be as sharp as the Rademacher averages, and
in general, is not a fixed point of ψ̂n. Moreover, the balls over which the
Rademacher averages are computed in ψ̂n contain a factor of 16 in front
of Pnf̂ . As we explain later, this induces a lower bound on ψ̂n when there
is no function with Pf = 0 in the class.

It seems that the only way to capture the right behavior in the general,
noisy case is to analyze the increments of the empirical process, in other
words, to directly consider the functions f − f∗. This approach was first
proposed by Massart [22]; see also [26]. Massart introduces the assumption

Var[ℓf (X)− ℓf∗(X)] ≤ d2(f, f∗)≤B(Pℓf −Pℓf∗),

where ℓf is the loss associated with the function f [in other words, ℓf (X,Y ) =
ℓ(f(X), Y ), which measures the discrepancy in the prediction made by f ], d
is a pseudometric and f∗ minimizes the expected loss. (The previous results
could also be stated in terms of loss functions, but we omitted this in order
to simplify exposition. However, the extra notation is necessary to properly
state Massart’s result.) This is a more refined version of the assumption we
mentioned earlier on the relationship between the variance and expectation
of the increments of the empirical process. It is only satisfied for some loss
functions ℓ and function classes F . Under this assumption, Massart considers
a nondecreasing function ψ satisfying

ψ(r) ≥ E sup
f∈F , d2(f,f∗)2≤r

|Pf − Pf∗ −Pnf +Pnf
∗|+ c

x

n
,

such that ψ(r)/
√
r is nonincreasing (we refer to this property as the sub-root

property later in the paper). Then, with probability at least 1− e−x,

∀ f ∈ F Pℓf −Pℓf∗ ≤ c

(
r∗ +

x

n

)
,(1.2)

where r∗ is the fixed point of ψ and c depends only on B and on the uni-
form bound on the range of functions in F . It can be proved that in many
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situations of interest, this bound suffices to prove minimax rates of conver-
gence for penalized M -estimators. (Massart considers examples where the
complexity term can be bounded using a priori global information about the
function class.) However, the main limitation of this result is that it does
not involve quantities that can be computed from the data.

Finally, as we mentioned earlier, Mendelson [26] gives an analysis similar
to that of Massart, in a slightly less general case (with no noise in the target
values, i.e., the conditional distribution of Y given X is concentrated at
one point). Mendelson introduces the notion of the star-hull of a class of
functions (see the next section for a definition) and considers Rademacher
averages of this star-hull as a localized measure of complexity. His results
also involve a priori knowledge of the class, such as the rate of growth of
covering numbers.

We can now spell out our goal in more detail: in this paper we com-
bine the increment-based approach of Massart and Mendelson (dealing with
differences of functions, or more generally with bounded real-valued func-
tions) with the empirical local Rademacher approach of Koltchinskii and
Panchenko and of Lugosi and Wegkamp, in order to obtain data-dependent
bounds which depend on a fixed point of the modulus of continuity of
Rademacher averages computed around the empirically best function.

Our first main result (Theorem 3.3) is a distribution-dependent result
involving the fixed point r∗ of a local Rademacher average of the star-hull
of the class F . This shows that functions with the sub-root property can
readily be obtained from Rademacher averages, while in previous work the
appropriate functions were obtained only via global information about the
class.

The second main result (Theorems 4.1 and 4.2) is an empirical counterpart
of the first one, where the complexity is the fixed point of an empirical local
Rademacher average. We also show that this fixed point is within a constant
factor of the nonempirical one.

Equipped with this result, we can then prove (Theorem 5.4) a fully data-
dependent analogue of Massart’s result, where the Rademacher averages are
localized around the minimizer of the empirical loss.

We also show (Theorem 6.3) that in the context of classification, the
local Rademacher averages of star-hulls can be approximated by solving a
weighted empirical error minimization problem.

Our final result (Corollary 6.7) concerns regression with kernel classes,
that is, classes of functions that are generated by a positive definite ker-
nel. These classes are widely used in interpolation and estimation problems
as they yield computationally efficient algorithms. Our result gives a data-
dependent complexity term that can be computed directly from the eigen-
values of the Gram matrix (the matrix whose entries are values of the kernel
on the data).
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The sharpness of our results is demonstrated from the fact that we recover,
in the distribution-dependent case (treated in Section 4), similar results
to those of Massart [22], which, in the situations where they apply, give
the minimax optimal rates or the best known results. Moreover, the data-
dependent bounds that we obtain as counterparts of these results have the
same rate of convergence (see Theorem 4.2).

The paper is organized as follows. In Section 2 we present some prelimi-
nary results obtained from concentration inequalities, which we use through-
out. Section 3 establishes error bounds using local Rademacher averages and
explains how to compute their fixed points from “global information” (e.g.,
estimates of the metric entropy or of the combinatorial dimensions of the
indexing class), in which case the optimal estimates can be recovered. In
Section 4 we give a data-dependent error bound using empirical and local
Rademacher averages, and show the connection between the fixed points of
the empirical and nonempirical Rademacher averages. In Section 5 we ap-
ply our results to loss classes. We give estimates that generalize the results
of Koltchinskii and Panchenko by eliminating the requirement that some
function in the class have zero loss, and are more general than those of
Lugosi and Wegkamp, since there is no need have in our case to estimate
global shatter coefficients of the class. We also give a data-dependent exten-
sion of Massart’s result where the local averages are computed around the
minimizer of the empirical loss. Finally, Section 6 shows that the problem
of estimating these local Rademacher averages in classification reduces to
weighted empirical risk minimization. It also shows that the local averages
for kernel classes can be sharply bounded in terms of the eigenvalues of the
Gram matrix.

2. Preliminary results. Recall that the star-hull of F around f0 is de-
fined by

star(F , f0) = {f0 +α(f − f0) :f ∈F , α ∈ [0,1]}.
Throughout this paper, we will manipulate suprema of empirical processes,
that is, quantities of the form supf∈F (Pf − Pnf). We will always assume
they are measurable without explicitly mentioning it. In other words, we
assume that the class F and the distribution P satisfy appropriate (mild)
conditions for measurability of this supremum (we refer to [11, 28] for a
detailed account of such issues).

The following theorem is the main result of this section and is at the core
of all the proofs presented later. It shows that if the functions in a class
have small variance, the maximal deviation between empirical means and
true means is controlled by the Rademacher averages of F . In particular,
the bound improves as the largest variance of a class member decreases.
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Theorem 2.1. Let F be a class of functions that map X into [a, b].
Assume that there is some r > 0 such that for every f ∈ F , Var[f(Xi)] ≤ r.
Then, for every x > 0, with probability at least 1− e−x,

sup
f∈F

(Pf −Pnf)≤ inf
α>0

(

2(1 +α)ERnF +

√
2rx

n
+ (b− a)

(
1

3
+

1

α

)
x

n

)

,

and with probability at least 1− 2e−x,

sup
f∈F

(Pf − Pnf)

≤ inf
α∈(0,1)

(

2
1 +α

1−α
EσRnF +

√
2rx

n
+ (b− a)

(
1

3
+

1

α
+

1 +α

2α(1 −α)

)
x

n

)

.

Moreover, the same results hold for the quantity supf∈F (Pnf − Pf).

This theorem, which is proved in Appendix A.2, is a more or less direct
consequence of Talagrand’s inequality for empirical processes [30]. However,
the actual statement presented here is new in the sense that it displays the
best known constants. Indeed, compared to the previous result of Koltchin-
skii and Panchenko [16] which was based on Massart’s version of Talagrand’s
inequality [21], we have used the most refined concentration inequalities
available: that of Bousquet [7] for the supremum of the empirical process
and that of Boucheron, Lugosi and Massart [5] for the Rademacher averages.
This last inequality is a powerful tool to obtain data-dependent bounds,
since it allows one to replace the Rademacher average (which measures the
complexity of the class of functions) by its empirical version, which can be
efficiently computed in some cases. Details about these inequalities are given
in Appendix A.1.

When applied to the full function class F , the above theorem is not useful.
Indeed, with only a trivial bound on the maximal variance, better results
can be obtained via simpler concentration inequalities, such as the bounded
difference inequality [23], which would allow

√
rx/n to be replaced by

√
x/n.

However, by applying Theorem 2.1 to subsets of F or to modified classes
obtained from F , much better results can be obtained. Hence, the presence of
an upper bound on the variance in the square root term is the key ingredient
of this result.

A last preliminary result that we will require is the following consequence
of Theorem 2.1, which shows that if the local Rademacher averages are small,
then balls in L2(P ) are probably contained in the corresponding empirical
balls [i.e., in L2(Pn)] with a slightly larger radius.

Corollary 2.2. Let F be a class of functions that map X into [−b, b]
with b > 0. For every x > 0 and r that satisfy

r ≥ 10bERn{f :f ∈ F , Pf2 ≤ r}+
11b2x

n
,
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then with probability at least 1− e−x,

{f ∈ F :Pf2 ≤ r} ⊆ {f ∈ F :Pnf
2 ≤ 2r}.

Proof. Since the range of any function in the set Fr = {f2 :f ∈ F ,
Pf2 ≤ r} is contained in [0, b2], it follows that Var[f2(Xi)]≤ Pf4 ≤ b2Pf2 ≤
b2r. Thus, by the first part of Theorem 2.1 (with α= 1/4), with probability
at least 1− e−x, every f ∈ Fr satisfies

Pnf
2 ≤ r+

5

2
ERn{f2 :f ∈F , Pf2 ≤ r}+

√
2b2rx

n
+

13b2x

3n

≤ r+
5

2
ERn{f2 :f ∈F , Pf2 ≤ r}+

r

2
+

16b2x

3n

≤ r+ 5bERn{f :f ∈F , Pf2 ≤ r}+
r

2
+

16b2x

3n

≤ 2r,

where the second inequality follows from Lemma A.3 and we have used,
in the second to last inequality, Theorem A.6 applied to φ(x) = x2 (with
Lipschitz constant 2b on [−b, b]). �

3. Error bounds with local complexity. In this section we show that
the Rademacher averages associated with a small subset of the class may
be considered as a complexity term in an error bound. Since these local
Rademacher averages are always smaller than the corresponding global av-
erages, they lead to sharper bounds.

We present a general error bound involving local complexities that is ap-
plicable to classes of bounded functions for which the variance is bounded by
a fixed linear function of the expectation. In this case the local Rademacher
averages are defined as ERn{f ∈F :T (f)≤ r} where T (f) is an upper bound
on the variance [typically chosen as T (f) = Pf2].

There is a trade-off between the size of the subset we consider in these
local averages and its complexity; we shall see that the optimal choice is
given by a fixed point of an upper bound on the local Rademacher averages.
The functions we use as upper bounds are sub-root functions; among other
useful properties, sub-root functions have a unique fixed point.

Definition 3.1. A function ψ : [0,∞) → [0,∞) is sub-root if it is non-
negative, nondecreasing and if r 7→ ψ(r)/

√
r is nonincreasing for r > 0.

We only consider nontrivial sub-root functions, that is, sub-root functions
that are not the constant function ψ ≡ 0.
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Lemma 3.2. If ψ : [0,∞) → [0,∞) is a nontrivial sub-root function, then
it is continuous on [0,∞) and the equation ψ(r) = r has a unique positive
solution. Moreover, if we denote the solution by r∗, then for all r > 0, r ≥
ψ(r) if and only if r∗ ≤ r.

The proof of this lemma is in Appendix A.2. In view of the lemma, we will
simply refer to the quantity r∗ as the unique positive solution of ψ(r) = r,
or as the fixed point of ψ.

3.1. Error bounds. We can now state and discuss the main result of this
section. It is composed of two parts: in the first part, one requires a sub-root
upper bound on the local Rademacher averages, and in the second part, it
is shown that better results can be obtained when the class over which the
averages are computed is enlarged slightly.

Theorem 3.3. Let F be a class of functions with ranges in [a, b] and
assume that there are some functional T :F → R

+ and some constant B such
that for every f ∈ F , Var[f ]≤ T (f)≤BPf . Let ψ be a sub-root function and
let r∗ be the fixed point of ψ.

1. Assume that ψ satisfies, for any r≥ r∗,

ψ(r)≥BERn{f ∈F :T (f)≤ r}.
Then, with c1 = 704 and c2 = 26, for any K > 1 and every x > 0, with
probability at least 1− e−x,

∀ f ∈F Pf ≤ K

K − 1
Pnf +

c1K

B
r∗ +

x(11(b− a) + c2BK)

n
.

Also, with probability at least 1− e−x,

∀ f ∈F Pnf ≤ K + 1

K
Pf +

c1K

B
r∗ +

x(11(b− a) + c2BK)

n
.

2. If, in addition, for f ∈ F and α ∈ [0,1], T (αf) ≤ α2T (f), and if ψ
satisfies, for any r≥ r∗,

ψ(r) ≥BERn{f ∈ star(F ,0) :T (f) ≤ r},
then the same results hold true with c1 = 6 and c2 = 5.

The proof of this theorem is given in Section 3.2.
We can compare the results to our starting point (Theorem 2.1). The

improvement comes from the fact that the complexity term, which was es-
sentially supr ψ(r) in Theorem 2.1 (if we had applied it to the class F di-
rectly) is now reduced to r∗, the fixed point of ψ. So the complexity term
is always smaller (later, we show how to estimate r∗). On the other hand,
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there is some loss since the constant in front of Pnf is strictly larger than 1.
Section 5.2 will show that this is not an issue in the applications we have in
mind.

In Sections 5.1 and 5.2 we investigate conditions that ensure the assump-
tions of this theorem are satisfied, and we provide applications of this result
to prediction problems. The condition that the variance is upper bounded
by the expectation turns out to be crucial to obtain these results.

The idea behind Theorem 3.3 originates in the work of Massart [22], who
proves a slightly different version of the first part. The difference is that we
use local Rademacher averages instead of the expectation of the supremum
of the empirical process on a ball. Moreover, we give smaller constants. As
far as we know, the second part of Theorem 3.3 is new.

3.1.1. Choosing the function ψ. Notice that the function ψ cannot be
chosen arbitrarily and has to satisfy the sub-root property. One possible
approach is to use classical upper bounds on the Rademacher averages, such
as Dudley’s entropy integral. This can give a sub-root upper bound and was
used, for example, in [16] and in [22].

However, the second part of Theorem 3.3 indicates a possible choice for
ψ, namely, one can take ψ as the local Rademacher averages of the star-
hull of F around 0. The reason for this comes from the following lemma,
which shows that if the class is star-shaped and T (f) behaves as a quadratic
function, the Rademacher averages are sub-root.

Lemma 3.4. If the class F is star-shaped around f̂ (which may depend
on the data), and T :F → R

+ is a ( possibly random) function that satis-
fies T (αf) ≤ α2T (f) for any f ∈ F and any α ∈ [0,1], then the (random)
function ψ defined for r ≥ 0 by

ψ(r) = EσRn{f ∈F :T (f − f̂)≤ r}

is sub-root and r 7→ Eψ(r) is also sub-root.

This lemma is proved in Appendix A.2.
Notice that making a class star-shaped only increases it, so that

ERn{f ∈ star(F , f0) :T (f)≤ r} ≥ ERn{f ∈ F :T (f)≤ r}.

However, this increase in size is moderate as can be seen, for example, if
one compares covering numbers of a class and its star-hull (see, e.g., [26],
Lemma 4.5).
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3.1.2. Some consequences. As a consequence of Theorem 3.3, we obtain
an error bound when F consists of uniformly bounded nonnegative functions.
Notice that in this case the variance is trivially bounded by a constant times
the expectation and one can directly use T (f) = Pf .

Corollary 3.5. Let F be a class of functions with ranges in [0,1]. Let
ψ be a sub-root function, such that for all r ≥ 0,

ERn{f ∈ F :Pf ≤ r} ≤ ψ(r),

and let r∗ be the fixed point of ψ. Then, for any K > 1 and every x > 0, with
probability at least 1− e−x, every f ∈ F satisfies

Pf ≤ K

K − 1
Pnf + 704Kr∗ +

x(11 + 26K)

n
.

Also, with probability at least 1− e−x, every f ∈ F satisfies

Pnf ≤ K + 1

K
Pf + 704Kr∗ +

x(11 + 26K)

n
.

Proof. When f ∈ [0,1], we have Var[f ]≤ Pf so that the result follows
from applying Theorem 3.3 with T (f) = Pf . �

We also note that the same idea as in the proof of Theorem 3.3 gives a
converse of Corollary 2.2, namely, that with high probability the intersection
of F with an empirical ball of a fixed radius is contained in the intersection
of F with an L2(P ) ball with a slightly larger radius.

Lemma 3.6. Let F be a class of functions that map X into [−1,1]. Fix
x > 0. If

r≥ 20ERn{f :f ∈ star(F ,0), Pf2 ≤ r}+
26x

n
,

then with probability at least 1− e−x,

{f ∈ star(F ,0) :Pnf
2 ≤ r} ⊆ {f ∈ star(F ,0) :Pf2 ≤ 2r}.

This result, proved in Section 3.2, will be useful in Section 4.

3.1.3. Estimating r∗ from global information. The error bounds involve
fixed points of functions that define upper bounds on the local Rademacher
averages. In some cases these fixed points can be estimated from global
information on the function class. We present a complete analysis only in
a simple case, where F is a class of binary-valued functions with a finite
VC-dimension.
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Corollary 3.7. Let F be a class of {0,1}-valued functions with VC-dimen-
sion d <∞. Then for all K > 1 and every x > 0, with probability at least
1− e−x, every f ∈F satisfies

Pf ≤ K

K − 1
Pnf + cK

(
d log(n/d)

n
+
x

n

)
.

The proof is in Appendix A.2.
The above result is similar to results obtained by Vapnik and Chervo-

nenkis [35] and by Lugosi and Wegkamp (Theorem 3.1 of [19]). However,
they used inequalities for weighted empirical processes indexed by nonnega-
tive functions. Our results have more flexibility since they can accommodate
general functions, although this is not needed in this simple corollary.

The proof uses a similar line of reasoning to proofs in [26, 27]. Clearly,
it extends to any class of real-valued functions for which one has estimates
for the entropy integral, such as classes with finite pseudo-dimension or a
combinatorial dimension that grows more slowly than quadratically. See [26,
27] for more details.

Notice also that the rate of logn/n is the best known.

3.1.4. Proof techniques. Before giving the proofs of the results mentioned
above, let us sketch the techniques we use. The approach has its roots in
classical empirical processes theory, where it was understood that the mod-
ulus of continuity of the empirical process is an important quantity (here
ψ plays this role). In order to obtain nonasymptotic results, two approaches
have been developed: the first one consists of cutting the class F into smaller
pieces, where one has control of the variance of the elements. This is the so-
called peeling technique (see, e.g., [31, 32, 33, 34] and references therein).
The second approach consists of weighting the functions in F by dividing
them by their variance. Many results have been obtained on such weighted
empirical processes (see, e.g., [28]). The results of Vapnik and Chervonenkis
based on weighting [35] are restricted to classes of nonnegative functions.
Also, most previous results, such as those of Pollard [28], van de Geer [32]
or Haussler [13], give complexity terms that involve “global” measures of
complexity of the class, such as covering numbers. None of these results uses
the recently introduced Rademacher averages as measures of complexity.
It turns out that it is possible to combine the peeling and weighting ideas
with concentration inequalities to obtain such results, as proposed by Mas-
sart in [22], and also used (for nonnegative functions) by Koltchinskii and
Panchenko [16].

The idea is the following:

(a) Apply Theorem 2.1 to the class of functions {f/w(f) :f ∈F}, where
w is some nonnegative weight of the order of the variance of f . Hence, the
functions in this class have a small variance.
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(b) Upper bound the Rademacher averages of this weighted class, by
“peeling off” subclasses of F according to the variance of their elements,
and bounding the Rademacher averages of these subclasses using ψ.

(c) Use the sub-root property of ψ, so that its fixed point gives a common
upper bound on the complexity of all the subclasses (up to some scaling).

(d) Finally, convert the upper bound for functions in the weighted class
into a bound for functions in the initial class.

The idea of peeling—that is, of partitioning the class F into slices where
functions have variance within a certain range—is at the core of the proof of
the first part of Theorem 3.3 [see, e.g., (3.1)]. However, it does not appear
explicitly in the proof of the second part. One explanation is that when one
considers the star-hull of the class, it is enough to consider two subclasses:
the functions with T (f)≤ r and the ones with T (f)> r, and this is done
by introducing the weighting factor T (f) ∨ r. This idea was exploited in
the work of Mendelson [26] and, more recently, in [4]. Moreover, when one
considers the set Fr = star(F ,0) ∩ {T (f) ≤ r}, any function f ′ ∈ F with
T (f ′)> r will have a scaled down representative in that set. So even though
it seems that we look at the class star(F ,0) only locally, we still take into
account all of the functions in F (with appropriate scaling).

3.2. Proofs. Before presenting the proof, let us first introduce some ad-
ditional notation. Given a class F , λ > 1 and r > 0, let w(f) = min{rλk :k ∈
N, rλk ≥ T (f)} and set

Gr =

{
r

w(f)
f :f ∈F

}
.

Notice that w(f) ≥ r, so that Gr ⊆ {αf :f ∈ F , α ∈ [0,1]} = star(F ,0). Define

V +
r = sup

g∈Gr

Pg −Png and V −
r = sup

g∈Gr

Png−Pg.

For the second part of the theorem, we need to introduce another class of
functions,

G̃r :=

{
rf

T (f)∨ r :f ∈ F
}
,

and define

Ṽ +
r = sup

g∈G̃r

Pg −Png and Ṽ −
r = sup

g∈G̃r

Png−Pg.

Lemma 3.8. With the above notation, assume that there is a constant
B > 0 such that for every f ∈F , T (f)≤BPf . Fix K > 1, λ > 0 and r > 0.
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If V +
r ≤ r/(λBK), then

∀ f ∈F Pf ≤ K

K − 1
Pnf +

r

λBK
.

Also, if V −
r ≤ r/(λBK), then

∀ f ∈F Pnf ≤ K + 1

K
Pf +

r

λBK
.

Similarly, if K > 1 and r > 0 are such that Ṽ +
r ≤ r/(BK), then

∀ f ∈ F Pf ≤ K

K − 1
Pnf +

r

BK
.

Also, if Ṽ −
r ≤ r/(BK), then

∀ f ∈ F Pnf ≤ K + 1

K
Pf +

r

BK
.

Proof. Notice that for all g ∈ Gr, Pg ≤ Png+V +
r . Fix f ∈ F and define

g = rf/w(f). When T (f) ≤ r, w(f) = r, so that g = f . Thus, the fact that
Pg ≤ Png+ V +

r implies that Pf ≤ Pnf + V +
r ≤ Pnf + r/(λBK).

On the other hand, if T (f)> r, then w(f) = rλk with k > 0 and T (f) ∈
(rλk−1, rλk]. Moreover, g = f/λk, Pg ≤ Png+ V +

r , and thus

Pf

λk
≤ Pnf

λk
+ V +

r .

Using the fact that T (f)> rλk−1, it follows that

Pf ≤ Pnf + λkV +
r <Pnf + λT (f)V +

r /r ≤ Pnf +Pf/K.

Rearranging,

Pf ≤ K

K − 1
Pnf <

K

K − 1
Pnf +

r

λBK
.

The proof of the second result is similar. For the third and fourth results,
the reasoning is the same. �

Proof of Theorem 3.3, first part. Let Gr be defined as above,
where r is chosen such that r ≥ r∗, and note that functions in Gr satisfy
‖g−Pg‖∞ ≤ b− a since 0 ≤ r/w(f) ≤ 1. Also, we have Var[g] ≤ r. Indeed, if
T (f)≤ r, then g = f , and thus Var[g] = Var[f ]≤ r. Otherwise, when T (f)>
r, g = f/λk (where k is such that T (f) ∈ (rλk−1, rλk]), so that Var[g] =
Var[f ]/λ2k ≤ r.

Applying Theorem 2.1, for all x > 0, with probability 1− e−x,

V +
r ≤ 2(1 +α)ERnGr +

√
2rx

n
+ (b− a)

(
1

3
+

1

α

)
x

n
.
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Let F(x, y) := {f ∈ F :x ≤ T (f) ≤ y} and define k to be the smallest
integer such that rλk+1 ≥Bb. Then

ERnGr ≤ ERnF(0, r) + E sup
f∈F(r,Bb)

r

w(f)
Rnf

≤ ERnF(0, r) +
k∑

j=0

E sup
f∈F(rλj ,rλj+1)

r

w(f)
Rnf

(3.1)

= ERnF(0, r) +
k∑

j=0

λ−j
E sup

f∈F(rλj ,rλj+1)

Rnf

≤ ψ(r)

B
+

1

B

k∑

j=0

λ−jψ(rλj+1).

By our assumption it follows that for β ≥ 1, ψ(βr)≤√
βψ(r). Hence,

ERnGr ≤
1

B
ψ(r)

(

1 +
√
λ

k∑

j=0

λ−j/2

)

,

and taking λ= 4, the right-hand side is upper bounded by 5ψ(r)/B. More-
over, for r ≥ r∗, ψ(r)≤

√
r/r∗ψ(r∗) =

√
rr∗, and thus

V +
r ≤ 10(1 +α)

B

√
rr∗ +

√
2rx

n
+ (b− a)

(
1

3
+

1

α

)
x

n
.

Set A= 10(1+α)
√
r∗/B+

√
2x/n and C = (b−a)(1/3+1/α)x/n, and note

that V +
r ≤A

√
r+C.

We now show that r can be chosen such that V +
r ≤ r/(λBK). Indeed,

consider the largest solution r0 of A
√
r + C = r/(λBK). It satisfies r0 ≥

λ2A2B2K2/2≥ r∗ and r0 ≤ (λBK)2A2+2λBKC, so that applying Lemma 3.8,
it follows that every f ∈F satisfies

Pf ≤ K

K − 1
Pnf + λBKA2 + 2C

=
K

K − 1
Pnf + λBK

(

100(1 +α)2r∗/B2 +
20(1 + α)

B

√
2xr∗

n
+

2x

n

)

+ (b− a)

(
1

3
+

1

α

)
x

n
.

Setting α= 1/10 and using Lemma A.3 to show that
√

2xr∗/n≤Bx/(5n)+
5r∗/(2B) completes the proof of the first statement. The second statement
is proved in the same way, by considering V −

r instead of V +
r . �
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Proof of Theorem 3.3, second part. The proof of this result uses
the same argument as for the first part. However, we consider the class G̃r

defined above. One can easily check that G̃r ⊂ {f ∈ star(F ,0) :T (f) ≤ r},
and thus ERnG̃r ≤ ψ(r)/B. Applying Theorem 2.1 to G̃r, it follows that, for
all x > 0, with probability 1− e−x,

Ṽ +
r ≤ 2(1 +α)

B
ψ(r) +

√
2rx

n
+ (b− a)

(
1

3
+

1

α

)
x

n
.

The reasoning is then the same as for the first part, and we use in the
very last step that

√
2xr∗/n ≤ Bx/n+ r∗/(2B), which gives the displayed

constants. �

Proof of Lemma 3.6. The map α 7→ α2 is Lipschitz with constant 2
when α is restricted to [−1,1]. Applying Theorem A.6,

r ≥ 10ERn{f2 :f ∈ star(F ,0), Pf2 ≤ r}+
26x

n
.(3.2)

Clearly, if f ∈ F , then f2 maps to [0,1] and Var[f2] ≤ Pf2. Thus, Theo-
rem 2.1 can be applied to the class Gr = {rf2/(Pf2 ∨ r) :f ∈ F}, whose
functions have range in [0,1] and variance bounded by r. Therefore, with
probability at least 1− e−x, every f ∈ F satisfies

r
Pf2 − Pnf

2

Pf2 ∨ r ≤ 2(1 + α)ERnGr +

√
2rx

n
+

(
1

3
+

1

α

)
x

n
.

Select α= 1/4 and notice that
√

2rx/n≤ r/4 + 2x/n to get

r
Pf2 −Pnf

2

Pf2 ∨ r ≤ 5

2
ERnGr +

r

2
+

19x

3n
.

Hence, one either has Pf2 ≤ r, or when Pf2 ≥ r, since it was assumed that
Pnf

2 ≤ r,

Pf2 ≤ r+
Pf2

r

(
5

2
ERnGr +

r

4
+

19x

3n

)
.

Now, if g ∈ Gr, there exists f0 ∈ F such that g = rf2
0/(Pf

2
0 ∨ r). If Pf2

0 ≤ r,
then g = f2

0 . On the other hand, if Pf2
0 > r, then g = rf2

0 /Pf
2
0 = f2

1 with
f1 ∈ star(F ,0) and Pf2

1 ≤ r, which shows that

ERnGr ≤ ERn{f2 :f ∈ star(F ,0), Pf2 ≤ r}.

Thus, by (3.2), Pf2 ≤ 2r, which concludes the proof. �
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4. Data-dependent error bounds. The results presented thus far use
distribution-dependent measures of complexity of the class at hand. In-
deed, the sub-root function ψ of Theorem 3.3 is bounded in terms of the
Rademacher averages of the star-hull of F , but these averages can only be
computed if one knows the distribution P . Otherwise, we have seen that it
is possible to compute an upper bound on the Rademacher averages using a
priori global or distribution-free knowledge about the complexity of the class
at hand (such as the VC-dimension). In this section we present error bounds
that can be computed directly from the data, without a priori information.
Instead of computing ψ, we compute an estimate, ψ̂n, of it. The function ψ̂n

is defined using the data and is an upper bound on ψ with high probability.
To simplify the exposition we restrict ourselves to the case where the func-

tions have a range which is symmetric around zero, say [−1,1]. Moreover,
we can only treat the special case where T (f) = Pf2, but this is a minor
restriction as in most applications this is the function of interest [i.e., for
which one can show T (f)≤BPf ].

4.1. Results. We now present the main result of this section, which gives
an analogue of the second part of Theorem 3.3, with a completely empirical
bound (i.e., the bound can be computed from the data only).

Theorem 4.1. Let F be a class of functions with ranges in [−1,1] and
assume that there is some constant B such that for every f ∈F , Pf2 ≤BPf .
Let ψ̂n be a sub-root function and let r̂∗ be the fixed point of ψ̂n. Fix x > 0
and assume that ψ̂n satisfies, for any r ≥ r̂∗,

ψ̂n(r)≥ c1EσRn{f ∈ star(F ,0) :Pnf
2 ≤ 2r}+

c2x

n
,

where c1 = 2(10∨B) and c2 = c1 + 11. Then, for any K > 1 with probability
at least 1− 3e−x,

∀ f ∈F Pf ≤ K

K − 1
Pnf +

6K

B
r̂∗ +

x(11 + 5BK)

n
.

Also, with probability at least 1− 3e−x,

∀ f ∈F Pnf ≤ K + 1

K
Pf +

6K

B
r̂∗ +

x(11 + 5BK)

n
.

Although these are data-dependent bounds, they are not necessarily easy
to compute. There are, however, favorable interesting situations where they
can be computed efficiently, as Section 6 shows.

It is natural to wonder how close the quantity r̂∗ appearing in the above
theorem is to the quantity r∗ of Theorem 3.3. The next theorem shows that
they are close with high probability.
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Theorem 4.2. Let F be a class of functions with ranges in [−1,1]. Fix
x > 0 and consider the sub-root functions

ψ(r) = ERn{f ∈ star(F ,0) :Pf2 ≤ r}
and

ψ̂n(r) = c1EσRn{f ∈ star(F ,0) :Pnf
2 ≤ 2r}+

c2x

n
,

with fixed points r∗ and r̂∗, respectively, and with c1 = 2(10∨B) and c2 = 13.
Assume that r∗ ≥ c3x/n, where c3 = 26∨ (c2 +2c1)/3. Then, with probability
at least 1− 4e−x,

r∗ ≤ r̂∗ ≤ 9(1 + c1)
2r∗.

Thus, with high probability, r̂∗ is an upper bound on r∗ and has the
same asymptotic behavior. Notice that there was no attempt to optimize
the constants in the above theorem. In addition, the constant 9(1 + c1)

2

(equal to 3969 if B ≤ 10) in Theorem 4.2 does not appear in the upper
bound of Theorem 4.1.

4.2. Proofs. The idea of the proofs is to show that one can upper bound
ψ by an empirical estimate (with high probability). This requires two steps:
the first one uses the concentration of the Rademacher averages to upper
bound the expected Rademacher averages by their empirical versions. The
second step uses Corollary 2.2 to prove that the ball over which the averages
are computed [which is an L2(P ) ball] can be replaced by an empirical one.

Thus, ψ̂n is an upper bound on ψ, and one can apply Theorem 3.3, together
with the following lemma, which shows how fixed points of sub-root functions
relate when the functions are ordered.

Lemma 4.3. Suppose that ψ, ψ̂n are sub-root. Let r∗ (resp. r̂∗) be the

fixed point of ψ (resp. ψ̂n). If for 0 ≤ α ≤ 1 we have αψ̂n(r∗) ≤ ψ(r∗) ≤
ψ̂n(r∗), then

α2r̂∗ ≤ r∗ ≤ r̂∗.

Proof. Denoting by r̂∗α the fixed point of the sub-root function αψ̂n,

then, by Lemma 3.2 r̂∗α ≤ r∗ ≤ r̂∗. Also, since ψ̂n is sub-root, ψ̂n(α2r̂∗) ≥
αψ̂n(r̂∗) = αr̂∗, which means αψ̂n(α2r̂∗) ≥ α2r̂∗. Hence, Lemma 3.2 yields
r̂∗α ≥ α2r̂∗. �

Proof of Theorem 4.1. Consider the sub-root function

ψ1(r) =
c1
2

ERn{f ∈ star(F ,0) :Pf2 ≤ r}+
(c2 − c1)x

n
,
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with fixed point r∗1 . Applying Corollary 2.2 when r ≥ ψ1(r), it follows that
with probability at least 1− e−x,

{f ∈ star(F ,0) :Pf2 ≤ r} ⊆ {f ∈ star(F ,0) :Pnf
2 ≤ 2r}.

Using this together with the first inequality of Lemma A.4 (with α= 1/2)
shows that if r≥ ψ1(r), with probability at least 1− 2e−x,

ψ1(r) =
c1
2

ERn{f ∈ star(F ,0) :Pf2 ≤ r}+
(c2 − c1)x

n

≤ c1EσRn{f ∈ star(F ,0) :Pf2 ≤ r}+
c2x

n

≤ c1EσRn{f ∈ star(F ,0) :Pnf
2 ≤ 2r}+

c2x

n

≤ ψ̂n(r).

Choosing r = r∗1 , Lemma 4.3 shows that with probability at least 1− 2e−x,

r∗1 ≤ r̂∗.(4.1)

Also, for all r≥ 0,

ψ1(r)≥BERn{f ∈ star(F ,0) :Pf2 ≤ r},
and so from Theorem 3.3, with probability at least 1 − e−x, every f ∈ F
satisfies

Pf ≤ K

K − 1
Pnf +

6Kr∗1
B

+
(11 + 5BK)x

n
.

Combining this with (4.1) gives the first result. The second result is proved
in a similar manner. �

Proof of Theorem 4.2. Consider the functions

ψ1(r) =
c1
2

ERn{f ∈ star(F ,0) :Pf2 ≤ r}+
(c2 − c1)x

n

and

ψ2(r) = c1ERn{f ∈ star(F ,0) :Pf2 ≤ r}+
c3x

n
,

and denote by r∗1 and r∗2 the fixed points of ψ1 and ψ2, respectively. The
proof of Theorem 4.1 shows that with probability at least 1− 2e−x, r∗1 ≤ r̂∗.

Now apply Lemma 3.6 to show that if r ≥ ψ2(r), then with probability at
least 1− e−x,

{f ∈ star(F ,0) :Pnf
2 ≤ r} ⊆ {f ∈ star(F ,0) :Pf2 ≤ 2r}.
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Using this together with the second inequality of Lemma A.4 (with α= 1/2)
shows that if r≥ ψ2(r), with probability at least 1− 2e−x,

ψ̂n(r) = c1EσRn{f ∈ star(F ,0) :Pnf
2 ≤ 2r}+

c2x

n

≤ c1
√

2EσRn{f ∈ star(F ,0) :Pnf
2 ≤ r}+

c2x

n

≤ c1
√

2EσRn{f ∈ star(F ,0) :Pf2 ≤ 2r}+
c2x

n

≤ 3
√

2

2
c1ERn{f ∈ star(F ,0) :Pf2 ≤ 2r}+

(c2 + 2c1)x

n

≤ 3c1ERn{f ∈ star(F ,0) :Pf2 ≤ r}+
(c2 + 2c1)x

n

≤ 3ψ2(r),

where the sub-root property was used twice (in the first and second to last
inequalities). Lemma 4.3 thus gives r̂∗ ≤ 9r∗2 .

Also notice that for all r, ψ(r) ≤ ψ1(r), and hence r∗ ≤ r∗1. Moreover, for
all r ≥ ψ(r) (hence r ≥ r∗ ≥ c3x/n), ψ2(r) ≤ c1ψ(r) + r, so that ψ2(r

∗) ≤
(c1 + 1)r∗ = (c1 + 1)ψ(r∗). Lemma 4.3 implies that r∗2 ≤ (1 + c1)

2r∗. �

5. Prediction with bounded loss. In this section we discuss the applica-
tion of our results to prediction problems, such as classification and regres-
sion. For such problems there are an input space X and an output space Y ,
and the product X × Y is endowed with an unknown probability measure
P . For example, classification corresponds to the case where Y is discrete,
typically Y = {−1,1}, and regression corresponds to the continuous case,
typically Y = [−1,1]. Note that assuming the boundedness of the target val-
ues is a typical assumption in theoretical analysis of regression procedures.
To analyze the case of unbounded targets, one usually truncates the values
at a certain threshold and bounds the probability of exceeding that threshold
(see, e.g., the techniques developed in [12]).

The training sample is a sequence (X1, Y1), . . . , (Xn, Yn) of n independent
and identically distributed (i.i.d.) pairs sampled according to P . A loss func-
tion ℓ :Y ×Y → [0,1] is defined and the goal is to find a function f :X →Y
from a class F that minimizes the expected loss

Eℓf = Eℓ(f(X), Y ).

Since the probability distribution P is unknown, one cannot directly mini-
mize the expected loss over F .

The key property that is needed to apply our results is the fact that
Var[f ]≤BPf (or Pf2 ≤BPf to obtain data-dependent bounds). This will
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trivially be the case for the class {ℓf :f ∈ F}, as all its functions are uni-
formly bounded and nonnegative. This case, studied in Section 5.1, is, how-
ever, not the most interesting. Indeed, it is when one studies the excess risk
ℓf − ℓf∗ that our approach shows its superiority over previous ones; when
the class {ℓf − ℓf∗} satisfies the variance condition (and Section 5.2 gives
examples of this), we obtain distribution-dependent bounds that are optimal
in certain cases, and data-dependent bounds of the same order.

5.1. General results without assumptions. Define the following class of
functions, called the loss class associated with F :

ℓF = {ℓf :f ∈F} = {(x, y) 7→ ℓ(f(x), y) :f ∈ F}.
Notice that ℓF is a class of nonnegative functions. Applying Theorem 4.1 to
this class of functions gives the following corollary.

Corollary 5.1. For a loss function ℓ :Y ×Y → [0,1], define

ψ̂n(r) = 20EσRn{f ∈ star(ℓF ,0) :Pnf
2 ≤ 2r}+

13x

n
,

with fixed point r̂∗. Then, for any K > 1 with probability at least 1− 3e−x,

∀ f ∈F Pℓf ≤ K

K − 1
Pnℓf + 6Kr̂∗ +

x(11 + 5K)

n
.

A natural approach is to minimize the empirical loss Pnℓf over the class
F . The following result shows that this approach leads to an estimate with
expected loss near minimal. How close it is to the minimal expected loss
depends on the value of the minimum, as well as on the local Rademacher
averages of the class.

Theorem 5.2. For a loss function ℓ :Y ×Y → [0,1], define ψ(r), ψ̂n(r),
r∗ and r̂∗ as in Theorem 5.1. Let L∗ = inff∈F Pℓf . Then there is a constant

c such that with probability at least 1− 2e−x, the minimizer f̂ ∈ F of Pnℓf
satisfies

Pℓf̂ ≤L∗ + c(
√
L∗r∗ + r∗).

Also, with probability at least 1− 4e−x,

Pℓf̂ ≤L∗ + c(
√
L∗r̂∗ + r̂∗).

The proof of this theorem is given in Appendix A.2.
This theorem has the same flavor as Theorem 4.2 of [19]. We have not

used any property besides the positivity of the functions in the class. This
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indicates that there might not be a significant gain compared to earlier re-
sults (as without further assumptions the optimal rates are known). Indeed,
a careful examination of this result shows that when L∗ > 0, the difference
between Pℓf̂ and L∗ is essentially of order

√
r∗. For a class of {0,1}-valued

functions with VC-dimension d, for example, this would be
√
d logn/n. On

the other hand, the result of [19] is more refined since the Rademacher av-
erages are not localized around 0 (as they are here), but rather around the
minimizer of the empirical error itself. Unfortunately, the small ball in [19] is
not defined as Pnℓf ≤ Pnℓf̂ +r but as Pnℓf ≤ 16Pnℓf̂ +r. This means that in

the general situation where L∗ > 0, since Pnℓf̂ does not converge to 0 with

increasing n (as it is expected to be close to Pℓf̂ which itself converges to

L∗), the radius of the ball around ℓf̂ (which is 15Pnℓf̂ + r) will not converge

to 0. Thus, the localized Rademacher average over this ball will converge
at speed

√
d/n. In other words, our Theorem 5.2 and Theorem 4.2 of [19]

essentially have the same behavior. But this is not surprising, as it is known
that this is the optimal rate of convergence in this case. To get an improve-
ment in the rates of convergence, one needs to make further assumptions on
the distribution P or on the class F .

5.2. Improved results for the excess risk. Consider a loss function ℓ and
function class F that satisfy the following conditions.

1. For every probability distribution P there is an f∗ ∈ F satisfying Pℓf∗ =
inff∈F Pℓf .

2. There is a constant L such that ℓ is L-Lipschitz in its first argument: for
all y, ŷ1, ŷ2,

|ℓ(ŷ1, y)− ℓ(ŷ2, y)| ≤ L|ŷ1 − ŷ2|.
3. There is a constant B ≥ 1 such that for every probability distribution

and every f ∈ F ,

P (f − f∗)2 ≤BP (ℓf − ℓf∗).

These conditions are not too restrictive as they are met by several commonly
used regularized algorithms with convex losses.

Note that condition 1 could be weakened, and one could consider a func-
tion which is only close to achieving the infimum, with an appropriate change
to condition 3. This generalization is straightforward, but it would make the
results less readable, so we omit it.

Condition 2 implies that, for all f ∈ F ,

P (ℓf − ℓf∗)2 ≤ L2P (f − f∗)2.

Condition 3 usually follows from a uniform convexity condition on ℓ. An
important example is the quadratic loss ℓ(y, y′) = (y−y′)2, when the function
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class F is convex and uniformly bounded. In particular, if |f(x)− y| ∈ [0,1]
for all f ∈ F , x ∈X and y ∈ Y , then the conditions are satisfied with L= 2
and B = 1 (see [18]). Other examples are described in [26] and in [2].

The first result we present is a direct but instructive corollary of Theo-
rem 3.3.

Corollary 5.3. Let F be a class of functions with ranges in [−1,1] and

let ℓ be a loss function satisfying conditions 1–3 above. Let f̂ be any element
of F satisfying Pnℓf̂ = inff∈F Pnℓf . Assume ψ is a sub-root function for

which

ψ(r) ≥BLERn{f ∈F :L2P (f − f∗)2 ≤ r}.
Then for any x> 0 and any r≥ ψ(r), with probability at least 1− e−x,

P (ℓf̂ − ℓf∗)≤ 705
r

B
+

(11L+ 27B)x

n
.

Proof. One applies Theorem 3.3 (first part) to the class ℓf − ℓf∗ with
T (f) = L2P (f−f∗)2 and uses the fact that by Theorem A.6, and by the sym-
metry of the Rademacher variables, LERn{f :L2P (f−f∗)2 ≤ r} ≥ ERn{ℓf −
ℓf∗ :L2P (f − f∗)2 ≤ r}. The result follows from noticing that Pn(ℓf̂ − ℓf∗)≤
0.

�

Instead of comparing the loss of f to that of f∗, one could compare
it to the loss of the best measurable function (the regression function for
regression function estimation, or the Bayes classifier for classification). The
techniques proposed here can be adapted to this case.

Using Corollary 5.3, one can (with minor modification) recover the results
of [22] for model selection. These have been shown to match the minimax
results in various situations. In that sense, Corollary 5.3 can be considered
as sharp.

Next we turn to the main result of this section. It is a version of Corol-
lary 5.3 with a fully data-dependent bound. This is obtained by modifying
ψ in three ways: the Rademacher averages are replaced by empirical ones,
the radius of the ball is in the L2(Pn) norm instead of L2(P ), and finally,

the center of the ball is f̂ instead of f∗.

Theorem 5.4. Let F be a convex class of functions with range in [−1,1]

and let ℓ be a loss function satisfying conditions 1–3 above. Let f̂ be any
element of F satisfying Pnℓf̂ = inff∈F Pnℓf . Define

ψ̂n(r) = c1EσRn{f ∈F :Pn(f − f̂)2 ≤ c3r}+
c2x

n
,(5.1)
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where c1 = 2L(B ∨ 10L), c2 = 11L2 + c1 and c3 = 2824+ 4B(11L+ 27B)/c2.
Then with probability at least 1− 4e−x,

P (ℓf̂ − ℓf∗)≤ 705

B
r̂∗ +

(11L+ 27B)x

n
,

where r̂∗ is the fixed point of ψ̂n.

Remark 5.5. Unlike Corollary 5.3, the class F in Theorem 5.4 has to
be convex. This ensures that it is star-shaped around any of its elements
(which implies that ψ̂n is sub-root even though f̂ is random). However,
convexity of the loss class is not necessary, so that this theorem still applies
to many situations of interest, in particular to regularized regression, where
the functions are taken in a vector space or a ball of a vector space.

Remark 5.6. Although the theorem is stated with explicit constants,
there is no reason to think that these are optimal. The fact that the constant
705 appears actually is due to our failure to apply the second part of The-
orem 3.3 to the initial loss class, which is not star-shaped (this would have
given a 7 instead). However, with some additional effort, one can probably
obtain much better constants.

As we explained earlier, although the statement of Theorem 5.4 is similar
to Theorem 4.2 in [19], there is an important difference in the way the local-
ized averages are defined: in our case the radius is a constant times r, while
in [19] there is an additional term, involving the loss of the empirical risk
minimizer, which may not converge to zero. Hence, the complexity decreases
faster in our bound.

The additional property required in the proof of this result compared to
the proof of Theorem 4.1 is that under the assumptions of the theorem, the
minimizers of the empirical loss and of the true loss are close with respect
to the L2(P ) and the L2(Pn) distances (this has also been used in [20]
and [31, 32]).

Proof of Theorem 5.4. Define the function ψ as

ψ(r) =
c1
2

ERn{f ∈ F :L2P (f − f∗)2 ≤ r}+
(c2 − c1)x

n
.(5.2)

Notice that since F is convex and thus star-shaped around each of its points,
Lemma 3.4 implies that ψ is sub-root. Now, for r ≥ ψ(r) Corollary 5.3 and
condition 3 on the loss function imply that, with probability at least 1−e−x,

L2P (f̂ − f∗)2 ≤BL2P (ℓf̂ − ℓf∗) ≤ 705L2r+
(11L+ 27B)BL2x

n
.(5.3)
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Denote the right-hand side by s. Since s≥ r ≥ r∗, then s≥ ψ(s) (by Lemma 3.2),
and thus

s≥ 10L2
ERn{f ∈F :L2P (f − f∗)2 ≤ s}+

11L2x

n
.

Therefore, Corollary 2.2 applied to the class LF yields that with probability
at least 1− e−x,

{f ∈F , L2P (f − f∗)2 ≤ s} ⊂ {f ∈ F ,L2Pn(f − f∗)2 ≤ 2s}.

This, combined with (5.3), implies that with probability at least 1− 2e−x,

Pn(f̂ − f∗)2 ≤ 2

(
705r+

(11L+ 27B)Bx

n

)

(5.4)

≤ 2

(
705 +

(11L+ 27B)B

c2

)
r,

where the second inequality follows from r≥ ψ(r)≥ c2x/n. Define c= 2(705+
(11L+27B)B/c2). By the triangle inequality in L2(Pn), if (5.4) occurs, then
any f ∈ F satisfies

Pn(f − f̂)2 ≤ (
√
Pn(f − f∗)2 +

√
Pn(f∗ − f̂)2 )2

≤ (
√
Pn(f − f∗)2 +

√
cr )2.

Appealing again to Corollary 2.2 applied to LF as before, but now for
r ≥ ψ(r), it follows that with probability at least 1− 3e−x,

{f ∈F :L2P (f − f∗)2 ≤ r}
⊆ {f ∈ F :L2Pn(f − f̂)2 ≤ (

√
2 +

√
c )2L2r}.

Combining this with Lemma A.4 shows that, with probability at least 1−
4e−x,

ψ(r) ≤ c1EσRn{f ∈F :L2P (f − f∗)2 ≤ r}+
c2x

n

≤ c1EσRn{f :Pn(f − f∗)2 ≤ (
√

2 +
√
c )2r}+

c2x

n

≤ c1EσRn{f :Pn(f − f∗)2 ≤ (4 + 2c)r}+
c2x

n

≤ ψ̂n(r).

Setting r = r∗ in the above argument and applying Lemma 4.3 shows that
r∗ ≤ r̂∗, which, together with (5.3), concludes the proof. �
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6. Computing local Rademacher complexities. In this section we deal
with the computation of local Rademacher complexities and their fixed
points. We first propose a simple iterative procedure for estimating the
fixed point of an arbitrary sub-root function and then give two examples
of situations where it is possible to compute an upper bound on the local
Rademacher complexities. In the case of classification with the discrete loss,
this can be done by solving a weighted error minimization problem. In the
case of kernel classes, it is obtained by computing the eigenvalues of the
empirical Gram matrix.

6.1. The iterative procedure. Recall that Theorem 4.1 indicates that one
can obtain an upper bound in terms of empirical quantities only. However, it
remains to be explained how to compute these quantities effectively. We pro-
pose to use a procedure similar to that of Koltchinskii and Panchenko [16],
by applying the sub-root function iteratively. The next lemma shows that
applying the sub-root function iteratively gives a sequence that converges
monotonically and quickly to the fixed point.

Lemma 6.1. Let ψ : [0,∞) → [0,∞) be a (nontrivial) sub-root function.
Fix r0 ≥ r∗, and for all k > 0 define rk+1 = ψ(rk). Then for all N > 0,
rN+1 ≤ rN , and

r∗ ≤ rN ≤
(
r0
r∗

)2−N

r∗.

In particular, for any ε > 0, if N satisfies

N ≥ log2

(
ln(r0/r

∗)
ln(1 + ε)

)
,

then rN ≤ (1 + ε)r∗.

Proof. Notice that if rk ≥ r∗, then rk+1 = ψ(rk) ≥ ψ(r∗) = r∗. Also,

ψ(rk)√
rk

≤ ψ(r∗)√
r∗

=
√
r∗ ≤√

rk,

and so rk+1 ≤ rk and rk+1/r
∗ ≤ (rk/r

∗)1/2. An easy induction shows that

rN/r
∗ ≤ (r0/r

∗)2
−N

. �

Notice that in the results of [16], the analysis of the iterative procedure
was tied to the probabilistic upper bounds. However, here we make the issues
separate: the bounds of previous sections are valid no matter how the fixed
point is estimated. In the above lemma, one can use a random sub-root
function.
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6.2. Local Rademacher complexities for classification loss classes. Con-
sider the case where Y = {−1,1} and the loss is the discrete loss, ℓ(y, y′) =
1[y 6= y′]. Since ℓ2 = ℓ, one can write

EσRn{f ∈ star(ℓF ,0) :Pnf
2 ≤ 2r}

= EσRn{αℓf :α ∈ (0,1], f ∈ F , Pnℓ
2
f ≤ 2r/α2}

= EσRn{αℓf :α ∈ (0,1], f ∈ F , Pnℓf ≤ 2r/α2}
= sup

α∈(0,1]
αEσRn{ℓf :f ∈ F , Pnℓf ≤ 2r/α2}

= sup
α∈[

√
2r,1]

αEσRn{ℓf :f ∈ F , Pnℓf ≤ 2r/α2},

where the last equality follows from the fact that Pnℓf ≤ 1 for all f . Substi-
tuting into Corollary 5.1 gives the following result.

Corollary 6.2. Let Y = {±1}, let ℓ be the discrete loss defined on Y
and let F be a class of functions with ranges in Y. Fix x> 0 and define

ψ̂n(r) = 20 sup
α∈[

√
2r,1]

αEσRn{ℓf :f ∈ F , Pnℓf ≤ 2r/α2}+
26x

n
.

Then for all K > 1, with probability at least 1− 3e−x, for all f ∈ F ,

Pℓf ≤ K

K − 1
Pnℓf + cK

(
r̂∗ +

x

n

)
,

where r̂∗ is the fixed point of ψ̂n.

The following theorem shows that upper bounds on ψ̂n(r) can by com-
puted whenever one can perform weighted empirical risk minimization. In
other words, if there is an efficient algorithm for minimizing a weighted sum
of classification errors, there is an efficient algorithm for computing an upper
bound on the localized Rademacher averages. The empirical minimization
algorithm needs to be run repeatedly on different realizations of the σi, but
with fast convergence toward the expectation as the number of iterations
grows. A similar result was known for global Rademacher averages and this
shows that the localization and the use of star-hulls do not greatly affect the
computational complexity.

Theorem 6.3. The empirical local Rademacher complexity of the clas-
sification loss class, defined in Corollary 6.2, satisfies

ψ̂n(r) = c sup
α∈[

√
2r,1]

αEσRn{ℓf :f ∈ F , Pnℓf ≤ 2r/α2}+
26x

n
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≤ c sup
α∈[

√
2r,1]

αEσ min
µ≥0

((
2r

α2
− 1

2

)
µ+

1

2n

n∑

i=1

|σi + µYi| − J(µ)

)

+
26x

n
,

where

J(µ) = min
f∈F

1

n

n∑

i=1

|σi + µYi|ℓ(f(Xi), sign(σi + µYi)).

The quantity J(µ) can be viewed as the minimum of a certain weighted
empirical risk when the labels are corrupted by noise and the noise level
is determined by the parameter (Lagrange multiplier) µ. Using the fact
that J(µ) is Lipschitz in µ, a finite grid of values of J(µ) can be used

to obtain a function φ that is an upper bound on ψ̂n. Then the function
r 7→ √

r supr′ φ(r′)/
√
r′ is a sub-root upper bound on ψ̂n.

In order to prove Theorem 6.3 we need the following lemma (adapted
from [1]) which relates the localized Rademacher averages to a weighted
error minimization problem.

Lemma 6.4. For every b ∈ [0,1],

EσRn{ℓf :f ∈F , Pnℓf ≤ b}
= 1

2 − Eσmin{Pnℓ(f(X), σ) :f ∈ F , Pnℓ(f(X), Y )≤ b}.

Proof. Notice that for y, y′ ∈ {±1}, ℓ(y, y′) = 1[y 6= y′] = |y − y′|/2.
Thus

2
n∑

i=1

σiℓ(f(Xi), Yi) =
∑

i : Yi=1

σi|f(Xi)− 1|+
∑

i : Yi=−1

σi|f(Xi) + 1|

=
∑

i : Yi=1

σi(2− |f(Xi) + 1|) +
∑

i : Yi=−1

σi|f(Xi) + 1|

=
n∑

i=1

−Yiσi|f(Xi) + 1|+ 2
∑

i : Yi=1

σi.

Because of the symmetry of σi, for fixed Xi the vector (−Yiσi)
n
i=1 has the

same distribution as (σi)
n
i=1. Thus when we take the expectation, we can

replace −Yiσi by σi. Moreover, we have
n∑

i=1

σi|f(Xi) + 1| =
∑

i : σi=1

|f(Xi) + 1|+
∑

i : σi=−1

−|f(Xi) + 1|

=
∑

i : σi=1

(2− |f(Xi)− 1|) +
∑

i : σi=−1

−|f(Xi) + 1|

=
n∑

i=1

−|f(Xi)− σi|+ 2
∑

i : σi=−1

1,
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implying that

EσRn{ℓf :f ∈ F , Pnℓf ≤ b}

=
1

n

(

Eσ

∑

i : Yi=1

σi + Eσ

∑

i : σi=−1

1

+ Eσsup{−Pnℓ(f(X), σ) :f ∈ F , Pnℓ(f(X), Y )≤ b}
)

,

which proves the claim. �

Proof of Theorem 6.3. From Lemma 6.4,

ψ̂n(r) = c sup
α∈[

√
2r,1]

α

(
1

2
− Eσ min

{
Pnℓ(f(X), σ) :

f ∈F , Pnℓ(f(X), Y )≤ 2r

α2

})
+

26x

n
.

Fix a realization of the σi. It is easy to see that when µ≥ 0, each f for which
Pnℓ(f(X), Y )≤ 2r/α2 satisfies

Pnℓ(f(X), σ) ≥ Pnℓ(f(X), σ) + µ

(
Pnℓ(f(X), Y )− 2r

α2

)
.

Let L(f,µ) denote the right-hand side and let g(µ) = minf∈F L(f,µ). Then

min{Pnℓ(f(X), σ) :f ∈ F , Pnℓ(f(X), Y )≤ 2r/α2} ≥ g(µ).

But, using the fact that ℓ(y, ŷ) = (1− yŷ)/2,

g(µ) = min
f∈F

1

n

n∑

i=1

(ℓ(f(Xi), σi) + µℓ(f(Xi), Yi))−
2r

α2

= min
f∈F

1

n

n∑

i=1

(
1− f(Xi)σi

2
+ µ

1− f(Xi)Yi

2

)
− 2r

α2

= min
f∈F

1

n

n∑

i=1

(
|σi + µYi|

1− f(Xi) sign(σi + µYi)

2
− |σi + µYi|

2

)

+
1 + µ

2
− 2r

α2

= min
f∈F

1

n

n∑

i=1

|σi + µYi|ℓ(f(Xi), sign(σi + µYi))

− 1

2n

n∑

i=1

|σi + µYi|+
1 + µ

2
− 2r

α2
.

Substituting gives the result. �
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6.3. Local Rademacher complexities for kernel classes. One case in which
the functions ψ and ψ̂n can be computed explicitly is when F is a kernel
class, that is, the unit ball in the reproducing kernel Hilbert space associated
with a positive definite kernel k. Observe that in this case F is a convex and
symmetric set.

Let k be a positive definite function on X , that is, a symmetric function
such that for all n≥ 1,

∀x1, . . . , xn ∈X , ∀α1, . . . , αn ∈ R

n∑

i,j=1

αiαjk(xi, xj)≥ 0.

Recall the main properties of reproducing kernel Hilbert spaces that we
require:

(a) The reproducing kernel Hilbert space associated with k is the unique
Hilbert space H of functions on X such that for all f ∈ F and all x ∈ X ,
k(x, ·) ∈H and

f(x) = 〈f, k(x, ·)〉.(6.1)

(b) H can be constructed as the completion of the linear span of the
functions k(x, ·) for x ∈ X , endowed with the inner product

〈
n∑

i=1

αik(xi, ·),
m∑

j=1

βjk(yj , ·)
〉

=
n,m∑

i,j=1

αiβjk(xi, yj).

We use ‖ · ‖ to denote the norm in H.
One method for regression consists of solving the following least squares

problem in the unit ball of H:

min
f∈H : ‖f‖≤1

1

n

n∑

i=1

(f(Xi)− Yi)
2.

Notice that considering a ball of some other radius is equivalent to rescaling
the class. We are thus interested in computing the localized Rademacher
averages of the class of functions

F = {f ∈H :‖f‖ ≤ 1}.
Assume that Ek(X,X)<∞ and define T :L2(P )→ L2(P ) as the integral

operator associated with k and P , that is, Tf(·) =
∫
k(·, y)f(y)dP (y). It is

possible to show that T is a positive semidefinite trace-class operator. Let
(λi)

∞
i=1 be its eigenvalues, arranged in a nonincreasing order. Also, given an

i.i.d. sample X1, . . . ,Xn from P , consider the normalized Gram matrix (or

kernel matrix ) T̂n defined as T̂n = 1
n(k(Xi,Xj))i,j=1,...,n. Let (λ̂i)

n
i=1 be its

eigenvalues, arranged in a nonincreasing order.
The following result was proved in [24].
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Theorem 6.5. For every r > 0,

ERn{f ∈F :Pf2 ≤ r} ≤
(

2

n

∞∑

i=1

min{r,λi}
)1/2

.

Moreover, there exists an absolute constant c such that if λ1 ≥ 1/n, then for
every r≥ 1/n,

ERn{f ∈F :Pf2 ≤ r} ≥ c

(
1

n

∞∑

i=1

min{r,λi}
)1/2

.

The following lemma is a data-dependent version.

Lemma 6.6. For every r > 0,

EσRn{f ∈F :Pnf
2 ≤ r} ≤

(
2

n

n∑

i=1

min{r, λ̂i}
)1/2

.

The proof of this result can be found in Appendix A.2. The fact that we
have replaced Pf2 by Pnf

2 and conditioned on the data yields a result that
involves only the eigenvalues of the empirical Gram matrix.

We can now state a consequence of Theorem 5.4 for the proposed regres-
sion algorithm on the unit ball of H.

Corollary 6.7. Assume that supx∈X k(x,x) ≤ 1. Let F = {f ∈H :‖f‖ ≤
1} and let ℓ be a loss function satisfying conditions 1–3. Let f̂ be any element
of F satisfying Pnℓf̂ = inff∈F Pnℓf .

There exists a constant c depending only on L and B such that with
probability at least 1− 6e−x,

P (ℓf̂ − ℓf∗)≤ c

(
r̂∗ +

x

n

)
,

where

r̂∗ ≤ min
0≤h≤n

(
h

n
+

√√√√ 1

n

∑

i>h

λ̂i

)

.

We observe that r̂∗ is at most of order 1/
√
n (if we take h= 0), but can

be of order logn/n if the eigenvalues of T̂n decay exponentially quickly.
In addition, the eigenvalues of the Gram matrix are not hard to compute,

so that the above result can suggest an implementable heuristic for choosing
the kernel k from the data. The issue of the choice of the kernel is being
intensively studied in the machine learning community.
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Proof. Because of the symmetry of the σi and because F is convex
and symmetric,

EσRn{f ∈ F :Pn(f − f̂)2 ≤ c3r} = EσRn{f − f̂ :f ∈ F , Pn(f − f̂)2 ≤ c3r}
≤ EσRn{f − g :f, g ∈F , Pn(f − g)2 ≤ c3r}
= 2EσRn{f :f ∈ F , Pnf

2 ≤ c3r/4}.
Combining with Lemma 6.6 gives

2c1EσRn{f ∈F :Pn(f − f̂)2 ≤ c3r}+
(c2 + 2)x

n

≤ 4c1

(
2

n

n∑

i=1

min

{
c3r

4
, λ̂i

})1/2

+
(c2 + 2)x

n
.

Let ψ̂n(r) denote the right-hand side. Notice that ψ̂n is a sub-root function,
so the estimate of Theorem 5.4 can be applied. To compute the fixed point
of Bψ̂n, first notice that adding a constant a to a sub-root function can
increase its fixed point by at most 2a. Thus, it suffices to show that

r ≤ 4c1

(
2

n

n∑

i=1

min

{
c3r

4
, λ̂i

})1/2

implies

r≤ c min
0≤h≤n

(
h

n
+

√√√√ 1

n

∑

i>h

λ̂i

)

(6.2)

for some universal constant c. Under this hypothesis,
(
r

4c1

)2

≤ 2

n

n∑

i=1

min

{
c3r

4
, λ̂i

}

=
2

n
min

S⊆{1,...,n}

(
∑

i∈S

c3r

4
+
∑

i/∈S

λ̂i

)

=
2

n
min

0≤h≤n

(
c3hr

4
+
∑

i>h

λ̂i

)

.

Solving the quadratic inequality for each value of h gives (6.2). �

APPENDIX

A.1. Additional material. This section contains a collection of results
that is needed in the proofs. Most of them are classical or easy to derive
from classical results. We present proofs for the sake of completeness.
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Recall the following improvement of Rio’s [29] version of Talagrand’s con-
centration inequality, which is due to Bousquet [7, 8].

Theorem A.1. Let c > 0, let Xi be independent random variables dis-
tributed according to P and let F be a set of functions from X to R. Assume
that all functions f in F satisfy Ef = 0 and ‖f‖∞ ≤ c.

Let σ be a positive real number such that σ2 ≥ supf∈F Var[f(Xi)]. Then,
for any x≥ 0,

Pr(Z ≥ EZ + x)≤ exp

(
−vh

(
x

cv

))
,

where Z = supf∈F
∑n

i=1 f(Xi), h(x) = (1 + x) log(1 + x)− x and v = nσ2 +
2cEZ. Also, with probability at least 1− e−x,

Z ≤ EZ +
√

2xv +
cx

3
.

In a similar way one can obtain a concentration result for the Rademacher
averages of a class (using the result of [5]; see also [6]). In order to obtain
the appropriate constants, notice that

Eσsup
f∈F

n∑

i=1

σif(Xi) = Eσsup
f∈F

n∑

i=1

σi(f(Xi)− (b− a)/2)

and |f − (b− a)/2| ≤ (b− a)/2.

Theorem A.2. Let F be a class of functions that map X into [a, b]. Let

Z = Eσsup
f∈F

n∑

i=1

σif(Xi) = nEσRnF .

Then for all x≥ 0,

Pr

(
Z ≥ EZ +

√
(b− a)xEZ +

(b− a)x

6

)
≤ e−x

and

Pr(Z ≤ EZ −
√

(b− a)xEZ ) ≤ e−x.

Lemma A.3. For u, v ≥ 0,
√
u+ v ≤√

u+
√
v,

and for any α > 0,

2
√
uv ≤ αu+

v

α
.



LOCAL RADEMACHER COMPLEXITIES 35

Lemma A.4. Fix x > 0, and let F be a class of functions with ranges
in [a, b]. Then, with probability at least 1− e−x,

ERnF ≤ inf
α∈(0,1)

(
1

1− α
EσRnF +

(b− a)x

4nα(1−α)

)
.

Also, with probability at least 1− e−x,

EσRnF ≤ inf
α>0

(
(1 +α)ERnF +

(b− a)x

2n

(
1

2α
+

1

3

))
.

Proof. The second inequality of Theorem A.2 and Lemma A.3 imply
that with probability at least 1− e−x,

ERnF ≤ EσRnF +

√
(b− a)x

n
ERnF

≤ EσRnF +αERnF +
(b− a)x

4nα
,

and the first claim of the lemma follows. The proof of the second claim is
similar, but uses the first inequality of Theorem A.2. �

A standard fact is that the expected deviation of the empirical means
from the actual ones can be controlled by the Rademacher averages of the
class.

Lemma A.5. For any class of functions F ,

max

(
Esup

f∈F
(Pf −Pnf),Esup

f∈F
(Pnf −Pf)

)
≤ 2ERnF .

Proof. Let X ′
1, . . . ,X

′
n be an independent copy of X1, . . . ,Xn, and set

P ′
n to be the empirical measure supported on X ′

1, . . . ,X
′
n. By the convexity

of the supremum and by symmetry,

Esup
f∈F

(Pf − Pnf) = Esup
f∈F

(EP ′
nf − Pnf)

≤ Esup
f∈F

(P ′
nf −Pnf)

=
1

n
Esup

f∈F

[
n∑

i=1

σif(X ′
i)− σif(Xi)

]

≤ 1

n
Esup

f∈F

n∑

i=1

σif(X ′
i) +

1

n
Esup

f∈F

n∑

i=1

−σif(Xi)

= 2Esup
f∈F

Rnf.
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Using an identical argument, the same holds for Pnf −Pf . �

In addition, recall the following contraction property, which is due to
Ledoux and Talagrand [17].

Theorem A.6. Let φ be a contraction, that is, |φ(x)− φ(y)| ≤ |x− y|.
Then, for every class F ,

EσRnφ ◦ F ≤ EσRnF ,
where φ ◦ F := {φ ◦ f :f ∈F}.

The interested reader may find some additional useful properties of the
Rademacher averages in [3, 27].

A.2. Proofs.

Proof of Theorem 2.1. Define V + = supf∈F (Pf−Pnf). Since supf∈F Var[f(Xi)]≤
r, and ‖f − Pf‖∞ ≤ b− a, Theorem A.1 implies that, with probability at
least 1− e−x,

V + ≤ EV + +

√
2xr

n
+

4x(b− a)EV +

n
+

(b− a)x

3n
.

Thus by Lemma A.3, with probability at least 1− e−x,

V + ≤ inf
α>0

(

(1 +α)EV + +

√
2rx

n
+ (b− a)

(
1

3
+

1

α

)
x

n

)

.

Applying Lemma A.5 gives the first assertion of Theorem 2.1. The second
part of the theorem follows by combining the first one and Lemma A.4,
and noticing that infα f(α)+ infα g(α) ≤ infα(f(α)+ g(α)). Finally, the fact
that the same results hold for supf∈F (Pnf −Pf) can be easily obtained by
applying the above reasoning to the class −F = {−f :f ∈ F} and noticing
that the Rademacher averages of −F and F are identical. �

Proof of Lemma 3.2. To prove the continuity of ψ, let x > y > 0, and
note that since ψ is nondecreasing, |ψ(x) − ψ(y)| = ψ(x) − ψ(y). From the
fact that ψ(r)/

√
r is nonincreasing it follows that ψ(x)/

√
y ≤ √

xψ(y)/y,
and thus

ψ(x)− ψ(y) =
√
y
ψ(x)√
y

−ψ(y) ≤ ψ(y)

√
x−√

y
√
y

.

Letting x tend to y, |ψ(x)−ψ(y)| tends to 0, and ψ is left-continuous at y.
A similar argument shows the right-sided continuity of ψ.
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As for the second part of the claim, note that ψ(x)/x is nonnegative and
continuous on (0,∞), and since 1/

√
x is strictly decreasing on (0,∞), then

ψ(x)/x is also strictly decreasing.
Observe that if ψ(x)/x is always larger than 1 on (0,∞), then limx→∞ψ(x)/√
x= ∞, which is impossible. On the other hand, if ψ(x)/x < 1 on (0,∞),

then limx→0ψ(x)/
√
x= 0, contrary to the assumption that ψ is nontrivial.

Thus the equation ψ(r)/r = 1 has a positive solution and this solution is
unique by monotonicity.

Finally, if for some r > 0, r ≥ ψ(r), then ψ(t)/t ≤ 1 for all t ≥ r [since
ψ(x)/x is nonincreasing] and thus r∗ ≤ r. The other direction follows in a
similar manner. �

Proof of Lemma 3.4. Observe that, by symmetry of the Rademacher
random variables, one has ψ(r) = EσRn{f − f̂ :f ∈F , T (f − f̂) ≤ r} so that,

by translating the class, it suffices to consider the case where f̂ = 0.
Note that ψ is nonnegative, since by Jensen’s inequality

Eσsup
f∈F

Rnf ≥ sup
f∈F

EσRnf = 0.

Moreover, ψ is nondecreasing since {f ∈ F :T (f) ≤ r} ⊂ {f ∈ F :T (f) ≤ r′}
for r≤ r′. It remains to show that for any 0< r1 ≤ r2, ψ(r1) ≥

√
r1/r2 ·ψ(r2).

To this end, fix any sample and any realization of the Rademacher random
variables, and set f0 to be a function for which

sup
f∈F ,T (f)≤r2

n∑

i=1

σif(xi)

is attained (if the supremum is not attained only a slight modification is
required). Since T (f0) ≤ r2, then T (

√
r1/r2 · f0) ≤ r1 by assumption. Fur-

thermore, since F is star-shaped, the function
√
r1/r2f0 belongs to F and

satisfies that T (
√
r1/r2f0) ≤ r1. Hence

sup
f∈F : T (f)≤r1

n∑

i=1

σif(xi) ≥
n∑

i=1

σi

√
r1
r2

· f0(xi)

=

√
r1
r2

sup
f∈F : T (f)≤r2

n∑

i=1

σif(xi),

and the result follows by taking expectations with respect to the Rademacher
random variables. �

Proof of Corollary 3.7. The proof uses the following result of [11],
which relates the empirical Rademacher averages to the empirical L2 entropy
of the class. The covering number N (ǫ,F ,L2(Pn)) is the cardinality of the

smallest subset F̂ of L2(Pn) for which every element of F is within ǫ of some

element of F̂ .



38 P. L. BARTLETT, O. BOUSQUET AND S. MENDELSON

Theorem B.7 ([11]). There exists an absolute constant C such that for
every class F and every X1, . . . ,Xn ∈X ,

EσRnF ≤ C√
n

∫ ∞

0

√
logN (ε,F ,L2(Pn))dε.

Define the sub-root function

ψ(r) = 10ERn{f ∈ star(F ,0) :Pf2 ≤ r}+
11 logn

n
.

If r≥ ψ(r), then Corollary 2.2 implies that, with probability at least 1−1/n,

{f ∈ star(F ,0) :Pf2 ≤ r} ⊆ {f ∈ star(F ,0) :Pnf
2 ≤ 2r},

and thus

ERn{f ∈ star(F ,0) :Pf2 ≤ r} ≤ ERn{f ∈ star(F ,0) :Pnf
2 ≤ 2r}+

1

n
.

It follows that r∗ = ψ(r∗) satisfies

r∗ ≤ 10ERn{f ∈ star(F ,0) :Pnf
2 ≤ 2r∗}+

1 + 11 logn

n
.(A.1)

But Theorem B.7 shows that

ERn{f ∈ star(F ,0) :Pnf
2 ≤ 2r∗}

≤ C√
n

E

∫ √
2r∗

0

√
logN (ε, star(F ,0),L2(Pn))dε.

It is easy to see that we can construct an ǫ-cover for star(F ,0) using an
ǫ/2-cover for F and an ǫ/2-cover for the interval [0,1], which implies

logN (ε, star(F ,0),L2(Pn)) ≤ logN
(
ε

2
,F ,L2(Pn)

)(⌈
2

ǫ

⌉
+ 1

)
.

Now, recall that [14] for any probability distribution P and any class F with
VC-dimension d <∞,

logN
(
ε

2
,F ,L2(P )

)
≤ cd log

(
1

ǫ

)
.

Therefore

ERn{f ∈ star(F ,0) :Pnf
2 ≤ 2r∗} ≤

√
cd

n

∫ √
2r∗

0

√

log

(
1

ǫ

)
dε

≤
√
cdr∗ log(1/r∗)

n

≤
√

c

(
d2

n2
+
dr∗ log(n/ed)

n

)
,
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where c represents an absolute constant whose value may change from line
to line. Substituting into (A.1) and solving for r∗ shows that

r∗ ≤ cd log(n/d)

n
,

provided n≥ d. The result follows from Theorem 3.3. �

Proof of Theorem 5.2. Let f∗ = argminf∈F Pℓf . (For simplicity, as-
sume that the minimum exists; if it does not, the proof is easily extended
by considering the limit of a sequence of functions with expected loss ap-
proaching the infimum.) Then, by definition of f̂ , Pnℓf̂ ≤ Pnℓf∗ . Since the

variance of ℓf∗(Xi, Yi) is no more than some constant times L∗, we can ap-
ply Bernstein’s inequality (see, e.g., [10], Theorem 8.2) to show that with
probability at least 1− e−x,

Pnℓf̂ ≤ Pnℓf∗ ≤ Pℓf∗ + c

(√
Pℓf∗x

n
+
x

n

)

=L∗ + c

(√
L∗x
n

+
x

n

)

.

Thus, by Theorem 3.3, with probability at least 1− 2e−x,

Pℓf̂ ≤ K

K − 1

(

L∗ + c

(√
L∗x
n

+
x

n

))

+ cK

(
r∗ +

x

n

)
.

Setting

K − 1 =

√
max(L∗, x/n)

r∗
,

noting that r∗ ≥ x/n and simplifying gives the first inequality. A similar
argument using Theorem 4.1 implies the second inequality. �

Proof of Lemma 6.6. Introduce the operator Ĉn on H defined by

(Ĉnf)(x) =
1

n

n∑

i=1

f(Xi)k(Xi, x),

so that, using (6.1),

〈g, Ĉnf〉=
1

n

n∑

i=1

f(Xi)g(Xi),

and 〈f, Ĉnf〉= Pnf
2, implying that Ĉn is positive semidefinite.

Suppose that f is an eigenfunction of Ĉn with eigenvalue λ. Then for all i

λf(Xi) = (Ĉnf)(Xi) =
1

n

n∑

j=1

f(Xj)k(Xj ,Xi).
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Thus, the vector (f(X1), . . . , f(Xn)) is either zero (which implies Ĉnf = 0

and hence λ= 0) or is an eigenvector of T̂n with eigenvalue λ. Conversely,

if T̂nv = λv for some vector v, then

Ĉn

(
n∑

i=1

vik(Xi, ·)
)

=
1

n

n∑

i,j=1

vik(Xi,Xj)k(Xj , ·) =
λ

n

n∑

j=1

vjk(Xj , ·).

Thus, the eigenvalues of T̂n are the same as the n largest eigenvalues of
Ĉn, and the remaining eigenvalues of Ĉn are zero. Let (λ̂i) denote these
eigenvalues, arranged in a nonincreasing order.

Let (Φi)i≥1 be an orthonormal basis of H of eigenfunctions of Ĉn (such

that Φi is associated with λ̂i). Fix 0≤ h≤ n and note that for any f ∈H
n∑

i=1

σif(Xi) =

〈

f,
n∑

i=1

σik(Xi, ·)
〉

=

〈
h∑

j=1

√
λ̂j〈f,Φj〉Φj ,

h∑

j=1

1
√
λ̂j

〈
n∑

i=1

σik(Xi, ·),Φj

〉

Φj

〉

+

〈

f,
∑

j>h

〈
n∑

i=1

σik(Xi, ·),Φj

〉

Φj

〉

.

If ‖f‖ ≤ 1 and

r ≥ Pnf
2 = 〈f, Ĉnf〉=

∑

i≥1

λ̂i〈f,Φi〉2,

then by the Cauchy–Schwarz inequality

n∑

i=1

σif(Xi) ≤

√√√√√r
h∑

j=1

1

λ̂j

〈
n∑

i=1

σik(Xi, ·),Φj

〉2

(A.2)

+

√√√√√
∑

j>h

〈
n∑

i=1

σik(Xi, ·),Φj

〉2

.

Moreover,

1

n
Eσ

〈
n∑

i=1

σik(Xi, ·),Φj

〉2

=
1

n
Eσ

n∑

i,ℓ=1

σiσℓ〈k(Xi, ·),Φj〉〈k(Xl, ·),Φj〉

=
1

n

n∑

i=1

〈k(Xi, ·),Φj〉2
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= 〈Φj , ĈnΦj〉
= λ̂j .

Using (A.2) and Jensen’s inequality, it follows that

EσRn{f ∈F :Pnf
2 ≤ r} ≤ 1√

n
min

0≤h≤n

{√
hr+

√√√√
n∑

j=h+1

λ̂j

}

,

which implies the result. �
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