USE OF THESES

This copy is supplied for purposes of private study and research only. Passages from the thesis may not be copied or closely paraphrased without the written consent of the author.
INCOMPLETE FORMS OF INFLUENZA VIRUS

being

a thesis submitted by

Doris M. Graham B.Sc.

for the

Degree of Master of Science

in the Australian National University

Department of Microbiology.

October 1955.
ACKNOWLEDGEMENTS

The work recorded in this thesis was done in the Department of Microbiology, John Curtin School of Medical Research, Australian National University. I wish to thank Professor F. J. Fenner for the facilities made available, and especially for his continued interest.

My thanks are due to Dr. S. Fazekas de St. Groth, in whose laboratory and under whose guidance the experiments were carried out.

For technical assistance I am indebted to Miss Joan Richardson and Miss Noel Lavater, and for the preparation of the figures to Mr. V. Paral.
The work presented in this thesis was carried out during my three years' tenure of a Research Assistantship in Microbiology at the Australian National University, Canberra.

The field of research was chosen by my supervisor, Dr. S. Fazekas de St. Groth, who is also mainly responsible for deciding upon the general lines of approach. The detailed planning of experiments was always the outcome of free discussions, shared about equally between supervisor and candidate. The experimental work described in Chapters 3 and 6 was done entirely by me, as well as three-quarters of that in Chapters 5 and 7, and half of that in Chapter 4. The evaluation of the results was done jointly with my supervisor, except for Chapters 4 and 7 which was done by me.

Collection of the material for Chapters 1, 2, 9, 10 and 11 is my work, as is the setting out and composition of the thesis. In some sections of Part II I have included, without acknowledgement, paragraphs from papers published under joint authorship with my supervisor.

Dorrell Graham.
INTRODUCTION

PART I: HISTORICAL

Chapter 1. REVIEW OF EXPERIMENTAL WORK ON INCOMPLETE VIRUSES

Section 1.1 Early Work on Incomplete Virus without Explicit Recognition of the Phenomenon

1.11 Henle and Chambers (1941)
1.12 Nigg, Crowley and Wilson (1941)
1.13 Nigg, Wilson and Crowley (1941)
1.14 Henle and Henle (1943)
1.15 Henle and Henle (1944)
1.16 Miller (1944)
1.17 Friedewald and Pickles (1944)
1.18 Knight (1944)
1.19 Lauffer and Miller (1944)
Section 1.2 The Classical Description of Incomplete Virus Formation

1.21 von Magnus (1947)
1.22 The fundamental experiment
1.23 The origin of non-infective virus
1.24 Gard and von Magnus (1947)
1.25 Extended observations
1.26 Tabulation of early findings
1.27 Gard, von Magnus and Svedmyr (1947)

Section 1.3 Production of Incomplete Virus in the Allantois

1.30 Henle and Henle (1949)
1.31 von Magnus (1951a)
1.32 von Magnus (1951b)
 (a) yield from allantoic fluids
 (b) yield from allantoic membranes
1.33 Biological properties of incomplete virus
 (a) antigens
 (b) infectivity
 (c) enzyme action
1.34 von Magnus (1951b): conditions of production
 (a) concentration of the inoculum
 (b) incomplete virus in the inoculum
 (c) route of inoculation and temperature of incubation
1.35 Incomplete virus formation by the LEE strain
1.36 von Magnus (1954, 1955)
1.37 Cairns and Edney (1952): quantitative aspects
1.38 Cairns (1952): rate of release from cells
1.39 Summary of physical and chemical properties
 (a) sedimentation constant
 (b) size and stability
 (c) inhibitor-destroying capacity
 (d) lipid content
 (e) nucleic acid content

Section 1.4 Incomplete Virus in Deembryonated Eggs
1.41 Bernkopf (1949)
1.42 Bernkopf (1950)
1.43 Hanig and Bernkopf (1950)
1.44 Daniels, Eaton and Perry (1952)
1.45 Burnet, Lind and Stevens (1954)

Section 1.5 Incomplete Virus in the Mouse Brain
1.51 Schlesinger (1950)
1.52 Schlesinger (1951)
1.53 Cairns (1950)
1.54 Cairns (1951)
1.55 Schlesinger (1953a)
1.56 Cairns (1954)
1.57 Werner and Schlesinger (1954)
Section 1.6 Incomplete Virus in the Mouse Lung

1.61 von Magnus (1951c)

1.62 Properties
(a) pathogenicity
(b) growth rate
(c) size: ultrafiltration
(d) rate of emergence
(e) simultaneous passage with standard virus
(f) interfering properties

1.63 Ginsberg (1954)

Section 1.7 Reproduction of Influenza Virus in HeLa Cells

1.71 Henle, Girardi and Henle (1955)

1.72 Comparison with mouse brain experiments

Section 1.8 Incomplete Virus in the Chorio-allantois

1.81 Fulton and Isaacs (1953)

Chapter 2. THEORIES OF INCOMPLETE VIRUS PRODUCTION

Section 2.1 Ad hoc interpretations

2.11 Henle and Chambers (1.11)

2.12 Nigg, Crowley and Wilson (1.12)

2.13 Nigg, Wilson and Crowley (1.13)
2.14 Henle and Henle (1.14)
2.15 Henle and Henle (1.15)
2.16 Miller (1.16)
2.17 Friedewald and Pickles (1.17)
2.18 Knight (1.18)
2.19 Henle and Henle (1.30)

Section 2.2 Theoretical Discussions by von Magnus

2.21 Summary of experimental data
2.22 Lowered virulence theory
2.23 Interference theory
2.24 Disintegration theory
2.25 Autointerference theory
2.26 Precursor theory
2.27 Autointerference theory and its inadequacies
2.28 Multiple infection hypothesis
2.29 Postulate of multiple infection in spite of 1.35
 (a) behaviour of LEE strain
 (b) later considerations (1.36)

Section 2.3 Further Theories of Incomplete Virus Formation

2.31 Interpretations based on tests in deembryonated eggs
 (a) Bernkopf (1.41)
 (b) Hanig and Bernkopf (1.43)
 (c) Daniels, Eaton and Perry (1.44)
2.32 Interpretations of experiments in mouse brains
(a) Schlesinger (1.51 and 1.52)
(b) Cairns (1.54)
(c) Schlesinger (1.55)
(d) Cairns (1.56)
(e) Schlesinger (1953)
(f) Werner and Schlesinger (1.57)

2.33 Interpretation of experiments in mouse lungs

2.34 General interpretations
(a) Cairns and Edney (1.37)
(b) Cairns (1.38)
(c) Gard (1952)

Section 2.4 Development of a Working Hypothesis

2.41 The basis of the auto-interference theories
2.42 The single-cycle technique
2.43 Critique of von Magnus' crucial experiment
2.44 Evidence against multiple infection
2.45 Self-contradictions of von Magnus and Gard
2.46 The 'missing factor' concept
2.47 The working hypothesis
PART II: EXPERIMENTAL

Chapter 3. GRADIENTS IN THE FORMATION OF INCOMPLETE VIRUS

Section 3.1 First Observation of Differences between Strains

3.11 The problem of the 'missing factor'
3.12 Design of a crucial experiment
3.13 The results expected
3.14 Actual results: Table I.
3.15 Validity of the hypothesis
3.16 Position of the LEE strain
3.17 Direction of future work

Section 3.2 Single-passage Experiments in Eggs

3.21 Experimental design
3.22 Technical details
3.23 Results obtained: Table II.

Section 3.3 Statistical Evaluation of 3.23

3.31 Significance tests
3.32 Results: Table III.
3.33 Comment on methods
3.34 Conclusions
Section 3.4 Discussion of Results

3.41 A gradient of incomplete virus production
3.42 Contradictions with the autointerference theory
3.43 The 'missing factor' theory
3.44 Summary of results
3.45 'Missing factor' or 'missing process'?
3.46 Suggested further experiments
3.47 Simultaneous passage - an anomaly
3.48 Resolution of the paradox

Section 3.5 Single-passage Experiments in Mice

3.51 Peculiarities of the system
3.52 Experimental design
3.53 Results: Table IV.
3.54 Discussion
3.55 Inadequacy of the 'missing factor' hypothesis

Chapter 4. GRADIENTS OF BEHAVIOUR AMONG INFLUENZA STRAINS

Section 4.1 Introduction

4.11 The correlative approach
4.12 Survey of published work
4.13 General method
Section 4.2 Gradients in Mouse Lungs

4.21 Design and technique of experiments
4.22 Adsorption and elution of influenza viruses in periodate-treated mouse lungs
 (a) the adsorption phase
 (b) artificial elution
 (c) results of IO₄-action: Table I.
4.23 Evaluation of results: Figure I.
4.24 General conclusions
4.25 Constants calculated from 4.23: Table II.
4.26 Particular discussion of results
4.27 Method proposed for separation of strains

Section 4.3 Gradients in the Allantois

4.31 Characteristics of the system
4.32 Technical details
4.33 Preliminary experiment 1: Table III.
4.34 Preliminary experiment 2
4.35 Design of standard experiment
4.36 Results: Table IV.
4.37 Evaluation: Figure II. and Table V.
4.38 Constants: the gradient of receptor destruction
4.39 Conclusions
Chapter 5. ARTIFICIAL PRODUCTION OF INCOMPLETE VIRUS

Section 5.1 Introduction
5.11 Correlative v. theoretical approach

Section 5.2 Development of the Working Hypothesis
5.21 Survey of relevant data
5.22 Stages of host-virus interaction
5.23 The phenomenon of viropexis
5.24 The mechanism of viropexis
5.25 Fate of the adsorbed virus particle
5.26 Correlation of viropexis and production of incomplete virus
5.27 The hypothesis
5.28 Implications and possibility of crucial testing

Section 5.3 The Main Experiment
5.31 Alteration of the receptor substance
5.32 The effects of the IO₄⁻-ion
5.33 Results: Table I.
5.34 Evaluation of the control groups
5.35 Evaluation of the main groups
5.36 Conclusions; plans for further control tests
Section 5.4 Subsidiary Experiments and Conclusions

5.41 Control experiment 1: Table II.
5.42 The action of IO₄ and of IO₃
5.43 Subsidiary experiment 2
5.44 Results: Table III.
5.45 Modification of cellular receptors
5.46 Subsidiary experiment 3: Table IV.
5.47 The formation of incomplete virus
5.48 Interpretation

Section 5.5 Artificial Production of Incomplete Virus in the Allantois

5.51 Theoretical expectations
5.52 Results: Table V.
5.53 Evaluation
5.54 Need for further experiments

Section 5.6 Quantitative Aspects of the Periodate Effect

5.61 The problem
5.62 The method
5.63 Results: Table VI.
5.64 Interpretation
5.65 Conclusions
Chapter 6. THE PRODUCTION OF INCOMPLETE VIRUS ON SERIAL ALLANTOIC PASSAGING

Section 6.1 Introduction

6.11 Detection of small numbers of incomplete particles

Section 6.2 The Serial Passage Experiment

6.21 Technical details
6.22 Results: Figure I.

Section 6.3 Discussion of Results

6.31 Strains producing much incomplete virus
6.32 CAM - difference between first and later cycles
6.33 FML - an intermediate
6.34 LEE - the extreme of the gradient
6.35 General conclusions

Chapter 7. INTERMEDIATE FORMS OF INFECTIVITY

Section 7.1 Forms with Restricted Capacity for Growth

7.11 First observation of the phenomenon
7.12 Need for new technique
7.13 The "single cycle infectivity test"
7.14 Results
7.15 General discussion
7.16 Special discussion: the BEL strain
7.17 Special discussion: the LEE strain
7.18 Definition of the "single cycler"

Section 7.2 "Tardy" Virus
7.21 Original observation
7.22 Design of new technique
7.23 General results
7.24 Interpretation
 (a) starting delay
 (b) lowered multiplication rate
7.25 Statistical evaluation
7.26 Future lines of approach

Chapter 8. SUMMARY OF PARTS I AND II
Chapter 9. MATERIALS

Section 9.1 Chemical Reagents
9.11 Saline solutions
9.12 Calcium-Magnesium saline
9.13 Citrate saline
9.14 Glycerol saline
9.15 Horse serum saline
9.16 Gelatin saline
9.17 Potassium metaperiodate

Section 9.2 Biological Reagents
9.21 Red blood cells
9.22 Eggs
9.23 Mice

Section 9.3 Virus Strains
9.31 Type A
9.32 Type A-prime
9.33 Type B
Chapter 10. METHODS

Section 10.1 Preparation of Virus

10.11 Drilling of eggs

10.12 Growth of virus

10.13 Harvesting of allantoic fluid
 (a) Preparation of stock virus
 (b) Sampling of eggs

10.14 Maintenance of stock seed

Section 10.2 Preparation of Receptor Destroying Enzyme

10.21 The method of Burnet and Stone

10.22 The modified plate method

10.23 Liquid culture method

Section 10.3 Assay Methods

10.31 Haemagglutination techniques
 (a) Method I - titration in tubes
 (b) Method II - titration in trays
 (c) Reproducibility and accuracy

10.32 Titration of infectivity in the allantois

10.33 Titration of the receptor destroying enzyme

Section 10.4 Adsorption Techniques

10.41 Allantoic membrane method

10.42 Excised lung technique

Chapter 11. REFERENCES
INTRODUCTION.

Viruses occupy a unique position in the hierarchy of physical objects as they can be regarded as the most highly organized chemical structures which do not metabolize, or alternatively as the lowest forms of life that reproduce themselves at the expense of higher organisms. They "live a borrowed life" as Laidlaw put it, and for this precise reason their study is likely to give a better and more direct insight into the fundamental secrets of life than studies at the biochemical, or strictly speaking, microbiological level.

All viruses share these advantages as objects of research, but some are preferred to others for further, mainly technical, reasons. Among the animal viruses influenza is perhaps the most natural choice; it has some drawbacks such as its instability, both physical and biological, but possesses the compensating attraction of being the easiest to assay by several independent and accurate methods. In this respect the virus of epidemic influenza compares more than favourably with any known virus, be it plant, bacterial or animal, and for this reason has been the favoured subject of quantitative virological studies over the last decade.
dicted the reigning hypothesis and a new interpretation was put forward to replace it. The present work was undertaken originally with the intention of examining this new hypothesis by testing some of its more obvious implications. Very early in the course of our experiments such results were obtained which rendered even this second hypothesis untenable. Thus, instead of continuing the investigation of the von Magnus phenomenon along predetermined lines and by classical techniques, we were soon forced to embark on an extensive set of exploratory experiments, to construct step by step a working hypothesis consistent with newly gained information and to design new ways of testing and checking the new and often unexpected assumptions that had to be made. As a result, the study has gone beyond the theme originally set for this thesis, and while two fundamentally new findings, namely, the graded production of incomplete virus and the chemical induction of the phenomenon have been fully established, several interesting lines of research opened by these discoveries have been covered by exploratory experiments only, and their comprehensive investigation must be left for the future.