USE OF THESES

This copy is supplied for purposes of private study and research only. Passages from the thesis may not be copied or closely paraphrased without the written consent of the author.
TRANSMISSION AT THE HAMILLIAN
NEUROMUSCULAR JUNCTION

By

A.W. LILEY

Thesis submitted for the degree of Doctor of Philosophy in the Australian National University
1956
I hereby declare that, with the exceptions of Fig. 26C obtained in collaboration with K.A.K. North and Fig. 40B provided by Professor J.C. Eccles, all of this thesis is my own original work.

The following papers have appeared or are in the course of publication:


A.W. LILEY
TABLE OF CONTENTS

INTRODUCTION

METHODS

(A) Tissues

(B) Histology. Localization of end-plates

(C) Solutions

(D) Drugs

(E) Apparatus

(F) Instrumental noise and artefacts

(G) Measurement of frequencies and amplitudes

(H) Statistics

SECTION 1. SPONTANEOUS ACTIVITY AT THE NEUROMUSCULAR JUNCTION OF THE RAT

Introduction

Results

Discussion

SECTION 2. THE QUANTAL COMPONENTS OF THE MAMMALIAN END-PLATE POTENTIAL

Introduction

Results

Part I. Quantal nature of the end-plate potential

Part II. Facilitation at the mammalian neuromuscular junction

Discussion
SECTION 3. THE EFFECTS OF DYNAMIC POLARISATION ON THE SPONTANEOUS ACTIVITY AT THE HAMALIAN NEUROMUSCULAR JUNCTION

Introduction 45
Results 45

Part I. Effect of dynamic polarisation of motor terminals on miniature discharge frequency 45

Part II. Effect of potassium concentration on miniature potentials 49
Discussion and test of hypothesis 50

SECTION 4. GIANT POTENTIALS AT THE HAMALIAN NEUROMUSCULAR JUNCTION

Introduction 60
Results 60
Discussion 65

SECTION 5. THE EFFECTS OF OXYGEN DEPRIVATION AND HYPOXIA ON THE MINIATURE DISCHARGE AT THE HAMALIAN NEUROMUSCULAR JUNCTION

Introduction 70
Results 71
Discussion 74

SECTION 6. THE EFFECTS OF POTASSIUM ON TRANSMISSION AT THE HAMALIAN NEUROMUSCULAR JUNCTION

Introduction 77
Results 78
Discussion 80