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Abstract

Word matches are often used in sequence comparison methods, either as a measure of se-
quence similarity or in the first search steps of algorithms such as BLAST or BLAT. The D2
statistic is the number of matches of words of k letters between two sequences. Recent advances
have been made in the characterization of this statistic and in the approximation of its distribution.
Here, these results are extended to the case of approximate word matches.

We compute the exact value of the variance of the D2 statistic for the case of a uniform letter
distribution, and introduce a method to provide accurate approximations of the variance in the re-
maining cases. This enables the distribution of D2 to be approximated for typical situations arising
in biological research. We apply these results to the identification of cis-regulatory modules, and
show that this method detects such sequences with a high accuracy.

The ability to approximate the distribution of D2 for both exact and approximate word matches
will enable the use of this statistic in a more precise manner for sequence comparison, database
searches, and identification of transcription factor binding sites.
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1 Introduction

Alignment-free sequence comparison methods based on word matches allow se-
quences to be compared without assuming contiguity of homologous segments.
This is of particular interest for the comparison of biological sequences, where
deletions, insertions or duplications of segments are common. Several such
methods have thus been implemented (see Hazelhurst et al., 2008, for exam-
ple), and have had various applications, such as the clustering of large EST
databases (for example, Christoffels et al., 2001). These applications, how-
ever, typically rely on empirical thresholds, rather than on rigorous statistical
theory.

One of the statistics for alignment free sequence comparison that has re-
ceived much attention is the D2 statistic, which measures the number of words
shared between two sequences. The characterisation of this statistic started
with the calculation of its mean, and with approximations to the variance (Wa-
terman, 1995). Later, more accurate approximations of the variance allowed
asymptotic regimes of D2 to be derived for non-uniform (Lippert et al., 2002)
and uniform (Kantorovitz et al., 2007) letter distributions. More recently, the
exact value of the D2 variance has been computed (Kantorovitz et al., 2007;
Forêt et al., 2009). In parallel with this theoretical effort, optimal word sizes
for typical biological situations were computed (Forêt et al., 2006), and prac-
tical approximations of the distribution of D2 in these settings were proposed
(Forêt et al., 2009).

A more general version of the D2 statistic is the number of approximate
word matches between two sequences. After an initial characterisation of the
mean of this statistic, an asymptotic distribution regime was characterised
when the logarithm of the sequence size is large compared with the word size
(Burden et al., 2008). Here, we further characterise the D2 statistic in the
case of approximate word matches, by computing its variance and proposing
approximations of its distribution for typical biologically relevant situations.
Finally, we present an application of these results to the identification of reg-
ulatory sequences.

2 Results

2.1 Definitions

The statistic D2(nA, nB, k, t, η) (D2 henceforth) is the number of approxi-
mate word matches of length k with up to t mismatches between sequences
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A = (A1 . . . AnA) and B = (B1 . . . BnB) with Ai and Bj belonging to an al-
phabet A and distributed according to a letter distribution parameterised by
η. As previously (Forêt et al., 2009), for mathematical convenience we will
impose periodic boundary conditions, that is, the letter in the first position in
a sequence is assumed to follow the last letter of that sequence. Also, only the
case of strand symmetric Bernoulli text will be considered, that is, sequences
built from alphabets of four iid (independent and identically distributed) let-
ters (A, T, G and C) with the further constraint that the probability ξa of
letter a ∈ A occurring is ξA = ξT = 1

4(1 + η) and ξG = ξC = 1
4(1 − η), where

0 ≤ η ≤ 1. Note that the periodic boundary conditions simplify the theoretical
calculations considerably, but allow the method to be used for linear as well as
circular sequences by appropriate preprocessing (see Section 2.5 for example).

Defining the t neighbourhood match indicator

Y(i,j) =

{
1 if ∆ ((Ai, . . . , Ai+k−1), (Bj, . . . , Bj+k−1)) ≤ t
0 otherwise

(1)

where ∆(w1, w2) is the number of mismatches between the words w1 and w2,
the D2 statistic is given by

D2 =
∑

(i,j)∈I

Y(i,j) (2)

where the index set is I = {(i, j) : 1 ≤ i ≤ nA, 1 ≤ j ≤ nB}.

2.2 D2 mean

The mean of D2 was first computed for exact word matches (t = 0) and
iid letters (Waterman, 1995). This was later extended to the case of letters
generated by a Markov model (Kantorovitz et al., 2007). A formula for the
mean was also computed for approximate word matches (t ≥ 0) in the case
of Bernoulli symmetric text (Burden et al., 2008) in terms of the perturbed
binomial distribution (Melko and Mushegian, 2004). In Appendix A.2 we
derive the equivalent formula

E [D2] =
nAnB

4k

t∑

l=0

(
k

l

)

(3− η2)l(1 + η2)k−l. (3)

2.3 D2 variance

An exact formula for the variance of D2 was derived in the case of iid letters
and exact word matches using periodic boundary conditions in Forêt et al.
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(2009). Another study computed the variance for exact word matches using
free boundary conditions, in the cases of iid letters and of letters generated by
a Markov model (Kantorovitz et al., 2007). Here we extend these results to
the case of approximate word matches for iid letters and Bernoulli symmetric
text, using periodic boundary conditions. Specific details of this technical
derivation are given in Appendix A.3. A brief summary is given below.

To calculate the variance of D2 for approximate word matches and sym-
metric Bernoulli text, we follow the method used in Forêt et al. (2009). First
we deduce from equation (2) that:

Var (D2) = Var




∑

(i,j)∈I

Y(ij)



 =
∑

(i,j)∈I

∑

(i′,j′)∈I

Cov (Y(ij), Y(i′j′)). (4)

We set u = (i, j), v = (i′, j′) and for fixed u split the sum over v as follows.
Let Ju = {v = (i′, j′) : |i′ − i| < k or |j′ − j| < k} be the dependency
neighbourhood of Yu. For v /∈ Ju, Cov (Yu, Yv) = 0. Ju is decomposed into
two disjoint sets (Waterman, 1995): an accordion set, Ja

u = {v = (i′, j′) :
|i′ − i| < k and |j′ − j| < k} (when two pairs of matching words overlap in
both sequences) and a crabgrass set, J c

u = Ju \Ja
u (when two pairs of matching

words overlap in one sequence only). The accordion set is further decomposed
into a diagonal part, Jad

u = {v = (i′, j′) : −k < i′ − i = j′ − j < k} and an
off-diagonal part, Jao

u = Ja
u \ Jad

u .
Table 1 gives a summary of the components of the variance in different set-

tings. The only case that is not analytically characterised is the off-diagonal
part of the accordion for approximate word matches and non-uniform let-
ter distribution. In this case, however, numerical tables can be assembled
to approximate the entire accordion part of the variance with good accu-
racy. To see this, note that the accordion part takes the form nAnBΦ(k, t, η).
When nA = nB = 2k − 1, the only index set contributing to the variance is
the accordion part. Although computing D2 for approximate word matches
requires an algorithm with complexity o(nAnB), it is relatively inexpensive
to approximate the variance of D2 by simulation for small nA and nB. Ta-
bles of the function Φ were thus approximated by simulating a large number
of pairs of sequences of length 2k − 1 for k ≤ 16 and setting Φ(k, t, η) =
Var (D2(2k − 1, 2k − 1, k, t, η))/(2k − 1)2(see below).

2.4 D2 distribution

It has been shown previously (Forêt et al., 2009) that for exact word matches
and in most biologically relevant situations, a distribution chosen ad-hoc such

3

Forêt et al.: Characterizing the D2 Statistic

Published by The Berkeley Electronic Press, 2009



crabgrass
accordion,
diagonal

accordion,
off-diagonal

exact matches, uniform
distribution (t = 0, η = 0)

0
Eq. (1) of

Kantorovitz
et al. (2007)

0

exact matches,
non-uniform distribution

(t = 0, η %= 0)

Eq. (14) of
Forêt et al.

(2009)

Eq. (17) of
Forêt et al.

(2009)

Eqs. (20) and
(26) of Forêt
et al. (2009)

approximate matches,
uniform distribution

(t %= 0, η = 0)
0 Appendix A.4.2 0

approximate matches,
non-uniform distribution

(t %= 0, η %= 0)
Appendix A.3.1 Appendix A.3.2

Table 1: Contribution of the index sets of the dependency neighbourhood to
the variance of D2. See text for definitions.

as the gamma distribution can provide a better estimate of the D2 distribution
than the asymptotic normal distribution. Here we provide approximations for
the distribution of D2 in the case of approximate word matches.

For convenience we have set nA = nB = n in our numerical simulations.
We have simulated the distribution of D2 for sequence sizes ranging from small
ESTs (n = 100) to reasonably large genes (n = 3200), for even word sizes k
between 2 and 16, for every possible number of mismatches (0 ≤ t < k), and for
both uniform (η = 0) and non-uniform (η = 1

3) letter distributions. For each
combination of parameters, 106 pairs of iid sequences were generated. Tables of
the accordion contribution function Φ were estimated by generating 109 pairs of
iid sequences of size n = 2k−1, with k ranging from 2 to 16 with an increment
of 2. The Mersenne-Twister random number generator (Matsumoto M. and
Nishimura T., 1998) was used, as implemented in the GNU scientific library
(http://www.gnu.org/software/gsl/). The code was written in ANSI C
and is available from the authors’ website (http://wwwmaths.anu.edu.au/
cbis/~sf/k_words).

Previously, the gamma distribution was used to approximate the D2 distri-
bution in the case of exact word matches (Forêt et al., 2009). Here, the beta
distribution scaled to the range [0, n2] is used instead of the gamma distribu-
tion. In the range of parameters assessed in our simulations, the gamma and
beta distributions are mostly indistinguishable (data not shown). It might be
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expected, however, that the beta distribution provides better approximations
for very small p-values, as it is bounded within the same domain of definition
as D2 ([0, nAnB]), whereas the gamma distribution is defined from zero to in-
finity. Histograms of our numerical simulations the D2 statistic are compared
with the density function of the beta distribution scaled to this interval, that
is

1

nAnB
fB

(
x

nAnB
; α, β

)
(5)

where fB(x; α, β) = Γ(α+β)/(Γ(α)Γ(β))xα−1(1−x)1−β is the canonical density
function of the beta distribution. The parameters α and β are set so that the
mean and variance of the scaled beta distribution agree with the theoretical
values µ = E[D2], σ2 = Var (D2) derived in the appendix:

α =
µ

nAnB

[
µ(nAnB − µ)

σ2
− 1

]

, β =
nAnB − µ

nAnB

[
µ(nAnB − µ)

σ2
− 1

]

.

(6)
Figure 1 shows the simulated distribution of D2 for the size typical of a

small EST or a read produced by the 454 Titanium technology (sequence size
n = 400), in the case of non-uniform letter distributions (η = 1

3). The word
sizes displayed in this figure are the optimal word sizes corresponding to the
associated number of mismatches. We use the optimal word sizes computed
previously in Forêt et al. (2006). In brief, a word size and number mismatches
combination is optimal when it best captures the relatedness between artifi-
cially evolved sequences using the D2 statistic as a relatedness estimator.

The quantile-quantile plots between the beta and normal distributions, and
the simulated D2 distribution show unambiguously that for these parameters
combinations, the beta distribution provides a closer fit to the D2 distribution
than the normal distribution. Similar figures for all the simulations can be
found on the authors’ website (http://wwwmaths.anu.edu.au/cbis/~sf/k_
words). We observed a few rare situations where the normal distribution
outperformed the beta distribution, but these were cases where the number of
mismatches was close to the word size, and are of little practical importance.

2.5 Application to the detection of regulatory sequences

We now apply the approximation of the D2 distribution to a practical biolog-
ical problem: the identification of sequences containing cis-regulatory modules
(CRMs).

We use the same dataset as Kantorovitz et al., 2007, which contains seven
sets of sequences known to contain CRMs. Within each set, the CRMs are
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Figure 1: Top row : Histograms of the simulated distribution of D2 for se-
quences of size n = 400 and non-uniformly distributed letters. The normal
distribution is shown in red and the beta distribution in blue. The insert shows
a close up on the far right of the tail larger than the 99th percentile. Bottom
row : quantile-quantile plots with the simulated D2 values horizontally, and
the normal (continuous red line) and beta (dashed blue line) values vertically.
The vertical dashed lines represent the 0.99 and the 0.9999 quantiles.

driving gene expression in one particular tissue or life stage. The sets contain
between 9 and 82 sequences. For each of these ‘positive’ sets, a ‘negative’
set was constructed from randomly chosen non-coding sequences of the same
species, containing the same number of sequences and with the same sequence
sizes as in the positive set.

In Kantorovitz et al., 2007, the authors primarily assessed whether their
method can capture an expected effect, namely that sequences known to con-
tain similar (CRMs) are more related to each other than are randomly selected
sequences. While they show that the D2 based approach clearly outperforms
other techniques, this approach is of limited practical use.

We chose instead to address a problem more frequently faced by practition-
ers: given a set of sequences known to contain CRMs, and a query sequence,
can the query sequence be classified as containing similar CRMs or not? We
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set up the following experiment: each sequence in each positive set was se-
lected as the query sequence and compared both to the remaining positive
sequences of this set and to the corresponding negative sequences. In order
that our theoretical results for the iid hypothesis null distribution could be
applied, each sequence was preprocessed by (1) joining the ends to effect peri-
odic boundary conditions and (2) removing masked tandem repeats present in
the data sets and concatenating the pieces either side of the removed portion.
The parameters nA and nB were taken from the preprocessed sequences and
for each pairwise comparison the parameter η estimated from the combined
letter frequencies of the two sequences in question. The query sequences were
then screened to accept only those for which the smallest smallest p-value of
all comparisons was less than 0.01. We used a stringent criterion, namely,
a positive query sequence was considered correctly classified if the smallest
p-value was obtained with another sequence of the positive set.

Figure 2 shows the results of this experiment. A good sensitivity is achieved
in most datasets, with typically 80% or more of the sequences correctly clas-
sified for at least one parameter combination using this stringent criterion.
The optimal parameters vary from one condition to another. This may reflect
different properties of the underlying CRMs, in terms of size, letter composi-
tion and level of conservation that they require in order to be functional. The
problem of choosing optimal parameters is easily solved by using the above
approach, namely by determining a set of positive sequences and using these
to estimate appropriate parameters before comparing the query sequence(s)
to them.

The percentage of correctly classified negative sequences based on the
smallest p-value was typically around 50% (data not shown). This suggests
that while this method can successfully identify candidates, further validation
of the candidates would be needed.

3 Discussion

In this study we present exact values and approximations of the variance of D2

for pairs of symmetric Bernoulli texts. These results enable the distribution
of D2 to be approximated with or without mismatches for most situations
occurring in biological research.

We illustrate the application of these results by using the D2 statistic to
identify sequences containing regulatory modules. Our results show that this
method can be used to identify candidate regulatory sequences for further
experimental validation, or in combination with other prediction methods.
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Figure 2: Percentage of times that a sequence containing CRMs is correctly
classified: each subplot corresponds to a type of CRM, and the numbers in
parentheses are the number of positive control sequences in each set. Per-
centages are only plotted if at least 4 query sequences survived the screening
requirement that the minimum p-value should be less than 0.01.

A remaining theoretical problem is evaluation of the variance and distribu-
tion of the D2 statistic in the case of approximate word matches for strings that
are not symmetric Bernoulli texts, such as proteins. This lack of theory could
be partially circumvented by using exact word matches for protein searches,
but using alphabet reduction to account for most common substitutions. A
similar alphabet reduction resulted in increased accuracy in the construction
of phylogenetic trees with an alignment free method (Hohl and Ragan, 2007).

Appendix

A Derivation of D2 mean and variance

Define the statistic D2 to be the number of k-word matches with up to t
mismatches (t = 0, . . . , k) between sequences A and B of letters drawn from
an alphabet A. Let the sequence lengths be nA and nB respectively, and
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assume each sequence to consist of i.i.d. random letters with probability ξa of
letter a ∈ A occurring at any given location, where

∑
a∈A ξa = 1. Also assume

periodic boundary conditions on both sequences, that is, the letter in the first
position in sequence A is assumed to follow the letter in the nA

th position, and
the letter in the first position in sequence B is assumed to follow the letter in
the nB

th position.
In general, we restrict ourselves to the case of strand symmetric Bernoulli

texts of nucleotide sequences, that is, i.i.d. sequences for which ξC = ξG =
1
4(1− η), ξA = ξT = 1

4(1 + η), where 0 ≤ η ≤ 1, and write the D2 statistic as
D2(nA, nB, k, t, η).

A.1 Preliminaries

We use the following terminology adapted from Burden et al. (2008):

1. For m = 1, 2, . . ., define pm =
∑

a∈A ξa
m. For strand symmetric Bernoulli

texts, p2 = (1 + η2)/4.

2. Define ∆(W1,W2) to be a random variable equal to the number of
mismatches between the two random k-words W1 and W2. When there
is no possibility of confusion, we simply write ∆(k) for the number of
mismatches between the two random k-words. One easily checks that
∆(k) is a binomial random variable:

Pr (∆(k) = l) = Pr (Exactly l mismatches and k − l matches)

=

(
k

l

)

(prob. of mismatch)l(prob. of match)k−l

=

(
k

l

)

(1− p2)
lp2

k−l

=

(
k

l

)
1

4k
(3− η2)l(1 + η2)k−l. (7)

3. Y(i,j) = Yu = the approximate word match indicator, taking the value 1
if the number of mismatches between k-word at i in A and the k-word
at j in B is at most t. That is:

Y(i,j) =

{
1 if ∆((A1, . . . , Ai+k−1), (B1, . . . , Bj+k−1)) ≤ t
0 otherwise

(8)

Note that D2 =
∑nA

i=1

∑nB
j=1 Y(i,j).
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4. gt(k, η, c), Gt(k, η, c), probability and cumulative distribution functions
of the perturbed binomial distribution (Melko and Mushegian, 2004).
Given a fixed k-word with CG-content c (c = 0, . . . , k), gt(k, η, c) (resp.
Gt(k, η, c)) is the probability that the number of mismatches between
that word and a random k-word will be equal to (resp. at most) t. Specif-
ically:

Gt(k, η, c) =
t∑

r=0

gr(k, η, c) (9)

gt(k, η, c) = h(k, η, c)ut(k, η, c), (10)

where 0 ≤ c, t ≤ k are integers, and

h(k, η, c) =
1

4k
(1− η)c(1 + η)k−c (11)

ut(k, η, c) =
k−t∑

i=0

(
c

i

)(
k − c

k − t− i

)

vt(i, η, c) (12)

vt(i, η, c) =

(
3 + η

1− η

)c−i (
3− η

1 + η

)t−c+i

. (13)

In the above definition, we follow a convention that
(

n
a

)
= 0 if a < 0 or

a > n.

5. We set I = {(i, j) : 1 ≤ i ≤ nA, 1 ≤ j ≤ nB}. Given u = (i, j) ∈ I, the
dependency neighbourhood of u is defined as:

Ju = {v = (i′, j′) : |i′ − i| < k or |j′ − j| < k}. (14)

Note that for v /∈ Ju, Cov (Yu, Yv) = 0. Ju is divided into two parts,
accordion Ja

u and crabgrass J c
u defined by

Ja
u = {v = (i′, j′) ∈ Ju : |i′ − i| < k and |j′ − j| < k}

J c
u = Ju \ Ja

u . (15)

The accordion set is further decomposed into a diagonal part, Jad
u and

an off-diagonal part, Jao
u :

Jad
u = {v = (i′, j′) : −k < i′ − i = j′ − j < k} (16)

Jao
u = Ja

u \ Jad
u . (17)
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A.2 Mean of D2

An equivalent and more concise formula for E[D2] to that given in Burden
et al. (2008) is

E[D2(nA, nB, k, t, η)] =
∑

(i,j)∈I

E[Y(i,j)]

= nAnB

t∑

l=0

Pr (∆(k) = l)

= nAnB

t∑

l=0

(
k

l

)

(1− p2)
lp2

k−l

=
nAnB

4k

t∑

l=0

(
k

l

)

(3− η2)l(1 + η2)k−l. (18)

A.3 Variance of D2

An exact formula for the variance of D2(nA, nB, k, 0, η) (i.e. the case of exact
word matches) has previously been given by Forêt et al. (2009). The case of
approximate word matches, 0 ≤ t ≤ k, is dealt with here. We have

Var (D2(nA, nB, k, t, η)) = Var

(
∑

u∈I

Yu

)

=
∑

u∈I

∑

v∈Jc
u

Cov (Yu, Yv) +
∑

u∈I

∑

v∈Ja
u

Cov (Yu, Yv)

= Var (D2)|crabgrass + Var (D2)|accordion . (19)

Below we give an exact formula for the crabgrass part. A convenient exact
formula for the accordion part remains intractable in general, and we give
below a practical alternate numerical method for its evaluation. For the case
of a uniform letter distribution, η = 0, we demonstrate below (in section A.4)
that only the diagonal part of the accordion contributes to the variance of D2,
and give an exact formula for this case.

A.3.1 Crabgrass contribution to Var (D2)

From Eqs. (6) and (7) on page 9 of Burden et al. (2008), the crabgrass con-
tribution is given by

Var (D2)|crabgrass =
∑

u∈I

∑

v∈Jc
u

Cov (Yu, Yv)
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= nAnB(nA + nB − 4k + 2)
k−1∑

r=−k+1

Var (f|r|(W)),

(20)

where, for a given (k − r)-word w ∈ Ak−r,

fr(w) =
min(r,t)∑

l=0

Pr (∆(r) = l)Gt−l(k − r, η, cw)

=
min(r,t)∑

l=0

(
r

l

)

(1− p2)
lp2

r−lGt−l(k − r, η, cw)

=
min(r,t)∑

l=0

(
r

l

)
(3− η2)l(1 + η2)r−l

4r
Gt−l(k − r, η, cw), (21)

where cw is the GC-content of w. The variance with respect to the random
(k − r)-word W is calculated using

Var (fr(W)) = E[fr(W)2]− E[fr(W)]2. (22)

Since the w-dependence of the function fr is only via the GC-content of w,
the expectation values are calculated using

E[φ(cW)] =
k−r∑

c=0

Pr (cW = c)φ(c)

=
k−r∑

c=0

(
k − r

c

)

(ξC + ξG)c(ξA + ξT )k−r−cφ(c)

=
k−r∑

c=0

(
k − r

c

)
1

2k−r
(1− η)c(1 + η)k−r−cφ(c). (23)

A.3.2 Accordion contribution to Var (D2)

The accordion part is

Var (D2)|accordion =
∑

u∈I

∑

v∈Ja
u

Cov (Yu, Yv),

= nAnBΦ(k, t, η), (24)

where

Φ(k, t, η) =
k−1∑

r=−k+1

k−1∑

s=−k+1

Cov (Yu, Yu+(r,s)) (25)
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is independent of nA and nB. For the case nA = nB = 2k− 1, Eq. (20) implies
Var (D2)|crabgrass = 0, giving

Φ(k, t, η) =
Var (D2(2k − 1, 2k − 1, k, t, η))

(2k − 1)2
, (26)

which can be estimated numerically by measuring the variance of D2 for a
large sample of pairs of sequences of length 2k− 1. Tables of Φ(k, t, η) can be
assembled for a range of parameters to provide a practical way of numerically
calculating the accordion contribution.

A.4 Var (D2) for a uniform letter distribution

For the case of a uniform letter distribution, ξa = 1/d for all a ∈ A where
d = |A| is the alphabet size, we find that the crabgrass and off-diagonal part
of the accordion contribution to Var (D2) are zero, and that an analytic formula
for the remaining, diagonal-accordion, contribution, can easily be found.

A.4.1 Crabgrass contribution, η = 0

When η = 0, the perturbed binomial distribution reduces to the ordinary
binomial distribution, independent of c (Melko and Mushegian, 2004):

gt(k, 0, c) =

(
k

t

) (
1

4

)t (
3

4

)k−t

. (27)

Accordingly, the function fr(W) in Eq. 20 is independent of the random word
W, its variance is zero, and thus Var (D2(nA, nB, k, t, 0))|crabgrass = 0.

A.4.2 Diagonal-accordion contribution

For arbitrary η we have (see Fig. 3)

Var (D2)|diag.accordion =
∑

u∈I

∑

v∈Jad
u

Cov (Yu, Yv)

= nAnB

k−1∑

r=−k+1

Cov (Yu, Yu+(r,r))

= nAnB

[

Cov (Yu, Yu) + 2
k−1∑

r=1

Cov (Yu, Yu+(r,r))

]

.

(28)
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The covariance is

Cov (Yu, Yu+(r,r)) = E[Yu, Yu+(r,r)]− E[Yu]
2, (29)

where

E[Yu, Yu+(r,r)] = Pr (Yu = 1, Yu+(r,r) = 1)

=
min(k−r,t)∑

l=0

Pr (∆(k − r) = l)
t−l∑

s1=0

Pr (∆(r) = s1)
t−l∑

s2=0

Pr (∆(r) = s2)

=
min(k−r,t)∑

l=0

(
k − r

l

)

(1− p2)
lp2

k−r−l

[
t−l∑

s=0

(
r

s

)

(1− p2)
sp2

r−s

]2

,

(30)

and

E[Yu] = Pr (Yu = 1) =
t∑

l=0

Pr (∆(k) = l) =
t∑

l=0

(
k

l

)

(1− p2)
lp2

k−l. (31)

The lth term in Eq. (30) accounts for the event that there are up to t− l mis-
matches between (Ai, . . . , Ai+r−1) and (Bj, . . . , Bj+r−1), exactly l mismatches
between (Ai+r, . . . , Ai+k−1) and (Bj+r, . . . , Bj+k−1) and up to t− l mismatches
between (Ai+k, . . . , Ai+k+r−1) and (Bj+k, . . . , Bj+k+r−1).

For the case of a uniform letter distribution, one simply sets p2 = 1/d in
Eqs. (30) and (31).

A.4.3 Off-diagonal-accordion contribution, η = 0

The proof that Var (D2)|off−diag.accordion = 0 for a uniform letter distribution is
non-trivial. First we establish some general results about the distance function
∆(W1,W2), equal to the number of mismatches between two random k-words
W1 and W2.

For a uniform letter distribution, and for two independent (i.e. non-overlapping)
words W1 and W2, we have from Eq. (7)

Pr (∆(W1,W2) = l) =

(
k

l

)

(1− p2)
lp2

k−l =

(
k

l

)
(d− 1)l

dk
. (32)

If one of the words is fixed to be w, one easily checks that the conditional
probability is also binomial:

Pr (∆(W1,W2) = l|W2 = w) =

(
k

l

)
(d− 1)l

dk
= Pr (∆(W1,W2) = l) . (33)
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Thus ∆(W1,W2) and W2 are independent random variables.
Now consider the case of three independent random words W1, W2 and

W3. Then

Pr (∆(W1,W2) = l1, ∆(W2,W3) = l2)

=
∑

w∈Ak

Pr (∆(W1,W2) = l1|W2 = w)

×Pr (∆(W2,W3) = l2|W2 = w)Pr (W2 = w)

=
∑

w∈Ak

Pr (∆(W1,W2) = l1)Pr (∆(W2,W3) = l2)
1

dk

= Pr (∆(W1,W2) = l1)Pr (∆(W2,W3) = l2) (34)

where we have used the fact that, once W2 is fixed, ∆(W1,W2) and ∆(W2,W3)
depend only on W1 and W3 respectively, and so are effectively independent.

We now generalise Eqs. (33) and (34) to the following proposition PN ,
which will be proved by induction:
For given N ≥ 2, let W1, . . . ,WN+1 be mutually independent k-words, and
define

∆i = ∆(Wi,Wj), i = 1, . . . , N. (35)

Then for any w ∈ Ak,

Pr (∆1 = l1, . . . , ∆N−1 = lN−1|WN = w)

= Pr (∆1 = l1, . . . , ∆N−1 = lN−1) (36)

and

Pr (∆1 = l1, . . . , ∆N = lN)

= Pr (∆1 = l1, . . . , ∆N−1 = lN−1) Pr (∆N = lN) . (37)

Note that Eq. (36) could equivalently be written as

Pr (∆1 = l1, . . . , ∆N−1 = lN−1|WN ∈ R)

= Pr (∆1 = l1, . . . , ∆N−1 = lN−1) , (38)

where R ⊂ Ak is any restricted set of k-words. Note also that combining
Eq. (37) for the propositions P2 to PN implies

Pr (∆1 = l1, . . . , ∆N = lN) = Pr (∆1 = l1)× . . .× Pr (∆N = lN) (39)
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The proposition P2 is proved by Eqs.(33) and (34). It remains to prove
that PN implies PN+1. Define S(w, l) = {x ∈ Ak|∆(x,w) = l}. Starting with
the left hand side of Eq. (36) with N replaced by N + 1, we have

Pr (∆1 = l1, . . . , ∆N = lN |WN+1 = w)

= Pr (∆1 = l1, . . . , ∆N = lN |WN+1 = w,WN ∈ S(w, lN))

×Pr (WN ∈ S(w, lN))

+Pr (∆1 = l1, . . . , ∆N = lN |WN+1 = w,WN /∈ S(w, lN))

×Pr (WN /∈ S(w, lN))

= Pr (∆1 = l1, . . . , ∆N−1 = lN−1|WN+1 = w,WN ∈ S(w, lN))

×Pr (WN ∈ S(w, lN)) ,

where the second term is zero since “∆N = lN” and “WN /∈ S(w, lN)” are
mutually exclusive events, and the requirement “∆N = lN” has been dropped
from the first term since it is automatically satisfied by the condition “WN+1 =
w and WN ∈ S(w, lN)”. Then, since ∆1, . . . , ∆N−1 are independent of WN+1,
and rewriting the second factor, we have

Pr (∆1 = l1, . . . , ∆N = lN |WN+1 = w)

= Pr (∆1 = l1, . . . , ∆N−1 = lN−1|WN ∈ S(w, lN))

×Pr (∆N = lN |WN+1 = w)

= Pr (∆1 = l1, . . . , ∆N−1 = lN−1) Pr (∆N = lN) by Eqs.(33) and (38)

= Pr (∆1 = l1, . . . , ∆N = lN) by Eq. (37) (40)

which establishes the first part of proposition PN+1. Starting with the left
hand side of Eq. (37) with N replaced N + 1,

Pr (∆1 = l1, . . . , ∆N+1 = lN+1)

=
∑

w∈Ak

Pr (∆1 = l1, . . . , ∆N = lN |WN+1 = w)

×Pr (∆N+1 = lN+1|WN+1 = w) Pr (WN+1 = w)

=
∑

w∈Ak

Pr (∆1 = l1, . . . , ∆N = lN) Pr (∆N+1 = lN+1)
1

dk
by Eq. (40)

= Pr (∆1 = l1, . . . , ∆N = lN) Pr (∆N+1 = lN+1) , (41)

which establishes the second half of proposition PN+1. 1

1Aside: For an alternate proof that Var (D2(nA, nB , k, t, 0))|crabgrass = 0 one can apply
the above proposition to the third line of Eq. (5) of Burden et al. (2008).
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I

VI

IV

III

II

V

u

–k + 1,    …      , –1,  0,   1,      …       , k – 1 

r

–k + 1

k – 1

– 1

1

0
. 
. 
.

. 
. 
.

s

Figure 3: The main diagonal and off-diagonal regions I to VI of Ja
u .

We are now in a position to calculate

Var (D2)|off−diag.accordion =
∑

u∈I

∑

v∈Jao
u

Cov (Yu, Yv). (42)

Writing u = (i, j), v = (i + r, j + s) ∈ Jao
u , the off-diagonal part Jao

u can be
subdivided into six parts illustrated in Fig. 3, namely

I: 0 ≤ s < r ≤ k − 1;

II: −k + 1 ≤ s < r ≤ 0;

III: −k + 1 ≤ r < s ≤ 0;

IV: 0 ≤ r < s ≤ k − 1;

V: 1 ≤ r ≤ k − 1, −k + 1 ≤ s ≤ −1;

VI: 1 ≤ s ≤ k − 1, −k + 1 ≤ r ≤ −1.

We proceed to prove that Cov (Yu, Yv) vanishes for each of the six cases.
Case I is illustrated in Fig. 4(a). The union of the overlapping words

WA
u = (Ai, . . . , Ai+k−1) and WA

v = (Ai+r, . . . , Ai+k+r−1) is subdivided into the
shaded pieces WA,L

0 = (Ai, . . . , Ai+s−1) and WA,R
0 = (Ai+k+r−s, . . . , Ai+k+r−1)
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r k

A:

B:

ks

WA,L
0

!L! !R!!L0 !R0

WB,L
0 WB,R

0

WA,R
0

WA
!

WB
!

i

j

r k

A:

B:

k

!L! !R!+|s|

WA
!

WB
!+|s|

i

j |s|

(a)

(b)

Figure 4: (a) Case I of the off-diagonal accordion contribution to Var (D2).
Cases II, III and IV are obtained by reflection or by interchanging the roles of
A and B. (b) Case V of the off-diagonal contribution. Case VI is obtained by
interchanging the roles of A and B.

each of length s, and a set of and a set of single-letter words WA
α = (Ai+s+α−1),

α = 1, . . . , k + r − 2s.
Similarly, the union of the overlapping words WB

u = (Bj, . . . , Bj+k−1) and
WB

v = (Bj+s, . . . , Bj+k+s−1) is subdivided into the shaded pieces WB,L
0 =

(Bi, . . . , Bj+s−1) and WB,R
0 = (Bj+k, . . . , Bj+k+s−1) each of length s, and a set

of and a set of single-letter words WB
α = (Bj+s+α−1), α = 1, . . . , k − s.

Define

∆L
0 = ∆(WA,L

0 ,WB,L
0 ), ∆R

0 = ∆(WB,R
0 ,WA,R

0 ) (43)

∆L
α = ∆(WA

α ,WB
α ), ∆R

α = ∆(WB
α ,WA

α+r−s), α = 1, . . . , k − s. (44)
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Then

∆(WA
u ,WB

u ) =
k−s∑

α=0

∆L
α, ∆(WA

v ,WB
v ) =

k−s∑

α=0

∆R
α . (45)

With the indicator variables Yu and Yv defined as above, we have

E(Yu, Yv) = Pr (Yu = 1, Yv = 1)

= Pr
(
∆(WA

u ,WB
u ) ≤ t, ∆(WA

v ,WB
v ) ≤ t

)

=
∑

{m0,...,mk−s}∈It

∑

{l0,...,lk−s}∈It

Pr
(
∆L

0 = m0, . . .

. . . , ∆L
k−s = mk−s, ∆

R
0 = l0, . . . , ∆

R
k−s = lk−s

)
, (46)

where the index set summed over is

It =

{

l0, . . . , lk−s

∣∣∣∣∣ 0 ≤ l0 ≤ s, 0 ≤ l1, . . . , lk−s ≤ 1,
k−s∑

α=0

lα ≤ t

}

. (47)

The set {∆L
1 , . . . , ∆L

k−s, ∆
R
1 , . . . , ∆R

k−s} partitions into a collection of disjoint
subsets of the form {∆L

α, ∆R
α , ∆L

α+r−s, ∆
R
α+r−s, ∆

L
α+2(r−s), . . .}, α = 1, . . . , r − s

(indicated by the zig-zag line in Fig. 4(a)), each of which satisfies the conditions
of the proposition PN for some N . Also, these subsets are independent of one
another and of ∆L

0 and ∆R
0 , since they contain random variables which are

functions of corresponding disjoint subsets of letters.
Thus we can factor the probability in Eq.(46) and rearrange the sum to

obtain

E(Yu, Yv) =
∑

{m0,...,mk−s}∈It

Pr
(
∆L

0 = m0

)
. . . Pr

(
∆L

k−s = mk−s

)

×
∑

{l0,...,lk−s}∈It

Pr
(
∆R

0 = l0
)
. . . Pr

(
∆R

k−s = lk−s

)

=
∑

{m0,...,mk−s}∈It

Pr
(
∆L

0 = m0, . . . , ∆
L
k−s = mk−s

)

×
∑

{l0,...,lk−s}∈It

Pr
(
∆R

0 = l0, . . . , ∆
R
k−s = lk−s

)

= Pr
(
∆(WA

u ,WB
u ) ≤ t

)
Pr

(
∆(WA

v ,WB
v ) ≤ t

)

= E(Yu)E(Yv). (48)

Thus Cov (Yu, Yv) = 0 for v in the Case I part of Jao
u . Cases II, III and IV can

be similarly dealt with by reversing the order of both sequences, interchanging
the roles of sequences A and B, or both.
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Case V is illustrated in Fig. 4(b). This time the union of the overlapping
words WA

u and WA
v is subdivided into the set of single-letter words WA

α =
(Ai+α−1), α = 1, . . . , k + r, and the union of the overlapping words WB

u and
WB

v is subdivided into the set of single-letter words WB
α = (Bj−|s|+α−1), α =

1, . . . , k + |s|. We define

∆L
α = ∆(WA

α ,WB
α+|s|), ∆R

α = ∆(WB
α ,WA

α+r), α = 1, . . . , k. (49)

Then

∆(WA
u ,WB

u ) =
k∑

α=1

∆L
α, ∆(WA

v ,WB
v ) =

k∑

α=1

∆R
α , (50)

and

E(Yu, Yv) = Pr (Yu = 1, Yv = 1)

= Pr
(
∆(WA

u ,WB
u ) ≤ t, ∆(WA

v ,WB
v ) ≤ t

)

=
∑

{m1,...,mk}∈It

∑

{l1,...,lk}∈It

Pr
(
∆L

1 = m1, . . .

. . . , ∆L
k = mk, ∆

R
1 = l1, . . . , ∆

R
k = lk

)
, (51)

where the index set is now

It =

{

l0, . . . , lk

∣∣∣∣∣ 0 ≤ l1, . . . , lk ≤ 1,
k∑

α=1

lα ≤ t

}

. (52)

The set {∆L
1 , . . . , ∆L

k , ∆R
1 , . . . , ∆R

k } partitions into a collection of disjoint
subsets of the form {∆L

α, ∆R
α+|s|, ∆

L
α+r+|s|, . . .}, α = 1, . . . , r, or

{∆R
α , ∆L

α+|s|, ∆
R
α+r+|s|, . . .}, α = 1, . . . , |s| (indicated by the zig-zag line in

Fig. 4(b)), each of which satisfies the conditions of the proposition PN for
some N , and which are mutually independent. Thus we can factor the proba-
bility in Eq.(51), rearrange the sum and recombine the probabilities to obtain

E(Yu, Yv) =
∑

{m1,...,mk}∈It

Pr
(
∆L

1 = m1, . . . , ∆
L
k = mk

)

×
∑

{l1,...,lk}∈It

Pr
(
∆R

1 = l1, . . . , ∆
R
k = lk

)

= Pr
(
∆(WA

u ,WB
u ) ≤ t

)
Pr

(
∆(WA

v ,WB
v ) ≤ t

)

= E(Yu)E(Yv), (53)

giving Cov (Yu, Yv) = 0 for v in the Case V part of Jao
u . Case VI can be

similarly dealt with by interchanging the roles of sequences A and B.
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