

Asia-Pacific Linguistics

Open Access College of Asia and the Pacific The Australian National University

Lalo dialects across time and space

Subgrouping, dialectometry, and intelligibility

Cathryn Yang

A-PL 22

Lalo dialects across time and space: subgrouping, dialectometry, and intelligibility

Cathryn Yang

This volume is the first work to systematically investigate the diachronic and synchronic relationships between regional varieties of Lalo, a Ngwi (Loloish) language cluster spoken in western Yunnan, China. The empirical basis for the research is linguistic data, as well as intelligibility tests and sociolinguistic interviews on contact, dialect perceptions, and ethnolinguistic vitality from nineteen Lalo-speaking villages. The volume uses these data to present a phonological and lexical reconstruction of Proto-Lalo, as well as a phylogenetic subgrouping of the different Lalo varieties. As a complement to this a synchronic classification of Lalo varieties according to phonetic distance, intelligibility, and speaker perceptions is also given. This combination of methodologies and results enable an integrated synchronic and diachronic depiction of Lalo dialect diversity.

Asia-Pacific Linguistics

Lalo dialects across time and space: subgrouping, dialectometry, and intelligibility

Cathryn Yang

A-PL 22

EDITORIAL BOARD: Bethwyn Evans (Managing Editor), I Wayan Arka, Danielle Barth, Don Daniels, Nicholas Evans, Simon Greenhill, Gwendolyn Hyslop, David Nash, Bill Palmer, Andrew Pawley, Malcolm Ross, Hannah Sarvasy, Paul Sidwell, Jane Simpson.

Published by Asia-Pacific Linguistics College of Asia and the Pacific The Australian National University Canberra ACT 2600 Australia

Copyright in this edition is vested with the author(s) Released under Creative Commons License (Attribution 4.0 International)

First published: 2015

URL: http://hdl.handle.net/1885/95391

National Library of Australia Cataloguing-in-Publication entry:

Creator:	Yang, Cathryn, author.
Title:	Lalo dialects across time and space: subgrouping, dialectometry, and intelligibility / Cathryn Yang.
ISBN:	9781922185242 (ebook)
Series:	Asia-Pacific Linguistics; A-PL 22.
Subjects:	Loloish languages – China – Yunnan Sheng.
	Historical linguistics – China – Yunnan Sheng.
	Sociolinguistics – China – Yunnan Sheng.
	Yunnan Sheng (China) – Languages.

Dewey Number: 495.4

Cover photo: Sample of traditional Lalo embroidery on a linen shoe. Taken by Cathryn Yang.

For Shizhou, my true-hearted comrade

Acknowledgments

This research would not have been possible without the support and guidance of many people, including academic supervisors, colleagues, speakers, friends and family members. Their contributions have improved this work beyond what I could have accomplished on my own; remaining weaknesses are my responsibility alone. I would first like to thank my principal supervisor, Dr David Bradley, not only for his useful suggestions and constructive criticism of earlier drafts of this work, but also for the time he generously gave in guiding me through the research process. Thanks also go to my co-supervisor Dr Randy LaPolla for his advice and encouragement.

I would also like to acknowledge the Lalo language consultants, too numerous to list exhaustively here, who patiently taught me about their language during my fieldwork in 2008. In particular, Cha Shufang, a Central Lalo (West Mountain) speaker and Cha Jishun, a Central Lalo (East Mountain) speaker, assisted my research and generously hosted me in their home villages.

My fieldwork, which involved traveling to nineteen counties and five prefectures in Yunnan, China, was made possible through the partnership of Bai Bibo and Xu Xianming of Yuxi Teachers' College. Dr Liu Jinrong, head of the Ethnic Language and Literature College of Yunnan Nationalities University, was instrumental in helping me get permission to do research in Pu'er Prefecture. Duan Ling, venerable scholar of Bai and Lisu languages, was a tireless advocate for me in Dali Prefecture. Zhou Yanglei, head of the Ethnic Art Institute of the Lincang Prefecture Culture Bureau, opened the door for me to do research in Lincang. My fieldwork was made possible through the financial support of a La Trobe University Faculty of Humanities and Social Sciences 2007 fieldwork grant and an SIL International project funding grant.

To thank all my other friends who have helped me through the past three and a half years would be another dissertation. Ching Yee Castro was my fun-loving, hardworking helper during the many road trips. Pete and Laura Blackburn and Edwin and Angel Lam generously shared the language data they had already collected, along with their understanding of Lalo language and culture. My father-in-law Yang Qihua, sister-in-law Yang Shicai, and brothers-in-law Yang Shikuan and Yang Shihai have immeasurably enriched my life. My parents Jerry and Julie Fine and my sisters Sarah and Robin and their families have given me tremendous encouragement and strength each step of the way. My husband Yang Shizhou, to whom this book is dedicated, is my hero, and my children Micah, Finn and Pearl bring me new joy every day. Finally, my deep love and gratitude to the Trinity of Father, Son, and Holy Spirit; I could not have done this without you.

Table of Contents

A	cknowled	lgments	V
L	ist of abb	reviations	X
L	ist of data	a source abbreviations	XI
L	ist of figu	ıres	. XII
L	ist of tabl	es	XIII
1	Intro	duction	1
	1.1	Purpose	1
		Historical and social context of Lalo varieties	
	1.2	Phylogeny	
	1.2.2	Population	
	1.2.3	Geography	
	1.2.4	History	5
	1.2.5	Linguistic ecology	7
	1.3	Previous research on Lalo	9
	1.4	Theoretical framework	. 10
	1.4.1	Sound change	. 10
	1.4.2	Reconstruction and subgrouping	. 12
	1.4.3	Dialectometry	
	1.4.4	Intelligibility	. 15
	1.5	Outline of the book	. 17
2	Meth	odology	. 19
	2.1	Introduction	. 19
	22	Data collection	20
	2.2.1	Location of datapoints	
	2.2.2	Material and participants	
	2.3	Acoustic analysis of tone	. 24
	2.4	Measuring phonetic distance	25
	2.4.1	The Levenshtein distance algorithm	
	2.4.2	The representation of tone	
	2.4.3	Analysing the Levenshtein distance matrix	
	2.4	I.3.1 NeighborNet network analysis	
	2.4	A.3.2 Multidimensional scaling	. 30
	2.5	Measuring intelligibility	. 30
	2.6	Exploring dialect perceptions and interactions	. 33
	2.7	Assessing ethnolinguistic vitality	. 34

3	Phonological	l sketches of Lalo varieties	. 36
	3.1 Introduc	ction	. 36
	3.2 Central	Lalo: Qingyun (CW-QY)	. 36
		ral East Mountain: Yong'an (CE-YA):	
	3.2.2 Chaji	iang (C-CJ)	. 42
	3.2.3 Long	jie (C-LJ)	. 43
	3.3 Mangdi	(MD)	. 44
	3.4 Eka		. 46
	3.5 Western	Lalo: Yilu (W-YL)	. 50
		an (W-DT)	
		zhuping (W-SZP)	
		glizhuo (W-SLZ)	
		Lalo: Diaocao (E-DC)	
		hu (E-TS)	
		han (E-HS)	
	3.7 Southea	stern Lalo: Gaoping (SE-GP)	. 60
	3.8 Yangliu	(YL)	. 62
	3.9 Xuzhan	g (XZ)	64
		ry	
	5.10 Summa	ly	. 03
4	Proto Lalo seg	ments	. 66
	4.1 Introduc	ction	. 66
	4.2 Proto La	alo initials	66
		5	
		Affricates	
		Consonant clusters	
		tives	
		Alveolar fricatives Palatoalveolar fricatives	
		Velar and glottal fricatives	
		nants	
	4.2.3.1	$PN * r > PLa * y, * \int, * h$. 76
		$PN * j > PLa * 3, * \int, * h$	
		PN *w > PLa *v, *?v, *f	
		PN *l > PLa *l, *?l, *?x, *h ls	
		PN *m > PLa *m, *?m, *mj, *?mj	
		PN *n > PLa *n, *2n; PN *n > PLa *n, *2n.	
		PN *ŋ > PLa *ŋ, *ʔŋ, *ŋj, *ʔŋj; PN *ŋw > PLa *ŋw	
	4.2.5 Sum	mary of initials	. 84
		alo rhymes	
		ront vowels *i, *e, *ej, *aj, *waj, *we	
		$PN *i > PLa *i, *e, *\varepsilon, *i$	
		$PN *e_{j} > PLa *\epsilon.$ $PN *e > PLa *i, *i, *\epsilon.$	
		$PN *aj > PLa *\epsilon, *e, *y$	
		$PN *waj > PLa *\varepsilon$.	
		$PN *we > PLa *\varepsilon, *i$	
	4.3.2 PN c	entral and back vowels *a, *u, *ow, *o, *a(:)w, *wa	. 94
	4.3.2.1	PN *a > PLa *a	. 94

	6.8.3 6.8.4		e W innovations	
	6.8.2 6.8.3	C ar	nd W innovations in initials	
	6.8.1		al innovations that distinguish W, E, and SE	
	6.8		-level clusters: E, W, C and SE	
	6.7			
	6.6			
	6.5	Core L	alo: C-W-E-SE	
	6.4	Greate	r Lalo	147
	6.3	Periphe	eral varieties Eka, YL and MD	
	6.2	Membe	ership in Lalo	
	6.1	Introdu	iction	
6	Diac	hronic	subgrouping of Lalo varieties	
	5.5	Summa	ary	141
			e *1 split raction between harsh phonation and pitch in *L and *H tone changes	
			sion	
	5.3.5	-	e change in XZ, YL and Eka	
	5.3.4	Ton	e change in SE Lalo	
	5.3.2		e change in W Lalo	
	5.3.1 5.3.2		e change in C Lalo e change in E Lalo	
	5.3		hange in Lalo varieties	
	5.2.2	Prot	o Lalo's Tone *2 split	
	5.2.1	Evic	lence for PLa tone system from Central Lalo and MD	119
	5.2	Proto I	Lalo tones	117
	5.1	Phonet	ic motivations for tone change	112
5	Prot	o Lalo 1	tones and tone changes	112
	4.3.3	Sull		110
	4.3.5	3.4.6 Surr	PN *ak > PLa *e, a, *wak > PLa *u, *jak > PLa *e mary of rhymes	
		3.4.4	PN *ap, *wap > PLa *y; *at > PLa * \underline{e} ; *wat > PLa * \underline{e} ; * \underline{i}	
		3.4.3	PN *up, *ut, *uk, *ok > PLa * \underline{u} , * \underline{o} , * \underline{y} , * \underline{i}	
		3.4.2	$PN * et, *ek, *øk > PLa * \varepsilon$	
		3.4.1	PN *ip, *it, *i:t, *ik > PLa * <u>i</u>	
			stop-final rhymes> PLa harsh vowels	
		3.3.5	PN *waŋ, *oŋ, *un > PLa *u	103
		3.3.4	$PN *a\eta > PLa *a\eta$	
		3.3.2 3.3.3	PN *im, *iŋ > PLa *i PN *in, *an > PLa *e; PB *i:n > PLa *i	
		3.3.1	PN *am, *wan, *wan, *um > PLa *y	
			nasal-final rhymes	
		3.2.5	PN *wa > PLa *v, *a	
		3.2.4 3.2.5	PN *o > PLa *o, *i, *i, *[wi] PN *aw > PLa *u, *o	
		3.2.3	PB *ow > PLa *u	
	4.	3.2.2	PN *u > PLa *u, *y, *o	95

	6.9	Contact relationships	159
	6.10	Summary	161
7	Sync	chronic subgrouping of Lalo varieties	163
	7.1	Introduction	163
	7.2 7.2.1 7.2.2	e	164
	7.3	Intelligibility test results	167
	7.4	Correlation between phonetic distance and intelligibility	171
	7.5	Speaker perception and interactions	173
	7.6	Summary	176
8	Con	clusion	178
	8.1	Introduction	178
	8.2	Degree of endangerment of Lalo regional varieties	178
	8.3 8.3.1 8.3.2		182
	8.4	Contributions of this book	184
	8.5	Directions for future research	185
	8.6	Conclusion	185
A	ppendix	A: Sources of Lalo population statistics by county	187
A	ppendix	B: Elicitation frames from Pelkey (2008)	190
A	ppendix	C: Sociolinguistic interview schedules	191
A	ppendix	x D: Sample RTT score chart (CW-QY)	198
A	ppendix	E: Sample language data and Proto Lalo reconstructions	201
R	eference	es	235

List of abbreviations

1 2 2	C (1,1 ¹ ,1
1, 2, 3	first, second, third person
C	Central Lalo or Consonant
CE	Central Lalo- East Mountain
CW	Central Lalo- West Mountain
CLF	classifier
СТ	cricothyroid muscle
E	Eastern Lalo
EXCL	exclusive
INCL	inclusive
Н	Proto Ngwi High-stopped tone
L	Proto Ngwi Low-stopped tone
Ν	Nasal
NEG	negation, negative
Р	Phonation
PB	Proto Burmic
PCLa	Proto Central Lalo
PCWLa	Proto Central-Western Lalo
PL	plural
PLa	Proto Lalo
PN	Proto Ngwi
РТВ	Proto Tibeto-Burman
SE	Southeastern Lalo
SG	singular
Т	Tone
V	Vowel
VOT	voice onset timing
W	Western Lalo
WB	Written Burmese

CE-YA	Dali Prefecture, Weishan County, Yongjian, Yong'an
CW-QY	Dali Prefecture, Weishan County, Ma'anshan, Qingyun
C-LJ	Dali Prefecture, Weishan County, Wuyin, Longjie
C-WC	Dali Prefecture, Yangbi County, Wachang
C-LB	Dali Prefecture, Yongping County, Shuixie, Leba
C-CJ	Dali Prefecture, Nanjian County, Xiaowandong, Chajiang
C-QS	Pu'er Prefecture, Jingdong County, Anding, Qingsheng
E-DC	Dali Prefecture, Dali Municipality, Shijiao qu Diaocao
E-HS	Dali Prefecture, Dali Municipality, Fengyi Houshan
E-TS	Dali Prefecture, Dali Municipality, Taiyi Taoshu
Eka	Lincang Prefecture, Shuangjiang County, Heliu, Yijiacun
MD	Lincang Prefecture, Gengma County, Hepai, Mangdi
SE-GP	Dali Prefecture, Midu County, Micheng, Gaoping
W-DT	Dali Prefecture, Yangbi County, Taiping, Dutian
W-SZP	Dali Prefecture, Yangbi County, Longtan, Shuizhuping
W-YL	Dali Prefecture, Yongping County, Changjie, Yilu
W-SLZ	Baoshan Prefecture, Longyang Area, Wama, Shanglizhuo
XZ	Baoshan Prefecture, Longyang Area, Wafang, Xuzhang
YL	Baoshan Prefecture, Longyang Area, Yangliu

List of figures

Figure 1-1: Phylogeny of Lalo, based on Bradley (2002b)	
Figure 1-2: Map of Yunnan, China.	
Figure 1-3: Complex vowel correspondence pattern	16
Figure 2-1: Location of all Lalo datapoints	
Figure 2-2: Operations in calculating Levenshtein distance	26
Figure 2-3: NeighborNet reticulated rectangle	
Figure 2-4: Neighbor-joining tree 1	29
Figure 2-5: Neighbor-joining tree 2	
Figure 2-6: Excerpt from CW-QY RTT: identifying core elements	
Figure 4-1: Partial mergers of *i with *ej and *u with *ow	
Figure 5-1: Laryngoscopic view of the larynx. (Gray 1918 [2000])	
Figure 5-2 Side view of the larynx (Gray 1918 [2000])	
Figure 5-3: Thyroarytenoid muscle (Gray 1918 [2000])	
Figure 5-4: CW-QY tonal inventory.	
Figure 5-5: C-LB tonal inventory	
Figure 5-6: MD tonal inventory	
Figure 5-7: CE-YA tonal inventory	
Figure 5-8: Pitch trajectories for PLa minimal pair 'listen' vs 'sick' in C-LJ	
Figure 5-9: Pitch trajectories for PLa minimal pair 'listen' vs 'sick' in C-WC.	
Figure 5-10: Pitch trajectories for PLa minimal pair 'listen' vs 'sick' in CE-YA	
Figure 5-11: E-DC tonal inventory.	
Figure 5-12: W-SZP tonal inventory.	
Figure 5-12: W-SET tonal inventory.	
Figure 5-14: W-DT tonal inventory.	
Figure 5-15: Variation in *L in W Lalo varieties.	
Figure 5-16: SE-GP tonal inventory (speaker GP1)	
Figure 5-17: SE-GP tonal inventory (speaker GP1)	
Figure 5-17: SE-OF tonal inventory (speaker OF 1)	
- · ·	
Figure 5-19: YL-young tonal inventory (speaker YL1).	
Figure 5-20: XZ tonal inventory (speaker XZ1) Figure 5-21: Eka tonal inventory	
e i	
Figure 6-1: Lalo phylogenetic tree	
Figure 7-1: NeighborNet phenogram based on LD, all varieties	
Figure 7-2: NeighborNet phenogram based on LD, Core Lalo only	
Figure 7-3: Multidimensional scaling (Kruskal's method) of all Lalo varieties	
Figure 7-4: Multidimensional scaling (Kruskal's method) of Lalo varieties	
Figure 7-5: RTT results for CW-QY text	
Figure 7-6: RTT results for C-LJ text	
Figure 7-7: RTT results for E-HS and E-DC texts	
Figure 7-8: RTT results for W-DT and W-YL texts	
Figure 7-9: Scatter plot of intelligibility versus LD, all RTT results	
Figure 7-10: Scatter plot of intelligibility versus LD, CW-QY RTT results only	
Figure 7-11: Lalo dialect perceptions, excluding Baoshan and Lincang	
Figure 7-12: Lalo dialect perceptions, Baoshan (W-SLZ, XZ, and YL)	176

List of tables

Table 1-1: Estimated number of Lalo speakers	
Table 1-2: Previous research on Lalo	
Table 2-1: Locations of Lalo datapoints	
Table 2-2: Biodata of wordlist consultants	
Table 2-3: Statistically significant differences in duration of tone span	25
Table 2-4: Locations of RTT tests	32
Table 2-5: UNESCO's (2009) scale of endangerment	35
Table 3-1: CW-QY initial consonant inventory	
Table 3-2: CW-QY initial consonant examples	
Table 3-3: CW-QY rhyme inventory	
Table 3-4: CW-QY rhyme examples	
Table 3-5: CW-QY reflexes of Proto Lalo tones	
Table 3-6: CE-YA initial consonant inventory	
Table 3-7: CE-YA rhyme inventory	
Table 3-8: CE-YA reflexes of Proto Lalo tones	
Table 3-9: C-CJ initial consonant inventory	
Table 3-10: C-CJ rhyme inventory	
Table 3-11: C-LJ initial consonant inventory	
Table 3-11: C-LJ initial consonant inventory	
Table 3-12: C-LJ Infile Inventory	
Table 3-14: MD initial consonant examples Table 2-15: MD	
Table 3-15: MD rhyme inventory	
Table 3-16: MD rhyme examples.	
Table 3-17: Eka initial consonant inventory	
Table 3-18: Eka initial consonant examples	
Table 3-19: Eka rhyme inventory	
Table 3-20: Eka rhyme examples	
Table 3-21: Eka reflexes of Proto Lalo tones	
Table 3-22: W-YL initial consonant inventory	
Table 3-23: W-YL initial examples	51
Table 3-24: W-YL rhyme inventory	
Table 3-25: W-YL rhyme examples	52
Table 3-26: W-YL reflexes of Proto Lalo tones	52
Table 3-27:W-DT initial consonant inventory	53
Table 3-28: W-DT rhyme inventory	
Table 3-29: W-DT reflexes of Proto Lalo tones	53
Table 3-30: E-DC initial consonant inventory	54
Table 3-31: E-DC initial examples.	
Table 3-32: E-DC rhyme inventory	
Table 3-33: E-DC rhyme examples	
Table 3-34: E-DC reflexes of Proto Lalo tones	
Table 3-35: E-TS initial consonant inventory	
Table 3-36: E-TS rhyme inventory	
Table 3-37: E-TS reflexes of Proto Lalo tones	
Table 3-38: E-HS initial consonant inventory.	
Table 3-39: E-HS rhyme inventory	
Table 3-40: E-HS reflexes of Proto Lalo tones	
Table 3-40: E-fits reflexes of Floto Ealo toles Table 3-41: SE-GP initial consonant inventory	
Table 3-42: SE-GP initial examples	
Table 3-42: SE-GP rhyme inventory	
Tuble 5 15. 5E Of Thylice inventory	.01

Table 3-44: SE-GP rhyme examples	62
Table 3-45: SE-GP reflexes of Proto Lalo tones	
Table 3-46: YL initial consonant inventory	
Table 3-47: YL rhyme inventory	
Table 3-48: YL reflexes of Proto Lalo tones	
Table 3-49: XZ initial consonant inventory	
Table 3-50: XZ rhyme inventory	
Table 3-51: XZ reflexes of Proto Lalo tones	
Table 4-1: PLa initial consonant inventory	
Table 4-2: Development of manner of PLa stops and affricates	
Table 4-3: Examples of PN stops' development of manner	
Table 4-4: Development of PN *? and $*\emptyset$ in PLa	
Table 4-5: Development of PLa *ts, t_{j} , and t_{j}^{h}	
Table 4-6: Development of PN labial clusters in PLa.	
Table 4-7: Examples of PN *pj's development in PLa	
Table 4-8: Examples of PN *pr and *pl's development in PLa	
Table 4-9: Development of PN velar consonant clusters in PLa	
Table 4-10: Examples of PN voiceless velar clusters' development in PLa	
Table 4-11: Examples of PN voiced velar clusters' development in PLa	
Table 4-12: PB/PN labiovelar phonemes' development in PLa	
Table 4-13: Development of PN *s in PLa	
Table 4-14: Development of PN *z in PLa	
Table 4-15: Development of PN *∫ in PLa	
Table 4-16: Development of PN *3 in PLa	
Table 4-17: Development of PN *x in PLa	
Table 4-18: Development of PN *h in PLa	
Table 4-19: Development of PN *r in PLa	
Table 4-20: Development of PN *j in PLa.	
Table 4-21: Development of PN *w in PLa.	
Table 4-22: Development of PN *1 in PLa.	
Table 4-23: Development of PN *m in PLa.	
Table 4-24: Development of PN *n and *n in PLa	
Table 4-25: Development of PN *ŋ in PLa	
Table 4-26: Summary of PN sources of PLa stops' manner of articulation	
Table 4-27: Summary of PN sources of PLa initials	
Table 4-28: Proto Lalo rhymes	
Table 4-29: Matisoff's (2003) interpretation of Benedict's (1972) Proto Sino-Tibetan	
monophthongs and diphthongs	86
Table 4-30: Proto Ngwi finals (Bradley, 1979b: 118)	
Table 4-31: Comparison of Benedict/Matisoff's PB and Bradley's (1979b)	
PN open vowels	87
Table 4-32: Comparison of Matisoff's (2003) PB and Bradley's (1979b) PN	
nasal and stop final rhymes	88
Table 4-33: Development of PB/PN front vowels in Written Burmese, Lahu, and PLa	88
Table 4-34: Development of PN *i in PLa	
Table 4-35: Examples of PN *i's development in PLa	90
Table 4-36: Further examples of PN *i's development in PLa	
Table 4-37: Examples of PN *ej and *i's development in PLa	91
Table 4-38: Development of PN *e in PLa	91
Table 4-39: Examples of PN *e's development in PLa	
Table 4-40: Development of PN *aj in PLa	92
Table 4-41: Examples of PN *aj's development in PLa	
Table 4-42: Examples of PN *waj's development of in PLa	
Table 4-43: Examples of PN *we's development in PLa	94

Table 4-44: Development of PB/PN central and back vowels in Written Burmese,	
Lahu, and PLa	
Table 4-45: Examples of PN *a's development in Proto Lalo	
Table 4-46: Examples of PN *u's development in PLa.	
Table 4-47: Examples of PN *ow's development in PLa.	
Table 4-48: Examples of PN *o's development in PLa.	
Table 4-49: Examples of PN *aw's development in PLa	
Table 4-50: Examples of PN *wa's development in PLa	
Table 4-51: Examples of PN *am, *wam, and *wan's development in PLa	
Table 4-52: Examples of PN *um's development in PLa.	
Table 4-53: Examples of PN *im's development in PLa	
Table 4-54: Development of PN *in in PLa.	
Table 4-55: Development of PB *in and *i:n in Written Burmese, Lahu and PLa	
Table 4-56: Development of PN *in and *i:n in PLa.	
Table 4-57: Examples of PN *an's development in PLa	
Table 4-58: Examples of PN *aŋ's development in PLa.	
Table 4-59: Examples of PN *wan, *on and *un's development in PLa	
Table 4-60: PLa harsh vowels	
Table 4-61: Development of PN *ip, *it, *ik in PLa Table 4-62: Development of PN *ip, *it, *ik in PLa	
Table 4-62: Examples of PN *ip, *it, *i:t, *ik's development in PLa	
Table 4-63: Examples of PN *et, *ek, and *øk's development in PLa	
Table 4-64: Development of PN rhymes with close back vowels *u and *o	
Table 4-65: Examples of PN rhymes with close back vowels *u and *o	
Table 4-66: Development of PN *ap, *wap, *at, *wat	
Table 4-67: Examples of PN *ap, *wap, *at, *wat's development in PLa Table 4-67: Examples of PN *ap, *wap, *at, *wat's development in PLa	109
Table 4-68: Development of PN *ak, *wak, *jak in PLa	
Table 4-69: Examples of PN *ak, *wak, *jak's develoment in PLa	
Table 4-70: Summary of PN sources of PLa rhymes	111
Table 5-1: Phonation types, pitch correlates, and active valves of the throat.	
Adapted from Edmondson and Esling (2006)	
Table 5-2: Proto Ngwi and Proto Lalo tones	
Table 5-3: Tonal development in Central Lalo and MD	
Table 5-4: Examples of PLa Tone *2 split	
Table 5-5: Lexical items failing to meet the conditions for the Tone *2 split	
Table 5-6: Puzzles of the PLa Tone *2 split Table 5-7: Planta *2	
Table 5-7: PLa Tone *2 split in MD and Eka	
Table 5-8: Tonal development in W, E, C Lalo and MD	
Table 5-9: Tonal development in SE-GP	
Table 5-10: Tonal development in YL, XZ and Eka	
Table 5-11: Tonal development in Central Lalo	
Table 5-12: Tonal development in Eastern Lalo Table 5-12: Tonal development in Eastern Lalo	
Table 5-13: Examples of E Lalo varieties' Tone *1 split Table 5-14: Tangel development in WL ale application	
Table 5-14: Tonal development in W Lalo varieties	
Table 5-15: Examples of Tones *1 and *H in C, E, and W Lalo	
Table 5-16: Examples of *L in C and W Lalo	
Table 5-17: Examples of tonal reflexes in C and SE Lalo	
Table 5-18: Examples of XZ, YL, and Eka's developments in Tone *1	
Table 6-1: Innovations that define Lalo subgroups	
Table 6-2: PLa innovations Table 6-3: 'bat' and 'wife'	
Table 6-4: Greater Lalo lexical innovations for 'crow (n)' and 'taro'	
Table 6-5: Core Lalo innovative -tsa ³³ plural marker in pronoun paradigm	
Table 6-6: Phonological innovative -isa ²² plural marker in pronoun paradigm	
Table 6-7: Lexical innovation for 'white'	
Table 6-8: Distribution of innovations in *pu, *p ^h u, and 'white'	
rable o-o. Distribution of mnovations in "pu, "p"u, and writte	130

Table 6-9: *a, *aŋ, *o, *y, and *i in E-SE	150
Table 6-10: Summary of E-SE rhyme innovations	151
Table 6-11: C-W phonological innovation of $*g > *y/_*a$, $*a\eta$, $*o$	152
Table 6-12: C-W lexico-semantic innovations involving 'soft'	152
Table 6-13: Innovations in tone from Proto Lalo	154
Table 6-14: Innovations involving *bwi and *bi	155
Table 6-15: *bwi	156
Table 6-16: *bi	156
Table 6-17: Vowel changes in Central Lalo	157
Table 6-18: Vowel assimilation in Central Lalo	157
Table 6-19: Summary of C Lalo rhyme innovations	158
Table 6-20: Other W Lalo innovations	159
Table 6-21: Summary of ecologically non-distinctive changes in Lalo	160
Table 6-22: Other languages in contact with Lalo	160
Table 6-23: Summary of distinctive Lalo subgroup innovations	162
Table 7-1: RTT intelligibility test results	168
Table 7-2: Correlations between LD and Intelligibility	172
Table 7-3: Villages named as 'same,' 'a little different' and 'very different'	177
Table 8-1: Degrees of endangerment of Lalo varieties (1)	179
Table 8-2: UNESCO (2009) endangerment scales in the Lalo context	180
Table 8-3: Degrees of endangerment of Lalo varieties (2)	181

1.1 Purpose

The purpose of this work is to elucidate the diachronic and synchronic relationships between regional varieties of Lalo, a Ngwi (Loloish) language cluster spoken in western Yunnan, China. This book presents the phylogenetic subgrouping of Lalo varieties based on shared innovations after the Proto Lalo phase. As a complement to the subgrouping, a synchronic classification of Lalo varieties according to phonetic distance, intelligibility, and speaker perceptions is also given. Data, collected from nineteen Lalo villages during 2008, includes 1,000 item lexicons, intelligibility tests, and sociolinguistic interviews on contact, dialect perceptions, and ethnolinguistic vitality. The comparative method is applied to the lexical data to first reconstruct Proto Lalo and then to subgroup the daughter varieties. Phonetic distance between varieties is quantified by the Levenshtein edit distance algorithm and analysed with NeighborNet network analysis and multi-dimensional scaling. These methodologies, along with intelligibility test results and sociolinguistic data, enable an integrated synchronic and diachronic depiction of Lalo dialect diversity.

This work is the first to systematically investigate Lalo dialectology. Chen et al.'s (1985) reference to two dialects, East Mountain and West Mountain, is shown to be only the tip of the iceberg of Lalo variation. This work finds that Lalo has four major dialect clusters, Eastern (E), Southeastern (SE) Western (W), and Central (C), and four peripheral varieties, Mangdi (MD), Eka, Yangliu (YL) and Xuzhang (XZ). E, SE, W, and C varieties are located in and around the traditional Lalo homeland of southern Dali Prefecture and phylogenetically comprise the Core Lalo group. C varieties are the most conservative diachronically and are spoken by the majority of Lalo speakers (over 70%); they are also historically associated with Weishan County, the heart of the Lalo homeland. East Mountain and West Mountain Lalo both belong to the C cluster, though certain East Mountain varieties show influence from E varieties. Further back in time than Core Lalo is the Greater Lalo group, which encompasses Core Lalo plus XZ. Ancestors of Eka, the most divergent variety, emigrated out of the Lalo homeland area approximately 300 years ago. MD ancestors emigrated from Dali approximately 200 years ago. It is unclear whether YL of Baoshan Prefecture represents an early settlement or later emigration. Dialectometric analysis also uncovers the four dialect clusters and four peripheral varieties, but not upper-level groupings such as Core Lalo. Intelligibility test results show that cross-cluster comprehension is low, but that most C speakers understand the C varieties in western Weishan County.

Ngwi language studies, including foundational works such as Matisoff's (1973) *Grammar of Lahu* and Bradley's (1979b) *Proto-Loloish*, have much to contribute to the field of linguistics as awhole, especially with regards to Tibeto-Burman language history, tone change, indigenous language dialectology, and endangered language documentation. The reconstruction of Proto Lalo here not only enables a systematic account for the development of modern Lalo varieties, but also helps clarify some issues in the reconstruction of Proto Ngwi rhymes (see Chapter 4.3). The analysis of Lalo tone change in Chapter 5 adds to the understanding of how laryngeal features condition secondary tone change. The examined tone changes show interactions between prevocalic consonants' laryngeal features and pitch contour, and between phonation types and pitch height.

Dialectology studies of Ngwi languages have now begun to reveal the full extent of linguistic diversity in the region (e.g., Pelkey 2011, Wang 2003). This research comes at a critical time for Lalo dialectology and for minority language documentation in southwestern China, where a large

number of Ngwi languages are disappearing before linguists are even aware of them (Bradley 2007). Several previously undocumented varieties, some of which are definitively endangered, are presented here. The classification of Lalo varieties is critical knowledge for language planning and maintenance efforts, which is an urgent need for the Lalo language as a whole. This book is one of the first to apply the Levenshtein distance algorithm as a measure of phonetic distance to a Tibeto-Burman language. By proving a strong correlation between phonetic distance and comprehension test results, this book offers further validation of the use of Levenshtein distance as a dialectometric tool, one that may be successfully applied to yet other under-researched languages.

The remainder of this chapter covers essential background to the study: the historical and social context of Lalo, previous research on Lalo, and the theoretical framework used in this book. An outline of the book is also given.

1.2 Historical and social context of Lalo varieties

1.2.1 Phylogeny

Lalo varieties are classified in descending order as Tibeto-Burman, Burmic (Lolo-Burmese), Ngwi (Loloish), Central Ngwi (Bradley 2002b). Burmic, one of the more well-defined subgroups within Tibeto-Burman, includes two branches, Burmish, including Burmese, and Ngwi (Loloish) (Bradley 2002b). Matisoff's (1969, 1972, 2003) reconstruction of Proto Burmic and Proto Ngwi and Bradley's (1979) reconstruction of Proto Ngwi are based on hundreds of cognate sets from over a dozen languages. Both Matisoff's and Bradley's reconstructions are generally acknowledged as reliable, thirty and forty years after their respective publications.

Bradley (1979, 2002b) subgroups Ngwi languages into four branches: Northern, including Nosu and Nasu; Southern, including Hani and Akha; Southeastern, including Phula; and Central, including Lisu, Lahu, Lolo, and Lalo. Criteria for subgrouping include phonological innovations in initials, rhymes, and especially tones. Central Ngwi languages also have lexical innovations for 'dog' and 'fire' (Bradley 2004). Figure 1-1 below illustrates Lalo's family tree. Central Ngwi languages also include Jinuo, Kucong, and possibly Sani, though Pelkey (2008) argues for Sani and Nisu (classified as Northern Ngwi) to be placed in the Southeastern Ngwi branch along with Phula.

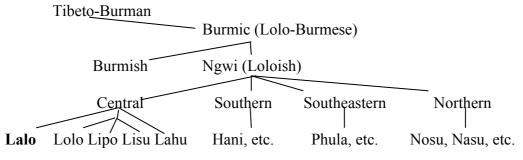


Figure 1-1: Phylogeny of Lalo, based on Bradley (2002b)

Ngwi languages are firmly within the Chinese cultural sphere of influence (a.k.a. the Sinosphere), and as such share certain areal features with Chinese languages, being tonal, monosyllabic, analytic type languages (Matisoff 2003). Ngwi languages such as Lahu and Lalo are characterised by Matisoff (1989) as 'omnisyllabic' languages, in which almost every syllable is assigned a lexical tone, and tonal systems encompass a range of features including pitch height and contour, phonation, duration and intensity.

1.2.2 Population

Lalo ethnic population is estimated around 500,000 (Chen Shilin et al. 1985, Björverud 1998); however, the number of Lalo speakers is far fewer, as many Lalo in Lincang Prefecture and elsewhere have shifted to Chinese. As census data is based on ethnicity rather than language, a

population estimate for Lalo (part of the Yi ethnic group) is difficult. An estimate of the number of Lalo speakers, as opposed to Lalo who have shifted to Chinese, is even more complicated. However, based on the Chinese demographic sources listed in Appendix A, as well as interviews with government workers in the Ethnic Minorities and Religious Affairs Bureau at each county visited, a rough estimate of Lalo speakers is given in Table 1-1. Numbers of ethnic Lalo are given in the second column, and Lalo speakers are grouped by dialect cluster. The total number of Lalo speakers of all varieties is probably less than 300,000, about 60% of the number of ethnic Lalo. The *Gazetteer of Nanjian County* (NJXZ 1993) reports that only half the number of ethnic Lalo still speak the language. The overwhelming majority of Lalo speakers belong to the Central Lalo subgroup, with W and E groups trailing behind, and peripheral groups with only a few thousand each. Eka in Shuangjiang County, not included below, has a population of approximately 3,000 speakers.

	Ethnic							
County	Lalo	С	Е	W	SE	XZ	YL	MD
Weishan	90,000	80,000			6000			
Nanjian	84,000	42,000						
Jingdong	75,000	50,000						
Yongping	35,000	12,000		20,000				
Yangbi	32,000	10,000		17,000				
Changning	14,000	10,000						
Midu	9000	9000			6000			
Dali	15,000		15,000					
Longyang	16,000			7000		2000	7000	
Gengma	1000							1000
Cangyuan	2000							2000
Yun	150,000	~0						
Fengqing	114,000	~0						
Jinggu	58,000	~0						
Total: ~500,000		213,000	15,000	44,000	12,000	2000	7000	3000

Table 1-1: Estimated number of Lalo speakers

1.2.3 Geography

Ethnic Lalo are found mainly in southern Dali, northern Baoshan, northern Pu'er, and northern Lincang prefectures in Yunnan Province in southwestern China (Chen Shilin et al. 1985). There is also one Lalo village in Nujiang Prefecture (Bradley, personal communication, February 19, 2010). The Chinese government has classified Lalo as belonging to the Yi nationality, a classification shared by many diverse groups such as Lolo, Sani, Phula, Nisu, Nasu, and Nosu. Lalo's geographic distribution in western Yunnan has led Chinese linguists to classify it as "Western Yi" (Zhu 2005). Figure 1-2 shows the location of Yunnan province and the prefectures in western Yunnan where most Lalo live. Weishan County in Dali Prefecture is considered by many as the traditional homeland of the Lalo.

Figure 1-2: Map of Yunnan, China

As Lalo officially belongs to the Yi nationality, county gazetteers and censuses do not reliably distinguish it from other Ngwi languages in the Yi nationality (e.g., Lolo and Nisu), making population estimates and distribution maps difficult. The vast majority of Lalo are found in Dali Bai Autonomous Prefecture. However, not all Yi in Dali are Lalo. Eastern Dali, particularly the area bordering Chuxiong Yi Autonomous Prefecture, is home to various regional varieties of Lolo, Lipo and Lisu. Bradley (2004) also documents a very small number of Lamu speakers in Binchuan County. Fieldwork conducted in Xiangyun and Binchuan confirmed that most Yi in these counties are Lolo or Lipo-speaking; if there are Lalo there, they are very few in number. A divergent dialect of Nisu is found in Yunlong, Yangbi, and Yongping counties; the relevant county gazetteers identify this group as descending from a group of soldiers sent to the area during the first year of the Ming dynasty, 1368 A.D. (YPXZ 1994, YBXZ 2000). Eryuan County in northern Dali is home to the undocumented Ngwi language 'Gomotage' [yo21mo33ta55yo21], literally 'people of the mountain,' which is possibly related to languages such as Kua-nsi [khua³³n²¹s]⁵⁵] in neighboring Heqing County, reported in Castro et al. (2010). There are also some Nosu in Yunlong and Yangbi counties (YLXZ 1992, YBXZ 2000), as well as further north in Dali Prefecture and on up into southern Sichuan Province.

Lincang Prefecture, as late as the early 20th century, was home to many Lalo speakers, as documented by the traveler H.R. Davies (1909). Lolo speakers were probably also present, having migrated out of their traditional homeland in Chuxiong Yi Autonomous Prefecture. However, during fieldwork in Lincang, I found that of the approximately 260,000 Yi living there, only a handful of elderly people still speak their heritage language. In far northern Fengqing County, on

the border with Nanjian County of Dali, I found a few elderly Lalo speakers. Government officials in the Minorities and Religious Affairs Bureau at the county and township level were explicit about the dearth of speakers of Yi languages in northern Lincang, whether Lalo or Lolo. In general, Minorities and Religious Affairs Bureau officials are fairly accurate at identifying which areas still have speakers, even for small numbers.

There are however, a few areas in central and southern Lincang where Ngwi languages are being maintained. In central Lincang, there is an under-documented Ngwi language, Limi, reported in Li and Shi (2004). In southern Lincang, there are two Lalo-related groups that still maintain their language, the Eka and the Mangdi (MD) Lalo. Both groups claim Weishan County (referred to as Menghua, an older name for Weishan) as their ancestral homeland, though each group migrated out of Weishan during a different time period.

When speaking Chinese, the ethnic category is always referred to as 'Yi,' never 'Lalo' and certainly not 'Lolo,' a term which has been used by Chinese speakers as a pejorative reference to members of the Yi nationality. Therefore, after the shift to Chinese, assimilated Yi are not able to identify whether they are descendants of Lalo or Lolo. Probably most assimilated Yi in Fengqing and Yun counties are descendants of Lalo, given their proximity to Nanjian County, with some descendants of Lolo scattered throughout eastern Yun County and Lincang County.

Jingdong County in Pu'er Prefecture lies at the crossroads of Chuxiong and Dali, and therefore also at the intersection of outward migrations of Lalo and Lolo. Both Lalo and Lolo groups are found in Jingdong, but ethnolinguistic vitality is waning, with children failing to learn their heritage language. Based on the declining vitality in Jingdong, which is closest to vital areas of Lalo and Lolo, I assume that Lalo/Lolo groups further south in Jinggu County are probably even less vital and possibly already moribund.

Key counties for Lalo in Dali Prefecture are Weishan, Nanjian, Yangbi, Yongping, and the surrounds of Xiaguan (the capital of Dali Prefecture). Weishan, Nanjian, and Yangbi counties in Dali Prefecture and Jingdong in Pu'er Prefecture have been designated as Yi autonomous counties due to the large numbers of Yi living there, most of whom are Lalo. Weishan and Nanjian counties, formerly one administrative unit known as Menghua, are considered the traditional homeland of the Lalo. In Baoshan Prefecture, Lalo speakers are also found in the surrounds of Longyang (the administrative name for the capital of Baoshan.

The topography of the Lalo area is marked by mountain ranges and deep river gorges that are typical of western Yunnan. Lalo tend live at higher altitudes than their Bai or Han neighbors, especially along the Ailao and Wuliang mountain ranges, both of which start in the Weishan/Nanjian area and extend to the southeast. Living at higher altitudes mean less fertile soil and less access to water than in the valleys, with resultant economic disadvantages.

1.2.4 History

As early as the Eastern Han dynasty (25-220 A.D.), loosely connected tribal clusters such as the Kunming and the Sui began the transition from a nomadic, pastoral lifestyle to an agricultural one in western Yunnan (You 1994). In 76 A.D., the Kunming people of Weishan County aided the Han dynasty in their defense of Dali's Yunlong and Yongping counties against the Ailao, a tribe from the Baoshan region (YNYZDC 1986). Though the Kunming people have not been definitively linked with any modern day ethnic group, there is a strong possibility that they were Burmic or Ngwi-speaking peoples, given their cultural characteristics and geographic distribution. There is therefore reason to believe that ancestors of the Lalo (and speakers of other Ngwi languages) have been in the Weishan area for over two thousand years.

Weishan and Nanjian counties in Dali Prefecture are widely considered to be the traditional homeland of the Lalo. Central Lalo speakers who have migrated out of Weishan to Nanjian and Jingdong counties even have a regional autonym linking them to the area. This group call themselves 'Misha-pa,' referring to the ancient administrative region known as Mengshe or later Menghua, which originally encompassed southern Weishan and northern Nanjian (Bai 2002). The last syllable -pa in 'Misha-pa' is Lalo for 'person,' so 'Misha-pa' means 'person from Misha' (pronounced Mengshe in Chinese) (Bai 2002). Mengshe is an historically important region that

gave rise to the Nanzhao kingdom, a semi-independent state that challenged imperial China's hold over Yunnan during the Tang dynasty (618.907 A.D.) (Backus 1981, You 1994).

During the Tang dynasty, the Ngwi peoples surrounding Er Hai Lake and Baoshan were known as the Wu Man (literally 'black barbarians') (Backus 1981). The Wu Man of this area were already distinct from the Bai Man (literally 'white barbarians'), a group associated with the Bai. Around the middle of the seventh century, the Meng clan, part of the Wu Man tribal network, together with other chieftains around Er Hai Lake, loosely formed 'The Six Kingdoms', of which the Meng controlled the southernmost region known as Mengshe (Backus 1981). The population of most of the Six Kingdoms were Bai Man, with some Wu Man mixed in; however, the leading Meng tribe were definitely Wu Man (You 1994). Because of Mengshe's southern location in relation to the other chieftaincies, it was referred to as the Nanzhao (南诏), literally 'Southern Kingdom,' which became the standard way of referring to the entire kingdom under the leadership of the Meng clan.

Around 730 A.D., the Tang dynasty used the Mengshe Wu Man, headed by Piluoge, to fight off the Tubo (Tibetan) invasion of the Six Kingdom area and bring the rest of the Six Kingdoms under Tang dominance (Backus 1981, You 1994). The Mengshe were successful in beating back the Tubo, uniting the Six Kingdoms under their leadership, and thus founding the Nanzhao kingdom. The Tang made Piluoge 'King of Yunnan' as a reward for his service. In 742.747 A.D. the Tang used the Mengshe to put down a rebellion of the Eastern Cuan around Lake Dian, thereby increasing Nanzhao's area of influence. The Nanzhao rebelled against the Tang in 750 A.D., provoking the Tang into attacking Nanzhao three times. Each time, the Tang army was defeated at great cost. The Nanzhao continued to expand their influence to the north and south, until a succession of weak, pleasure-seeking kings weakened the Meng family power, and corruption and oppression taxed Nanzhao agricultural production to its limits. In 902 A.D. the Bai Man nobility staged a coup, killing the Nanzhao king and over 600 members of the Meng tribe. The Bai Man then established the Dali Kingdom, which was dominated by pre-Bai peoples.

From comments in *The Book of Southern Barbarians* (Fan Chuo 1961: 79), two aspects of the sociolinguistic context of Tang-era Dali are probable: 1) the Bai Man's speech variety was perceived as most similar to Chinese, and therefore 'more correct' than the Wu Man's, and 2) The Bai Man and the Wu Man did not speak mutually intelligible varieties, since they had to employ intermediaries to communicate their meaning. These aspects fit with the interpretation that the Bai Man were probably ancestors of the Bai people, and that the Wu Man were a distinct linguistic group. The Bai language has long been characterised by influence from Chinese, with large amounts of its lexicon borrowed from Chinese, to the extent that its status as a Sinitic or Tibeto-Burman language is controversial (Wang 2005). Therefore, from the perspective of Chinese historians during the Tang dynasty, the Bai Man's pronunciation would be deemed as 'more correct' than the Wu Man; this fits with the Bai sociolinguistic context. Backus (1981: 50) also links the Bai Man with proto-Bai.

Backus (1981: 50) further links the Wu Man of the Dali region with ancestors of the Yi. But 'Yi' is a contemporary ethno-political category that includes most Ngwi languages, even as it excludes certain Central Ngwi languages such as Lisu and Lahu. All branches of Ngwi were probably already separate by the time of the Tang dynasty; even Central Ngwi had probably already diversified by that time. Speakers of proto-Lisu, one of the Central Ngwi languages genetically closest to Lalo, were already distinct from the Wu Man of the Dali area, as evidenced by their distinct exonym 'Shi Man' or 'Shun Man' (You 1994). The Central Ngwi speakers who have traditionally occupied the Mengshe region are Lalo, and their regional autonym 'Misha-pa' specifically links them to the Mengshe region and the Meng clan. Also, many Lalo themselves claim to have used the surname 'Meng' (\overline{k}) in the past and thus claim descent from the Mengshe tribe, the leaders of the Nanzhao. The current geographic distribution of the Lalo and the dialect diversity found in southern Dali both point to a Lalo point of origin in the very same locale from which the Meng tribe first came to power. The Nanzhao population most likely consisted of both proto-Bai and proto-Lalo speakers. The Meng clan, leader of the Nanzhao kingdom, is more likely to be ancestor to the Lalo than to any other language group.

After the destruction of the Nanzhao kingdom, many Mengshe escaped persecution by fleeing to other areas such as Yangbi and Fengqing (WSDC 1986). Some Meng changed their last name to

'Cha', 'Zi' and 'Zuo', surnames commonly found among the Lalo today (WSDC 1986). Others remained in the Weishan/Nanjian region, which in the Yuan dynasty (1271.1368) became known as Menghua. Menghua is now often used as an exonym to refer to Lalo groups who have migrated out of the Weishan/Nanjian area.

The Mongols invaded and destroyed the Dali kingdom in 1253 A.D., fully incorporating Yunnan as a political entity within China. Increased Han immigration to the Dali area placed increasing pressure on the Lalo people. During the Qing dynasty (1644.1912 A.D.), unsurpassed numbers of Han Chinese migrants poured into Yunnan, settling there and becoming a dominant influence in the area (Giersch 2006). Chinese-speaking Muslims, known as Hui, also became a major ethnic group, especially in the northern section of Weishan's central valley (Atwill 2005).

These population dynamics served to push the Lalo out of Weishan's central valley and into the mountains on either side, or out of the Weishan area altogether. Eka speakers report their migration from Weishan to have occurred 300-400 years ago, around the beginning of the Qing dynasty, a date which is also reported in the *Gazetteer of Shuangjiang County* (Zhao 1995). MD speakers claim to have left some 400-500 years ago, but the *Gazetteer of Gengma County* (GMXZ 1995) reports the migration to have occurred more recently, around 200 years ago. Yangliu and Xuzhang Lalo probably also migrated out of the Weishan area, though specific dates of migration are not available (BSDQZ 1998).

1.2.5 Linguistic ecology

Like all minority language communities in China, Lalo speakers are under considerable pressure to assimilate to Chinese. Lalo bilingualism in Chinese is widespread in urban areas, and language maintenance efforts are hindered by the lack of a standardised orthography. In Chinese language policy, one minority group theoretically speaks one language and should therefore use a single writing system. Lalo has been designated as belonging to the western dialect of Yi, so the government permits them to use 'Standard Yi,' an ideographic script that has been promoted for all Yunnan Yi (Bradley 2001). However, this script is based on traditional scripts belonging to other Yi groups, not Lalo. Lalo never shared in this tradition, and no Lalo are likely to be motivated to learn this complex ideographic script. Only a few materials have been published in Standard Yi, further decreasing the likelihood of its use by the Lalo. Sadly, it is unlikely that current language policy would permit the Lalo to develop an official orthography based on a Lalo variety. Language policy aside, being a member of a minority group brings certain benefits, such as additional points given on school entrance exams. Also, in counties and townships where Lalo are a significant proportion of the population, Lalo are often selected as local political officials.

Standard Mandarin is the language of education, though teachers in rural areas often speak Southwestern Mandarin, the local dialect of Mandarin spoken in Yunnan. The focus of education is the mastery of Chinese and its writing system. Due to the complications related to the Standard Yi script, no bilingual education materials have been used in Lalo schools. Bilingual education is not currently implemented for Lalo speakers on a county or prefectural level. However, in some primary schools in rural areas with a high concentration of Lalo speakers, Lalo teachers may informally explain the meaning of Chinese words in Lalo (P.L. Blackburn, personal communication, August 6, 2006). Lalo has felt the influence of the Chinese language for a long time, and there are many loanwords from Chinese into Lalo. Vocabulary related to modernisms such as 'tractor,' 'school,' etc., are all likely to be Chinese loans. However, even with these loans, the great distance between Mandarin and Lalo erects a substantial barrier to Lalo children in learning Mandarin; it is a totally alien tongue they are being required to master.

Lalo, Southwestern Mandarin and Standard Mandarin exist in a triglossic balance. Lalo is used in the home and as a means of intra-group communication. Southwestern Mandarin is the language used to address non-Lalos in the township marketplace or in public domains in rural areas. Standard Mandarin may be used in public domains and secondary schools in towns, but its use is often determined by the speaker's confidence in his or her correct pronunciation.

Bilingualism in Lalo and Southwestern Mandarin is an attribute of many Lalos, and was already noted by British explorer H.R. Davies (1909) during his trek through Weishan in the early 1900's.

Certain sections of the population, however, such as older women who have less access to education and less contact with non-Lalos, are considerably less proficient in Mandarin (P.L. Blackburn, personal communication, August 6, 2006). Men and younger people, especially those living closer to towns, are much more likely to be fluent Mandarin speakers. A growing proportion of Lalo parents living in towns, or in villages with a mix of Han and Lalo, may choose to only speak Mandarin to their children. On the other hand, in rural areas with a large concentration of Lalo, inter-generational transmission of Lalo still continues (see Chapter 8.2).

During the Qing dynasty, many Lalo reacted to the influx of Han and Hui migrants by moving (or being pushed) into mountainous regions that were further from Han domination, but also poorer in natural resources such as water and arable soil. Those Lalo groups who were able to establish a local society where the majority of social ties were with other Lalo have been able to maintain their language, as in the case of East Mountain Lalo.

An important aspect in the maintenance of these dense networks is marriage practices. Cha Shufang, a native speaker from western Weishan, reports that West Mountain Lalo tend to marry other Lalo, and that Lalo parents hope that their children marry other Lalo. Bride exchange is a practice in which brides marry into other Lalo villages and their home village receive brides from these other villages. This practice serves to create and strengthen networks between Lalo villages. As in the case of East Mountain Lalo and rural West Mountain Lalo in Weishan, this maintenance of Lalo-centered social networks has led to the strong ethnolinguistic vitality that is observed there today.

In contrast, the low level of vitality of Lalo in Nanjian County is a result of assimilation under the growing Han influence; it is reported that only half the ethnic population in Nanjian can speak Lalo (NJXZ 1993). Likewise, those Lalo who moved out of the Weishan region altogether, migrating south where they came into contact with Chinese and other minority groups, also tend to show much lower ethnolinguistic vitality (GMXZ 1995). The resulting diffuseness of the 'Lalo-ness' of their social networks is a contributing factor to their eventual assimilation to Chinese culture.

However, the vitality shown by rural Lalo also correlates to factors such as living in poorer, more mountainous regions, which make economic success much more challenging. The majority of rural Lalo are poor farmers, producing rice, potatoes and corn. Given the difficulty of making a living in such an environment, it is not surprising that young Lalo are drawn to the more lucrative jobs found in towns. Cha Shufang reports that most young people would gladly move to urban areas, and that it is only lack of opportunity that holds them back. Furthermore, she predicts that if a young Lalo does migrate, they would teach Chinese to their child and not Lalo. This choice is probably influenced by increased contact with Han Chinese and desire to integrate into Han Chinese-dominated society.

In urban settings, young Lalos' eagerness to assimilate and lack of interest in passing Lalo on to their children is also linked to an attitude that devalues Lalo identity. Many Han Chinese have a negative attitude toward Lalo as an identity and as a language. This attitude is usually expressed as a feeling that Lalo are 'backward,' as in less advanced than Han culture. Lalo themselves can sometimes internalise these negative attitudes, especially in urban settings where they are in close contact with Han society. This is a contributing factor to language shift among urban Lalo. On the other hand, many Lalo in western Weishan view the Lalo language as an integral part of identity (see Chapter 8.2). For those who value their identity as Lalo, this link with the language provides further motivation to pass it on to their children. Language as a core value linked with identity is an important factor in language maintenance (Bradley & Bradley 2002).

As of yet, there are no available printed materials for language maintenance work. The lack of any workable orthography for Lalo, caused by current language policy for the Yi, is a major barrier. However, non-print media such as VCDs (similar to DVDs but with less storage capacity) containing footage of Lalo songs, dances and festivals, are becoming more popular in Weishan. These could become an important tool in status planning for Lalo. Using modern media to promote Lalo culture and language could do much to combat negative attitudes towards Lalo as a backward language. In terms of corpus planning, though, Lalo is stymied at the pre-codification stage, and this is a major hindrance to any future maintenance work.

1.3 Previous research on Lalo

Although Lisu and Lahu, Lalo's sister languages, have been the subject of extensive research (Matisoff 1970, 1973 [1982], Bradley 1979a, 1994, 1997, 2006), there are large gaps in the research on Lalo. Until now, no documentation or comparative work on Lalo dialects, and therefore no reconstruction of Proto Lalo, has been accomplished or even attempted. The current consensus that Lalo has two dialects, East Mountain and West Mountain, is shown to be woefully inadequate. Central Lalo is the only Lalo dialect cluster to have been linguistically documented to any degree, being the subject of one reference grammar (Björverud 1998) and a handful of published and unpublished phonological sketches and wordlists. Locations of the data collection sites of these descriptions are presented in Table 1-2. Whether the source consists of a phonological sketch, wordlist, or both is specified in the column labeled 'Type'. As place names have changed several times in the intervening years since data collection, identifying the present day locations of the varieties described is difficult but possible through reference to geographic place name gazetteers from the 1980's.

Source	Туре	County	Township	Village cluster
Davies, H.R. (1909)	wordlist	Weishan	Dacang	Dianzhong
Björverud (1998)	both, and	Weishan	Wuyin	Longjie
	grammar			
Huang and Dai (1992)	both	Weishan	Wuyin	
YNYF (1984)	wordlist	Weishan	Wuyin	
Hu and Duan (2000)	both	Weishan	Ma'anshan	Bijia
Blackburn, Blackburn & Cha	wordlist	Weishan	Ma'anshan	Qingyun
(2007a)				
Wang (2003: 60-64)	sketch	Weishan	Qinghua	Yangjiang
Wang (2003: 65.68)	sketch	Weishan	Miaojie	Gucheng
Chen, Bian, and Li (1985)	sketch	Weishan	Niujie	Aiguo
Chen, Bian, and Li (1985)	wordlist	Nanjian	Bixi	Zhonghua
Sun (1991)	both	Nanjian	Bixi	Zhonghua
Wang (2003: 69-73)	sketch	Nanjian	Bixi	Zhonghua
YNYF (1984): W Lalo	wordlist	Yangbi		
Lam and Lam (2008): E	both	Dali	Xiaguan	Diaocao
Lalo		municip.		

Table 1-2: Previous research on Lalo

Davies (1909) is the first modern record of Lalo, with a short wordlist from Dacang Township in Weishan County. Although Davies was only an amateur linguist, his transcription is still recognisably Central Lalo, probably East Mountain. Chen, Bian, and Li (1985), a sweeping survey of many Ngwi languages, is one of the first to mention a distinction between East Mountain and West Mountain dialects, but does not provide any evidence to substantiate the dichotomy. Other early work on Lalo are the wordlists in YNYF (1984) from Weishan and Yangbi counties. The wordlist from Yangbi is the only previous documentation of a W Lalo variety; unfortunately, the transcription is inconsistent and poor quality.

Björverud (1998) presents the most complete description of a Central Lalo variety, including phonology, morphology and syntax, based on her research in Longjie Village, Wuyin Township, Weishan. Björverud also provides a comparative wordlist in an appendix. While no other source comes close to Björverud's breadth and depth of information and analysis on the Lalo language, Björverud herself acknowledges that historical reconstruction and dialect comparison are outside the scope of her thesis. She therefore limits her description to the variety found in Longjie Village, with only occasional reference to varieties from surrounding villages.

Documentation of non-Central varieties is almost non-existent. YNYF (1984) is the only previous record of a W Lalo variety, and an unpublished 400-item wordlist (Lam et al. 2007) and unpublished phonological sketch (Lam & Lam 2008) are the only sources available on any E Lalo

variety. This lack is probably due to the perception of Weishan and Nanjian counties as the traditional homeland of the Lalo, thereby attracting researchers' attention to the exclusion of other varieties.

The East Mountain and West Mountain labels are based on the groups' geographic distribution within Weishan: West Mountain speakers are located in the mountains to the west of Weishan County's main valley, and East Mountain speakers to the east. East Mountain Lalo (less than 10,000 speakers) has a much smaller population and more limited geographic spread than West Mountain, being mainly located in the northeast corner of Weishan County. Given 'East Mountain' and 'West Mountain's' geographic link to the topography of Weishan County, it is not surprising that these labels are only applicable to Lalo varieties within Weishan County. Eastern Lalo speakers in Dali municipality, just north of the East Mountain area, reject the label 'East Mountain,' and instead use a loconym linking them to Dali, not Weishan. The term *loconym*, coined by Matisoff, refers to a place name that has been extended to serve as the name of a group. Likewise, Central Lalo speakers living outside of Weishan also do not use the West Mountain loconym.

Chen et al. (1985) incorrectly affix the East Mountain label to other Lalo dialect groups besides those found in the northeast corner of Weishan. Wang (2003) and Zhu (2005) follow in this error. These sources are wide-sweeping surveys of Yi languages as a whole, and for lack of adequate information have failed to distinguish differences among Lalo subgroups. The result of this false dichotomy is a confusing demographic distribution: East Mountain varieties are claimed to range from Midu in the east all the way west to Baoshan Prefecture, located to the far west of the West Mountain area (Zhu 2005). The East Mountain label thus conflated the Central Lalo in northeast Weishan (the true East Mountain) and the Eastern Lalo spoken in Dali Municipality. Since villages in this area are geographically close to each other, wear a similar ethnic costume, and are located to the east of the West Mountain variety, the label 'East Mountain' may have seemed a good fit, but it does not correspond to linguistic reality.

1.4 Theoretical framework

In order to classify Lalo varieties, I use an integrated theory of dialectology that takes both synchronic and diachronic dialectal relationships into account. Phylogenetic relationships are investigated using theories and methods from historical linguistics. The approach to language change is based on a phonetically based theory of sound change associated with the work of Ohala (1993a, 1993b, 2003), and Labov's (2001, 2007, 2010) theory of sound change that integrates the tree and wave models. These ideas inform an implementation of the comparative method that does not discount the role of contact. Both linguistic and sociolinguistic criteria are incorporated for subgrouping, following Toulmin (2006, 2009). Synchronic relationships between Lalo varieties are explored using ideas from the field of dialectometry, which uses aggregation to quantify dialectal differences, and cross-dialectal intelligibility, that is, the levels of comprehension listeners show when listening to a related language variety.

1.4.1 Sound change

Ohala's phonetically based theory of diachronic sound change is limited to pure sound change, excluding psychological and social factors such as leveling of morphological paradigms and borrowing, and thus focuses on changes that occur as a result of physiological factors in the production and perception of speech. He also constrains his claims to 'mini' sound changes, that is, the variation in pronunciation that is the initial stage of sound change, rather than the 'macro' sound changes that have spread through the speech community.

The basic framework focuses on the central role of the listener's misperception of the acoustic auditory signal. Ohala (2003) notes that speech production and perception show synchronic variation that resembles diachronic change. For example, a close front vowel following a velar stop often conditions palatalisation of the stop, a phenomenon that sets the stage for the diachronic

change [ki] > [tji]. The seeds of diachronic change are precisely this synchronic, subphonemic variation. The listener, who has extensive experience with variation, is often able to factor out the noise of variation to correctly interpret the acoustic signal. However, variation in speech can sometimes create enough ambiguity that the listener fails to normalise the speech signal, and a novel pronunciation norm develops— a mini sound change.

There are two main types of listener error, and both have relevance to sound change. Firstly, perceptual hypocorrection leads to assimilation: the listener fails to correct and takes the signal at face value. An example of this is the misinterpretation of 'in-perfect' as 'imperfect'. Secondly, perceptual hypercorrection leads to dissimilation: the listener inappropriately applies corrective strategies. For example, Matisoff's (1970) case of glottal dissimilation in Lahu: when the glottal prefix occurred on words in *Low-stopped tonal category that ended in a glottal stop, the final glottal dropped off and left the newly-contrastive high-rising tone in its wake. According to Ohala, dissimilation at a distance is likely to occur with features that tend to spread, such as glottalisation or labialisation. The presence of two glottal stops on the same syllable created maximal ambiguity, leading the listener to undo their effect by interpreting the glottal stop. One key contribution of Ohala's model is the role given to experimental phonetics in explaining sound change. In keeping with this tradition, I use acoustic analysis of the tonal systems of Lalo varieties to look for the phonetic motivations of the tonal changes, discussed in Chapter 5.

In order to explain how a mini sound change spreads through a speech community to become a macro sound change, I follow Labov's (2001, 2007, 2010) synthesised model of sound change. Labov (2007) presents a reconciliation of the tree and wave models of language change. While he maintains the tree model as the primary output of the comparative method, he recognises diffusion as an important, albeit secondary, process. Each model is best suited for explaining phenomena associated with different mechanisms of language change, that is, change from below (language internal change), and change from above (contact-induced change). According to Labov, languages change mainly through two distinct pathways: incrementation, which happens during the transmission of language by adults to children, and diffusion, which happens through contact and is mostly conducted by adults. The two processes are different because of the different language learning abilities shown by children versus adults.

The tree model best fits the process of transmission, wherein children receive the entire language system as first language learners, including all of the system's complexity and inherent variation. As children faithfully replicate the system, they also relate the variants heard in the community with age, understanding that younger speakers have a distinctive linguistic identity through their differential use of the variable elements. Through generational differences in the use of variants, e.g., an increase in frequency of a variable, each generation of native speakers advance the incrementation of change beyond that of their caretakers. The family tree model is generated by this language internal change, which serves to increase the distance between sister languages.

In contrast, the wave model is useful when dealing with diffusion, which mainly occurs when adults come in contact with each other. As adult learners are limited in their capacity to grasp the complexities of the whole system, diffusion changes are usually at a less abstract level, such as borrowing lexical items or phonetically conditioned alternation, but not lexical or morphologically conditioned alternation. The effect of the transfer of features from one community to another is to diminish distances between languages.

Different social contexts favor either transmission or diffusion. Incrementation requires the unbroken sequence of parent-child transmission, and communities that show this type of change are usually characterised by geographic uniformity and stability through time. Diffusion, on the other hand, is associated with the movement of adults across speech communities for commercial or social reasons, such as that seen along trade routes.

Shared features may be a result of either shared innovation or diffusion, so distinguishing shared innovation, which is the result of shared incrementation of change, from diffusion is crucial for subgrouping Lalo varieties. Labov (2007) provides a general principle for teasing apart transmission versus diffusion type changes, based on the different language learning shown by adults and children. Incrementation often involves a greater degree of structural complexity than

diffusion, while diffusion often shows less regularity and is less governed by structural constraints than incrementation. For example, Labov associates splits with transmission rather than diffusion, since adults rarely add new contrasts to their already formed phonological system. Conversely, chain shifts, in which whole subsystems interrelate and evolve together, are more closely associated with transmission than diffusion. Both splits and chain shifts are called on as important subgrouping criteria for Lalo dialect groups, as discussed in Chapter 6.

1.4.2 Reconstruction and subgrouping

In order to subgroup Lalo varieties, I first reconstruct Proto Lalo using the comparative method. Since subgrouping is based on shared innovations, a clear picture of the ancestor language is vital to the process of deciding which shared features are the result of shared innovations or retentions. The comparative method remains the most effective method for establishing linguistic phylogeny (Campbell & Poser 2008, Joseph 2008). Challenges to its efficacy, notably in Durie and Ross (1996) and Aikhenvald and Dixon (2001), serve to further refine awareness of the complexities of real-life linguistic ecology, such as contact-induced change, areal diffusion, dialect chains, and so on. Looking at the full sociolinguistic picture strengthens the comparative method as a diagnostic tool by providing a lens of interpretation that is grounded in social and historical interaction.

The comparative method is by nature a cyclical process built on educated guesses. As summarised in Ross and Durie (1996) and Campbell (2004), the process begins with a hypothesis that the languages in question are genetically related. My hypothesis is that all varieties that share the autonym of *Lalo* and/or affiliate under the exonym *Menghua* are related. To test this hypothesis, I compare the lexicons of these varieties, look for systematic correspondences, and establish which lexical forms are cognates. I then compare the cognate sets to the reconstructions of Proto Ngwi (Bradley 1979) and Proto Burmic (Lolo-Burmese) (Matisoff 2003), using these well-established reconstructions as a guide to the development of Proto Lalo. Once I have identified the regular correspondence sets, I look at irregular occurrences to see if they might be the result of contact-induced change or if they necessitate a further refining of the correspondence sets. Irregularity can be caused by a number of social and cognitive factors, such as lexical borrowing, onomatopoeia, avoidance of homophones, taboo words, and many more (Campbell 1996). In the Lalo situation, there is known contact between East Mountain Lalo and Eastern Lalo, so contact-induced change may be suspected when shared features between the two groups show irregularity. However, in areas where sociolinguistic interviews have established that contact between particular dialects is limited, irregularity points to a need for further delving into possible rules of sound change.

Once cognate sets have been established, I compare the various varieties' reflexes to reconstruct Proto Lalo. The reconstruction process is informed by commonly accepted principles as summarised in Campbell (2004): directionality of change, majority wins, factoring in features held in common, and economy (i.e., Occam's razor). Like Baxter's (1992: 20) reconstruction of Old Chinese, I strive for a reconstructed phonological system that is plausible from a synchronic viewpoint. After reconstructing the proto-phonemic system, I then reconstruct approximately 1,000 Proto Lalo morphemes, given in Appendix E.

The comparative method uncovers shared innovations, which I then use as isoglosses, revealing the geographic distribution of specific linguistic variables. The reconstruction of Proto Lalo enables the identification of unique shared innovations among Lalo varieties in lexicon, phonology and morphosyntax. Retentions are rejected as a basis for subgrouping. Innovations that are the result of drift, independent development, or contact, are also inadequate for subgrouping and are filtered out by requiring innovations for subgrouping to meet certain criteria, described below. This research focuses on innovations in lexicon and phonology. Phonological innovations are especially useful for classifying Lalo varieties, because as analytic languages they show a paucity of morphological marking. Lexical change that innovates both syllables in a compound word is also valuable for subgrouping (Bradley 2004).

Toulmin (2006, 2009) argues for a methodology of reconstruction and subgrouping that incorporates both linguistic and sociolinguistic factors. As I also seek to present an integrated

picture of the linguistic and sociolinguistic relationships between Lalo regional varieties, I adopt Toulmin's three main criteria for evaluating shared innovations: 1) linguistic complexity of the innovation, 2) ecological distinctiveness of the innovation, and 3) sociohistorical plausibility. All three of these criteria are called on for substantiating the diachronic subgrouping of Lalo varieties given in Chapter 6.

Toulmin's first criterion refers to the principle that the more complex the conditioning of a change, the less likely the change developed independently. Morphologically conditioned phonological changes or changes that involve whole paradigms are especially valuable. Nichols (1996) refers to these types of changes as 'individual-identifying,' meaning that they have a low probability of happening independently, and thus they identify a unique proto-language. While Kessler (2001) criticises the statistical validity of Nichols' method for establishing the probability of a certain change occurring, the principle remains that more complex changes have a higher value for subgrouping than common or phonetically natural changes do. LaPolla (2000) suggests paradigmatic change in person-marking as a useful standard in Tibeto-Burman languages, but Lalo, like other Ngwi languages, does not mark person. Paradigmatic change in pronouns as a set and whole tone systems are examined. For example, the innovative suffix *-tsa³³* marking the plural form in the personal pronoun paradigm, with concurrent tonal assimilation of the preceding syllable to mid pitch, serves to group C, E, and W Lalo together.

The innovations identified in the subgrouping of Lalo, while substantial, are not at the same level of complexity required for grouping an entire phylum of languages together. The reconstruction and subgrouping process for Lalo varieties is at a micro-comparative level, that is, within a collection of closely related varieties/languages, as opposed to macro-comparison, which seeks to define relationships between far more disparate and distantly related languages, as in the Tibeto-Burman phylum (Matisoff 2001). The time depth for the diversification of Lalo varieties is relatively shallow, most likely within the past 500 years. As such, the standard of complexity for innovations that are individual-identifying for Lalo dialect groups is lower than it would be for a phylum of many distinct languages.

Toulmin's second criterion, the ecological distinctiveness of the innovation, refers to the uniqueness of the innovation in the context of the other languages of the area. If the innovation goes against the grain of the general areal trends, it is more ecologically distinctive. Most Lalo speakers show high levels of bilingualism in the superstrate language, Yunnanese Mandarin, and Lalo linguistic ecology is characterised by diglossia between the two languages. Innovations in Lalo varieties that show features shared with Yunnanese Mandarin are therefore less compelling evidence for shared history. For example, Yunnanese Mandarin has neither preglottalised sonorants nor harsh phonation. The loss of these features in Lalo varieties is widespread, found in almost all dialect groups, and may be construed as structural convergence with SW Mandarin. Given the sociolinguistic ecology, the diagnostic value of the loss of preglottalised sonorants and harsh phonation is low.

Toulmin's third criterion, sociohistorical plausibility, is based on the supposition that the occurrence of an innovation should co-occur with speakers' face-to-face interactions. Speaker interaction may be proven or reasonably posited through geographic contiguity and/or patterns of social interactions. The sociohistorical conditions must be attested by non-linguistic evidence, to avoid the circularity of arguing that because a group shares a particular innovation, they must have had a shared history, which then validates the use of that particular innovation in question.

Pittayaporn (2007a) and Toulmin (2006) both emphasise the importance of the relative chronology of innovations when proposing subgrouping criteria. Toulmin identifies three main ways for sequencing innovations: linguistic, textual, and sociohistorical. As Lalo does not have a textual tradition, linguistic and sociohistorical factors must be relied on for relative chronology of innovations. When a change feeds or bleeds the environment for another change, the two changes can be ordered relative to one another. For example, preglottalised sonorants blocked the development of Tone *1's low-rising tone split in W Lalo. The loss of preglottalisation must therefore be ordered after Tone *1's split. Sound change in loanwords can also help date sound changes. Dates of migration out of the Lalo homeland of Weishan/Nanjian are also useful for relative chronology. Ancestors of the peripheral group Eka left the Lalo homeland approximately

300-400 years ago, according to their oral history and Chinese sources such as Zhao (1995). The changes that characterise the Core Lalo group, which are not found in Eka, can therefore be dated as happening within the past three or four hundred years.

1.4.3 Dialectometry

While the comparative method is sufficient for establishing phylogenetic relations, a synchronic picture of how the varieties relate to each other is also useful, particularly one that is validated through perceptual experiments. Phonetic distance between varieties, as measured by Levenshtein distance, provides this alternate perspective. Levenshtein distance has been validated as approximating both speakers' perception of difference and levels of cross-dialectal intelligibility (Gooskens & Heeringa 2004, Gooskens 2006). Phonetic distance groupings should not be interpreted as phylogenetic groupings, although they may match the true phylogenetic tree, but rather as phenograms, diagrams that depict 'taxonomic relationships...based on overall similarity...without regard to evolutionary history or assumed significance of specific characters' (Dictionary.com). I therefore use phonetic distance as a complement to the comparative method. This perspective is helpful when considering the linguistic and sociolinguistic factors that go into language planning.

The traditional way of using isoglosses defines dialect groups categorically: either they possess a distinguishing feature or not. Cumulative patterns of phonological and lexical isoglosses are used as evidence of dialect borders. However, there are also isoglosses with complex distributions that muddy the picture. While isoglossic bundles suggest dialect borders, partial matches disrupt the border. The inability to deal effectively with partial matches has been identified as one of the primary weaknesses of traditional dialectology (Chambers & Trudgill 1998).

Another weakness is the subjectivity of the researcher when selecting 'significant' isoglosses to define a dialect area. The criteria for significant innovations described above form a qualitative heuristic, not an objective set of rules. There are also patterns in the dialect data that I have dismissed as insignificant from an historical point of view, but which may have social significance to the speakers.

In response to these criticisms of simplification and subjectivity, Séguy (1971) and Goebl (1982, 1984, 2006) pioneered the new field of dialectometry, which attempts quantitatively to measure aggregate differences between dialects. Nerbonne (2009) argues that aggregation enables more general characterisations of variation, such as the sublinear relationship between linguistic and geographic distance, as well as increased objectivity and external validation. The application of Levenshtein distance as a quantitative measure of phonetic distance grows out of this new perspective.

Levenshtein distance, also called string edit distance, is an algorithm that measures the least cost of transforming one string of information into another (Kruskal 1999, Heeringa 2004). Levenshtein distance aligns the segments of the two strings and computes the least cost of transformation in terms of substitutions, insertions and deletions. One of the advantages of Levenshtein distances over other string edit distance algorithms is that it will always find the alignment with the least cost. In dialectometry, Levenshtein distance measures the least cost of transforming one cognate's pronunciation into that of a cognate from another variety. An illustration of Levenshtein distance applied to Lalo varieties is given in Chapter 2.4.1. Levenshtein distance determines the overall pronunciation distances between pairs of varieties, resulting in a distance matrix.

Aggregative Levenshtein distance complements the weaknesses of subjectivity and ambiguous data. It includes every correspondence set, not just those selected by the researcher, so that overall patterns of variation reveal themselves, rather than the researcher imposing the classification from above. It exhaustively exploits the whole mass of data by measuring aggregate differences across the whole word list.

Kessler (1995) was the first to apply Levenshtein distance as a measure of dialect pronunciation differences in Irish. Heeringa (2004) showed that cluster analysis based on Levenshtein distances agreed remarkably with expert consensus on Dutch dialect groupings. More importantly, Levenshtein distance has also been validated experimentally through its strong correlation with

subjective measures of similarity such as dialect perception and intelligibility. Gooskens and Heeringa (2004) found that Levenshtein distance and native speakers' perceptions of dialect difference were highly correlated and highly significant: r = .67, p < .001 (*r* represents Pearson's correlation coefficient and *p* represents the level of significance). In the perceptual experiment, native speakers of Norwegian listened to recordings of 'North Wind and the Sun' in different dialects and then rated the dialect on a scale of 1 to 10 in terms of difference to one's own dialect. Levenshtein distance was used to measure the distance between the pronunciations of cognates in the various dialects' texts. The resulting high correlation suggests that Levenshtein distance is a good approximation of perceptual distances between dialects.

Not only that, Levenshtein distance also shows a strong negative correlation with intelligibility test results for Scandinavian languages: r = -.82, p < .01 (Gooskens 2006). The negative correlation shows that the greater the phonetic distance between two varieties, the more difficult it will be for one to understand the other. Furthermore, Gooskens (2006) uses multiple regression analysis to show that phonetic distance is a more important factor in predicting intelligibility than attitudes of listeners or contact.

Previously, the application of Levenshtein distance had been limited to Indo-European languages. However, Yang (2009a) showed that hierarchical clustering based on Levenshtein distance paralleled that of historical-comparative analysis in Nisu, a Tibeto-Burman language. Also, Levenshtein distance showed a strong, significant correlation with intelligibility test results (r = -.62, p < .001) in Nisu. In Yang and Castro (2008), Levenshtein distance again showed a strong correlation with intelligibility for Bai, (r = -.75, p < .001) and Hongshuihe Zhuang (r = -.72, p < .001). These correlations suggest that Levenshtein distance is a good approximation of intelligibility for East Asian tonal languages.

In this book, I apply Levenshtein distance to twenty-four Lalo varieties' shared cognates to obtain a phonetic distance matrix. Data from all nineteen visited Lalo villages are included, plus data from six Lalo villages from Lam and Chan (2009). This distance matrix is then processed with network building and multidimensional scaling software, described in Chapter 2.4.3, to visualise the synchronic groupings of Lalo varieties. I also correlate Levenshtein distance with intelligibility test scores (Chapter 2.5) to provide external validation. Specifics of the Levenshtein distance algorithm are provided in Chapter 2.4.1.

1.4.4 Intelligibility

Another important aspect of the synchronic relationships between Lalo varieties is intelligibility, that is, the level of comprehension speaker A obtains when listening to speaker B. The criterion of 'mutual intelligibility' is often invoked in defining whether varieties are dialects of the same language or related languages (Wardhaugh 1986, Chambers & Trudgill 1998). One key weakness of this criterion is that non-linguistic factors, such as political autonomy, shared written tradition, or contact, are often more influential in determining the classification of 'dialect' vs 'separate language'. In China, Lalo has been classified as the Western dialect of the 'Yi' language, a classification influenced by both linguistic and political factors. Though it is not the purpose of this research to reclassify Lalo in an ethno-political sense, the low level of initial intelligibility between Lalo dialect groups should be acknowledged as a linguistic reality.

The development of intelligibility testing methods such as Casad (1974) was based on the assumption that speakers of dialects of the same language should be able to understand one another the first time they communicate. The ease of understanding is due to the similarity between the two varieties' linguistic systems, which makes it easy for listeners to assimilate the sounds they are hearing into their native system (Heuven 2008). Blair (1990) separates inherent intelligibility, which comes out of the relationship between varieties, and acquired intelligibility, which comes out of the relationship between speakers. Inherent intelligibility is homogeneous across the community, but acquired intelligibility is dependent on the amount of contact listeners have had with the other variety. The intelligibility testing methods used in this research focus on testing inherent intelligibility by screening out participants that have had exposure to the varieties being tested. In

cases where contact cannot be factored out, the results may reflect acquired instead of inherent intelligiblity.

Milliken (1988) distinguishes initial intelligibility and long-term intelligibility, depending on the opacity of the sound correspondences that obtain between the two varieties. Some types of sound correspondence patterns do not obstruct comprehension, others may temporarily obstruct, while yet others cause major obstacles to long-term intelligibility. As speakers from dialect A are exposed to dialect B, they form hypotheses linking the variants they are hearing with their own phonological system. These hypotheses may or may not have to be revised; if revision is necessary, intelligibility is slowed down but not necessarily out of reach. When listening to another dialect, speakers link the sounds they hear to the most similar eligible phoneme in their own dialect. But complex correspondence patterns, such as the one illustrated below, render the dialect opaque to listeners from another dialect, no matter how frequent that correspondence set is.

For example, the divergent developments of Proto Lalo rhymes *a and *an contribute to a complex vowel correspondence pattern between Eastern Lalo and Central Lalo, seen in Figure 1-3 below. In Eastern Lalo, *an > /a/ and *a > /o/ in most reflexes but *a is retained as /a/ in high frequency words such as negation marker /ma²¹/, whereas in Central Lalo, *an > /u/ and *a remains /a/. These diachronic developments are seen in the first two boxes of Figure 1-3. The synchronic correspondences are seen in the third box: Eastern Lalo's /a/ sometimes corresponds to Central Lalo's /a/, but in words whose source had rhyme *an, Eastern Lalo's /a/ corresponds to Central Lalo's /u/. Eastern Lalo's /o/ (from *a) corresponds to Central Lalo's /a/. This sets up an incongruent pattern in which Eastern Lalo's /a/ and /o/ may correspond with Central Lalo's /a/, while Eastern Lalo's /a/ may also correspond to Central Lalo's /u/.

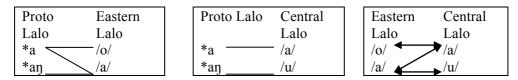


Figure 1-3: Complex vowel correspondence pattern

This complex pattern creates uncertainty during communication, because listeners cannot reliably connect the sounds they hear to their own phonological system. This uncertainty has been found to have a negative impact on cross-dialectal intelligibility (Milliken 1988, Moberg et al. 2007). This may partially explain the low intelligibility between Eastern Lalo and Central Lalo. Imagine the difficulty listeners from E-DC experience when trying to understand a speaker from CW-QY. In the conversation, the CW-QY speaker might say something like 'drink!' [du⁵⁵], but the E-DC listeners will probably not be able to connect this utterance to their word for 'drink,' [da²¹] (from *daŋ¹). Instead, they may interpret it as 'get out!,' pronounced [du³³] in E-DC (from *do^H 'exit, leave') and similar in pronunciation to CW-QY's 'drink'. C varieties' reflex for 'get out' is harsh du³³ [do³³], while most other varieties' show modal /du³³/ or /do³³/. Even if the context of the situation helps E-DC to understand CW-QY's meaning, the complexity of the correspondence patterns throughout the lexicon is such that misunderstandings are bound to arise.

Intelligibility testing, as described in Chapter 2.5, is used in this book as an external validation of Levenshtein distance and as a rough indicator of the impact of cross-dialectal difference on comprehension. The linguistic ecology of Lalo varieties, including their relationship to other languages spoken in the area, encompasses many sociolinguistic factors besides that of intelligibility, such as speaker perceptions of difference, inter-dialectal contact, and ethnolinguistic vitality. Several ecological aspects have already been introduced in §1.2.5. Besides quantitative measures of difference such as intelligibility and phonetic distance, I also use qualitative methods for exploring these factors, as described in Chapter 2.6 and 2.7.

1.5 Outline of the book

In this chapter, I set out the purpose guiding the research: to classify Lalo regional varieties from both a diachronic and synchronic perspective. The remainder of the book consists of seven chapters. Chapter 2 deals with the methodology used to investigate the diachronic and synchronic relationships between Lalo varieties, while Chapter 3 presents phonological sketches of sixteen Lalo varieties, most of which have never been described before. The reconstruction of Proto Lalo is the subject of Chapters 4 and 5: while Chapter 4 presents the reconstruction of Proto Lalo initials and rhymes, Chapter 5 deals with reconstructing Proto Lalo tones and the subsequent tone changes in modern Lalo varieties. Chapter 6 presents the diachronic subgrouping of Lalo varieties, and Chapter 7 presents the synchronic classification, as seen through phonetic distance, intelligibility, perceptions of difference and inter-dialectal contact. The concluding chapter then discusses the contributions and implications of this research. An overview of each chapter is given below.

Chapter 2 describes the methodologies used in order to answer the research question, and covers both data collection and analysis. Data collection includes the location of datapoints, protocols for wordlist recording and selection of participants. Data analysis includes a discussion of the acoustic analysis of tones, the Levenshtein distance algorithm, intelligibility testing, and qualitative methods for investigating speaker perceptions, interactions, and ethnolinguistic vitality.

Chapter 3 presents sketches of the phonological inventories of sixteen Lalo varieties under investigation. Because most Lalo varieties have never been documented before, this phonological analysis is a crucial first step to both the reconstruction of Proto Lalo and the classification of Lalo varieties. Phonologies of selected representative varieties of the four Core Lalo dialect groups (C, E, W, SE) and the four peripheral Lalo varieties are given in detail. Other varieties that affiliate with one of the dialect groups are given in less detail, and comparisons are made between the representative varieties within that dialect group.

Chapter 4 presents the reconstruction of Proto Lalo segmental phonology, including both initial consonants and rhymes. As this book is the first documentation of Lalo varieties, it is also the first attempt to reconstruct Proto Lalo. The reconstruction of Proto Lalo is a necessary foundation for the process of subgrouping; shared innovations can be distinguished from shared retentions only when the proto-language is reconstructed. My reconstruction of Proto Lalo is based on Bradley's (1979) Proto Ngwi (PN), Matisoff's (1972, 2003) Proto Burmic (PB), and historical-comparative analysis of 1,000-item wordlists from nineteen Lalo varieties. The Proto Lalo syllable template is *(C)VTP, in which one of 44 optional initials or clusters is followed by one of 9 obligatory rhymes, one of three pitch heights, and harsh or non-harsh phonation. Proto Lalo has palatalised labial and velar consonant clusters, alveolar and palatoalveolar affricates, and distinguishes between plain and preglottalised sonorants and fricatives. Its vowel system is fairly symmetrical, with three degrees of height and backness, one rounded front vowel *y and one nasal-final rhyme, *aŋ.

Chapter 5 presents the Proto Lalo tonal system and the subsequent tone changes that occurred in Lalo varieties. Beyond distinguishing Proto Lalo tonal categories, which do not differ substantially from Proto Ngwi, I use acoustic tonal analysis to provide evidence for the phonetic values of Proto Lalo tones. The Proto Lalo tonal system distinguishes three pitch heights (high, mid, low) and two types of phonation, harsh and non-harsh. In describing the tonal changes, I use recent developments in the understanding of the physiological production of tone and phonation types (e.g., Edmondson and Esling (2006)) to provide phonetic and perceptual explanations for the changes that occurred. Parts of this chapter have been published as Yang (2010).

Chapter 6 gives the diachronic Lalo subgroups, based on shared innovations that meet the criteria for subgrouping as described in §1.4.2. Based on innovations in onsets, rhymes, and tones, several lower-level Lalo dialect clusters can be identified: Central (C), Western (W), Southeastern (SE) and Eastern (E). In addition, there are several peripheral Lalo groups who migrated out of the Lalo homeland at various times: Xuzhang Lalu (la²¹lu³³) and Yangliu Lalu (la²¹lu⁵⁵pa⁵⁵) in Baoshan Prefecture, and Mangdi Lalo (lo²¹lo³³pq²¹) and Eka (o²¹k^ha²¹) in Lincang Prefecture. C, W, SE, and E dialect groups are linked to each other at a higher level that excludes peripheral groups, suggesting a core Lalo homeland in the Weishan/Nanjian area from which peripheral groups migrated outwards in separate waves.

Chapter 7 presents the synchronic classification of Lalo varieties, based on the results of quantitative measures of phonetic distance, intelligibility, and qualitative description of speaker perceptions and interactions. After presenting clusters based on phonetic distance, I also discuss the differences and similarities with the diachronic subgrouping described in Chapter 6. Phonetic distance and intelligibility test scores are found to be highly correlated at a significant level. The division between each of the dialect clusters is substantial enough to lead to low mutual intelligibility, a reality that must be considered in any future language development.

Finally, Chapter 8 discusses the contributions of this research and directions for future research. I first discuss the alarming degree of language endangerment seen in many Lalo varieties, underlining the urgency for further work in this area. I then summarise the big picture on Lalo varieties, recapitulating the correlations and discrepancies between the synchronic and diachronic classifications. The result is an elucidation of the historical and current, as well as linguistic and sociolinguistic, relationships between Lalo regional varieties.

2.1 Introduction

This chapter presents the methods used to collect and analyse the linguistic and sociolinguistic data relevant to the diachronic and synchronic classification of Lalo varieties. Each method used enables a different piece of the puzzle to be placed; none of the methods are sufficient in themselves for a complete picture. From a diachronic perspective, the comparative method enables the depiction of relative degrees of phylogenetic closeness. From a synchronic perspective, the phonetic distance between varieties gives a snapshot of phonetic similarity that has been shown to approximate speakers' perceptions of difference and intelligibility (Gooskens & Heeringa 2004, Gooskens 2006).

While diachronic and synchronic perspectives provide the linguistic bases for classification, sociolinguistic tools are necessary for a more socially grounded representation. Speaker interactions through social contact and folk history are explored through sociolinguistic group interviews and the village leader interview. Speaker perceptions, such as speakers' ability to comprehend different varieties, are tested functionally through intelligibility tests and explored subjectively through interview questions dealing with perceived difference and prestige. Finally, the ethnolinguistic vitality of each datapoint is assessed by asking speakers about factors identified as critical in language maintenance, such as children's language proficiency and language attitudes (Bradley & Bradley 2002, Brenzinger 2007). The goal is a rich depiction of the language ecology of Lalo, particularly the relative degrees of genetic closeness, phonetic distance, intelligibility, contact, and speaker perceptions of intelligibility, difference, and prestige.

The tools used to answer these questions come from the related fields of historical linguistics and dialectology, as well as relatively new fields such as perceptual dialectology and dialectometry. I use the comparative method to look for systematic correspondences, compare that to the already reconstructed Proto Ngwi (Bradley 1979b) and Proto Burmic (Matisoff 2003), and then reconstruct the Proto Lalo phonological system and a lexicon of approximately 1,000 morphemes. Based on my Proto Lalo reconstruction, I then group varieties based on shared innovations after the Proto Lalo stage.

To gain a synchronic, dialectolometric snapshot of the variation, I use Levenshtein distance (Heeringa 2004), a tool from dialectometry, to measure the phonetic distance between the varieties, and quantitative processing methods such as NeighborNet (Bryant & Moulton 2004) and multidimensional scaling (MDS) to analyse the groupings. I also correlate Levenshtein distance with the intelligibility test results to provide external validation.

I test intelligibility within and across dialect clusters using a revised version of Recorded Text Testing (RTT) methodology (Casad 1974, Kluge 2007). I use sociolinguistic interviews developed from Nahhas, Kelsall and Mann (2005) and Pelkey (2008) to gain an understanding of how dialects and dialect differences are perceived by native speakers (see Appendix C for interview schedules). I ask speakers for their opinions on which varieties are most similar to their own speech and which varieties are the most important or most pleasant sounding, as well as degree of difference and difficulty in understanding. I also ask them what kinds of interactions they have with speakers of other varieties.

Finally, the levels of ethnolinguistic vitality seen in Lalo varieties are placed on an endangerment continuum according to UNESCO's (2003, 2009) and Krauss's (2007) scales of endangerment.

2.2 Data collection

2.2.1 Location of datapoints

Fieldwork conducted during 2008 entailed onsite data collection in nineteen Lalo villages in four prefectures and ten counties. Table 2-1 gives the locations and abbreviations for the Lalo varieties whose linguistic and sociolinguistic data form the basis of this research. East Mountain and West Mountain Lalo are represented by one variety each, CE-YA and CW-QY; other Central varieties are not labeled as West Mountain, since those speakers do not use that loconym. Figure 2-1 shows the locations of all Lalo datapoints, in Dali, Baoshan, Pu'er and Lincang Prefectures.

Tentative datapoints were primarily selected based on areas with a high concentration of Lalo speakers that had not already been the subject of documentation. These tentative datapoints were then discussed with Lalo speakers from the area, especially Lalo speakers from each county's Ethnic Minority and Religious Affairs Bureau (EMRA). Lalo government officials from the EMRA were invaluable in selecting villages that fit the following criteria: 1) varieties with high language vitality, and 2) varieties that differed from the speech of other locations in the same county. Varieties with high language vitality were chosen to ensure there would be available speakers and to provide a benchmark of vitality for the area. If varieties identified as highly vital showed signs of language shift, this implied that areas identified as less vital were even further down the endangerment scale. I also purposely sought varieties that were reported to be maximally different from other varieties in the area in order to access the widest possible range of Lalo dialect diversity.

Dialect group	Prefecture	County	Township	Village	Abbrev.
Central (East					
Mt)	Dali	Weishan	Yongjian	Yong'an	CE-YA
Central (West					
Mt)	Dali	Weishan	Ma'anshan	Qingyun	CW-QY
	Dali	Weishan	Wuyin	Longjie	C-LJ
	Dali	Yangbi	Wachang	Wachang	C-WC
Central	Dali	Yongping	Shuixie	Leba	C-LB
	Dali	Nanjian	Xiaowandong	Chajiang	C-CJ
	Pu'er	Jingdong	Anding	Qingsheng	C-QS
	Dali	Dali	Shijiao qu	Diaocao	E-DC
Eastern	Dali	Dali	Fengyi	Houshan	E-HS
	Dali	Dali	Taiyi	Taoshu	E-TS
	Dali	Yangbi	Taiping	Dutian	W-DT
Western	Dali	Yangbi	Longtan	Shuizhuping	W-SZP
western	Baoshan	Longyang	Wama	Shanglizhuo	W-SLZ
	Dali	Yongping	Changjie	Yilu	W-YL
Southeastern	Dali	Midu	Micheng	Gaoping	SE-GP
Xuzhang	Baoshan	Longyang	Wafang	Xuzhang	XZ
Yangliu	Baoshan	Longyang	Yangliu	Yangliu	YL
Eka	Lincang	Shuangjiang	Heliu	Yijiacun	Eka
Mangdi	Lincang	Gengma	Нераі	Mangdi	MD

Table 2-1: Locations of Lalo datapoints

Figure 2-1: Location of all Lalo datapoints

2.2.2 Material and participants

Both the comparative method and dialectometric measures of phonetic distance require lexical data from the various varieties being compared, but previously, no linguistic data was available for most Lalo varieties. One contribution of this research is the collection of lexical data from previously undescribed Lalo varieties. The most important instrument for collecting this type of data is the wordlist, in which glosses are arranged in semantic categories and a bilingual speaker is asked to translate from the national language into their native language. To collect the necessary lexical data, I adapted Pelkey's (2011) wordlist, selected participants who were fluent native speakers, and carefully elicited and recorded the translated items.

Pelkey's (2011) wordlist, developed for Southeastern Ngwi languages, was created to be maximally comparable with other already published wordlists such as Bradley (1979), Matisoff (1978b), Chen, Bian, and Li (1985), Sun (1991), and Dai and Huang (1992). Björverud's (1998) wordlist of a Central Lalo variety also informed wordlist development. I added 'tile,' which has been shown to be useful for establishing Central Ngwi membership (Bradley 2004). I also pilot tested the wordlist in consultation with a linguistically trained native speaker of Central Lalo (CW-QY), Cha Shufang. Cha identified glosses that elicited a Chinese loanword in her dialect, as well as separate Chinese prompts in the wordlist that elicited the same word in Lalo; these glosses were eliminated. This process of adapting the tool continued for the first six datapoints. Pelkey's (2008, 2011) wordlist of 1,200 items was pared down to 1,001 items. Although this wordlist is insufficient to do an exhaustive phonological analysis, it is long enough to enable a basic phonological sketch, which is appropriate to the aims of this book.

One valuable contribution of Pelkey's (2011) work is the development of frames or carrier phrases that elicit the lexical item in the context of a complete phrase. This clarifies the meaning of

the Chinese prompt for the word list participants by making its form class clear. Frames also enable the researcher to hear the tone of the lexical item in contrast with the tones of the framing words. Framing words on either side of the elicited item were chosen that usually had a mid level tone (e.g., [wu³³] 3SG, or [sa³³] 'three'), although different varieties did not always have mid tone on those particular words. Frames are useful as they discourage list intonation, in which the tone is changed because the speaker is trying to be careful or formal. When asked to speak a natural sentence, the speaker is more likely to pronounce the tone as it is spoken in natural speech. Because the lexical item is uttered in context of the framing words, tone sandhi may affect the tone, which is also useful for analysis. The ideal situation is to use the same frame on all lexical items, but this was not possible given the elicitation situation and the fact that the words are in various form classes. Pelkey (2008: 52.54) describes in detail the rationale for using multiple frames for different form classes, chosen for semantic plausibility to facilitate the speaker's participation. Appendix B is a reproduction of Pelkey's (2008) table of elicitation frame examples, also used in this research.

Once I arrived in a village, I requested that the village leader find several native speakers to be wordlist consultants. The leaders were asked to find bilingual speakers to ensure ease of communication; since most Lalo speakers are bilingual, this criterion was easily fulfilled. After several people showed up, I screened them with several introductory questions to ensure their availability and suitability for the task. Consultants were required to have parents who were native speakers from that village, to be native speakers themselves, to have been born and grown up in the village, and not lived away from the village for more than ten years. People who had married into the village from another village or township were not invited to continue. Often only men were available and/or willing to participate, although I asked for both men and women to participate. I always asked for two or three people to work together through the whole wordlist. The ideal was to have one person consistently give the lexical item and another give the carrier phrase, but this ideal sometimes clashed with the reality of the field situation. Sometimes only one person had time, or two people took turns giving both the lexical item and the frame. Age and gender of the wordlist participants is given in Table 2-2.

The process of elicitation followed a simple plan: Cha Jishun, my research consultant and a native speaker of Central Lalo, asked the wordlist participants how to say the Chinese prompt in their language, sometimes explaining the prompt in the local variety of Mandarin. The wordlist participants would discuss it among themselves if there was any uncertainty, and then Mr. Cha would begin the recording. He first recorded the ordinal number of the prompt and the Chinese gloss, and then motioned for the speaker to say the word in their native language slowly three times. Then he recorded the Chinese gloss of the frame, and again motioned for the second wordlist consultant to utter the frame slowly three times. The wordlist consultants were provided with a list of the Chinese prompts and frames to help disambiguate the meanings.

During elicitation, I probed for additional cognates and asked perceptual questions. When a form was given which differed from that already collected, I asked if the participants could also say the already collected form. Sometimes this probe got a negative response, e.g., 'No, that is how they say it in Location X;' other times, the consultant affirmed that the form was also in use in that area, with a similar or altered meaning, which I noted in a separate column. When a form was given that I perceived to phonetically match a previously given form, I asked if the participants felt the two forms had the same pronunciation, that is, if the two items were homophones or perhaps minimal pairs. If there was a difference, I recorded the consultant saying the minimal pairs carefully, in isolation and with the frame. This was at times invaluable for identifying contrastive phonemes. Often, as would be expected with isolating languages, the forms were homophonous, and participants would often respond, 'Yes, they sound the same but their meaning is different'. Sometimes this would prompt a whole string of homophones being given, which was also useful.

An Edirol R-09 digital recorder was used to record audio in uncompressed .wav format. Video recordings were also made using a Sony DCR-HC48 1MP MiniDV Handycam. All audio and video recordings, requiring over 100 GB of storage, were backed up on two external hard drives as well as DVDs.

Variety	Autonym	Speaker ref.	Citation	Frame	Age	Gender
CE-YA	la ²¹ lu ³³ pa ²¹	YA1		\checkmark	20's	М
		YA2	\checkmark		20's	М
CW-QY	la²1?lu³3pa²1	QY1	\checkmark	\checkmark	20's	F
C-LJ	$l\underline{a}^{_{21}}l\underline{u}^{_{33}}p\underline{a}^{_{21}}$	LJ1		\checkmark	50's	М
		LJ2	\checkmark		50's	М
C-WC	la²1lu³3pa²1	WC1	\checkmark	\checkmark	30's	М
C-LB	la²¹lu³³	LB1	,	\checkmark	30's	М
		LB2	\checkmark		30's	М
C-CJ	l <u>a</u> ²¹ lu ³³ pa ²¹ , mi ⁵⁵ sa ²¹ pa ²¹	CJ1	\checkmark	√	40's	М
	-	CJ2	\checkmark	\checkmark	30's	М
C-QS	mi ⁵⁵ sa ²¹ pa ²¹	QS1	\checkmark	\checkmark	40's	М
		QS2	\checkmark	\checkmark	40's	М
E-DC	la ⁴² lu ³³ pu ⁴²	DC1		\checkmark	60's	М
		DC2	\checkmark		50's	М
E-HS	la ²¹ lo ³³ po ²¹	HS1		\checkmark	50's	F
		HS2	\checkmark		50's	F
E-TS	la ²¹ lu ³³ p <u>2</u> ²¹	TS1	\checkmark	\checkmark	30's	М
		TS2	\checkmark	\checkmark	50's	М
W-DT	la ²¹ lu ³³ po ⁴⁵	DT1	\checkmark	\checkmark	20's	М
		DT2	\checkmark	\checkmark	20's	М
W-SZP	la ²¹ lu ³³ pa ⁵³	SZP1		\checkmark	40's	F
		SZP2	\checkmark		40's	F
W-SLZ	la ²¹ lu ³³ pa ⁵³	SLZ1		\checkmark	40's	F
		SLZ2	\checkmark		40's	М
W-YL	la ²¹ lo ³³ pa ⁵³	WYL1	\checkmark	\checkmark	30's	М
		WYL2		\checkmark	40's	F
SE-GP	0 ³³ ti ²¹ Z0 ²¹	GP1	\checkmark	\checkmark	30's	М
XZ	la ²¹ lu ³³	XZ1	\checkmark	✓	40's	М
YL	la ²¹ lu ⁵³	YL1	\checkmark		18	F
		YL2		\checkmark	50's	М
Eka	0 ²¹ k ^h a ²⁴	Eka1	\checkmark		60's	М
		Eka2		\checkmark	30's	М
MD	lo ²¹ lo ³³ pa ²¹	MD1		✓	40's	М
	- 1 -	MD2	\checkmark		40's	М

Table 2-2: Biodata of wordlist consultants

Table 2-2 provides the group autonym, age and gender of speakers whose recordings provided the basis for the acoustic analysis (described in §2.3 below). These were the main wordlists consultants at each datapoint.

2.3 Acoustic analysis of tone

Acoustic analysis of synchronic tonal systems provides evidence for the phonological analysis (Chapter 3) and reveals possible phonetic motivations for tone change (Chapter 5). The acoustic analysis presented in this book is based on the utterance medial form, i.e., the form embedded in the carrier phrase. Utterance medial forms were usually preceded by a syllable with mid-level pitch that was unlikely to interact with the target syllable. Also, using utterance medial forms avoided the danger of list intonation, as discussed above in §2.2.2.

Monosyllabic, utterance medial target words were used, with nasal or liquid initials to avoid onset-related effects. For CW-QY, preglottalised initials in Tone 1 were also measured in a separate category to illustrate its Tone 1 allotones, as discussed in Chapter 5.3.1. For each tone, approximately 30 tokens were used (on average 10 lexical items, with three repetitions), for an average of 150 tokens per variety. Fundamental frequency (F0) measured in Hertz (Hz) was extracted using Praat language software (Boersma & Weenick 2009) with the _TimeNormalizeF0.praat script developed by Xu (2009). Xu's script measured F0 at 10 equally spaced locations throughout the vowels' duration, from the vowel onset to the vowel offset. The vowel onset can be distinguished from the preceding sonorant initial by its greater amplitude and relatively more jagged wave structure (Baart 2003). For each tone category, Hertz values were averaged for all tokens at each time point.

Hertz values were then transformed to semitones. The musical semitone scale, a psycho-acoustic scale, is a logarithmic transformation of the Hertz scale, and has been shown to better model speakers' intuitions about pitch difference than the raw acoustic Hz scale (Nolan 2003). The Hertz-to-semitone conversion used here is taken from the Praat 5.1.07 manual: semitones = $[12 \times \ln(H/100)]/\ln 2$, where H is the frequency in Hertz. The mean of Tone 3, the mid-level tone, was defined as the zero level pitch value and thus served as the benchmark for normalised pitch for each speaker, as in (Stanford 2008). In the tonal inventory diagrams, Tone 3 is marked with a dotted line to indicate its status as the pitch reference point.

Xu's script also enables measurement of the duration of the tone span. I began measurement of the tone span from the beginning of the vowel through the duration of the syllable. Pitch values on the initial consonant were excluded. I first averaged the actual durations of all tokens in each tone category for each speaker. I then used a paired two sample t-test for means (two-tailed) to test if differences in duration were statistically significant for the following tone categories: 2 (low) versus L (low, harsh), 3 (mid) versus H (mid, harsh), and 1a (high) versus 1b (low-rising). Shorter duration is a redundant feature of tones with harsh phonation. Tones 2 and 3 are L and H's modal counterparts, and are thus expected to be longer in duration than L and H. Longer duration is a redundant feature of the low-rising tone in some but not all varieties that have that tone.

Table 2-3 gives the results of the t-test in varieties that were selected for acoustic tonal analysis presented in Chapter 5. 'Yes' indicates that the difference in duration is statistically significant at the p < .05 level in a two-tailed t-test. The tone given in the table is the longer of the two tones. Tones in harsh phonation are usually shorter than those in modal phonation, although L is unexpectedly longer than 2 in Eka. 'na' indicates that the tone category is not distinctive in that variety. Even though duration differences are not statistically significant in some varieties, e.g., CE-YA and C-LB, tonal inventories are given with actual time for all varieties for consistency's sake.

In summary, the tonal inventories in Chapter 5 are presented in semitones normalised for mean Tone 3 F0. Tone 3 is marked with a dotted line, and the number of tokens used (N) is given for each tone category. Average actual duration of each tone category is given along the x-axis.

	2 (low) vs	3 (mid) vs	1a (high) vs
	L (low, harsh)	H (mid, harsh)	1b (low-rising (lr))
CW-QY	Yes, 2	No	na
MD	No	Yes, 3	na
Eka	Yes, L	Yes, 3	Yes, 1lr
W varieties	No	No	Yes, 1lr
E-DC	Yes, 2	na	No
YL-old	No	No	No
CE-YA	No	No	No
C-LB	No	No	No
XZ	No	No	No

Table 2-3: Statistically significant differences in duration of tone span. Yes indicates p<.05 in a paired two sample t-test for means (two-tailed).

2.4 Measuring phonetic distance

2.4.1 The Levenshtein distance algorithm

Levenshtein distance aligns the phonetic segments of two cognates and computes the least cost of transforming one cognate into another in terms of substitutions, insertions and deletions. Figure 2-2 below illustrates Levenshtein distance between the pronunciations for the word 'tiger' in CW-QY ($/la^{21}pa^{21}/)$ and E-DC ($/lb^{21}pu^{42}/)$). Tone is represented by onset and following contour (e.g. low-even as LE, mid-falling as MF), as explained in §2.4.2 below. Phonetic distance results are given in §7.2.

Figure 2-2 below demonstrates the phone string comparison method, in which differences are binary: either the sounds are the same, with no transformation cost, or they are different, with a cost of one. Consonants and vowels are kept distinct. Insertions, deletions, and substitutions are all weighted the same. Heeringa, Kleiweg, Gooskens and Nerbonne (2006) and Heeringa (2004) found that using binary segment differences was equally valid with that of using gradual measures of distance between segments (i.e., comparing feature bundles). That is, using binary measures, the correlation to perceptual experiment results was equally high with that of gradual measures.

This is a surprising result if viewed from the perspective of historical linguistics. One would expect that transformations between sounds that are more similar should have less weight, just as they do in historical linguistics. McMahon and McMahon (2005) criticise the phone string comparison for this bluntness. However, the external validation of this method comes from perception experiments, and justification of the method also comes from examining how a native speaker processes differences. Heeringa (2004) suggests that because native speakers are sensitive to very slight differences in pronunciation, this weighting of small differences makes sense in the context of the correlation between Levenshtein distance and speakers' perceptions. As discussed in §1.4.4, small differences impact intelligibility due to the correspondence relations between the two compared phonological systems, not whether the sounds are judged alike or similar by external criteria.

In order to prevent longer words from having undue weight in the calculation of average distance, a normalisation function is used in which the total cost is divided by the longest alignment, as in Gooskens and Heeringa (2004). The distances are then expressed as proportions in decimal form. In Figure 2-2, the total cost of 5 is divided by 9, the alignment length of the two cognates, for a normalised cost of 0.56.

Location	Transcription	Operation	Cost
CW-QY	$la^{LE}pa^{LE}$		
	$la^{LE}pa^{LE}$	delete _(harsh voice)	1
	la ^{LE} pa ^{LF}	substitute F for E	1
	$la^{LE}pa^{MF}$	substitute M for L	1
	la ^{LE} pu ^{MF}	substitute u for a	1
E-DC	lo ^{LE} pu ^{MF}	substitute o for a	1
		total cost	5
		normalised cost	0.56

Figure 2-2: Operations in calculating Levenshtein distance

The wordlists are processed using the Gabmap dialectometry software package (Nerbonne, Colen, Gooskens, Kleiweg, and Leinone 2011), freely available on the web at http://www.gabmap.nl. The mean Levenshtein distance is calculated for each pair of varieties based on the Levenshtein distances between all cognates in Swadesh's (1955) 200 wordlist, a subset of the 1,001 item wordlist, resulting in a distance matrix. When measuring phonetic distance, lexical variation is filtered out, and only cognates are accepted as data. However, Lalo is an analytic language with many polysyllabic words, in which one syllable may be cognate with other dialects, but the other syllable may not be. To filter out this 'sub-lexical' variation would place the Levenshtein distance at the morpheme level, not the lexical level, thus removing it even further from the context in which communication occurs. Therefore, I chose not to remove the non-cognate syllables in polysyllabic words. When two words had no overlapping syllables, I treated them as different lexemes. I also excluded Chinese loan words and items in which the Chinese gloss elicited a phrase rather than a lexeme. In total, 175 sets of lexical items were compared.

2.4.2 The representation of tone

Contour tone is a distinguishing characteristic of many East Asian language families; the often complex tonal systems found there call for further refining of the Levenshtein distance method. The first question in dealing with tone is: how important is tone in affecting perception and intelligibility? Gooskens and Heeringa (2006) examined dialect data in Norwegian, which only has two level tonemes, and found that prosody in Norwegian as measured by Levenshtein distance showed only a weak correlation with perceived distance (r=.24, p <.01) and could only explain 6% of the variance. However, in their perceptual experiment with Chinese dialects, Tang and van Heuven (2007) compared natural speech recordings with recordings that had the pitch variations synthetically removed. They found that listeners made better subjective judgments about dialect distance with the tonal recordings than with the recordings that had the tonal information removed. They suggest that for 'full-fledged' tone languages like Chinese, tone has a significant impact on how differences between dialects are perceived.

Yang and Castro (2008) investigated the importance of tone's role in cross-dialectal intelligibility and found it to be significant in both Bai, a Sino-Tibetan language, and Hongshuihe (HSH) Zhuang, a Northern Tai language. We applied Levenshtein distance to word lists from *Bai Dialect Survey* (Allen 2004) and *Hongshuihe Zhuang Dialect Intelligibility Survey* (Castro & Hansen 2009) and correlated the results with intelligibility test scores obtained during the respective surveys. We measured the Levenshtein distances based on tone and segments separately, and then used multiple regression analysis to see whether tone or segments had the greatest relative constribution to intelligibility. Tone was a significant predictor of intelligibility in both Bai and HSH Zhuang, able to explain 56 percent of the variation in Bai and 43 percent in HSH Zhuang. In the case of Bai, tone was a more important variable than segments. This suggests that, in tonal languages, differences in tone have a significant impact on intelligibility.

Since tone has been shown to be a significant factor in intelligibility, using an optimal representation of tone in the transcriptions used for Levenshtein distance is an important question, one addressed in Yang and Castro (2008) with data from Bai and HSH Zhuang. We evaluated six representations of tone by correlating the Levenshtein distance using each tone representation with intelligibility. We then used Meng, Rosenthal and Rubin's (1992) test on correlated correlation coefficients to see if any of the correlations were significantly stronger than the others. Phonetically explicit representations, which include information on tonal onset, contour, and offset, were compared with more phonemic representations of tone such as autosegments and targets.

Phonologists often represent tone as autosegments of H(igh) and L(ow) attached to a tone-bearing unit (Duanmu 1994, Zsiga & Nitisaroj 2007). Contour tones like rising or falling are represented as a sequence of autosegments, LH for rising and HL for falling. Xu and Wang (2001), however, propose a Target Approximation (TA) model, in which targets can be static (register tones, e.g. H or L), or dynamic (contour tones, e.g. R for rising).

A more explicit way of representing tone was also used, which included the tonal onset (H for high, M for mid, L for low), contour shape (R for rising, F for falling), and tonal offset. Concave and convex contours were represented by the sequences FR (concave) or RF (convex). This representation of tone is at a more phonetic level, rather than the more abstract, phonemic level used in autosegmental and target representations. Yang and Castro included two variations of this more explicit representation: onset-contour and contour-offset. Both the autosegment and TA models agree that it is the offset, or target pitch, of the tone that is most salient to the production and perception of native speakers. However, if the listeners operate more as non-native speakers, they may also use tonal onset as a perceptual cue.

Yang and Castro also included Chao's (1930) system of transcription, since this is the most widely used method of transcribing tone in East Asian tone languages. This notation treats tone as a sequence of pitch levels (5 for high, 1 for low), which may not be the optimal representation when modeling intelligibility. The disadvantage of this system is that it treats tone as a series of discrete pitch levels, leaving out explicit information about the contour shape (e.g., rising or falling) that listeners may use in cross-dialectal comprehension.

For both languages, phonetically explicit representations of tone that included information on tonal onset and contour were superior to others. Representations at a more unspecified, phonemic level such as autosegments and targets showed a weaker correlation with intelligibility. This suggests that phonetic detail is important to include in the representation of tone in Levenshtein distance when correlating phonetic distance with cross-dialectal intelligibility.

For Zhuang, onset and contour were essential ingredients for an optimal approximation of intelligibility, while contour-offset was shown to be less than optimal. But for Bai, contour-offset proved superior to autosegment, target, and Chao's pitch numbers. Thus, Yang and Castro could not confirm which is more perceptually salient to cross-dialectal listeners, the onset or the offset. However, given that both Bai and Zhuang show onset-contour as superior, whereas contour-offset is shown only to be optimal in Bai, preference may be given to onset-contour representations.

One explanation for why onset-contour is optimal can be found by examining the types of tonal correspondences that exist between the Bai dialects. The distinguishing innovation for Southern Bai is the mid rising (35) tone corresponding to Central and Northern Bai's high level (55) tone. Both onset-contour-offset (i.e., MRH vs HEH) and onset-contour (MR vs HE) weigh the distance between 35 and 55 at least twice the amount of the other representations. Even though these two tones end up at the same pitch level, they begin at different levels and have different contour shapes, making them difficult for cross-dialectal listeners to assimilate into their own system. Thus, the greater the weight assigned to this kind of difference, the better the inverse correlation with intelligibility.

2.4.3 Analysing the Levenshtein distance matrix

2.4.3.1 NeighborNet network analysis

The output of the selection, coding, and quantification of phonetic data described above is then processed by the network-building program NeighborNet as well as multidimensional analysis (MDS). NeighborNet, first developed by Bryant and Moulton (2004) for use in evolutionary biology, is freely available in the SplitsTree 4 package (Huson & Bryant 2006). Quantitative historical linguist April McMahon and biologist Robert McMahon (2005, 2008) use NeighborNet to give implicit phylogenetic trees based on lexical comparison. Likewise, Pelkey (2008) applies NeighborNet to shared cognate percentages between the more than 20 languages affiliated with the Phula ethnonym.

Lalo varieties, however, are much more closely related to each other than, say, Indo-European languages, or even the Phula languages. The time depth of divergence among Lalo varieties is much shallower than the languages mentioned above. McMahon et al. (2007), in their investigation of English dialects, find that at the level of dialect classification, lexical distance is less useful than phonetic distance, as there is rarely enough lexical difference between vocabularies to reveal fine-grained distinctions. I estimate that most Lalo varieties share between 80% and 100% of their vocabulary. I therefore use Levenshtein distance to measure phonetic distance, and then feed the phonetic distance matrix into the NeighborNet algorithm.

In contrast to lexically-based phylogenetic networks, the use of NeighborNet here is primarily phenetic, not cladistic. Phenetic analysis is based on varieties' overall phonetic similarity, unlike cladistic, which is based on historically significant shared innovations. NeighborNet phenograms (diagrams representing phenetic relations) present a snapshot of cross-varietal relations that includes all synchronic similarity at the phonetic level, whether the similarities are the results of retentions, shared innovations significant for subgrouping, contact-based change, or parallel developments. McMahon et al. (2007) uses NeighborNet in a very similar way to quantify the degree of difference between English dialects, pointing out that the goal in this kind of dialectometry is to reveal synchronic relationships, not diachronic ones. As such, the NeighborNet phenograms presented in this book do not illustrate genetic relatedness; rather, they depict the relative phonetic distance between closely related varieties. The phenograms produced have much in common with the Lalo phylogenetic tree, but are not identical, due to parallel developments, shared retentions, and inter-varietal contact.

Of course, differences in the pronunciation of cognates can arise from historical divergence. However, a regular change that may not be important from a historical perspective, but that affects a large number of words, will have a relatively larger impact on the Levenshtein distance than historically important changes that only affect a few words. For example, the *a rhyme occurs frequently, so that the lexical items in the Central Lalo $/a/\sim$ E Lalo /o/ correspondence set are quite numerous (over 10% of the wordlist). Levenshtein distance will count that difference every time it occurs, so this one regular change contributes more to E-C distances than a change that only occurs, say, in 1% of the words. The weight given to this correspondence set is justified from a synchronic perspective, however, because of the resulting complex correspondence pattern's impact on intelligibility and perception of difference.

As McMahon et al. (2007) note, one of the advantages NeighborNet brings is the ability to represent multiple tree structures in a single diagram. If there are similarities that are incompatible with one tree, NeighborNet still represents them through reticulated lines that form a net-like structure. In this way, ambiguities or mixed signals in the data are made explicit, instead of being collapsed into a single line as they are with tree-building programs such as the Neighbor-joining method (Saitou & Nei 1987), also available in the SplitsTree4 package. The Neighbor-joining method first clusters the two nearest varieties, then joins the next closest variety to the first cluster, and so on until all the varieties are added. This method is reviewed positively by Nichols and Warnow (2008) in their evaluation of computational phylogenetic methods. However, the Neighbor-joining method only represents one tree at a time, without reflecting all the ambiguities inherent in Lalo's complex inter-varietal relationships, which include shared history and contact.

NeighborNet, in contrast, has the advantage of representing all the signals in the data, regardless of whether these signals fit in a tree or not.

This advantage is illustrated through comparing Figure 2-3, Figure 2-4, and Figure 2-5 below. This illustration is adapted from McMahon et al. (2007). Figure 2-3 shows a NeighborNet reticulation, or rectangle, joining four Central varieties: WC, LB, QY and LJ. Figure 2-4 shows one of the encapsulated or collapsed trees built by the Neighbor-joining algorithm, and Figure 2-5 shows another. CW-QY and C-LJ share the similarity that they have retained preglottalised initials, and C-WC and C-LB share the innovation of a split in *a resulting in contrastive /a/ and /a/. Thus, Figure 2-4 groups QY-LJ versus WC-LB. On the other hand, QY and WC share the change of *bo > [fi], and LB and LJ share the change of *bo > [dzi]. Thus, Figure 2-5 groups QY-WC versus LB-LJ. Both Figure 2-4 and Figure 2-5 lose information by forcing the data to fit a tree structure; each tree shows one set of shared similarities between one pair of varieties. In contrast, Figure 2-3 is able to show all sets of similarities between all pairs of varieties. NeighborNet will only produce a tree when the data actually fit a tree-like pattern; it is therefore an optimal way of representing dialect networks, which often have complex, partially conflicting isoglossic patterns.

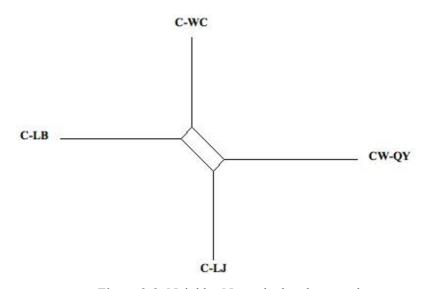


Figure 2-3: NeighborNet reticulated rectangle

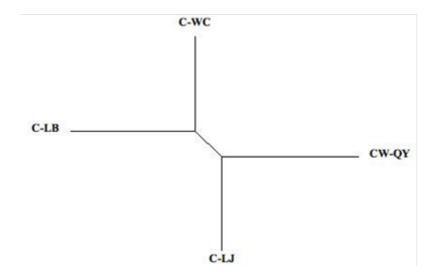


Figure 2-4: Neighbor-joining tree 1

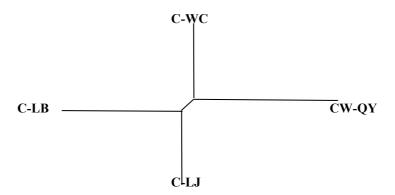


Figure 2-5: Neighbor-joining tree 2

2.4.3.2 Multidimensional scaling

Multidimensional scaling (MDS) is a set of techniques used to assign a position in a low-dimensional space for each element in a distance matrix, so that the relative distance between each element corresponds as closely as possible to the distance matrix (Torgerson 1952, Cox & Cox 2001). In the case of dialectometry, the Levenshtein distance matrix provides the distance between each pair of varieties. MDS represents each variety by a point in a multidimensional space, arranged so that varieties that are more phonetically similar are closer to each other, and varieties that are more dissimilar are further apart. I use two-dimensional, Euclidean space for representing Lalo varieties.

There are several types of MDS, including Classical MDS and Kruskal's (1964) non-metric method. Kleiweg (2004), in his tutorial on the RuG-L04 software, recommends Kruskal's method as often giving the best results. In Kruskal's method, only the rank order of entries in the distance matrix is treated as significant, not the actual distance values (UNESCO 2008). For example, the most distant varieties in the distance matrix should be the most distant in the MDS space, and the most similar varieties should be the closest. Kruskal's method finds a configuration of varieties that best matches the rank order of phonetic distances between Lalo varieties.

MDS, like NeighborNet, provides a way of visualising the relationships between Lalo varieties without forcing them into a tree. MDS does not explicitly cluster the varieties together at all, but instead presents them as they interrelate to all other varieties. Varieties may form a visual cluster by all being located near each other, as is clearly the case with Central varieties (see §7.2.2). In this way, MDS provides yet another perspective on synchronic relationships, in addition to the network model presented by NeighborNet.

2.5 Measuring intelligibility

Recorded Text Testing (RTT), first developed by Casad (1974), measures cross-dialectal intelligibility. An RTT is a short narrative recorded in dialect A and played to a listener from dialect B. The dialect B listener then answers content questions about the narrative, and the percentage of correct answers is interpreted as their comprehension level of dialect A. Blair (1990) and Grimes (1995) provided further updates and revisions, and Allen (2004) and Castro and Hansen (2009) carefully applied RTT procedures to speakers of Bai and HSH Zhuang, respectively. Lalo RTT results are given in §7.3.

Kluge (2007) introduced an important change in the testing procedures by eliminating the question and answer (Q&A) format, which was found to be culturally inappropriate in many field situations. Instead of answering questions formulated by the researcher, listeners were asked to retell the content of the story in their own words, section by section. This method does not suffer from the loss of intelligibility information seen in the Q&A format; however, the retelling format requires a longer time to process than Q&A. The retelling method was used in this research and is described below.

First, a speaker native to the village related a short narrative, typically one to three minutes long, which was recorded and then divided into sections, usually no longer than 10 seconds. A speaker bilingual in Chinese and the Lalo variety in question translated the text, section by section, into Chinese. The text was then pilot tested on native speakers in order to verify that the researcher understood the text in the same way as native speakers and to identify the common elements of the story that were retold by all native speaker participants. Participants in the pilot test were first interviewed to determine their suitability. Participants were selected whose parents were native to the locale, who themselves grew up in the village, and who were fluent, native speakers of the language. Although fluency in Chinese was not a requirement for participation, the rate of bilingualism among Lalo is such that all participants were also fluent in Chinese and thus were able to give their answers directly in Chinese without the use of a translator.

Participants first listened to the whole text, and then listened again section by section. Instead of responding to a question after listening to each section, the listeners were simply asked to retell the section in Chinese. The researcher wrote down their responses. If one response was exactly the same as a previous participant's response, the researcher used a different colored pencil to underline the content that was repeated. The pencil colors were linked to participant identifiers to keep clear who said what. After eight participants pilot tested the text, elements that all of the participants retold were identified and formed the baseline for scoring responses for participants from other varieties. By first pilot testing the text in this way, comprehension levels seen in cross-dialectal listeners scores were comparable to a native speaker's comprehension of the same text. For example, the story collected in CW-QY recounted an incident in which the storyteller was chopping firewood and accidentally cut his leg with his knife. Figure 2-6 below shows how three different responses of the pilot test participants help to identify what are the core elements that are salient to them in their re-telling.

Translation of segment 1:

In the beginning of the fourth month, I went to the hills to put my domestic animals out to pasture and while there to cut firewood.

Participant 1:

In the *fourth month*, I went to the hills to *let my goats graze* and cut firewood.

Participant 2:

On the first day of the fourth month, I went to let my goats graze.

Participant 3:

On that day in the *fourth month*, I went to the hills to *let my goats graze* and cut firewood, letting my goats graze as I cut firewood.

Figure 2-6: Excerpt from CW-QY RTT: identifying core elements

All of the participants mention the time of the incident ('the fourth month') and what the storyteller's purpose was in going to the hills (to put his domestic animals out to pasture). However, some of them do not mention the incidental goal he had of cutting firewood. Therefore, the element 'to cut firewood' was not included in the baseline score when testing participants from other villages. Although he does not say 'goats,' native listeners interpret the category name 'domesticated animal' to specifically mean goats, as Lalo often raise goats. When testing participants from other villages, goats and any other domesticated animal were accepted as correct answers.

Once the core elements were identified based on the pilot test participants' responses, a score sheet was made that contained the complete translated text divided into the sections used in the test, with the core elements listed in a column beside each section. See Appendix D for an example score chart from CW-QY.

When administering an RTT, the same selection procedures were used as for pilot test participants, with the added stipulation that the participant must not have come in contact with a speaker from the varieties the participant was being tested on. The requirement was that the participant had not lived in the area where the tested variety was spoken for more than one month. Although this could not eliminate casual contact at a market or festival, it still enabled the screening out of participants who had acquired instead of inherent intelligibility.

After screening, one participant would individually listen to the whole RTT, and then listen again section-by-section. After each section, the participant was asked to retell the content they had just heard in the played section. Sections were never longer than 10 seconds, ensuring that the RTT was not testing their memory but rather their comprehension. If the participant's response contained the core elements, the researcher underlined these on the score sheet. If the participants added some content that was not in the recording, or gave an answer that did not match the content of the translation, their response was written down on the score sheet. After they finished their retelling, their final score was how many of the core elements they mentioned in their answers. A score of 100% indicated that the cross-dialectal listener understood the text to the same extent as that of a native listener, while a lower score indicated a comprehension level lower than that of a native listener.

Text:	CW-	C-	E-	E-	W-	W-	CE-	C-	C-
Listener:	QY	LJ	HS	DC	DT	YL	YA	CJ	WC
MD	✓	\checkmark		\checkmark			\checkmark		
Eka	\checkmark								
YL	✓								
W-DT	✓	\checkmark		\checkmark					\checkmark
W-YL	✓	\checkmark			\checkmark				
W-SLZ	\checkmark		\checkmark			\checkmark			
XZ	✓		\checkmark		\checkmark	\checkmark			
E-TS	√ *								
E-DC	√ *		\checkmark						
E-HS	√*								
SE-GP	✓		\checkmark				\checkmark		
CE-YA	✓			\checkmark					
CW-QY			\checkmark						
C-WC	✓	\checkmark		\checkmark					
C-QS	✓	\checkmark						\checkmark	
C-LJ	✓			\checkmark			\checkmark		
C-LB	✓	\checkmark	\checkmark		\checkmark				
C-CJ	\checkmark	\checkmark							

Table 2-4: Locations of RTT tests

Table 2-4 above shows the locations of RTT tests, i.e., what texts were tested in what locations. Pilot tests (not included in Table 2-4) were done at almost every datapoint, but only a selection of RTT tests was administered in other villages. This is partly due to the fact that each village was only visited once, and pilot tests could only be conducted during that one visit. Therefore, at each datapoint, only the pilot-tested RTTs from those villages that had already been visited were available for testing. Also, the RTT process was fatiguing for listeners, who were rarely willing to listen to more than three stories. At each datapoint, I chose a subset of two or three RTTs that were most likely to be understood at some level.

CW-QY was tested at almost every location. CW-QY is one of the most conservative varieties in terms of historical change, is spoken in a highly vital community, and has been indicated by a neighboring location (C-LJ) as having higher prestige than other varieties. Because of these factors, CW-QY is a candidate for reference dialect for Central Lalo orthography development. Therefore, the CW-QY RTT was tested in more locations than other varieties. In E Lalo locations, a different CW-QY narrative was tested in Q&A format, since the RTT-retelling narrative had not yet been pilot-tested at the time of fieldwork in E Lalo. This difference is signified in Table 2-4 with an asterisk (*).

2.6 Exploring dialect perceptions and interactions

While phonetic distance obtains objective measures of difference, subjective measures of difference are also useful to gain a more emic perspective. The relevant questions here are: 1) How do Lalo perceive the groupings of Lalo varieties? 2) What is the nature and extent of interactions between Lalo varieties? The tools used to answer these questions were two sociolinguistic interview schedules, one administered to the village leaders and the other administered to groups of native speakers. Nahhas, Kelsall and Mann (2005) list typical goals, research questions, concepts, indicators, and probes used in the design of sociolinguistic questionnaires that address issues such as language use and attitudes. Most of the probes used in the interview schedule were taken from this tool and translated into Chinese. Additional probes were adapted from Pelkey (2011). The village leader interview was administered to an individual, usually the village secretary or director. The group interview was usually administered after assembling a group of three or four RTT participants; often village cadres or guests of the local host would participate. Ideally, the language of investigation should have been Lalo, to avoid any potential pressure on the interviewee to maintain political correctness, a pressure that may have arisen through the use of Chinese, the politically dominant language. Since the questions were not deemed overtly politically sensitive, however, Chinese was used for expediency. Both the leader interview and group interview schedules are given in Appendix C. Results are given in §7.4.

For dialect perceptions, the main indicator is perceived sameness or difference of the speech of various Lalo villages. In the group interview, Lalo villages units within and outside the local township were identified. The group was asked to assess the relative sameness or difference between the variety in the Lalo village in question and their own. Although the questions are in terms of 'exactly the same,' 'a little different' and 'very different,' sometimes the participants would come up with a percentage of sameness or difference. Participants were also asked how well they could understand the variety, and if they felt that variety was 'good' Lalo or not. Another perspective on the question of perception was collected through asking the same perception questions about the speech of any brides that came from that variety and married into the local village. If the brides had trouble understanding the local variety, the question of how long it took them to learn the variety was asked. The same questions were asked about brides from the datapoint who married into other villages.

Another indicator of dialect perception is that of prestige, so the group interview included probes asking which village spoke the best Lalo and which village was the most important. In almost all cases, participants preferred their own variety. However, C-LJ respondents thought that CW-QY sounded better because they used fewer loanwords from Chinese.

The second question of interaction between varieties addresses concepts of contact and history. Social contact was assessed through asking about bride exchange (often reciprocal), participation in periodic markets, shared cultural festivals, and travel between Lalo villages. Participants were asked which Lalo villages they sent brides to and which villages they received brides from, and whether the number of brides was relatively high or low. After participants identified annual festivals, they were asked which Lalo villages and ethnic groups celebrate the festivals with them. The village leader was asked what periodic markets villagers attend, which Lalo villages also attend this market, and what other ethnic groups attend. The village leader was also asked to identify Lalo villages that local people visited, how often they visited, how well they understood the Lalo spoken there and if they had to change their accent to communicate.

Folk history was also explored by asking where the village founders had come from, and more remotely about the location of the origin of the Lalo people. In Weishan and Yangbi, participants often would provide the origin of a Han Chinese ancestor; in the past, soldiers from cities in eastern China such as Nanjing came and married into local groups. In other areas such as MD, where the village had a more recent migration history and recognised Weishan as their traditional homeland, the interview asked about contact with the homeland area.

2.7 Assessing ethnolinguistic vitality

This section presents the methods used to answer the following question: Does it appear likely that Lalo will continue to be spoken by future generations? Indicators and probes were drawn from Nahhas et al (2005) and Pelkey (2011), while the continuum used for classifying the varieties came from UNESCO (2003, 2009) and Krauss (2007).

A key factor in language maintenance is whether children are proficient in the language, which relates to UNESCO's Factor 1, intergenerational language transmission. This is indicated by asking how well children speak Lalo and what opportunities they have for learning Lalo: what language parents speak to their children in, whether children from inter-ethnic marriages still learn Lalo, and what language the school teacher speaks to the children in at the different grade levels. Participants were also asked what language children learn first, whether children could speak Chinese before starting school, and if not at what grade level they are able to speak Chinese fluently. Probes also focused on children's language use, such as what language children use with Lalo and non-Lalo children and their teachers in various domains such as inside and outside the school, and whether they ever speak a non-Lalo language in the home.

Domains of language use for adults were also explored by asking what language the participants used in their home with their parents, siblings, spouse, children, grandchildren, and Lalo and non-Lalo friends. Domains outside the home included speaking with Lalo and non-Lalo people in the village, market, at a funeral or village meeting, and with government cadres at the village and township level. Loss of existing domains is UNESCO's Factor 4.

The use of a language of wider communication was explored by asking village leaders what other languages were spoken in the village and at the periodic markets, and what language they use to address different ethnic groups in the village. In the overwhelming majority of situations, the language of wider communication is a local form of Southwestern Mandarin. Ability or inability to speak local Mandarin by various groups such as elderly people, women and children was also gauged.

Language attitudes have been identified as a key factor in language maintenance (Bradley 2002a). One indicator of an attitude that facilitates language shift is how participants felt about children speaking a non-Lalo language in the home or with other children and about children not being able to speak Lalo. Another attitude, related to their sense of ethnolinguistic identity, was explored by asking what aspects of Lalo culture and tradition participants hoped their children would continue, and what aspects of their culture makes them different.

Another important factor is contact with non-Lalo. The village leader was asked about the population of each ethnic group in the village, whether non-Lalo in the village could speak Lalo, and the numbers of young people migrating to urban areas. Educational policy with regard to language use was also explored by asking what language the teacher uses at different grade levels and how accessible education is for most children (e.g., graduation rates). The village leader was also asked about the community's response to new media, especially the use of the personal video camera and cheap reproduction of VCDs to record the celebration of local events in the local language.

On the basis of the indicators discussed above, it was possible to place each datapoint on the vitality continuum as described in Krauss (2007). On the two extremes of this continuum are the categories 'safe' and 'extinct'. Safe languages, designated by the grade a+, are languages that will definitely be spoken in the foreseeable future, and 'extinct,' designated e, are languages that are no longer spoken or remembered by anyone. The term 'endangered' encompasses all the languages in between the two extremes and includes 95% of the languages spoken in the world (Krauss, 2007). Subclasses within the endangered category are represented by the grades a through d, with a marking stable languages in which all children are speaking the language in the home. All other

subclasses of endangered languages are in decline and range from unstable, definitively endangered, severely endangered, and critically endangered.

Unesco (2009) uses a similar scale, presented in Table 2-5 below:

asfe	language is maline by all conceptioned interconceptional
safe	language is spoken by all generations; intergenerational
	transmission is uninterrupted
vulnerable	most children speak the language, but it may be restricted to
	certain domains (e.g., home)
definitely endangered	children no longer learn the language as mother tongue in the
	home
severely endangered	language is spoken by grandparents and older generations; while
	the parent generation may understand it, they do not speak it to
	children or among themselves
critically endangered	the youngest speakers are grandparents and older, and they speak
	the language partially and infrequently
extinct	there are no speakers left

Table 2-5: UNESCO's (2009) scale of endangerment

Each Lalo datapoint is placed in the Krauss/UNESCO continuum, but Lalo is spoken in so many villages that it is not feasible to place all Lalo-speaking areas on the scale. Some areas such as Ma'anshan township in Weishan are stable, but others such as Fengqing and Yun counties are critically endangered, meaning the language is only spoken by very few, of the great-grandparental generation. Since the study did not do a random sample of all the Lalo villages, this research cannot claim to give a representation of the whole Lalo population. But the trends shown in the datapoints are disturbing enough, because in the datapoint selection process I specifically asked for areas where the language was still spoken by all members of the community. The fact that local officials in the Ethnic Minority and Religious Affairs Bureau still recommended areas that were definitively endangered means that other villages in that township have probably already reached the definitively endangered stage and may even be critically endangered.

3.1 Introduction

In this chapter, I present phonological sketches of fifteen Lalo varieties, grouped into regional dialect clusters according to the subgrouping criteria delineated in Chapter 6: Central, Southeastern, Western, and Eastern clusters, as well as MD, Eka, YL and XZ individual varieties. The goal of this chapter is to present the range of phonological systems that have developed from Proto Lalo (PLa), as described in Chapters 4 and 5. The comparative method used to reconstruct PLa feeds on the synchronic variation seen in modern varieties in order to posit a hypothetical ancestral phonological system from which the daughter varieties developed.

The phonological system as spoken in one particular village is chosen to represent each variety: CW-QY for Central, W-YL for Western, SE-GP for Southeastern, E-DC for Eastern, Yijiazhai for Eka, and MD, YL and XZ. While the representative variety is presented in more detail, phonological systems from other varieties within the cluster are presented in abbreviated form, and special focus is given to how they differ from the representative variety. Most of these varieties have never been described before, but when there are existent analyses available, any differences between my analysis and already existing accounts are noted. Although the emphasis in this chapter is synchronic description, diachronic evidence is also called on to explicate and support the analysis.

3.2 Central Lalo: Qingyun (CW-QY)

The description that follows is based on data collected from speakers native to Qingyun Village Cluster, Ma'anshan Township, Weishan County. The wordlist was primarily recorded with Cha Shufang, a female speaker in her twenties living in Xiaguan, with supplementary recording done in Qingyun Village Cluster with two male, middle-aged speakers. Although Ma'anshan Township is located next to Wuyin Township where Björverud (1998) worked, the phonologies are slightly different, as observed below.

The CW-QY syllable template is (C)VTP, in which one of 33 optional initial consonants is followed by one of 10 obligatory vowels with tone (3 pitch heights) and phonation (modal, breathy, or harsh). Additionally, there is NT, in which a syllabic nasal has a tone, but phonation is always modal. CW-QY initials are summarised in Table 3-1 below, with allophones in brackets:

	Labial	Alveolar	StridentA lveolar	Retroflex/ Palatal	Velar	Laryngeal
Stops and	р	t	ts	tş [tc]	k	[3]
Affricates	\mathbf{p}^{h}	t ^h	ts ^h	tşʰ [tɕʰ]	\mathbf{k}^{h}	
	b	d	dz	dz [dz]	g	
Fricatives	? v		S	§ [ɕ]	x [f]	h [ĥ]
	v		Z	Z [Z]	γ [ĥ]	
Nasals	m	n		ŋ	ŋ	
	?m	?n				
Approximants	w [j]	1				
		?l [?z]				

Table 3-1:	CW-OY	initial	consonant	inventory
14010 5 1.		minua	consonant	in ventor y

This system differs slightly from Björverud's analysis of Longjie Lalo. First, there is no contrastive palatalised velar series /kj kjh/ in CW-QY, as there is in Longjie. This difference is due to the divergent developments of the Proto Lalo palatalised velar consonant cluster series (\$4.1.1.1), which was preserved in Longjie in certain environments, but lost in CW-QY. Also, Björverud's palatal affricates /tj tjh dj/ and palatoalveolar fricatives /J/ and /3/ correspond to CW-QY's retroflex /tş tş^h and dz/ and /ş z/. CW-QY's retroflexes all have alveopalatal allophones [tc tc^h dz c z] before front vowels /i c y/. Before central and back vowels /i u ə a/, this series is realised as retroflex. The retroflex series contrasts with the alveolar affricate series, and both series occur before all vowels.

Voiceless velar fricative /x/ is realised as labiodental [f] before front vowels /i ε / and syllabic fricative [y] (an allophone of the mid central vowel /ə/ found only after /f/) and as [x] before /i u a/. The voiced velar fricative /y/ is realised as [y] before central vowels /i ə/ and as voiced glottal fricative [ĥ] before /i ε y a/; unlike the voiceless glottal fricative /h/ [ĥ], [ĥ] is not nasalised. The alveolar nasals, both plain /n/ and glottalised /?n/, are palatal [n ?n] before close front vowel /i/, resulting in a neutralisation of contrast with palatal /p/ in this environment. Palatal /p/ is itself marginal, only occurring contrastively before / ε / in the wordlists, e.g., [n ε ⁵⁵za²¹] 'younger brother,' from PLa *pe¹za²; Laura Blackburn (personal communication, June 22, 2010) reports that /p/ also occurs before /a/, as in [na²¹] 'talk too much'. The glottalised lateral approximant /?l/ is realised as glottalised retroflex fricative [?z] before close central vowel /i/, and as [?l] elsewhere.

Labiovelar approximant [w] and the palatal approximant [j] are in complementary distribution, with [w] before back vowels /u a/, and [j] before front vowels /i y ε /. Björverud (1998) gives evidence of /j/ occurring before /u a/ in particles /ja²¹a⁵⁵/ 'moreover' and /ju¹³ju³³ku⁵⁵/ 'way down there,' which were not elicited in the CW-QY data set. Because the CW-QY data show no evidence of contrast between [w] and [j], these two phones are grouped together as allophones of /w/. There is only a marginal contrast between [w] and [ɣ]. Diachronically in Central and Western Lalo, PLa *g weakened to /ɣ/ before non-close vowels (* ε , *o, *a, and *aŋ) and then further weakened to [w] before PCLa *u. As a result, /w/ and /ɣ/ are only distinguished before [a], as in /wa¹/ [wa²¹] 'scold' versus /ɣa¹/ [fa²¹] 'drive animals', and / ε /, as in /w ε ¹/ [j ε ⁵⁵] 'right' and / $\chi\varepsilon$ ²/ [fi ε ²¹] 'wound'.

Syllables without an initial consonant automatically begin with a phonetic glottal stop [?], which is not contrastive; this is found across all Lalo varieties. The glottal fricative /h/ is always realised with the velum lowered, phonetically [\tilde{h}], and all vowels following /h/ are nasalised, an example of the phenomenon termed 'rhinoglottophilia' by Matisoff (1975). This type of rhinoglottophilia is found in all Lalo varieties that have a contrastive /h/. Velar fricative /x/ and /h/ contrast before /i $\epsilon \Rightarrow$ a/. Table 3-2 below shows examples of CW-QY's initial consonants. The double dot under vowels represents breathy phonation, which is a phonetic feature of Tone 2, CW-QY's low tone. The underline under vowels represents harsh phonation and is contrastive with non-harsh phonation (modal and breathy).

Initial	CW-QY	English	Chinese	Initial	CW-QY	English	Chinese
		male					
р	pa ²¹	suffix	公的	v	va ²¹	snow	雪
\mathbf{p}^{h}	$p^{h}\underline{a}^{21}$	capable	能干	?v	?va ⁵⁵	winnow	簸(米)
						sister's	
b	bäzı	honeybee	蜜蜂	S	s <u>a</u> ²¹	child	外甥
t	t <u>a</u> ²¹	remain	留下	Z	zä ²¹	son	儿子
t ^h	a ⁵⁵ t ^h a ²¹	knife	刀	ş	<u>şa</u> ²¹	difficult	难
d	da ⁵⁵	fern	蕨草	z	zu ⁵⁵ yi ⁵⁵	oil	油
ts	ts <u>a</u> ²¹	bud (v.)	发芽	х	xa ²¹	meat	肉
tsh	tsha ⁵⁵	hot	热	Y	ha ²¹	chew	嚼
dz	dzä ²¹	eat feed	吃	h	hã ⁵⁵	soul	魂
tş	tşa ²¹	animals	喂	m	mä ²¹	not	不
tşh	tşha ³³	kick	踢	n	na²1	rest	休息
-						talk too	
dz	dzu ⁵⁵	have	有	ր	<u>na</u> 21	much	
k	ka ⁵⁵	roast	烤	ŋ	ŋa²1	five	五
kh	$k^h a^{21}$	bitter	苦	?m	?ma ²¹	teach	教
g	ga ²¹	hear	听见	?n	?na ⁵⁵	listen	听
W	$W\underline{a}^{21}$	scold	骂	1	la ⁵⁵	come	来
				21	?la ²¹	pants	裤子

Table 3-2: CW-QY initial consonant examples

CW-QY has nine monophthongs and one diphthong in native vocabulary, as illustrated in Table 3-3 below, including the various allophones in brackets.

Table 3-3: CW-QY rhyme inventory

	Front	Rounded	Central	Back	Diphthong	Syllabic nasal
Close	i [ɛַ]	y [ø]	i [<u>i][</u> u][<u>]</u> [<u>]</u>]	u [o]		ņ [ṃ] [ŋ]
Mid	3	Ø	ə [ə̯][ɣ]	0		
Open				a [a]	ai	

CW-QY has one phonemic diphthong /ai/, which occurs in Chinese loanwords but only rarely in native vocabulary, e.g., 'door' $[a^{55}k^{h}aj^{21}]$, 'bowl' $[a^{55}kai^{21}]$, and 'spider' $[a^{33}mai^{33}]$. When occurring after PLa *kj and *k^hj (from PN *?-kr/kl and *kr/kl as described in §4.1.1.1) and before *e or * ϵ , this diphthong is possibly the result of the metathesis of *j and the vowel, with subsequent lowering of the vowel. The probable path of development for CW-QY's diphthong /ai/ is exemplified in 'bowl': PN *a¹ ?-krin² > PLa *a⁵⁵kje²¹; the palatal glide then metathesised and the vowel lowered to produce CW-QY's $[a^{55}kai^{21}]$.

Other diphthongs and the velar nasal final -ŋ are also found in CW-QY vocabulary as the result of loanwords and syllable mergers. In loanwords from Chinese, diphthongs /ao ei ia ua uei uai iao/ and syllable-final /-ŋ/ occur. Post-lexical syllable mergers account for other occurrences of diphthongs and /-ŋ/. For example, diphthong [iau] results from a coalescence of rhyme /i/ with a following syllable beginning with /u/, as in 'book,' /t^hi²¹u²¹/ > [t^hiau²¹], from PN *to² yum² (PN reconstruction from David Bradley, personal communication, Dec. 12, 2009). Syllable-final -ŋ occurs through merger of a syllable with a following syllabic nasal, as in 'yesterday' /a² η ³³/ > [a η ³³].

In syllables with harsh phonation, the close vowels /i y u/ are realised as mid [$\underline{\varepsilon} \ \underline{\varphi} \ \underline{\varrho}$], and the back open vowel /a/ is realised as central open [\underline{a}]. Mid vowels / ε / and /o/ do not occur in syllables with harsh phonation. Both Sun (1991) and Huang and Dai (1992) claim that [a] and [a] are separate phonemes in Nanjian and Wuyin varieties, but in CW-QY this is not the case. The [a]

found in Sun (1991) and Huang and Dai (1992)'s wordlists overwhelmingly correspond to CW-QY's harsh [a]. Björverud does not report distinctive /a/ and /a/. However, a contrast between /a/ and /a/ is seen in CE-YA and C-CJ, as described in Sections 3.2.1 and 3.2.2 below. Björverud also does not report a contrastive /o/ in Longjie; CW-QY's /o/ is a result of later diachronic changes, e.g., PLa *aŋ > [o] after velars in CW-QY, but > [u] in Longjie (described in §4.3.3.4).

The close-mid rounded phone $[\emptyset]$ is marginal in CW-QY, only occurring in a handful of lexical items, such as $[a^{55}\eta\emptyset^{55}]$ 'goose,' $[a^{55}j\varepsilon^{33}k\emptyset^{55}]$ 'cockscomb,' $[f\gamma^{33}k\emptyset^{21}]$ 'eggshell;' it only occurs after velar initials. Diachronically, the main source of $[\emptyset]$ is Proto Lalo *o after palatalised velar clusters, e.g., PLa *kjo¹ 'cockscomb' > $[k\emptyset^{55}]$. Because of other diachronic developments, [i] and $[\emptyset]$ are in complementary distribution. PLa velar clusters became palatal affricates before *i (*kji > [tei]), and *i became [i] after velar stops (*ki > [ki], so [i] never occurs after velars, while $[\emptyset]$ always occurs after velars. However, despite the historical coincidence that causes them to be in complementary distribution, $/\emptyset$ and /i are classed as separate phonemes.

The close central vowel /i/ is realised as rounded [<code>u</code>] after bilabial consonants /p p^h b m/, as [η] after alveolar affricates and fricatives /ts ts^h dz s z/, and as [η] after retroflex affricates and fricatives /ts ts^h dz s z/. These allophones occur in syllables with both harsh and non-harsh phonation. The vowel /i/ never occurs after alveolar stops, labiodental, or labiovelar initials, but does occur after bilabial, retroflex, and velar initials. The mid central vowel /ə/ is a reflex of PLa *u and is realised as syllabic labiodental fricative [γ] after labiodental fricatives (e.g., [f γ] /xə/) and as [ə] elsewhere. The vowel /ə/ never occurs after labials, alveolar affricates or alveolar fricatives. The restrictions on /ə/ and /i/ result in a neutralisation of contrast after labials and alveolar stops, affricates and fricatives. However, the two phonemes contrast after velar consonants and the retroflex affricates. Björverud (1998) analyses the apical vowel [η] as an allophone of /i/ after alveolar fricatives and affricates, but in CW-QY [η] contrasts with /i/ after alveolar affricates, e.g., [η^{21} tsi⁵⁵] 'twenty' versus [η^{21} tsj²¹] 'hat'. Therefore, [η] is grouped with close central /i/ instead.

The syllabic nasal /n/ comes from Proto Lalo plain nasals before close vowels *i and *u. The nasal's place of articulation assimilates to the following syllable's initial consonant in a polysyllabic word, and so has allophones [m n n]. Palatal [n] has not been observed, as there in only one palatal phone in CW-QY, [j]. If the syllabic nasal is word final or occurs in a monosyllabic word, it is realised as velar [n]. Following a stressed syllable, the syllabic nasal loses its syllabicity and merges with the previous syllable, as in 'yesterday' $/a^2n^{33}/ > [an^{33}]$. The syllabic nasal never occurs in syllables with harsh phonation. Preglottalised nasals never become syllabic, as syllabic nasals developed only from Proto Lalo plain nasals. The development of syllabic nasals must have happened in CW-QY before the change from rhyme *-an > /u/ and *e > /i/, because syllabic nasals do not occur in words with those Proto Lalo rhymes. So *man² 'old' > [mu²¹] in CW-QY, and never just m. In CE-YA, however, these rhymes do show syllabic nasals, so the relative diachronic rule ordering for this process in CE-YA is later. Table 3-4 below gives examples of each of the vowels in CW-QY:

Rhyme	CW-QY	English	Chinese
i	tc ^h i ⁵⁵	arrive	到
ø	kø ²¹	cockscomb	冠(鸡冠)
у	ky ²¹	dew	武 政
3	ke ³³	load, pack	装
i	ki ⁵⁵	star	星星
ə	kə ⁵⁵	call	ПЦ
a	ka ⁵⁵	fall, drop	掉
u	a ⁵⁵ ku ³³	father's father	爷爷
0	k <u>ö</u> ²¹	wild (animal)	野(兽)
ai	a ⁵⁵ kai ²¹	bowl	碗

Table 3-4: CW-QY rhyme examples

Table 3-5 below summarises CW-QY's reflexes of Proto Lalo tone. Phonetic values are given using Chao's (1930) tone letters, in which 5 represents the highest pitch and 1 the lowest. The CW-QY tonal system is a combination of contrastive pitch heights and harsh versus non-harsh phonation. CW-QY contrasts high, mid, and low level pitches. Tone 1 has two allotones, conditioned by the initial: high rising in syllables with voiced initials, and high level in syllables with voiceless or preglottalised initials. The low tone is realised as low falling in citation form, but is not considered a phonemic contour tone in the CW-QY three-level system. As Yip (2002) suggests, the fall is an automatic transition to the lowest pitch level. In utterance medial form, the low pitch is realised as low level. Non-harsh phonation is seen in modal voice of the high level tone from Proto Lalo Tone *1 and mid level tone from Tone *3, and breathy voice in the low tone from Proto Lalo Tone *2. Harsh phonation is the reflex of laryngealised vocal register, the diachronic result of the PN syllable-final stops conditioning harsh phonation. In CW-QY, the reflexes of PN *H and *L are mid harsh and low harsh, respectively. Chinese linguists refer to harsh phonation as 'tense'; I prefer using the term 'harsh' since 'tense' already has another meaning when referring to vowels. The physiological production of harsh phonation is further discussed in §5.1. CW-QY's tonal system is explained in more phonetic detail in §5.2 on tone change.

Proto Lalo	CW-QY	Chao pitch numbers
*1: High	[High level]/elsewhere	[55]
-	[High rising]/[+voi]_	[45]
*2: Low, breathy	Low, breathy	22
*3: Mid	Mid	33
*L: Low, harsh	Low, harsh	<u>31</u>
*H: Mid, harsh	Mid, harsh	<u>33</u>

Table 3-5: CW-QY reflexes of Proto Lalo tones

3.2.1 Central East Mountain: Yong'an (CE-YA):

Shuizilu Village of Yong'an Village Cluster (CE-YA), located in Yongjian Township, Weishan County, Dali Prefecture, is chosen to represent East Mountain Lalo. East Mountain Lalo is a sub-dialect of Central Lalo located mainly in the northeast corner of Weishan County in Yongjian and Dacang townships, but also in the northwest corner of Midu in Hongyan Township and Xinjie Town. Blackburn, Blackburn, and Wa's (2007b) unpublished wordlist of Wajia Village Cluster, also in Yongjian Township, Weishan County, is the only previous documentation of this variety. This phonological sketch is based on data from three native speakers from Yong'an Village Cluster

(Shuizilu Village), all males in their late twenties. The syllable template for CE-YA is similar to Central Lalo, (C)VTP and NT.

CE-YA no longer distinguishes PLa's alveolar and palatoalveolar affricates and fricatives and instead only has one series, which is alveolar before most vowels. These are palatalised before close front vowels /i y/; alveopalatal fricative [z], however, does not occur. Voiceless velar fricative /x/ is realised as [f] before front vowels /i ε / and as [x] elsewhere, including [ə], the reflex of PLa *u. Diachronically, in CE-YA only, Proto Lalo's *f changed to /x/ after *u became /ə/, and so now CE-YA's [xə] corresponds to CW-QY's [fy], as in PLa *fu³, 'egg' and Proto Central Lalo *fu¹, 'white'. Voiced velar fricative /ɣ/ is realised [w] before /u/, as [ɣ] before /i/, and as [ĥ] elsewhere. Alveolar nasal /n/ is palatalised as [ŋ] before /i/, and /ŋ/ is only contrastive before / ε /. Palatal approximant /j/ only occurs before /i ε a/, but is still contrastive with all other initials. Table 3-6 gives CE-YA's initial consonant inventory.

	Labial	Alveolar	Strident Alveolar	Palatal	Velar	Laryn- geal
Stops &	р	t	ts [tc]		k	[?]
Affricates	\mathbf{p}^{h}	t ^h	$ts^{h} [te^{h}]$		k ^h	
	b	d	dz [dz]		g	
Fricatives			s [ɕ]		x [f]	h [ĥ]
	v		Z		γ [w] [ĥ]	
Nasals	m	n		ր	ŋ	
Approximants		1		j		

Table 3-6: CE-YA initial consonant inventory

Table 3-7 gives CE-YA's rhyme inventory. CE-YA's vowel system is similar to CW-QY's, with the addition of contrastive front open vowel /a/, diphthong /ia/ and nasalised vowels /ī/ and /ɔ̃/. Apical vowel [1] is analysed as an allophone of /i/ after alveolar affricates and fricatives. In CW-QY, /a/ is realised as open back vowel [a] in modal phonation and front open vowel [a] in harsh phonation, but CE-YA shows a contrast between /a/ and /a/, seen in the near minimal pair 'sick' /na²⁴/ from PLa *na¹ and 'listen' /na⁵⁵/ from *?na¹. The Proto Lalo preglottalisation seen in 'listen' *?na¹ most likely conditioned the diachronic development of /a/, which became contrastive after the merger of preglottalised and plain sonorants. A related but slightly different development is seen in C-CJ, C-LB, and C-WC, discussed in §3.2.2 below.

Table 3-7: CE-YA rhyme inventory

	Front	Rounded	Central	Back	Diphthong	Nasalised	Syllabic nasal
Close Mid Open	i [i <u>ε][</u>]][]] ε [<u>ε]</u> a	у [у]	i [<u>i]</u> ə [<u>ə]</u>	u [0] a [a]	ia	ĩ õ	ņ [ṃ] [ŋ]

Nasalised vowels /i/ and /i/ are contrastive with oral vowels, but they never occur with initial consonants. They developed from the loss of PLa preglottalised nasals before *i and *u, described in §4.1.5. Most Lalo varieties, excepting CW-QY, also show nasalised vowels from the same diachronic process, although the conditioning vowels vary across varieties. Because of their restricted diachronic source, nasalised vowels occur only rarely in the lexicon. Björverud (1998) notes a contrastive nasal vowel /i/ in the variety spoken in Longjie Village, from the same diachronic source.

CE-YA's tonal system, seen in Table 3-8 below, is slightly different from CW-QY's, in that CE-YA shows the Eastern Lalo type tone split in *1 (see §3.6). In Tone *1, originally a high level

pitch, PLa voiced initial consonants conditioned a low-rising pitch, while voiceless initials and preglottalised initials maintained the high level tone; when preglottalised and plain sonorants merged, the tone split became phonemically contrastive. This split is further discussed in §5.3.

Proto Lalo	CE-YA	Chao pitch numbers
*1/elsewhere High	High	55
1/[+voi]_: High	Low-rising	24
*2: Low, breathy	Low	21
*3: Mid	Mid	33
*L: Low, harsh	Low, harsh	21
*H: Mid, harsh	Mid, harsh	<u>33</u>

Table 3-8: CE-YA reflexes of Proto Lalo tones

3.2.2 Chajiang (C-CJ)

C-CJ, a Central Lalo variety spoken in Nanjian County, is similar but not identical to the Nanjian variety reported in Chen et al. (1985) and Sun (1991). This phonological sketch is based on data collected from two native speakers, one male in his thirties and one in his forties, in Chajiang Village Cluster, Xiaowandong Township in Nanjian County. The syllable template for C-CJ is similar to Central Lalo, (C)VTP and NT, with 22 initials, 9 rhymes, 3 pitch height contrasts, and harsh versus modal phonation. C-CJ's tonal system is identical to that of CW-QY. C-CJ initial consonant inventory is given in Table 3-9 below.

Like CE-YA, C-CJ has merged the PLa palatoalveolar and alveolar affricates and fricatives to alveolar. Before front vowels /i ε y/, alveolar affricates and fricatives are palatalised to alveopalatal position. Chen et al. (1985) and Sun (1991) both report a contrast between alveolar and retroflex affricates and fricatives in their data collected in Nanjian in the 1950's, which is also found in CW-QY and most other Central varieties. C-QS, located just south of Nanjian County in Jingdong County, shows this same merger. C-CJ and C-QS may have undergone the merger in the past 60 years since the collection of data presented in Chen et al (1985), or perhaps these varieties are different from the variety represented in Chen et al. and Sun (1991).

			Strident		
	Labial	Alveolar	Alveolar	Velar	Laryngeal
Stops &	р	t	ts [tc]	k	[3]
Affricates	$\mathbf{p}^{\mathbf{h}}$	t ^h	ts ^h [tc ^h]	k ^h	
	b	d	dz [dʑ]	g	
Fricatives			s [ɕ]	x [f]	h [ĥ]
	v		z [ʑ]	γ [γ ^w]~[w], [j]	
Nasals	m	n		ŋ	
Approximants		1			

Table 3-9: C-CJ initial consonant inventory

Like CW-QY, the voiceless velar fricative /x/ is realised as [f] before /i ε y/ and as [x] elsewhere; /xy/ does not occur, because PLa *xy > [ε y] in C-CJ, thus merging *x and *s before *y. Voiced velar fricative / γ / is realised as [j] before /i ε y/ and as [w] or [γ ^w] before back vowel /u/; [w] and [γ ^w] are in free variation.

Table 3-10 gives C-CJ's rhyme inventory. As in CE-YA, C-CJ contrasts front /a/ and back /a/, as in the near minimal pair 'next year' $/na^{21}hj^{21}/$ from *?na²he^L and 'to stop/rest' $/na^{21}/$ from *na², but the contrast is marginal. These phones are almost in complementary distribution, with [a] always in modal voice and [a] mostly in harsh voice. However, modal voice [a] is found in syllables immediately preceding or following harsh voice syllables, as seen in 'next year' *?na²he^L

/na²¹hi²¹/. Chen et al. (1985) and Sun (1991) analyse [α] and [a] as separate phonemes. C-LB and C-WC also distinguish /a/ and /a/ along similar lines, with the additional condition that Proto Lalo preglottalised sonorants influence the development of front [a], as in 'sick' /na⁵⁵/ from PLa *na¹ and 'listen' /na⁵⁵/ from *?na¹. This development is slightly different from that of CE-YA, as discussed in §3.2.1 above, which shows back /a/ after *preglottalised sonorants and /a/ elsewhere.

C-CJ, as many other Lalo varieties, shows the syllabic voiced labiodental fricative $/\gamma$ operating as a rhyme and appearing after most initials. A reflex of PLa *u, $/\gamma$ sounds like [u] but is pronounced with lip compression, that is, with the upper teeth resting on the bottom lip, with resulting increased friction.

	Front	Rounded	Central	Back	Nasalised	Syllabic consonants
Close	i [iɛ]	y [ø]	i [i][]][]]	u [0]	ĩ	γ; ņ [ṃ] [ŋ]
Mid	ε					
Open	a [<u>a]</u>			a		

Table 3-10: C-CJ rhyme inventory

3.2.3 Longjie (C-LJ)

The variety recorded in Zhanmagulang Village in Longjie Village Cluster is the most similar to the Lalo varieties described in Björverud (1998), Huang and Dai (1992) and YNYF (1984), as C-LJ is located in the same township as the varieties recorded by these sources. Björverud (1998) researched the Lalo variety located in Longjie Village Cluster itself, which at the time was a township seat, while the present phonological sketch is based on data collected in Zhanmagulang Village, 45 minutes by car from Longjie Village Cluster in Wuyin Township, Weishan County. Recordings were collected from two male native speakers, both in their forties.

The syllable template for C-LJ is similar to Central Lalo, (C)VTP and NT, with 33 initials, 9 vowels, 3 pitch height contrasts, and harsh versus modal phonation. The C-LJ tonal system is identical to CW-QY's tonal system. C-LJ's initial consonant inventory is given in Table 3-11.

	Labial	Alveo-l ar	Strident Alveolar	Retroflex/ Palatal	Velar	Laryn- geal
Stops and	р	t	ts	tş [tɕ]	k	[3]
Affricates	\mathbf{p}^{h}	t ^h	ts ^h	tşh [tch]	\mathbf{k}^{h}	
	b	d	dz	dz [dz]	g	
Fricatives	f		S	[a] ş	х	h [ĥ]
	v		Z	ζ [z]	$\gamma \left[w \right] \left[\gamma^w \right]$	
	?v					
Nasals	m	n			ŋ	
	?m	?n				
Approximants		1		j		
		21				

Table 3-11: C-LJ initial consonant inventory

Like CW-QY, C-LJ distinguishes plain and preglottalised initials (?v, ?m, ?n, and ?l), and alveolar and retroflex affricates and fricatives. Retroflex initials are palatalised before close front vowels /i y ϵ /. Velar fricative / γ / is realised as [w] before modal /u/ and as γ^w before harsh /u/ ([o]). Both /f/ and /j/ are marginal, but still contrast with all initials before / ϵ /; /f/ occurs before / ϵ / and / γ /, and /j/ occurs before close front vowels /i ϵ y/.

Table 3-12 gives C-LJ's rhyme inventory. C-LJ's vowel system is basically identical to CW-QY's. However, C-LJ has nasalised vowels $/\tilde{i}/$ and $/\tilde{\gamma}/$, from the diachronic process of nasalisation and loss of preglottalised *?n before PLa *i and *u, described in §4.1.5. Also, C-LJ distinguishes harsh $/\underline{i}/[\underline{ig}]$ from harsh $/\underline{e}/[\underline{a}]$, whereas CW-QY has merged both to $/\underline{i}/$.

	Front	Rounded	Central	Back	Nasalised vowels	Syllabic consonants
Close	i [i <u>ɛ]</u>	y [ø]	i [i][][][][][][][][]	u [<u>o</u>]	$\tilde{1}$ [$\tilde{1}$], $\tilde{\gamma}$	γ; ņ [ṃ] [ŋ]
Mid	ε [æ]					
Open				a [<u>a]</u>		

Table 3-12: C-LJ rhyme inventory

3.3 Mangdi (MD)

Mangdi (MD) Lalo has never before been documented. The presence of the 'Menghua' group is reported in the *Gazetteer of Gengma County* (1995), but no linguistic information is given. This phonological sketch is based on data collected from four native speakers, all middle-aged males, in Mangyou Village, MD Village Cluster, Hepai Township, Gengma County. The syllable template for MD is similar to Central Lalo, (C)VTP, with 28 initials, 8 vowels, 3 pitch height contrasts, and harsh versus modal phonation. Syllable-final nasals are post-lexical, the result of mergers of a syllable with a following syllabic nasal. There is also NT, syllabic nasals, but phonation is not contrastive. MD's tonal system corresponds to CW-QY's, distinguishing three levels of pitch height and harsh versus non-harsh phonation. Acoustic analysis is given in §5.2.1 on tone change. MD Lalo initials are summarised in Table 3-13 below:

	Labial	Alveolar	StridentA lveolar	Palatal/ Palatoalveolar	Velar
Stops &	р	t	ts [tc]	t∫	k
Affricates	\mathbf{p}^{h}	t ^h	ts ^h [tc ^h]	t∫h	k ^h
	b	d	dz [dz]	dʒ	g
Fricatives	f		s [ɕ]		х
	v		z [ʑ]		γ
Nasals	m	n		n	ŋ
Approximants	w	1		j	

Table 3-13: MD initial consonant inventory

Alveopalatal affricates [tɛ tɛ^h dz] only occur before front vowels /i ϵ / and are analysed here as allophones of the alveolar affricate series /ts ts^h dz/. However, they could just as easily be analysed as allophones of the palatoalveolar affricates /tʃ tʃ^h dʒ/. The alveolar and palatoalveolar affricates contrast before all vowels except front vowels /i ϵ /; before high front vowels, only alveopalatal affricates [tɛ tɛ^h dz] are found. In MD, Proto Lalo palatoalveolar fricatives *f and *z have shifted to alveolar /s z/, thereby merging with the /s z/ reflexes of alveolar fricatives *s and *z. Before high front vowels /i ϵ /, alveolar fricatives /s z/ are usually realised as alveopalatal affricates [c z], although before / ϵ /, [s] and [ϵ] are seen in free variation.

The palatal nasal /p/ contrasts with alveolar nasal /n/, although it occurs rarely, in only a handful of lexical items, such as 'narrow' [pa^{33}], from Proto Ngwi *?-nak¹. The palatal nasal occurs before rhymes / ϵ a a o/, but not central and back vowels /i ə u/. Before /i/, the contrast between /n/ and /p/ is neutralised, as both nasals are realised as palatal in that environment.

Several initials (/f w j χ /) have marginal status and are only found before certain vowels. /f/ and /w/ contrast only before /u/, with /f/ found only before /i ϵ u/, and /w/ only before /a u o/. Likewise, /w/ and / χ / contrast only before /a/, with / χ / found only before /i a/. Finally, the contrast between /w/ and /j/ is marginal, only before /a/, with /j/ occurring only before /i ϵ a/. The restricted distribution of [f w j χ] is similar, but not identical, to that found in Lisu (Bradley 2003). Table 3-14 below illustrates contrastive consonant initials in MD:

Initial	MD	English	Chinese	Initial	MD	Chinese	English
р	pā ³³	jump	跳	f	fu ³³	抢	rob; loot
$\mathbf{p}^{\mathbf{h}}$	$p^{h}a^{21}$	swell	肿	v	vā ²¹	搓	rub
b	bā33	shoot	射	s	sā ²¹	懂	know
t	ta ³³	cause to drink	给喝	z	$Z \vartheta^{21}$	用	use
t ^h	tha21	deaf	聋(子)	х	XQ ³³	嬴	win
d	da ²¹	speech	话	¥	ya ²¹	蔬菜	vegetable
ts	tsā ²¹	feed	喂	m	ma ²¹	没有	NEG
ts ^h	tsha ⁵⁵ jo ²¹	person	人	n	nā ²¹	补	mend
dz	dza ⁵⁵	study	学	n	na³³	窄	narrow
t∫	t∫a ⁵⁵	revolve	旋转	ŋ	a ³³ ŋa ³³	鸟	bird
t∫h	t∫ ^h a²¹	climb	爬	w	wa ²¹	竹笋	bamboo
dʒ	d3a ⁵⁵	have	有	j	ja ³³	中	hit a target
k	kā ²¹	dig (v.)	挖	1	la ³³	等	await
k ^h	$k^{h} a^{21}$	lack	缺	g	ga ⁵⁵	拉	pull

Table 3-14: MD initial consonant examples

MD has eight vowels, all monophthongs, seen in Table 3-15 below. Diphthongs only occur in loanwords, such as the Chinese loan 'grandmother' $[a^{55}nai^{21}]$, or from the merger of two syllables, such as 'blue' $[k^{hi}u^{55}]$, from $[k^{hi}^{55}wu^{55}]$. Like CW-QY, MD also has a syllabic nasal which assimilates to the place of the following initial, here represented as /n/. The source for the syllabic nasal is Proto Lalo nasals before high vowels *i and *u and sometimes from nasal prefixes. MD shows syllabic nasals also after close central vowel *i, as in 'lips' $[n^{21}la^{33}]$ from PLa *mi² (Proto Ngwi *(C)-me²). Occasionally a nasal gets inserted between two syllables if the following syllable begins with a stop, e.g. 'bamboo,' $[wan^{21}to^{55}]$, from *wa² da¹.

As in CW-QY, the close central vowel /i/ is realised as apical vowel []] after alveolar fricatives and affricates, and palatoalveolar affricates (although in CW-QY, the initials corresponding to palatoalveolar affricates are retroflex). All vowels except /ə/ are found with both harsh and modal phonation. The mid central vowel /ə/ corresponds to CW-QY's /y/ (from Proto Lalo *y), but MD's reflexes of Proto Lalo's harsh *y are /ɑ/, not /ə/. In harsh phonation, vowels are realised as slightly lower than their modal counterparts, as in CW-QY. Unlike CW-QY, high front vowel /i/ is found after velar stops, but not after velar fricatives, the velar nasal or the labiovelar approximant /w/. Close central vowel /i/ is not found after labials /w v f/, the palatal approximant /j/ or the alveopalatal nasal /p/.

	Front	Central	Back	Syllabic nasal
Close	i [i]	i []][<u>i</u>]	u [u]	ņ [ṃ] [ŋ]
Mid	ε [٤]	ə	o [o]	
Open	a [a]		a [a]	

Table 3-15: MD rhyme inventory

Open front vowel /a/ contrasts with back vowel /a/ after most initials, but rarely in modal phonation. This is because the back vowel /a/ is mostly found in syllables with harsh phonation, as its diachronic sources are Proto Lalo harsh syllables such as *-y and *-a, although it also shows up in 'bitter' $k^{h}a^{2}$, probably due to the influence of the velar initial. Front vowel /a/ occurs freely in both harsh and modal phonation. Table 3-16 below gives examples of the contrastive rhymes in MD:

Rhyme	MD	English	Chinese
i	bi ²¹	carry	<u>北</u> 月
ε	be ²¹	cleave	劈
а	ba ⁵⁵	lazy	懒
i	bi ²¹	taro	芋头
ə	bə ⁵⁵	fly	_K
u	pu ²¹	steam	蒸
0	b0 ²¹	thin (2d)	薄
a	$xo^{21}s\gamma^{21}p^{h}a^{21}$	lung	肺脏

Table 3-16: MD rhyme examples

3.4 Eka

Like MD, the Eka language has never before been documented. Zhao (1995) mentions the presence of the Eka in the *Gazetteer of Shuangjiang*, but no linguistic information is included. This phonological sketch is based on recordings of two native speakers in Yijiazhai Village Cluster, Mengmeng Town, Shuangjiang County. Speaker Eka1 is a male in his 60's, while Speaker Eka2 is a male in his thirties. Eka's syllable template is (C)V(N)TP and NT, in which the optional initial is one of 22 consonants, an obligatory vowel (one of 11 vowels or 1 syllabic fricative), an optional nasal final /ŋ/, tone (one of 6), and phonation type (harsh or modal). Syllabic nasals are found in modal voice only. Table 3-17 shows the Eka initial consonant inventory.

	Labial	Alveolar	Strident Alveolar	Velar
Stops &	р	t	ts [tɕ]	k
Affricates	\mathbf{p}^{h}	t ^h	ts ^h [tc ^h]	k ^h
	b	d	dz [dz]	g
Fricatives	f		s [c]	Х
	v		Z [Z]	γ [j]
Nasals	m	n		ŋ
Approximants		1		

Table 3-17: Eka initial consonant inventory

Compared to CW-QY (33 initials) and MD (28 initials), the Eka initial inventory is reduced to 22 contrastive initial consonants. Like MD, Eka has collapsed the distinctions between preglottalised and plain sonorants, and between alveolar and palatoalveolar fricatives and affricates. Eka has also merged Proto Lalo's alveolar and palatoalveolar affricate series to the alveolar place of articulation. The alveolar affricates /ts ts^h dz/ and alveolar fricatives /s z/ are alveopalatal /te tc^h dz ε z/ before close front vowels /i ε /.

Both Eka and MD have merged PLa x and h to x, and thus no longer distinguish x and h as other varieties do. Unlike MD, Eka does not have a labiovelar approximant in any native

vocabulary; in the wordlist, [w] appears once, in the Chinese loanword [wai²⁴] 'outside'. Voiced velar fricative / χ / is realised as [χ] before close central vowel /i/ and as [j] elsewhere (but neither phone occurs before /u χ /). Labiodental voiceless fricative /f/ is found only before close or close-mid vowels /i $\epsilon \chi$ /; /f/ contrasts with /x/ and other initials before /i ϵ /. The velar nasal is also restricted, occurring only with back mid or open vowels /a o φ /. Table 3-18 below gives examples of Eka initials.

	Eka	English	Chin.		Eka	English	Chin
р	pa ²⁴ ts ^h a ²¹	stick	棍子	f	fe ³³	dry	干
\mathbf{p}^{h}	$p^{h}a^{21}$	skin (v.)	剥皮	v	va ²¹ phi ²⁴	vegetable	蔬菜
b	ba ³³	rich	富	s	$sa^{{}^{33}}p^{{}^{h}}\epsilon^{{}^{21}}$	peach	桃子
t	$ta^{33}k^{h}\epsilon^{21}$	pangolin	穿山甲	z	za ²⁴	little	小
t ^h	tha21	don't	别	x	xa ²⁴	walk	走
d	da ²¹	speech	话	Y	yi ²⁴	liquid	水
ts	tsa ³³ p ^h ɛ ³³ ni 24	day after tomorrow	后天	m	ma ²¹	old	老
ts ^h	tsha²1bu³3	salt	盐	n	$na^{{\scriptscriptstyle 2}{\scriptscriptstyle 4}}k^{{\scriptscriptstyle h}}v^{{\scriptscriptstyle 2}{\scriptscriptstyle 1}}$	nose	鼻子
dz	dza ²⁴	self	自己	ŋ	ŋa²4	affirmative	是
k	ka²⁴ŋə³³	stupid	愚蠢	1	la ²⁴	come	来
\mathbf{k}^{h}	$k^h a^{21}$	bitter	苦				
g	ga ²⁴	pull	拉				

Table 3-18: Eka initial consonant examples

Although Eka's initial inventory is impoverished when compared to CW-QY's, its rhyme inventory is relatively enriched, consisting of seven monophthongs, three diphthongs, syllabic fricative / γ / and syllabic nasal / η /. Subphonemic diphthongs [i^j] [a^j], [o^j] and [u^j] occur when the central and back vowels /i a o u/ occur before a syllable beginning with palatal approximant /j/. Syllables with close back vowel /u/ may merge with following syllable /a/, creating subphonemic diphthong [ua]. Some instances of diphthongs /ai ao/ are the result of syllable merger as well. The nasal final - η is contrastive and cooccurs with all monophthongs to form rhymes /- $i\eta$, - $\epsilon\eta$, $i\eta$, - η , - $a\eta$, - $u\eta$, - $o\eta$ /. Rhymes /-ai, - $i\eta$, - $u\eta$, and - $ia\eta$ / also occur in Chinese loanwords. Table 3-19 below shows Eka rhymes.

Table 3-19: Eka rhyme inventory

	Front	Central	Back	Diphthongs	Nasal final	Syllabic consonants
Close	i	i [1]	u	uɛ		Y
Mid	ε [iε][e]	ə	0		-ŋ	ŋ [ņ]
Open		а		ai, ao		

Like CW-QY and MD, the close central vowel /i/ is realised as apical vowel [η] after alveolar fricatives and affricates. If [η] were an allophone of close front vowel /i/, then there would have to be contrastive alveolar affricate and alveopalatal affricate series. However, because alveopalatal affricates may only occur before close front vowels /i/ and /ɛ/, it is preferable to class them as allophones of the alveolar affricate series. Thus, alveolar affricates may occur with /i/, and [η] is allocated as an allophone of /i/, cf. [tei²¹] /tsi²/ 'sister' with [ts η^{21}] /tsi²/ 'cough'.

The mid front vowel [ϵ] after voiceless velar fricative /x/ is realised as diphthong [$i\epsilon$], possibly as a result of palatalisation incurred by the / ϵ /. However, palatalisation does not occur after other velar initials. Before final nasal /- η /, / ϵ / is raised slightly to close-mid allophone [e].

48 Cathryn Yang

Syllabic consonants are either the voiced labiodental fricative $/\gamma$ / or the syllabic nasal $/\eta$ /. Syllabic nasal $/\eta$ / assimilates to the place of articulation of the following syllable only for alveolar stops, where it is realised as $[\eta]$. Elsewhere, even before alveolar affricates and bilabial stops, $/\eta$ / is realised as $[\eta]$. Table 3-20 below shows examples of the contrastive rhymes in Eka.

Rhyme	Eka	English	Chinese
i	bi ²¹	split; cleave	劈
ε	$a^{24}b\epsilon^{21}$	duck	鸭子
i	bi ²⁴	separate; distribute	分
ə	bə ²⁴	gourd reed-organ	芦笙
a	ba ²⁴	lazy	懒
u	bu ³³	write	写
0	bo ²⁴	burn	焚烧
Ŷ	$p\gamma^{21}$	steam	蒸
ŋ	$\mathfrak{y}^{_{21}}$	two	
ai	ϵ^{21} dai ²⁴	beneath	下面
ao	ϵ^{21} nao ⁵³	inside	里面
uε	mue ²¹	arrow	<u>本本</u> 則
iŋ	niŋ²1	spirit (evil)	鬼
εŋ	leŋ ²⁴	soldier	兵
iŋ	liŋ ⁵⁵ gao ³³	forget	忘记
ອກ	bəŋ²ı	tile (ceramic)	瓦片
aŋ	laŋ²4	late	迟
uŋ	luŋ²4	bad	坏
oŋ	loŋ ²⁴	change	变

Table 3-20: Eka rhyme examples

Proto Lalo	Eka	Chao pitch numbers
*1: High	Low-rising /1/	24 [35/55 before 21]
*2: Low	Low falling /2/	21 [33 before 21]
*3: Mid	Mid /3/	33
*L: Low, harsh	Low falling, harsh / ^L /	<u>21 [33</u> before 21]
*H: Mid, harsh	Mid, harsh / ^H /	<u>33</u>
*1/ some voiceless	High level /4/	55 [53 word final]
aspirated initials_		
*2/ some s/ʃ- prefixed		
initials_		
*L/ *causative s- prefix_		
*H/ some ?- prefixed		
initials_		

Table 3-21: Eka reflexes of Proto Lalo tones

Eka's tonal system is similar to CW-QY and MD, but with a few important distinctions. Table 3-21 above summarises Eka reflexes of Proto Lalo tone. Acoustic analysis is given in §5.3.4 on tone change. In addition to three contrastive pitch heights and two contrastive phonation types, Eka also has a low-rising contour tone. This tone is a result of Proto Lalo Tone *1 (a high level pitch) becoming a low-rising contour in almost all environments. Tone *1's high level pitch is retained in only a few lexical items, all beginning with voiceless aspirated stops or voiceless fricatives, e.g., $[p^{h_i^{55}}]$ 'rooster,' from PLa *po¹, and $[k^{h_i^{55}}]$ 'leg' from *k^{h_i1}, and $[so^{55}lo^{21}]$ 'cotton' from *sa'la².

Eka shows splits in *2, *H and *L, in which the *?- or *s- prefix condition, in varying degrees, a high level tone (labeled $/^4/$ in Table 3-21 above). Eka's high level tone is realised as high level word medially and as high falling in word final position. In *L tone syllables preceded by the causative *s-prefix, Eka reflexes show $/^4/$, e.g., $[v_2^{153}]$ 'to dress (someone)' from Proto Ngwi *səwat^L and $[xi\epsilon^{55}(tai^{53})]$ 'to cause to sleep' from Proto Ngwi *səjip^L. The high 55 pitch is also seen as a result of micro-splits in *H and *2 in a few lexical items, usually with *?- or *s- prefix, such as $[s_1^{55}mi^{24}]$ 'day after tomorrow' from Proto Ngwi *?əʃik^H and $[bi^{55}]$ 'leg' from *ʃ-boŋ². These tone splits form a chain with the Tone *1 split to low-rising, although it is uncertain which change came first. No other Lalo varietes show these tone splits.

Eka exhibits frequent tone sandhi, in contrast to CW-QY and MD. When low modal [21] or low harsh [21] tone precedes another low modal or low harsh, the preceding syllable is realised as mid pitch, [33] or [33], respectively. This results in the neutralisation of contrast between low modal and mid modal, and between low harsh and mid harsh, when preceding a low tone. For example, zo^{21} 'son' from PLa *za², is realised as low tone in $[zo^{21}p^h\gamma^{24}]$ 'son' but as mid tone in $[zo^{33}m\epsilon^{21}]$ 'daughter'. Low modal before low harsh also shows the alternation, e.g $[di^{33}so^{21}]/di^2so^{1}/$ 'unhappy' from PLa *di² 'think/feel' plus *sa¹ 'difficult', cf. $[di^{21}]$ 'think/feel'; and $[ti^{33}xa^{21}]$ 'phlegm' but $[ti^{21}\gamma i^{24}]$ 'saliva,' from PLa *ti². Low harsh [21] before low also undergoes tone sandhi, but merges with mid harsh [33] instead of mid modal, e.g $[o^{24}po^{33}jo^{21}]/o^1po^Ljo^2/$ 'frog' from PLa *o¹ pa^L za², and $[a^{35}v i^{33}ka^{21}]/a^1vi^Lka^{L}/$ 'wild boar,' cf. $[a^{35}v i^{31}]$ 'pig'.

Another prevalent tone sandhi pattern is the alternation of the low-rising [24] tone before harsh or modal low tone. Before low, the low-rising tone is realised as aslightly higher mid-rising [35] pitch, e.g. $[a^{35}m^{21}]$ 'horse' and $[k^h\gamma^{35}dz\epsilon^{21}]$ 'mountain,' cf. $[a^{24}mo^{33}]$ 'father's sister' and $[k^h\gamma^{24}]$ 'roast (v.)'. If the following low tone syllable begins with palatal approximant /j-/, as in the frequently occurring diminutive marker /-jo²/, the two syllables merge and the resulting tone is high falling pitch [51], e.g. $/n\epsilon^1jo^2$ / 'little brother' is realised as $[n\epsilon^jo^{51}]$, cf. $/n\epsilon^1mo^3/[n\epsilon^{24}mo^{33}]$ 'little sister'; $/a^1ki^1jo^2$ / 'star' is realised as $[a^{24}kijo^{51}]$, and $/so^1mu^1jo^2$ / 'flour' as $[so^{24}mu^jo^{51}]$.

3.5 Western Lalo: Yilu (W-YL)

Like MD and Eka, W-YL Lalo has never before been documented. The *Gazetteer of Yongping* (1994) identifies the Yi living in Yilu Village Cluster (W-YL) as Lalo, but no linguistic information is included. W-YL is chosen to represent Western Lalo, which also includes the following three datapoints: Dutian Village Cluster (W-DT), Taiping Township and Shuizhuping Village Cluster (W-SZP), Longtan Township, both in Yangbi County, Dali Prefecture; and Shanglizhuo Village Cluster (W-SLZ), Wama Township, Longyang Area in Baoshan Municipality.

This phonological sketch is based on recordings of two native speakers (WYL1, a male in his thirties and WYL2, a female in her forties) in Yilu Village Cluster, Changjie Township, Yongping County. The W-YL syllable template is (C)VT, in which one of 29 optional initial consonants is followed by one of 15 obligatory vowels with one of 5 tones. Additionally, there is NT, in which a syllabic nasal has a tone, but no initial consonant. W-YL Lalo initials are summarised in Table 3-22 below:

	Labial	Alveolar	Strident Alveolar	Retroflex/ Palatal	Velar	Laryn- geal
Stops &	р	t	ts	tş [tc]	k	[?]
Affricates	\mathbf{p}^{h}	t ^h	ts ^h	tş ^h [tɕ ^h]	k ^h	
	b	d	dz	dz [dz]	g	
Fricatives	f		S	§ [ɕ]	Х	h [ĥ]
	v		Z	ζ[Z]	γ [γ ^w][w][j]	
Nasals	m	n		n	ŋ	
Approximant		1				

Table 3-22: W-YL initial consonant inventory

Like CW-QY, W-YL has a contrastive series of retroflex affricates and fricatives. Before front vowels /i ϵ y/, the retroflex series is realised as alveopalatal /tc tc^h dz c z/. Alveolar affricates and fricatives may occur before any vowel, although palatalisation before close front vowel /i/ often occurs, thus neutralising the contrast between retroflex and alveolar in that environment. Palatal /p/ contrasts with alveolar /n/ and diachronically comes from Proto Ngwi *p. /p/ occurs rarely, and only before vowels / ϵ a/.

The velar and glottal fricative /x/ and /h/ contrast before /i ε o a/. /x/ is realised as [f] before [ε] and [γ]. Voiced velar fricative / γ / has several allophones: [γ] occurs before /i a/, [γ^w] before /o/, [w] before /u/, and [j] before front vowels /i ε y/. In other Western varieties, as discussed in §3.5.1 below, there is a different grouping of allophones: [w] and [j] group together as /w/ in contrast with / γ /, and /w/ and / γ / contrast before / ε /. Table 3-23 below gives examples of W-YL initial consonants.

Initial	W-YL	English	Chinese	Initial	W-YL	English	Chin.
p	pa ⁴⁴	jump wife's	跳	f	fɛ ³³	dry	千
\mathbf{p}^{h}	zo ⁵³ pha ²¹	father	岳父	v	va ⁴⁴	write	写
b	ba ³³	insipid	没味道	s	sa ⁵³	know	知道
t	ta ⁵³	put/place	放置	ş	şa ⁵ 3	difficult	难
t ^h	t ^h a ³³	time	时间	z	$Z\mathfrak{P}^{21}$	son wife's	儿子
d	da ⁴⁴	chop	砍	z	zo ⁵³ mv ³³	mother	岳母
ts	tsa ⁵³	weave	编织	x	xa ⁵⁵ dɐ²¹	remember	记得
ts ^h	tsha ³³	pick	摘	X	ya ²¹	buckwheat	荞麦
dz	dze ²⁴	rice	饭	h	ha ⁵³	awake	酉星
tş	tşa ⁴⁴	count	数	m	$ma^{44}p^{h}a^{21}$	tail	尾巴
tş ^h	tşha ⁴⁴	kick	踢	n	na ⁵³	mend	补
dz	$k^h \gamma^{55} dz a^{21}$	mountain	山	ŋ	na ³³	sticky	粘
k	ka ⁵	live	活	ŋ	ŋɐ²¹	five	五
k ^h	$k^h a^{21}$	bitter	苦	1	la ⁴⁵ 3	lick	舔
g	ga ⁴⁴	stir	搅拌				

Table 3-23: W-YL initial examples

W-YL has nine oral monophthongs, five nasal monophthongs, one syllabic fricative and one syllabic nasal. Diphthongs and the velar nasal final only occur in Chinese loanwords. Table 3-24 below summarises the W-YL rhymes inventory, with allophones in brackets.

	Front	Rounded	Central	Back	Nasalised	Syllabic cons.
Close	i [iɛ]	y [yɛ]	i [ŋ][ŋ]	u	ĩ, ỹ, ĩ	γ
Mid	ε	ø [øɛ]		0	ĩ	ņ [ṃ] [ŋ]
Open	а		a [v][ə]		ã	

Table 3-24: W-YL rhyme inventory

When uttered in citation form, close or close-mid front vowels /i y ø/ are realised as diphthongs with an offglide of - ε , i.e., [i ε y ε ø ε]. When uttered in a carrier phrase, these vowels are realised as monophthongs. The close central vowel /i/ is realised as apical vowel [η] after alveolar affricates and fricatives and [η] after retroflex affricates and fricatives. Mid rounded vowel /ø/ is only contrastive after /m/, where it contrasts with close rounded vowel /y/, as in the minimal pair [m ϕ^{24}] 'mushroom' and [my²⁴] 'to hold in the mouth'. /ø/'s historical sources are Proto Lalo close back vowels after *m, as in *mu³ 'powder', and *mo¹ 'mushroom'. This vowel also occurs after velar stops, but is not contrastive with /y/ in that environment, as /y/ does not occur after velar stops. The open back vowel /a/ is usually realised as [ε], and is slightly raised after retroflexes to open-mid schwa [ϑ]. Diachronically, /a/ is a reflex of Proto Lalo modal vowel *-a, whereas front /a/ is a reflex of Proto Lalo harsh *-a. Because harsh phonation has been lost in W-YL, these vowels are now contrastive.

Syllabic fricative /y/ contrasts with back vowels /u/ and /o/ and is pronounced with lip compression, the upper teeth resting on the lower lip. Its diachronic source is usually Proto Lalo *-u. /y/ never occurs after bilabial initials or any kind of affricate or fricative except labiodentals /f v/. Close back vowel /u/ is a reflex of Proto Lalo *-aŋ, while mid back vowel /o/ is a reflex of Proto Lalo harsh *o. In C-LJ, [o] is an allophone of /u/, because it is only found in harsh syllables,

whereas /u/ is only found in modal syllables. But in W-YL, harsh phonation has been lost, and therefore synchronically /o/ is now fully contrastive with /u/. The syllabic nasal is similar to that found in CW-QY. Table 3-25 gives examples of W-YL rhymes.

Rhyme	W-YL	English	Chinese	Rhyme	W-YL	English	Chinese
i	bi ⁴⁴	full	满	0	b0 ⁴⁴	full (stomach)	饱
ε	be ²¹	half	半	u	bu ³³	rich	富
у	by ²¹	collapse	倒塌	ĩ	$\tilde{1}^{44}$	look at	看
ø	mø ⁴⁴	blow	吹	ĩ	ĩ ⁴⁴	high	高
a	ba ⁴⁴	insipid	没味道	ỹ	${\rm \tilde{y}}^{_{21}}$	short	短
a	be33	bright	亮	ã	ã ²¹	fish	鱼
i	bi ⁴⁴	bud (v.)	发	ĩ	$\tilde{\epsilon}^{_{21}}$	many	多
Y	$d\gamma^{24}l\epsilon^{5_3}$	wing	翅膀	ņ	$n^{21}dy^{24}$	head	头

Table 3-25: W-YL rhyme examples

In contrast to other Lalo varieties discussed above, W-YL and W Lalo varieties in general do not distinguish harsh versus modal phonation. Harsh phonation has been lost, and the resulting system has four contrastive level tones and one contour tone, all in modal voice. As described in more detail in §5.3, the Western Lalo group has undergone a split in Tone *1, a conditioned merger between Tone *1 and *H, and a phonetic change in *L from low to high register. The conditioning for the Tone *1 split is slightly different in W-YL as opposed to other W varieties. In W-YL, voiced initials conditioned a low-rising pitch, and elsewhere Tone *1 is realised as a mid-high level pitch. In other W varieties, as in W-DT (§3.5.1 below), low-rising is the default pitch reflex for Tone *1, and the mid-high level pitch is only found in syllables with PLa preglottalised initials. Table 3-26 summarises W-YL reflexes of Proto Lalo tone. Acoustic tonal analysis is given in §5.3.3.

Table 3-26: W-YL reflexes of Proto Lalo tones

Proto Lalo	W-YL	Chao pitch numbers
*1/*elsewhere and *H	Mid high	44
1/[+voi]_	Low-rising	24 [35 before 21; 34 after 55]
*2	Low	21
*3	Mid	33
*L	High	55 [53 phrase final]

Like Eka, W-YL's low-rising tone undergoes tone sandhi when preceding a low falling tone, and is realised as mid rising tone [35]. For example, $[n\epsilon^{35}z\epsilon^2]^1$ 'little brother,' cf. $[n\epsilon^{24}m\epsilon^{33}]$ 'little sister'. Also, when following a high pitch syllable, the low-rising tone's beginning pitch is raised to mid, thereby reducing the contour, cf. $[\gamma i^{24}]$ 'liquid' in isolation, but $[ki^{55}\gamma i^{34}]$ 'bile,' (literally 'bile liquid').

3.5.1 Dutian (W-DT)

Dutian Village Cluster (W-DT) is located in Taiping Township, Yangbi County in Dali Prefecture. *A lexical compendium of Yi dialects* (YNYF 1984) contains a wordlist that was collected in the Yangbi County seat that shows a great deal of similarity to W-DT's phonology, although not identical. This phonological analysis is based on recordings of two native speakers, both males in their twenties. W-YL and W-DT's phonologies have a few differences. W-DT's [f], [w] and [j] can be grouped together as /f/: [f] before $/\epsilon y/$, [w] before rounded vowels /y u o/, and [j] before /i a/.

/f/, /x/ and / χ / are contrastive, with /x/ and / χ / occurring before /y ϵ i a o/. Table 3-27 gives W-DT's initial consonant inventory.

			Strident			_
	Labial	Alveolar	Alveolar	Retroflex	Velar	Laryngeal
Stops &	р	t	ts	tş [tc]	k	[?]
Affricates	\mathbf{p}^{h}	t ^h	ts ^h	$t s^h [t c^h]$	\mathbf{k}^{h}	
	b	d	dz	dz [dz]	g	
Fricatives	f [w] [j]		S	[a] ş	х	h [ĥ]
	v		Z	ζ[Z]	Y	
Nasals	m	n [ɲ]			ŋ	
Approximant		1				

Table 3-27:W-DT initial consonant inventory

Also, W-DT has a contrastive close-mid vowel /e/, which contrasts with /i/ and / ϵ /, while W-YL only has /i/ and / ϵ /. In W-DT, [\emptyset] is in complementary distribution with /y/, occurring only after velars, while W-YL has a contrastive / \emptyset / phoneme. W-DT has merged the reflexes of *a, *oŋ and *ok to /o/, whereas W-YL keeps the two sets separate as /a/ and /o/. Table 3-28 gives W-DT's rhyme inventory.

Table 3-28: W-DT rhyme inventory

	Front	Rounded	Central	Back	Nasalised	Syllabic consonants
Close	i [iɛ]	y [ø]	i []][\]	u	ĩ, ĩ	Ŷ
Close-mid	e			0	õ	ņ [ṃ] [ŋ]
Mid-open/Open	ε		а		ĩ	

As explained in §5.3, W-DT's Tone *1 split to mid-high level pitch is only found in syllables with *preglottalised initials, while syllables with all other initials, including voiceless initials, split to low-rising. W-DT's high tone reflex of *L, correponding to W-YL's [55/53] tone, is a high rising tone [45], rather than a level or falling tone. Acoustic analysis is given in §5.3.3.

Proto Lalo	W-DT	Chao pitch numbers
1/?initials_; *H	High level	44
*1/*elsewhere	Low-rising	24
*2	Low	21
*3	Mid	33
*L	High rising	45

Table 3-29: W-DT reflexes of Proto Lalo tones

3.5.2 Shuizhuping (W-SZP)

Shuizhuping Village Cluster (W-SZP) is located in Longtan Township, Yangbi County, Dali Prefecture. The phonological analysis is based on recordings of two native speakers, both females in their fifties.

W-SZP has the same inventory of initials and vowels as W-DT. That is not to say the two systems have developed the same way historically. Whereas W-DT's /o/ phoneme is robustly contrastive, due to the merger of *a, *oŋ and *ok, W-SZP's /o/ is marginal, only occurring after velars and /h/. However, /u/ also occurs after velars, a result of the change of *aŋ > /u/, e.g. *glaŋ¹

'cold' > $[gu^{24}]$. These two vowels therefore contrast after velars; otherwise [o] would be considered an allophone of /u/ after velars. In W-SZP, PLa rounded vowel *y merges with *aŋ to /u/ after velar initials, which is in contrast with W-SLZ's development, explained below. W-SZP's close mid vowel /e/ is realised as diphthong [ai] after velars.

W-SZP's tonal system is very similar to W-DT, with only a phonetic difference in the realisation of *L reflexes. W-SZP's *L tone category is consistently realised as a convex rising-falling tone, [453], even in utterance medial position. Acoustic analysis is given in §5.3.3.

3.5.3 Shanglizhuo (W-SLZ)

Shanglizhuo Village Cluster (W-SLZ) is located in Wama Township, Longyang Town, Baoshan Municipality. The Lalo at this location report that they migrated from Dali over a hundred years ago. The phonological analysis is based on recordings of two native speakers, one male and one female, both in their fifties.

W-SLZ's phonological system is very similar to W-SZP, both synchronically and diachronically. However, in W-SLZ, PLa rounded vowel *y develops as diphthong [ue] after velars, instead of merging with *aŋ to /u/ as W-SZP does. The diphthong [ue] is not contrastive and is an allophone of /y/ after velars. W-SLZ has a contrastive palatal nasal /p/, from PLa *p, which is contrastive with /n/ before /a/, as shown by the near minimal pair [na⁴⁴] 'to listen' from *?na¹ and [a⁴⁴pa⁴⁴] 'bird' from *pa^H. Like W-SZP, close mid vowel /e/ is realised as diphthong [ai] after velars; unlike W-SZP, /e/ is also realised as [ai] after the alveolar affricates. In W-SLZ, velar stops are backed to uvular position before back vowels /o/, /a/ and [ai].

W-SLZ and W-SZP's tonal systems are basically identical. Acoustic analysis is given in §5.3.3.

3.6 Eastern Lalo: Diaocao (E-DC)

Diaocao (E-DC) Lalo is chosen to represent the Eastern Lalo dialect group, which also includes E-HS and E-TS, all within the domain of Dali Municipality, outside of the prefectural capital Xiaguan. A recent description of E-DC phonology is Lam and Lam's (2008) unpublished working paper. Although the analysis here is essentially the same as Lam and Lam (2008), differences are noted below. This phonological sketch is based on data collected from four native speakers, all male, two in their fifties, one in his sixties, and one in his thirties. Recordings were taken in Diaocao Village Cluster, Xiaguan Town, Dali Municipality, Dali Prefecture. The syllable template for E-DC is similar to most Western Lalo varieties: (C)VT. E-DC has 26 initials, 15 rhymes, and 5 contrastive tones. There are also syllabic nasals, which do not combine with initials but do carry a tone. E-DC Lalo initials are summarised in Table 3-30 below:

Table 3-30: E-DC initial consonant inventory

	Labial	Alveolar	StridentA lveolar	Alveopalatal	Velar
Stops &	р	t	ts	tc	k
Affricates	\mathbf{p}^{h}	t ^h	ts ^h	tc ^h	k ^h
	b	d	dz	dz	g
Fricatives	f		s [ɕ]		х
	v		Z		γ [j, j]
Nasals	m	n [ɲ]			ŋ
Approximants	w	1			

Like Central Lalo, E-DC distinguishes two series of affricates, though in E-DC there are no retroflexes as there are in CW-QY. Instead, there are alveopalatal affricates /tc tc^h dz/ which contrast with alveolar affricates and fricatives /ts ts^h dz s/. The voiced alveopalatal affricate [dz]

only occurs before /i/ in native vocabulary, which is the only environment /dz/ and /dz/ are contrastive. Alveolopalatal [c] is an allophone of /s/ before /i/ and before diphthongs with the palatal onglide. There is no contrastive voiced alveopalatal fricative /z/; this phone does not occur. The lack of voiced alveopalatal affricates and fricatives differs from Lam and Lam's (2008) analysis, which has /z/. Lam and Lam's transcription of [z] parallels my transcription of [j]. Since there is no audible friction in most instances of [j] in the recordings, I prefer to transcribe this sound as an approximant. When occurring before close front vowel /i/, however, there is friction and the phoneme is realised as palatal fricative [j]. The main diachronic source for [j] and [j] is Proto Lalo $*_3$, which merged with $*_z$ to the alveolar fricative [z] before close vowels $*_i$ and $*_u$, and weakened to [j] and [j] elsewhere.

Initial	E-DC	English	Chinese	Initial	E-DC	English	Chin.
р	na²¹pa ⁵⁵	ear	耳朵	k ^h	k ^h ä ²¹	bitter	苦
\mathbf{p}^{h}	pha ²¹ -	face	脸	g	ga ³¹	drive out	赶
b	na²1ba²1	earring	耳环	f	fe ³³	dry	千
t	ta ⁵⁵ pi ⁵⁵	buttocks	屁股	v	va ³³	round	员
t ^h	tha21	don't	别	S	a ²¹ sa ²¹	who?	谁?
d	da ²⁴	drink	喝	z	Z3 ²¹	son	儿子
ts	a ⁵⁵ tsa ⁵⁵	what?	什么	х	xa³³tsj³¹pu³¹	rat	老鼠
ts ^h	tsha ²¹	ginger	姜	Y	γ 3 ²¹	snow	雪
dz	dza ²⁴	study	学	m	ma ²¹	old	老
tc	tca ⁵⁵	fold	折	n	na²¹pa ⁵⁵	ear	耳朵
tch	$tc^{h}c^{33}$	request	请	ŋ	ŋa²4	affirmative	是
k	ja³³ka³¹	wild animal	野兽	1	la ²⁴	light	轻
				w	wa ³¹ bo ²¹ t ^h ϵ ⁵⁵	cliff	悬崖

Table 3-31: E-DC initial examples

Unlike Western varieties, /w/, / χ / and /f/ contrast before / ϵ /, although /w/'s occurrence before / ϵ / is rare, occurring in only two examples in the wordlist. However, [χ], [j] and [j] and are in complementary distribution, with [χ] before / ϵ ə ɔ/, [j] before /i/, and [j] before /a u/, and are therefore analysed as allophones of / χ /. Alveolar nasal /n/ is palatalised [n] before close front vowels /i/ and any diphthong beginning with a palatal onglide, i.e., /i ϵ ia io iu/. Like Eka, MD, XZ and YL, E-DC has undergone a merger of PLa *h and *x to /x/. Table 3-31 above gives examples of E-DC initials:

E-DC has a somewhat more complex system of rhymes than CW-QY, with eight monophthongs, six diphthongs and one syllabic nasal. Like W varieties, but unlike C varieties, E-DC distinguishes four levels of vowel height; C varieties only distinguish three. Table 3-32 below illustrates E-DC's rhyme inventory.

	Front	Central	Back	Diphthongs			Syllabic nasal
Close	i		u	iε	iu	ue	ņ
Close-mid	e [ei]	ə [][i]	Å	ia	iə	ua	
Open-mid	8		э				
Open		а					

Table 3-32: E-DC rhyme inventory

Table 3-33 below gives examples of E-DC rhymes.

Rhyme	E-DC	English	Chinese
i	bi ²⁴	pus	脓
e	bei ⁴⁴	say	说
3	be ²¹	slice in half (v.)	切成两半
ə	bə ²¹	insect	昆虫
а	na ²¹ ba ²¹	earring	耳环
u	bu ³³	full (stomach)	饱
r	mr^{55}	do (work)	做 (做工)
Э	$b\mathfrak{d}^{21}$	thin (2d)	薄
iɛ	a ⁵⁵ mə ²¹ biɛ ³¹	lightning	闪电
ia	bia ²¹	honeybee	蜜蜂
iə	bio ²⁴	fly	Ľ
iu	a ⁵⁵ miu ³¹	monkey	猴子
ue	dzue ²¹	think	思考
ua	sua ³³ tr ²¹	trap (n.)	陷阱
ņ	n ²¹ də ²⁴ kə ³³	head	头

Table 3-33: E-DC rhyme examples

This analysis differs from Lam and Lam (2008) in that there is no contrastive /o/ phoneme. There is no evidence of contrast between [o] and [u] in this data. All instances of [o] in Lam's data correspond to variation of [o] and [u] in my data. Speaker DC2 preferred [o] and Speaker DC1, [u]. Both speakers were older males. The other difference is that what Lam and Lam transcribe as [u], I transcribe as the lower vowel [x]. Close-mid back vowel /x/ is realised with the upper teeth touching the lower lip, [x], corresponding to W-YL and Eka's syllabic fricative [y] and XZ, W-SLZ, and YL's [x]. Because there is no audible friction associated with this phone, I prefer to use the symbol [x], with the dental diacritic below the segment denoting its co-occurring lip compression.

Close-mid front vowel /e/ [eⁱ] contrasts with /i/ and / ϵ /. It is always realised with a close off-glide, even when utterance medial. Historically, /e/ reflects PLa *e. Central vowel / ρ / is realised as apical vowel [1] after alveolar affricates and fricatives.Diphthongs beginning with close front vowel [i], as in /i ϵ ia iu io/ are analysed as diphthongs, not glide plus vowel, even though the onglide's main diachronic source comes from Proto Lalo palatalised intials (e.g., *pj and *mj, see §4.2.1.2). Because the onglide [i-] only combines with four vowels / ϵ a u o/, these rhymes are analysed as diphthongs, rather than adding a series of contrastive palatalised initials. Diphthongs /ue ua/ are found in both native vocabulary and Han loanwords. Their occurrence in native vocabulary is rare, especially /ua/, which is found mostly in loanwords. The syllabic nasal / η / behaves similarly to those found in other Lalo varieties.

Like W-YL, E-DC has lost the phonation contrast of harsh versus modal. Instead, E-DC has three contrastive level tones and two contour tones, rising and falling. Table 3-34 below summarises the development of E-DC tones. Like CE-YA (§3.2.1), E-DC shows a split in Tone *1, in which Proto Lalo voiced initial consonants conditioned a low-rising tone. Voiceless initials and preglottalised initials maintained the high level tone; when preglottalised and plain initials merged, the tone split became phonemically contrastive. This split, also seen in XZ and W-YL, is described in further detail in §5.3. In contrast with W-YL, E-DC's *H did not merge with *1/*?_, but rather

with *3, resulting in a mid level tone. Whereas harsh phonation conditioned the change from mid harsh to high modal in W-YL, in E-DC harsh phonation simply disappeared, leading to the merger of mid harsh and mid modal. This merger is also seen in other E varieties. A related phenomenon is the development of *L to a mid falling tone. In E-DC, *L did not change to the highest tone in the system, as it did in W-YL and other Western Lalo varieties, but rather to a mid falling tone. In E-DC, harsh phonation conditioned a slightly higher initial pitch in *L, resulting in a pitch that begins at mid and rapidly falls to low.

Proto Lalo	E-DC	Chao pitch numbers
*1/elsewhere	High level	55
1/[+voi]	Low-rising	24 [34 after 55]
*2	Low	21
*3 and *H	Mid	33
*L	Mid falling	31

Table 3-34: E-DC reflexes of Proto Lalo tones

Like W-YL, E-DC's low-rising tone undergoes tone sandhi after the high level tone and is realised as [34] with a slightly higher initial pitch and reduced F0 movement, e.g., $[a^{55}dza^{34}]$ 'eagle,' but $[dza^{24}]$ 'bridge'. E-DC does not, on the other hand, show raising of the low-rising tone before the low falling tone, as both W-YL and Eka show. Nor does it show leveling of the low falling tone before another low falling tone, as Eka shows. Acoustic analysis of E-DC's tonal system is given in §5.3.2.

3.6.1 Taoshu (E-TS)

Taoshu Village Cluster (E-TS) is located in Taiyi Township, Dali Municipality, Dali Prefecture, and has never before been documented. The phonological analysis is based on recordings of four native speakers: one male and one female in their fifties and two males in their thirties. The syllable template is similar to CW-QY, (C)VTP and NT. Table 3-35 gives E-TS's initial consonant inventory.

	Labial	Alveolar	Strident Alveolar	Palatal/ Palatoalveolar	Velar	Laryngeal
	Luoiui	1 II v colui	1 II v colui			
Stops &	р	t	ts	t∫ [tɕ]	k	[3]
Affricates	\mathbf{p}^{h}	t ^h	ts ^h	t∫ ^h [tɕ ^h]	\mathbf{k}^{h}	
	b	d	dz	d3 [dz]	g	
Fricatives			s [ɕ]		x [f]	h [ĥ]
	v		Z		γ [w] [j]	
Nasals	m	n		ŋ	ŋ	
Approx-						
imants		1				

Table 3-35: E-TS initial consonant inventory

E-TS, like E-DC, has no retroflex affricates or fricatives, and instead has palatoalveolar affricates that are realised as alveopalatals before close front vowels /i y/. Fricative [ϵ] only occurs before /i y/, and so is grouped as an allophone of /s/, and [z] does not occur at all. Velar and glottal fricative /x/ and /h/ [\tilde{h}] contrast before /ə/ and /ə/, unlike E-DC, which has merged PLa *x and *h to /x/. [f] is an allophone of /x/ before /y/. E-TS's [y], [w], and [j] are grouped together as allophones of /y/, with the following distributions: [y] occurs before / ϵ ə ə/, [w] before /u/, [j] before /i a/. E-TS's /p/ contrasts with /n/ before /a/, as in W-SLZ.

Table 3-36 gives E-TS's rhyme inventory. E-TS's vowel system shares some characteristics with Central varieties like CW-QY. Like Central, E-TS vowels have both modal and harsh

phonation, but unlike Central, harsh phonation is only seen in the reflexes of PLa *L and not *H. Like Central, E-TS does not have a contrastive close-mid /e/, but instead has only /i/ and / ϵ /. This is similar to the development of most Central Lalo varieties and W-YL.

E-TS's /y/ is realised as central rounded [\mathfrak{u}] after labial initials. E-TS's /ə/ corresponds to most other varieties' close central /i/; in E-TS's case, [i] is only found after velar initials, and [ə] occurs elsewhere. Each of E-TS's modal vowels have nasalised counterparts, which occur without any initial consonant. As elsewhere, E-TS's nasalised vowels are the result of the loss of *preglottalised nasals under various conditions, illustrated in §4.1.5.

	Front	Rounded	Central	Back	Nasalised	Syllabic nasal
Close Close-mid Open-mid	i [i] ε [ε]	y [y][ʉ]	ə [ə] [ɨ] [Ŋ]	น [นฺ] ร [รฺ] ว [วฺ]	ĩ, ỹ ẽ, ẽ õ	ņ
Open			a [a]		ã	

Table 3-36: E-TS rhyme inventory

Table 3-37 gives E-TS's reflexes of Proto Lalo tones. E-TS shares the same basic tonal system as E-DC, with the exception of the retention of harsh phonation in *L. Like E-DC, E-TS has split Tone *1 to low-rising pitch after unprefixed, voiced consonants, and to high level elsewhere. Also like E-DC, E-TS has lost harsh phonation in *H, resulting in the merger of *3 and *H have to mid level pitch in modal voice. However, E-TS has retained harsh voice in *L, which is realised as a low-falling pitch in harsh phonation, similar to Central varieties.

Table 3-37: E-TS reflexes of Proto Lalo tones

Proto Lalo	E-TS	Chao pitch numbers
*1/elsewhere	High level	55
1/[+voi]	Low-rising	24
*2	Low	21
*3 and *H	Mid	33
*L	Low and harsh	21

3.6.2 Houshan (E-HS)

Houshan Village Cluster (E-HS) is located in Fengyi Town, Dali Municipality, Dali Prefecture, and has never before been documented. The phonological analysis is based on recordings of five native speakers: one male and two females in their fifties and two males in their thirties. The syllable template is the same as E-TS, (C)VTP and NT. Table 3-38 gives E-HS's initial consonant inventory.

	Labial	Alveolar	Strident Alveolar	Palatal/ Alveopalatal	Velar	Laryn- geal
Stops &	р	t	ts [tʃ] [tʂ]	tc	k	[?]
Affricates	$\mathbf{p}^{\mathbf{h}}$	t ^h	$ts^{h} [tf^{h}] [ts^{h}]$	t¢ ^h	\mathbf{k}^{h}	
	b	d	dz [dʒ] [dʐ]	dz	g	
Fricatives	f		s [ʃ] [ʂ]	G	х	h [ĥ]
	v		z [3]		γ [w]	
Nasals	m	n			ŋ	
Approx-						
imants		1		j		

E-HS's alveolar series of affricates and fricatives have the following allophones: palatoalveolar before central vowel /ə/, retroflex before the rhotacised vowels / ϵ / [ϵ -] and /r/ [r-], and alveolar elsewhere (/i a u ɔ/). The alveopalatal series occurs most frequently before close front vowels /i y/, but also occurs before /a/ and /u/, and so contrasts with the alveolar series before /i a u/. Alveopalatal [r] does not occur, as in E-DC. Velar fricative /r/ has allophone [w] before modal vowel /u/ and harsh vowels /u/ and /a/, and [r] before modal vowels / ϵ i ɔ a/. [j] has very restricted distribution, occurring only before modal /i/ and /a/. [f], which only occurs before modal / ϵ ə r/, contrasts with /r/ before / ϵ ə/.

Table 3-39 gives E-HS's rhyme inventory. In E-HS, only /i ε a s/ occur in harsh phonation, in contrast with E-TS, where all vowels may occur in harsh phonation. E-HS also has fewer nasalised vowels than E-TS. Like E-DC, E-HS has diphthongs /ia/ and /ua/ in native vocabulary, though E-DC additionally has /i ε io iu ue/ in native vocabulary. Like E-TS, but in contrast with E-DC, E-HS does not have a contrastive close-mid front vowel /e/. E-HS's /ə/ corresponds to E-DC's /ə/ and to Central Lalo's /y/ and /i/; /ə/ is realised as close central vowel [i] after velars, palatoalveolars and labiodental fricatives.

					Nasalised	
	Front	Central	Back	Diphthongs	vowels	Syllabic nasal
Close	i [i][]]		u	ia , ua		ņ
Close-mid		ə [i]	r		$\tilde{\mathbf{v}}$	
Open-mid	ε [<u>ε</u>]		ა [ე]		ĩ, õ	
Open		a [a]				

Table 3-39: E-HS rhyme inventory

E-HS and E-TS share the same tonal system, as seen in Table 3-40 below. Like E-DC and E-TS, E-HS has split Tone *1 and merged *3 and *H. Both E-HS and E-TS have retained harsh voice in *L.

Table 3-40: E-HS	reflexes	of Proto	Lalo tones
------------------	----------	----------	------------

Proto Lalo	E-TS	Chao pitch numbers
*1/elsewhere	High level	55
1/[+voi]	Low-rising	24
*2	Low	21
*3 and *H	Mid	33
*L	Low and harsh	<u>21</u>

3.7 Southeastern Lalo: Gaoping (SE-GP)

Southeastern Lalo phonology is represented here by the variety spoken in Dashuping Village, Gaoping (GP) Village Cluster, Micheng District, Midu County, Dali Prefecture; Although the SE-GP variety has never before been documented, Lam and Chan (2009) collected 200-item wordlists in two SE Lalo villages: Majiefang Village in Runze Village Cluster, Miaojie District, and Duoyucun Village in Ziyou Village Cluster, Nanzhao District, both in Weishan County, Dali Prefecture. Lam and Chan (2009) report that SE Lalo is also spoken in Fulong Village, Tianze Village Cluster, Miaojie District, and Sanjiacun Village, Gucheng Village Cluster, Nanzhao District, both in Weishan County, as well as Shijia, Waze, and Duogu villages in Midu County. Lam and Chan estimate the speaker population for SE Lalo is around 12,000.

This phonological sketch is based on recordings of five native speakers, two female and two male speakers in their thirties and one male speaker in his forties in Dashuping Village, Gaoping Village Cluster, Micheng District, Midu County. The SE-GP syllable template is (C)VTP, in which one of 30 optional initial consonants is followed by one of 12 obligatory vowels with one of 5 tones. Additionally, there is NT, in which a syllabic nasal has a tone. SE-GP Lalo initials are summarised in Table 3-41 below:

	Labial	Alveolar	Strident Alveolar	Retroflex/ Palatal	Velar	Laryngeal
Stops &	р	t	ts	tş [tɕ]	k	[3]
Affricates	\mathbf{p}^{h}	t ^h	ts ^h	tş ^h [tc ^h]	\mathbf{k}^{h}	
	b	d	dz	dz [dz]	g	
Fricatives	f		S	[a] ş	х	h [ĥ]
	v		Z	ζ [ʑ]	γ [γ ^w]	
Nasals	m	n [ɲ]			ŋ	
Approximant	w	1		j		

Table 3-41: SE-GP initial consonant inventory

SE-GP's alveolar affricates and fricatives only contrast with the retroflex series before the close central vowel /i/. Elsewhere, alveolar affricates are found only before back vowels (/u, o, a/), retroflexes are found before the front vowel / ϵ /, and alveopalatals are found before other front vowels and diphthongs with a close front onset (/i, y, ia, iao/). Alveopalatal affricates and fricatives could be considered as allophones of either the alveolar or retroflex series, since they are in complementary distribution with both.

Approximants /w/ and /j/ and voiced velar fricative / χ / contrast before back vowels, but none of them occur before front vowels. /f/ is contrastive with /x/ before / ϵ / and /u/. /x/ and /h/ contrast before both front and back vowels, and /h/ always occurs with nasalization ([\tilde{h}]). /n/ is palatalised [n] before /i/ and diphthongs /ia, iao/. Table 3-42 below gives examples of SE-GP initials:

Initial	SE-GP	English	Chinese	Initial	SE-GP	English	Chin.
р	la ⁵⁵ pa ⁴⁴	ear	耳朵	f	fe ³³	dry	干
$\mathbf{p}^{\mathbf{h}}$	ha ⁵⁵ p ^h a ²¹	Han	汉族	v	va ²¹	vegetable	菜
b	la ⁵⁵ ba ²¹	earring	耳环	S	a ²¹ sa ²¹	who?	谁?
		feed	nщ		1 1 201 20	1:1 10	百月
t	ta ³³	animals	喂	Z	k ^h i ²¹ za ³³	hide self	躲
t ^h	tha21	don't	别	ş	N ⁴⁴	gold	金
d	da ⁴⁴	drink	喝	z	$z_1^{21}m\epsilon^{21}$	daughter	女儿
k	ka ⁴⁴	hang	挂	x	xa ²¹	send off	送
\mathbf{k}^{h}	$k^{h}a^{21}$	bitter	苦	¥	Y i ³³	count	数
g	ga ³³	grind	磨	h	a ⁴⁴ ha ³³	rat	老鼠
ts	tsa ²¹ phi ⁴⁴	wet	湿	m	ma ²¹	NEG.	不
tsh	tsha ²¹	ginger	姜	n	na ³³	swallow	咽
dz	dza ⁴⁴	study	学	ŋ	ŋa ⁴⁴	affirmative	是
		hide					
tş	tรา ⁴⁴	thing	藏	1	la ⁴⁴	come	来
t§h	tşhJ ⁴⁴	lard	猪油	j	ja ⁴⁴ mi ²¹	mosquito	蚊子
dz	dz_{1}^{21}	eat	吃	w	a ⁴⁴ wa ⁴⁴	mother	母亲

Table 3-42: SE-GP initial examples

SE-GP has seven monophthongs and five diphthongs, along with a syllabic nasal. Table 3-43 below illustrates SE-GP's rhyme inventory. As with E-DC, diphthongs beginning with close front vowel [i], as in /iɛ ia iao/ are analysed as diphthongs, not glide plus vowel. Diphthongs /ou ua/ are found in both native vocabulary and Han loanwords, though their occurrence in native vocabulary is rare. The syllabic nasal /n/ behaves similarly to those found in other Lalo varieties.

Table 3-43: SE-GP rhyme inventory

	Front	Front rounded	Central	Back	Diphthongs	Syllabic nasal
Close	i	у	i	u	iɛ, ia, iao, ua	ņ
Open-mid	3			0	ou	
Open			а			

Table 3-44 below gives examples of SE-GP rhymes:

Rhyme	SE-GP	English	Chinese
i	bi ³³	say	说
ε	bε ²¹	slice in half (v.)	切成两半
ə	bi ²¹	insect	昆虫
a	la ²¹ ba ²¹	blanket	被子
u	bu ⁴⁴	pus	脓
0	b0 ²¹	thin (2d)	薄
iɛ	mie ⁴⁴	see	看见
ia	bia ³³	insipid	没味道
iao	a ²⁴ mi <u>ao</u> ²¹	monkey	猴子
ua	dua ²¹ wu ³³	start	开始
ou	ou ²¹ pi ³³	burp	打嗝
ņ	n ²¹	two	<u> </u>

Table 3-44: SE-GP rhyme examples

Table 3-45 below shows SE-GP's reflexes of Proto Lalo tones. SE-GP stands out from other Lalo languages in showing tone splits in *2 and *L that are similar to those found in Lolo and Lisu. In SE-GP, Proto Lalo voiceless unaspirated initials (from PN *?- prefixed initials) triggered a split to high pitch in *2; in *L, all voiceless initials (from PN *?- prefixed initials or *C- prefixed initials) conditioned the change to high pitch. * \int (but not *s) is an additional condition for the *2 split, which must have occurred before the conditioned merger of * \int and *s, because *s does not take part in the split. * \int and *s merged with the following conditions: * \int and *s = $\frac{s}{-\frac{$

Table 3-45: SE-GP reflexes of Proto Lalo tones

Proto Lalo	SE-GP	Chao pitch numbers
*1 and *H/*?[+sonorant]_	Mid high level	44
*2/*ʃ, *?_, *[-voi, +sg]	High	55
L/[-voi]		
*2/elsewhere	Low	21
*3 and *H/elsewhere	Mid	33
*L/[+voi]	Low falling, harsh	<u>21</u>

3.8 Yangliu (YL)

The YL Lalo variety has never before been documented, although the presence of a distinct type of Lalo in this area of Baoshan is mentioned in several sources (BSSZ 1993, BSDQY 1998, and Hattaway (2003) based on Pelkey (1999)). This phonological sketch is based on recordings of three native speakers: one male in his fifties and two females, one 18 years old and the other in her thirties. The recordings took place in Gangou Village, Yangliu Village Cluster, Yangliu Township, Longyang Town, Baoshan Municipality.

The YL Lalo syllable template is (C)V(N)T, in which the optional initial is one of 25 consonants, an obligatory vowel (one of 11 vowels or 1 syllabic fricative), an optional nasal final /-ŋ/, and tone (one of 3 or 4, depending on speaker's age). All tones are in modal phonation. Syllabic nasals are also found. This template is similar to Eka's, in that final -ŋ is found within a syllable boundary in slow speech (i.e., is not a merger of open syllables and the syllabic nasal in fast speech, as is found in CW-QY). Table 3-46 gives YL's initial consonant inventory.

	Labial	Alveolar	Strident Alveolar	Palatal	Velar	Laryn-g eal
Stops &	р	t	ts [tʂ] [tɕ]		k	[?]
Affricates	$\mathbf{p}^{\mathbf{h}}$	t ^h	$ts^{h} [ts^{h}] [tc^{h}]$		\mathbf{k}^{h}	
	b	d	dz [dz][dz]		g	
Fricatives	f		s [ʂ][ɕ]		х	$h[\tilde{h}]$
	v		Z [Z]		γ [w]	
Nasals	m	n		n	ŋ	
Approximants		1		j		

Table 3-46: YL initial consonant inventory

Like Eka, YL has merged the alveolar and palatoalveolar affricate and fricative series to the alveolar position. Alveolars are realised as retroflex before the rhotacised mid-open vowel $|\varepsilon|$ [ε -], and as alveoalatal before close front vowels /i/ and /y/. Similar to W-SLZ, YL has a contrastive palatal nasal, which occurs before / ε a o/. Velar fricative / γ / is realised as [w] before back vowels /u γ /, and as [γ] elsewhere. /f/ and /j/ contrast before / ε /, but /f/ is very restricted in its distribution, occurring only before / ε / and / γ /, while /j/ occurs before /i ε a/.

Table 3-47 gives YL's rhyme inventory. Like some Western varieties, YL distinguishes mid /e/ from lower mid / ϵ /. Unlike Western, however, YL has an additional contrastive diphthong /ai/ and a nasal final -ŋ. The nasal final -ŋ, which occurs rarely, appears in rhymes /-aŋ/ (as in $[a\eta^{21}]$ 'fish') and /-əŋ/ (as in $[n \exists \eta^{53}]$ 'snot') in native vocabulary, and /-iŋ/ and /-oŋ/ in loan words. YL's /ə/ corresponds to Western and Central Lalo's close rounded vowel /y/.

	Front	Cen-t ral	Back	Diphthong	Nasalised	Nasal final	Syllabic consonants
Close	i	i []]	u		ĩ		Ŷ
Close-mid	e		0		õ	-ŋ	ņ [ṃ] [ŋ]
Mid/open	33	ə	a	ai			

Table 3-47: YL rhyme inventory

Table 3-48 shows the tonal inventories of Speaker YL1 (18 years old) and Speaker YL2 (over 50 years old), respectively:

Proto Lalo	Older	Chao #	Younger	Chao #
*1/elsewhere	Low-rising	24		
1/[-voi]	Mid	33	Mid	33
*3				
*2	Low	21	Low	21
*H and *L	High falling	53	High falling	53

Table 3-48: YL reflexes of Proto Lalo tones

The analysis shows a difference between older and younger speakers. While Speaker YL2, the older speaker, shows a split in Tone *1, the younger speaker has merged all Tone *1 and Tone *3 reflexes to a mid level [33] pitch. In the older speaker's speech, Tone *1 is reflected as a mid level pitch for syllables with voiceless initials, and a low-rising pitch elsewhere. This generational difference suggests that YL younger speakers have undergone a merger of Tone *1's low-rising reflexes with the already merged Tone *1 [voiceless initial] and Tone *3 categories. Acoustic analysis of the two tonal systems is given in §5.3.5.

3.9 Xuzhang (XZ)

XZ Lalo has never before been documented. Several sources (BSSZ 1993, BSDQZ 1998, Pelkey 1999, Hattaway 2003) state that XZ and YL Lalo are distinct groups, which is corroborated by the linguistic evidence. This phonological sketch is based on recordings of two native speakers, both males in their forties. The recordings took place in Xuzhang Village Cluster, Wafang Township, Longyang Town, Baoshan Municipality. Table 3-49 gives XZ's initial consonant inventory.

XZ Lalo shares the same syllable template as YL: (C)V(N)T, in which the optional initial is one of 30 consonants, an obligatory vowel (one of 13 vowels or 1 syllabic fricative), an optional nasal final $/-\eta/$, and tone (one of 4). All tones are in modal phonation. Syllabic nasals are also found.

Unlike YL, XZ has not merged the Proto Lalo palatoalveolar and alveolar affricate series. Retroflex affricates and fricatives are realised as alveopalatal before close front vowels /i/ and /y/. There are no examples of voiced retroflex initial plus /y/ (/zy/) in the data set. Velar fricative /y/ is realised as approximant [w] before close back vowel /u/, and contrasts with /j/ before /a/ and /o/. [f] and [j] are in complementary distribution, with [f] before /y/ and / ϵ /, and [j] before /a o/. Palatal nasal /p/, like YL's, is contrastive with /n/ before / ϵ a o/, but the contrast is neutralised before /i/, where both initials are realised as palatal.

	Labial	Alveolar	Strident Alveolar	Retroflex/Palatal	Velar	Laryngeal
Stops &	р	t	ts	tş [tc]	k	[3]
Affricates	$\mathbf{p}^{\mathbf{h}}$	t ^h	ts ^h	tşʰ [tɕʰ]	\mathbf{k}^{h}	
	b	d	dz	dz [dz]	g	
Fricatives	f [j]		S	§ [ɕ]	Х	h $[\tilde{h}]$
	v		Z	z[j]	γ [w]	
Nasals	m	n		n	ŋ	
Approximants		1				

Table 3-49: XZ initial consonant inventory

Table 3-50 gives XZ's rhyme inventory. Like W-SLZ, close mid vowel /e/ is realised as diphthong [ai] after velars and the alveolar affricates. Also like W-SLZ, diphthong [ue] is an allophone of /y/ after velars. Like YL, XZ has a nasal final /-ŋ/: /-aŋ, -iŋ, -oŋ/ in native vocabulary and /-iŋ, -iaŋ/ in Chinese loanwords. The nasal final in PLa *aŋ is often retained in Tone 2, e.g. in $[t^han^{21}]$ 'pine tree' and 'pangolin' from *t^han^2, $[han^{21}]$ 'rotten (meat)' from *han², but not in $[ma^{21}]$ 'old', from *man². XZ's nasalised initials developed compensatorily from the loss of *preglottalised initials, as in other Lalo dialects and described in §4.1.5.

	Front	Rounded	Central	Back	Nasalised	Nasal final	Syllabic consonants
Close	i	y [ue]	i []]	u	ĩ, ỹ, ỹ		Y
Mid	e [ai]			0	õ	-ŋ	ņ [ṃ] [ŋ]
Mid/open	٤-		а		ã		

Table 3-50: XZ rhyme inventory

XZ shows a conditioned split in Tone *1 along the same lines as Eastern Lalo and W-YL. The high tone is usually realised as a high rising falling pitch [453] in a monosyllabic utterance. XZ shows loss of harsh phonation in *H and *L, a change which enabled the three way merger of *3, *H, *L. Unlike any other Lalo variety, XZ has merged *3, *H, *L to the mid level tone [33]. The resulting system contrasts four tones: High, Mid, Low, and Low-rising, as seen in Table 3-51 below. Acoustic analysis of the tonal system is given in §5.3.5.

Proto Lalo	XZ	Chao pitch numbers
*1/elsewhere	High	55 [453]
1/[+voi]	Low-rising	24
*2	Low	21
*3, *H, *L	Mid	33

Table 3-51: XZ reflexes of Proto Lalo tones

3.10 Summary

This chapter provides a brief overview of fifteen Lalo varieties' phonologies, grouped into the Lalo subgroups as described in Chapter 6. The synchronic descriptions of these varieties provide the basis for the reconstruction of Proto Lalo given in Chapter 4. The divergent tonal developments of Lalo varieties are more fully explored in Chapter 5.

4.1 Introduction

This chapter presents a reconstruction of Proto Lalo (PLa) segments. The reconstruction of PLa tone is presented in Chapter 5. PLa is reconstructed by comparing Lalo varieties' cognate sets to each other and by tracing PLa's development from Proto Ngwi (PN) (Bradley 1979b) and Proto Burmic (Proto Lolo-Burmese) (PB) (Matisoff 1972, 2003). This chapter is divided into two main sections, initial consonants followed by rhymes. In each section, I present the relevant PLa phonological system, describe how PLa developed from PN/PB, and present the reasoning and evidence for my reconstruction.

All cited PN reconstructions are based on Bradley (1979) unless followed by (PB), which indicates the reconstruction comes from Matisoff's (2003) Proto Burmic. A number following the gloss, e.g., 'book-1' PLa *t^ho², indicates the order in which the reconstructed syllable occurs in a compound word, as in 'book' PLa *t^ho² yu².

4.2 Proto Lalo initials

The Proto Lalo syllable template is $(C)V(\eta)TP$, in which one of 48 optional initials was followed by one of 9 obligatory rhymes. The rhyme system included eight monophthongs and one nasal final rhyme *-an. The syllable carried one of 5 tones with either harsh or non-harsh (i.e., modal or breathy) phonation. PLa was mostly monosyllabic with some disyllabic compound words, unlike its ancestor PN, which was sesquisyllabic (i.e., weak syllable + strong syllable structure, a term coined by Matisoff (1973)). In PLa, PN prefixes sometimes pre-empted the initial of the strong syllable, but more often they influenced the initial's development in some way and then dropped off (e.g., the *s- prefix's devoicing of resonants, §4.2.3). PLa's preglottalised initials are the result of coalescence of the PN *?ə- prefix with the following initial.

Table 4-1 presents PLa's initial consonant inventory. The proposed system includes 32 obstruents and 16 sonorants. Voiceless unaspirated, voiceless aspirated, and voiced stops and affricates are found at labial, alveolar, palatal, and velar places of articulation. Voiced and voiceless fricatives are also found at these places, with the addition of a voiceless glottal fricative, *h, which was probably nasalised [\tilde{h}]. Proto Lalo has palatalised labial and velar consonant clusters, i.e., *pj, *p^hj, *bj, *mj, *?mj, *kj, *k^hj, *gj, *nj, *?nj, and labiovelar nasal *nw. Preglottalised *?nw is unattested, but theoretically possible given the symmetry between preglottalised and plain initials. Proto Lalo distinguishes preglottalised and plain sonorants at labial, alveolar, palatal, and velar places of articulation, i.e., *?m, *?mj, *?n, *?n, *?n, *?nj, and *?l, each with a plain counterpart, and two preglottalised fricatives, *?v and *?x, contrasting with plain *v and *x. In the following sections, the initials are divided into stops (including affricates and consonant clusters), fricatives, resonants, and nasals.

Compared to modern Lalo varieties, the Proto Lalo onset system is considerably more complex. Only a few Lalo varieties (i.e., E-DC, E-HS) preserve palatalised labial clusters, and only Longjie Lalo (from Björverud (1998)) preserves palatalised velar clusters. Also, most Lalo varieties have lost distinctive preglottalised initials, and those varieties that preserve them (CW-QY, C-LJ) only do so at labial and alveolar places of articulation. Distinctive correspondence sets provide evidence of the initials that are now found only rarely or not at all.

*n	*ni	*t	*ts	*+ſ	*k	*1.;		
*p	*pj			*t∫		*kj		
*p ^h	*pʰj	*t ^h	*ts ^h	*t∫ ^h	$^{*}k^{h}$	*kʰj		
*b	*bj	*d	*dz	*d3	*g	*gj		
*f	-		*s	*∫	*x			*h
*v			*z	*3	*γ			
*?v					*?x			
*m	*mj	*n		*ր	*ŋ	*ŋj	*ŋw	
*?m	*?mj	*?n		*?n	*?ŋ	*?ŋj	*2ŋw	
	5	*1		5	5	55	5	
		*?1						

Table 4-1: PLa initial consonant inventory

4.2.1 Stops

Table 4-2 below shows the development of manner of articulation of stops and affricates from PN to PLa, using the bilabial place of articulation (p and b) as cover symbols for all stops and affricates, but not including consonant clusters, which are addressed in §4.2.1.2. PN has two main syllable types: closed syllables ending in a stop, and non-closed syllables ending in a vowel (V) or nasal (N) (Bradley 1979b). Sometimes these syllable types affect the development of manner of the initial, as described below. *C is a cover symbol for the Proto Tibeto-Burman voiced consonantal prefixes *b, *d, *g, *r, *l, which sometimes affect the development of PN initials and tones (Bradley 1979b). By the Proto Ngwi stage, the *s- and *?- prefixes had merged before stops, represented here as *?-.

Like most other Ngwi languages, plain *p and *C-p in all syllable types developed into voiceless aspirated initials. *?-b in non-closed syllables and *?-p in all syllable types developed into voiceless unaspirated initials. *?-b in stopped syllables, prenasalised *mp and *mb, *C-b, and plain *b in all syllable types developed into voiced initials. PN's *C-prefixed stops and plain stops develop in the same way, with the voiceless stop becoming voicless aspirated and the voiced stop remaining voiced; in other words, *C had no effect on the voicing of the stop. These developments parallel Lisu (Bradley 1979b). Matisoff (2003: 113) finds no surviving evidence for a contrast of voicing in preglottalised obstruents in syllables ending in a vowel or nasal at the PN stage, although there may be languages still awaiting documentation that may prove the contrast. There was a voicing contrast in closed syllables, as evidenced by the split into *L and *H (Matisoff 1972). Lahu has merged the voicing distinction in both syllable types, but PLa preserved the voicing distinction, with *?-p becoming voiceless unaspirated, and *?-b remaining voiced in closed syllables. In PLa non-closed syllables, both *?-p and *?-b have merged to voiceless unaspirated.

PN	PLa
*p, *Cp	\mathbf{p}^{h}
*?p	р
*?b/_V, N	
*?b/ stop	
*mp,*mb	b
*b, *Cb	

Table 4-2: Development of manner of PLa stops and affricates

Table 4-3 below gives examples of PN stops and affricates' development of manner. In Central and Western Lalo, PLa *g weakens to voiced velar fricative [γ] before PLa back, non-high vowels *a, *aŋ, and *o, but not before high vowels *i, *y, *i and *u. This later development is described in §6.5.

PN	PN ex.	Gloss	PLa	CW-QY	MD	Eka	W-YL
*р	pe ¹	gray	$p^{h}\epsilon^{1}$	$p^{h}\epsilon^{55}$	pha ⁵⁵	$p^h a^{24}$	$p^{h}\epsilon^{44}$
*Cp/_stop	C-pak [⊥]	leaf	$p^{\rm h} \underline{e}^{\scriptscriptstyle \rm L}$	$p^{h}\underline{\epsilon}^{21}$	$p^{h}\epsilon^{21}$	ph <u>i</u> ²¹	$p^{h}\epsilon^{5_{3}}$
*Cp/_V, N	C-pi ²	pepper	$p^{h}e^{2/1}$	/	$p^{h}i^{21}$	$p^h i^{24}$	/
*?b/_V, N	?-di ²	to pound	te ²	ti ²¹	te ²¹	$t\epsilon^{21}$	te ²¹
*?p	?-pa²	frog	pa₋	p <u>a</u> ²¹	pa ²¹	po ²¹	pa ⁵
*?b/_stop	?-dak ^H	ascend	$d\underline{e}^{H}$	d <u>e</u> ³³	de33	di ³³	de ⁴⁴
*mp	m -po k^{H}	shoot	$b\underline{\epsilon}^{H}$	b <u>a</u> ³³	b <u>a</u> ³³	b <u>a</u> ³³	ba ⁴⁴
*mb	m-di ²	think	di ²	d <u>i</u> ²¹	di ²¹	di ²¹	di ²¹
*Cb/_stop	C-grak ^H	cold	gre॒ ^H	/	ge ³³	<u>gi</u> ³³	dze ⁴⁴
*Cb/_V, N	C-ga ²	flute	gy²	gy ²¹	$d \vartheta^{21}$	/	dzy ²¹
*b	ba²	thin	ba²	bä ²¹	b0 ²¹	b0 ²¹	be ²¹

Table 4-3: Examples of PN stops' development of manner

PN rhyme-initial syllables (represented with $*\emptyset$) usually added a fricative, either *f before *u, * γ before *o, or * $_3$ before *e, e.g., PN *u³ 'egg' > PLa *fu³, PN *o¹ 'water buffalo' > PLa * γ o¹, PN *ay¹ 'go' > PLa * $_3e^1$. This parallels the development in Lisu. In closed syllables, no initial fricative was added, as in PN *ut^L 'belch' > PLa * \underline{i}^L . PN initial *? lost its contrastive status with * \emptyset after fricatives were added to the beginning of PN * \emptyset -initial syllables. In all modern Lalo varieties, any syllable without an initial consonant predictably has an initial glottal stop, so the initial glottal stop is never contrastive. Many of these syllables are inherited from syllables beginning with PN *?, such as PLa nominal prefix *a- from PN *?a-, found before animal names and kinship terms. Examples are given in Table 4-4.

Table 4-4: Development of PN *? and $*\emptyset$ in PLa

Gloss	PN	PLa	MD	Eka	E-DC	W-YL	CW-QY
nominal prefix	} 9-	а	[3]	[3]	[3]	[3]	[3]
belch	ut	<u>i</u> ^L	[?]	[?]	[?]	[3]	/
egg	u ³	fu³	f	f	f	f	f
water buffalo	O^1	γo¹	X	Х	X	V	v
go	aj¹	3e ¹	/	j	j	/	j

4.2.1.1 Affricates

PLa distinguishes two affricate series, alveolar *ts, *ts^h, and *dz, and palatoalveolar *tſ, *tſ^h, and *dʒ. Table 4-5 gives examples. The alveolar series is a direct inheritance from PN *ts and *dz, and the palatoalveolar series is a development from Bradley's palatal stops *c and *j (which correspond to Matisoff's palatal affricates *tš and *dž). In most Core Lalo varieties (C-W-E), the palatoalveolar affricates developed into retroflex *tş, *tş^h, and *dz. In Eka and E-DC, the *palatoalveolar and *alveolar affricates merged to alveolar; in MD, the *palatoalveolar affricates are remained palatoalveolar. Before PLa close-mid front vowel *e, the *palatoalveolar affricates are realised as alveopalatal across all Lalo varieties, as in PN *can¹ 'unhulled rice,' but alveopalatals are not phonemically contrastive with palatoalveolars. No Lalo variety makes a three way distinction between retroflex, alveolar, and alveopalatal.

Gloss	PN	PLa	MD	Eka	E-DC	W-YL	CW-QY
hat	*?-tsi ²	*tsi ²	tsu ²¹	tsu ²¹	/	tsj ²¹	tsj ²¹
lard	*tsi1	*ts ^h E ¹	tshe ⁵⁵	/	$ts^{h}\epsilon^{55}$	$ts^{h}\epsilon^{44}$	$ts^{h}\epsilon^{55}$
ramie		*dzi ²	dzi ²¹	$dz\gamma^{21}$	dzi ²¹	$dz\gamma^{21}$	dzj ²¹
pull out		*t∫ <u>i</u> ^H	te <u>i</u> 55	/	tsj ³³	tsj ⁴⁴	t§133
widow	$*co^{2}$	*t∫ ^h o²	t∫ ^h u ²¹	tshj21	tshj ²¹	tshl ²¹	tshj ²¹
goat	*(k)-cit ^L	*t∫ ^h i⊥	tchi ²¹	tchio42	$ts^{h_{1}^{42}}$	ts ^h l 53	tsh121
rice	*can ¹	*t∫ ^h e ¹	tci ⁵⁵	tci ²⁴	tc ^h i ⁵⁵	tc ^h i ⁴⁴	tc ^h i ⁵⁵
liquor	*nji ¹	*dʒi1	dzi ⁵⁵	dzi ²⁴	dz	dz	dzر 45

Table 4-5: Development of PLa *ts, *tſ, and *tſh

4.2.1.2 Consonant clusters

PN *labial and *velar stops combined with the medials *-r-, *-j- and *-l- to form consonant clusters *pr, *pj, *pl and *kr, *kj and *kl. Table 4-6 and Table 4-9 below shows the development of the PN clusters in PLa and their reflexes in Lalo dialects; the voiceless unaspirated serves as a cover symbol for PLa voiced, voiceless, and aspirated manners. Nasal clusters *mj, *?mj, *nj, and *?nj are described in §4.2.4 below on nasals, in Table 4-23 and Table 4-25. PN *kj merged with PLa palatal affricate *tf, and *kr and *kl merged to PLa *k before PLa close vowels (*y, *i, *u) and to *kj before non-close vowels *e, * ϵ , *a, *an. PN *pj was retained as PLa cluster *pj, while *pr and *pl merged to PLa *p, as summarised in Table 4-6 below.

Table 4-6: Development of PN labial clusters in PLa

PN	Conditioning	PLa
pj	all rhymes	pj
pr, pl	all rhymes	р

Table 4-7 gives examples of PN *pj in PLa and modern Lalo varieties. Examples of PLa plain *p that form minimal or near minimal pairs with the *pj examples are given directly below the relevant *pj example, to illustrate the different correspondence sets resulting from the contrast between *pj and *p in PLa. The reflexes of *pj that differ from *p are encircled.

								CW-
Gloss	PN	PLa	Eka	MD	YL	E-DC	E-HS	QY
clothing		$p^h ja(n)^1$	p^ha^{24}	p^ha^{55}	pha ³³	phia ⁵⁵	p^ha^{55}	$p^{\rm h} u^{55}$
male ancestor		p ^h a ²	/	/	p^ha^{21}	$p^h \mathfrak{I}^{21}$	$p^{\rm h} \mathfrak{I}^{21}$	pha ²¹
bee	bja²	bja²	b0 ²¹	b0 ²¹	ba²ı	bia ²¹	bia ²¹	ba ²¹
moon	bəla ³	ba³	bo ³³	b0 ³³	ba ³¹	b3 ³³	b3 ³³	ba ³³
lightning	b-lyap [⊥]	bj <u>a</u> ⊥	b <u>a</u> ²¹	bāz1	$b\epsilon^{5_3}$	bie ³¹	bia ²¹	b <u>a</u> ²¹
male	?-pa²	p₫ [⊥]	$p\underline{o}^{_{21}}$	pā ₂₁	pa ⁵³	pu ³¹	p2 ²¹	p₫²¹
to fly	b-jam ¹	bjy1	bə²4	bə ⁵⁵	bi ³³	bio ²⁴	bi ²⁴	by ²⁴
to divide	baj¹	by1	bə ²⁴	bə ⁵⁵	bi ³³	bə ²⁴	bə ²⁴	by ²⁴
comb (n.)	gwi ²	pji²	pi ²¹	pi ²¹	pai ²¹	pə ²¹	pə²¹	pi ²¹
to dare		pi²	pi ²¹	/	pu ²¹	pə²¹	pə²¹	pi ²¹
banana	bjaw ²	bjo²	/	dzi ²¹	/	/	/	/
to carry	bo ²	bo²	bi ²¹	bi21	bi21	bə ²¹	bə ²¹	vi ²¹

Table 4-7: Examples of PN *pj's development in PLa

E-DC is especially helpful for distinguishing PLa *pj from *p because it has preserved the PN medial *-j-, which along with the rhyme now forms diphthongs with a close front vowel onset, as seen in *p^hja¹ 'clothing,' *bja² 'honeybee,' *bja¹ 'lightning,' and *bjy¹ 'to fly'. YL distinguishes *pji 'comb' and *pi 'to dare', as seen in the different rhyme reflexes: *pji² > [pai²¹], while *pi² > [pu²¹]. In PN, 'comb' is *gwi² (PB *?-gwəj²), an example of unitary labiovelar phonemes in PN, which are discussed below with the velar clusters. For 'comb,' the labiovelar glide may have become a palatal glide, i.e., *gwi² > PLa *pji². In MD, the palatal glide conditioned affrication in *bjo² 'banana,' as seen in its reflex [dzi²¹], which differs from the development of *bo² 'to carry,' which becomes [bi²¹].

Table 4-8 gives examples of PN *pr and *pl in PLa and Lalo varieties. As in Table 4-7, the PLa plain stop example is given below for comparison. Unlike *pj, both *pr and *pl have completely merged with the plain stop. This can be seen by the identical correspondence sets of PN *pre¹ 'untie' and PB *p9j² 'to rot', both PLa *p^hi; PN *m-bliŋ³ 'full' and PN *bi² 'insect,' both PLa *bi; and PN *plu¹ 'white' and *pwaŋ³ 'open,' both PLa *p^hu. *pwaŋ³ is given as an example of a plain stop because PN medial *-w- acted as part of the rhyme after most initials, without effect on the initial, though there is evidence of unitary PB labiovelar phonemes, discussed below.

PLa close back vowel *u is reflected in many varieties as [y], with substantial lip compression. Lip compression, in which the lower lip pushes upward to the upper lip, often results in the upper teeth resting on the lower lip, which led to the vowel becoming the PLa syllabic labiodental fricative *y. The increased friction in lip compression may have lead to the interesting developments seen in Lalo dialects' reflexes of PLa *p^hu¹ 'white,' *pu¹, 'porcupine' and *pu² 'to steam'. PLa aspirated *p^hu became a labiodental fricative in all Central, Eastern, and some Western Lalo (W-SZP, W-SLZ), merged with the labial stop in Eka, MD and YL, and shows either a velar affricate (W-YL) or labial affricate (W-DT, XZ) in other non-Central varieties. Aspiration made it more likely for the initial to become a fricative or affricate. The unaspirated *pu, on the other hand, seen in 'porcupine' and 'steam,' shows a slightly different development. Most Central (except CW-QY) and non-Central (except W-DT) core varieties show an unaspirated velar stop for this cluster. Eka, MD and YL again merge the cluster with bilabial stop. XZ does not use the cognate for either 'porcupine' or 'steam'.

						W-		CW-
Gloss	PN	PLa	Eka	MD	E-DC	DT	C-CJ	QY
untie	pre ¹	$p^{\rm h} i^{\rm 1}$	$p^{h}i^{24}$	$p^{\rm h} i^{55}$	$p^{h} \vartheta^{55}$	$p^{\rm h} i^{55}$	$p^{\rm h} i^{55}$	$p^{\rm h} i^{55}$
to rot	pəj² (PB)	$p^{h}i^{2}$	/	/	/	$p^{h}i^{21}$	$p^{\rm h} i^{\scriptscriptstyle 21}$	$p^{h}i^{21}$
to dare		pi ²	pi ²¹	/	pə²¹	pi ²¹	pi ²¹	pi ²¹
tears	m-brəj ¹ (PB)	bi1	bi ²⁴	bi ⁵⁵	/	$dz\gamma^{24}$	dz٦ ⁵⁵	/
full	m-bliŋ³	bi³	bi ³³	bi ³³	bi ³³	dz٦³3	dzj³³	vi ³³
pus	m-bliŋ1	bi1	bi ²⁴	bi ⁵⁵	bi ²⁴	$dz\gamma^{24}$	dz٦ ⁵⁵	vi ⁵⁵
insect	bi ²	bi²	/	bi21	/	$dz\gamma^{21}$	dzj ²¹	/
porcupine	?-plu ²	pu¹	py ⁵⁵	pu ²⁴	$k\gamma^{55}$	$p\gamma^{24}$	ky ⁵⁵	/
to steam		pu²	$p\gamma^{21}$	pu ²¹	kγ ²¹	/	ky ²¹	$p\gamma^{21}$
white	plu1	$p^{\rm h}u^{ m 1}$	$p^{\rm h} \gamma^{\rm 24}$	p ^h u ⁵⁵	fx ⁵⁵	$p^{\rm h}\gamma^{\rm 24}$	fy ⁵⁵	fy ⁵⁵
open	pwaŋ³	$p^{\rm h}u^{\rm 3}$	$p^{\rm h}\gamma^{\rm 33}$	p ^h u ⁵⁵	/	$p^{\rm h}\gamma^{\rm 33}$	fy ³³	fy ³³

Table 4-8: Examples of PN *pr and *pl's development in PLa

Table 4-9 below summarises the development of the PN velar clusters in PLa. PN velars plus medial *-j- merged with PLa's *palatoalveolar affricates before all rhymes (with 'sew' PN *gjup^L as the one exception). PN velar clusters *kr and *kl merged with PLa plain velar stops before all PLa close vowels except front vowel *i and back vowel *o (i.e., PN *kr, *kl > PLa *k /PLa *y, *i, and *u_). PN *kr and *kl show distinct developments only before PN *e and *o (which became PLa *i and *o, respectively, in that environment). Elsewhere (i.e., before *e, * ϵ , *a, *aŋ), PN *kr

and *kl merged to PLa velar clusters *kj, *kj, *gj, which were distinct from PLa plain velar stops. In other words, PN *kl > PLa *k /before close vowels except *i and > *kj /elsewhere, while PN *kr > PLa *k /before all close vowels and *o, and > *kj /elsewhere. Harsh vowels have the same conditioning effect on the initial as their modal counterparts.

PN	Conditioning	PLa
kj	all rhymes	t∫
kr	before PLa *i and *o	k
kl	before PLa *i and *o	kj
kr, kl	before PLa close vowels *y, *i, *u	k
kr, kl	before PLa non-close *e, *ε, *a, *aŋ	kj

Table 4-9: Development of PN velar consonant clusters in PLa

Table 4-10 gives examples of PN velar clusters' reflexes in PLa and Lalo varieties. *kj and *gj merged with the *tf by the PLa stage, and in Eka and E-DC later merged with the alveolar affricate. The one exception is 'sew' PN *gjup^L, which shows PLa *g. The close back vowel in the rhyme probably influenced *gj in this environment to merge with *g instead of *d₃.

Gloss	PN	PLa	С-	C-	W-	E-	Eka	MD
			CJ	LB	DT	DC		
	*kj	*t∫						
sweet	kjo1	t∫ʰi¹	tşh	tşʰ	tşh	ts^{h}	ts ^h	ts^{h}
revolve	?-gjaŋ ¹ (PB)	t∫aŋ¹	tş	tş	tş	ts	ts	t∫
vegetable	?-gjak ^L (PB)	t∫ér	tc	/	ts	/	/	/
stab	gja²	dʒ⊵₋	/	dz	/	dz	dz	/
sew	gjup ¹	gu¹	g	g	g	g	g	g
	*k, *kr	*k						
fence	kram ¹	$k^{\rm h}y^{\scriptscriptstyle 1}$	tch	tch	\mathbf{k}^{h}	/	k	\mathbf{k}^{h}
leg	kre ¹	k ^h i ¹	\mathbf{k}^{h}	\mathbf{k}^{h}	\mathbf{k}^{h}	teh	\mathbf{k}^{h}	\mathbf{k}^{h}
daughter-in-law	krwe ²	$k^{h}i^{2}$	\mathbf{k}^{h}	\mathbf{k}^{h}	\mathbf{k}^{h}	teh	\mathbf{k}^{h}	\mathbf{k}^{h}
horn	kro1	$k^{h}o^{1}$	\mathbf{k}^{h}	\mathbf{k}^{h}	\mathbf{k}^{h}	\mathbf{k}^{h}	\mathbf{k}^{h}	k^{h}
manure	ke ²	$k^{h}i^{2}$	\mathbf{k}^{h}	\mathbf{k}^{h}	\mathbf{k}^{h}	/	\mathbf{k}^{h}	\mathbf{k}^{h}
	*kr, *kl	*kj						
excrement	kle ²	k ^h ji ²	tch	tsh	ts ^h	tch	k ^h	kh
scratch	m-krak ^H	kje [™]	tc	tc	tc	/	k	k
inside	klo1	k ^h jo ²	tch	tch	k ^h	\mathbf{k}^{h}	/	/
star	C-graj ¹	kjε¹	t¢	k	k	k	k	k

Table 4-10: Examples of PN voiceless velar clusters' development in PLa

As seen with the labial clusters, Eka and MD completely merge all PLa velar clusters with their respective plain stops, even before close front vowels. This is somewhat similar to the development in Lahu, in which PN *kr > k, but a merger of plain stops and clusters is prevented by Lahu's *k > q. In other Lalo varieties, PLa velar clusters become palatal affricates before close front vowels, as in 'excrement' PLa *k^hji². The different reflexes seen between Eka/MD and all other Lalo suggest that the clusters became affricates after the ancestors of Eka and MD emigrated out of the Lalo homeland area. Eka speakers report this migration to have occurred 300-400 years ago, around the beginning of the Qing dynasty, a date which is also reported in the *Gazetteer of Shuangjiang County* (Zhao 1995). MD speakers claim to have left some 400-500 years ago, but the *Gazetteer of*

Gengma County (GMXZ 1995) reports the migration to have occurred more recently, around 200 years ago.

In Lalo varieties besides Eka/MD, there is a partial merger of PN *kr with plain stops before PLa close vowels (*i, *y, *i, *u) and *o, as seen in 'leg' PLa *k^hi¹, 'fence' PLa *k^hy¹, 'daughter-in-law' PLa *k^hi², 'horn' PLa *k^ho¹, 'thunder' PLa *go² and 'tendon' PLa *gu². In PN, these etyma all have medial *-r-, but in modern Lalo varieties, their initial reflexes are the same as those of PN plain stops. *kl occurs very rarely, and usually shows parallel developments with *kr, implying a partial merger. Yet *kl and *kr show different developments before PLa *i and *o: *kr becomes *k in this environment, while *kl becomes *kj, e.g., PN *kre¹ 'leg' > PLa *k^hi¹, but PN *kle² 'excrement' > PLa *k^hji², and PN *kro¹ 'horn' > PLa *k^ho¹, but *klo¹ 'inside' > PLa *k^hjo². Before all other PLa rhymes (i.e., *e, * ε , *a, *aŋ), *kl and *kr merge to PLa *kj, which was distinct from PLa plain velar stops.

In many Lalo varieties, PLa velar clusters tend to become affricates before PLa front vowels (*i, *e, * ϵ), whereas PLa plain stops remain stops. For example, the allofams (i.e., variant forms of the same word family (Matisoff 1978a)) PN *ke² 'manure' and *kle² 'excrement,' show different developmental paths: *ke² > PLa *k^hi², with the initial reflected as [k^h] across Lalo varieties, versus *kle² > PLa *k^hji², with the initial reflected as an alveolar or postalveolar affricate in all varieties except Eka and MD. These two correspondence sets (*k^hi and *k^hji) also contrast with the development of *kre¹ 'leg' (> PLa *k^hi), reflected by a velar stop in all varieties except E-DC, which shows [te^h], a result of palatalisation before PLa *i. Initials in both 'scratch' PN *m-krak^H and 'cold (weather)' PN *C-grak^H show the same development to palatoalveolar affricates as the *kle² 'excrement' (PLa *k^hji²) reflexes. The difference between PLa *kje¹ 'star' and 'PLa *ke¹ hang' can be seen in C-CJ's reflexes [tee⁵⁵] 'star' versus [ke⁵⁵] 'hang'; again, the cluster led to affrication, while the plain stop is retained.

Table 4-11 demonstrates the development of PN voiced velar clusters in PLa, which follows the same pattern as the voiceless velar clusters. However, unlike PLa *kj and *k^hj, *gj shows little evidence of a specifically palatal medial. While the palatal medial in *kj and *k^hj often conditions palatalisation, no such palatalisation is seen with *gj. Therefore, *gj could alternately be reconstructed as *gr, but to preserve symmetry with the other velar clusters, the voiced velar cluster is reconstructed *gj.

Gloss	PN	PLa	C-	C-	W-	E-	Eka	MD
			CJ	LB	DT	DC		
	*g, *gr	*g						
wound		ge ²	Y	Y	g	g	g	g
thunder	go ²	go ²	Y	Y	g	g	/	g
bracelet	goŋ¹	go1	Y	Y	g	g	g	g
bend	gok⊥	$g {\tt Q}^{\rm L}$	Y	Y	Y	g	g	g
buckwheat	ŋ-ga²	ga²	Y	Y	Y	g	g	g
drive cattle	ŋ-gak [⊥]	g₫ [⊥]	Y	Y	Y	g	g	g
pull	ŋ-gaŋ¹	gaŋ¹	Y	Y	Y	g	g	g
skin	?kri1	gi1	g	g	g	g	g	g
tendon	(J)-gru ²	gu²	g	g	g	g	g	g
	*gr, *gl	*gj						
run		gje²	g	g	g	g	g	g
fear	(sə)-grok ^H	gjo ^H	g	g	g	g	g	g
hear	gra ²	gja²	g	g	g	g	g	g
cold	m-glaŋ ¹ (PB)	gjaŋ¹	g	g	g	g	g	g

Table 4-11: Examples of PN voiced velar clusters' development in PLa

In contrast, PLa *gj before * ε , *a, *o, and *aŋ does not undergo weakening in C and W varieties. Therefore, at the PLa stage, *gj and *g must have been contrastive before these vowels, hence their different developments. After *g > /y/ before non-close vowels in C and W, PLa *gj merged with the remnant of PLa *g, giving the /g/ seen across all Lalo varieties today. *gj's merger with *g must be placed in counter-feeding order with *g > y, because PLa *gj does not take part in the C-W *g > /y/ change. PN *grok^H 'to fear' appears to be an exception to the rule that PN *kr > PLa *k before *o, since *grok^H > PLa *gjo^H, not *go^H.

Matisoff (2003, p. 24) posits Proto Burmic labiovelar unit phonemes *k^w, *g^w and *ŋ^w. In Lahu, these phonemes often become labial stops; in other Central Ngwi languages like Lisu and Lalo, they became either velar or bilabial stops. PLa shows a velar stop for PB *k^w, as in *k^wəj² 'dog,' *k^wəj¹ 'nest,' as shown in Table 4-12 below. Bradley (2005, 2008) provides additional reconstructions, such as *C-ŋwi¹, the autonym for Proto Ngwi from the Tibeto-Burman word for 'silver' *d-ŋul¹, which Proto Lalo does not retain, along with *?k^wok^L 'do skillfully,' *k^wa² 'be born,' and *?k^wut^L 'evening'. All show a merger with the plain velar in PLa. The only example of the plain voiced labiovelar, *g^wja², 'chew' shows a merger with PLa *g, becoming a velar fricative in C-W Lalo subgroup and a velar stop in all other Lalo varieties. However, for the preglottalised *?-g^w, as in 'comb,' PLa has a bilabial stop with a palatal glide. In contrast to PLa's simplification of labiovelar stops, PLa retains the labiovelar nasal intact, as seen in 'tile,' PLa *ŋwɛ². *ŋw is discussed in more detail in §4.2.4.3 on nasals.

Gloss	PB	PLa	CW-QY	W-YL	W-DT	E-DC	Eka
dog	k ^w əj²	$k^{h}i^{2}$	$k^{h}i^{21}$	$k^{h}i^{21}$	$k^{h}i^{21}$	tchi21	/
nest	k ^w əj ¹	$k^{h}i^{1}$	$k^{\rm h}i^{55}$	$k^{h}i^{44}$	$k^{\rm h}i^{\rm 24}$	tc ^h i ⁵⁵	$k^{h}i^{24}$
comb	?-g ^w əj²	pji²	pi ²¹	pi ²¹	pi ²¹	pə²¹	pi ²¹
to chew do	m-g ^w ja ²	ga²	ya ²¹	ya ²¹	$\gamma 0^{21}$	g3 ²¹	g0 ²¹
skillfully	$-k^{w}ok^{L}$ (PN)	k <u>i</u> l	/	/	/	$k \vartheta^{4_2}$	/
be born	k ^w a² (PN)	ka²	ka ²¹	ka21	k0 ²¹	/	/
evening	$k^{W}ut^{L}(PN)$	$k^{\rm h} \underline{i}^{\rm L}$	$k^{h}\underline{i}^{21}$	$k^{h}i^{55}$	$k^{\rm h} i^{55}$	$k^{h} \vartheta^{4_2}$	$k^{h}\underline{i}^{21}$
tile	ŋwa²	ŋwε²	V£ ²¹	VE ²¹	ŋε ²¹	ŋε²¹	/

Table 4-12: PB/PN labiovelar phonemes' development in PLa

4.2.2 Fricatives

PN has the following initial fricatives: *s, *z, * \int , *z, *x, *h, all of which are reconstructed for PLa. In terms of prefixes, neither the *?- nor the *s- prefix are found on fricatives, and only *C-s, *C- \int , *C-x and *k-z are reconstructed for PN (Bradley, 1979). However, in two lexical items, the prefix *?ə- before * \int affects the development of the tone and/or initial, as discussed below in §4.2.2.2. For fricatives only, the *C- cover symbol includes the nasal prefix as well. All prefixed fricatives merged with their plain initial counterparts by the PLa phase, except for *C- \int , which merged with *x before close front vowels.

Fricatives are relatively stable when compared to resonants, with most modern reflexes of PN fricatives remaining unchanged. Exceptions are noted with each initial. Palatalisation of *s, * \int and *x to alveopalatal fricative [6] before close front vowels is common, resulting in a partial merger of these three protophonemes.

4.2.2.1 Alveolar fricatives

Table 4-13 below shows the development of PN *s in PLa, with examples from modern Lalo varieties. *s and *C-s merge to PLa *s across all Lalo varieties. In Eka, MD, and several Central Lalo varieties, palatalisation to [c] occurs before PLa front vowels (*i, *y, *e, * ϵ), while most other varieties maintain the [s] in this environment. In all Lalo varieties, [c] is not contrastive, but rather an allophone of /s/ and / ξ / before close front vowels, which results in a neutralisation of contrast in this environment.

						E-	E-	W-Y	C-	CW-
Gloss	PN	PLa	Eka	YL	XZ	DC	HS	L	CJ	QY
blood	swe ²	si ²	e	S	S	S	S	S	S	S
tooth	swa ²	Sy ²	G	S	S	S	S	G	G	S
choose		se ¹	G	S	S	S	S	S	G	S
fruit	si ²	SE ²	G	S	S	S	S	S	G	S

Table 4-13: Development of PN *s in PLa

Table 4-14 shows the development of PN *z in Lalo. Both *z and *k-z merge to PLa *z across all Lalo varieties.

Table 4-14: Development of PN *z in PLa

Gloss	PN	PLa	Eka	MD	E- TS	YL	XZ	W- YL	C- CJ	CW QY
leopard	k-zik [⊥]	zi	/	/	Z	Z	Z	Z	Z	Z
barley	zi ¹	zi³	/	/	Z	Z	Z	Z	Z	Z

4.2.2.2 Palatoalveolar fricatives

Table 4-15 below shows the development of PN $*\int$ in Lalo. In Eka, E-DC, and YL, $*\int$ has merged with *s. In MD, $*\int$ has been retained as palatoalveolar, but for all other varieties of Lalo, $*\int$ has developed into the retroflex fricative [§]. PN $*\int$ and $*C-\int$ become PLa velar fricative *x before PN close front vowel rhymes *i, *e, and *ik, as in $*C-\int ik^{L}$, 'new,' $*C-\int i^{2}$ 'seven,' and $*\int e^{2}$, 'die'. No other Central Ngwi language shows this development, but all Lalo languages, including peripheral varieties such as MD and Eka, show this unique innovation. This change does not occur with *?ə $\int ik^{H}$, 'day/year before the present day/year', leading to the hypothesis that the *?ə- prefix blocked the change of the initial. In every Lalo variety except E-DC, the PN rhymes *i, *e, and *ik merge to close central vowel [i] in this environment. The close central vowel may have been the conditioning factor in the change from PN $*\int$ to PLa *x. In E-DC, these rhymes merge to close front vowel [i], with subsequent palatalisation of the *x to [e], resulting in a partial merger with *s, discussed below. In 'sister's child,' which developed from PN $*?a-\inta^{2}$ 'brother's child', E-DC and CW-QY both unexpectedly show the alveolar fricative. Since these two varieties are the only ones who still retain the reflex for PN $*?a-fa^{2}$, the PLa reconstruction is PLa *sa^L. The change in tone from *2 to *L is an example of the Lalo Tone *2 split, described in §5.2.

			М			Х	E-	E-	W-	C-	CW
Gloss	PN	PLa	D	Eka	YL	Ζ	DC	HS	YL	CJ	QY
before last	?ə-∫ik ^H	<u>∫i</u> ^H	ſ	S	S	ş	S	ş	ş	ş	ş
new	C-∫ik [⊥]	$X\dot{\underline{i}}^{L}$	x	Х	Х	Х	G	х	Х	х	х
seven	C-∫ì²	Xi ²	x	Х	Х	х	G	х	х	х	х
die	∫e²	xi1	х	Х	х	Х	G	х	Х	Х	х
sister's											
child	?ə-∫a²	s₫	/	/	/	/	sūr	/	/	/	sār

Table 4-15: Development of PN *∫ in PLa

Table 4-16 below shows the development of PN *3, which merges with the PLa alveolar fricative *z in all environments. PN *3a² 'son' > PLa *za², *3um² 'use' > PLa *zy², and *3ak^L 'descend' > PLa *ze^L. Palatalisation occurs before some PLa close front vowels in the same varieties that show palatalisation of PLa *s. The reconstructed *3 in *3ay² '3S' does not fit the overall pattern. This item might better be constructed in PLa with variation between no initial and PLa *3. Varieties reflecting *3 shows weakening to either [j] or [w], depending on the rhyme ([j] before a, [w] before u). The varieties that reflect no initial at all (e.g., Eka, W-YL, and most Central varieties) show the non-contrastive [?] before the initial vowel.

Table 4-16: Development of PN *3 in PLa

Gloss					E-	E-			W-	C-	CW
	PN	PLa	MD	Eka	DC	HS	YL	XZ	YL	CJ	QY
3S	zaŋ²∕³	(3)aŋ²	j	[?]	j	j	j	j	[?]	[?]	W
son	3a²	za²	z	Z	Z	z	Z	Z	Z	Z	z
use	3um²	ZY ²	z	/	Z	3	Z	Z	j	j	z
descend	3ak¹	$Z\bar{e}^{\rm L}$	j	j	Z	j	Z	Z	j	j	z

4.2.2.3 Velar and glottal fricatives

Table 4-17 below shows the development of PN *x in Lalo. Across all Lalo varieties, *x in Lalo is retained. Before PLa close front vowel *y, as in 'iron' PLa *xy¹, palatalisation to [c] occurs, as it does for *s, as discussed above. Before PLa *e, as in 'louse' PLa *xe¹, palatalisation is seen in almost all Lalo varieties except Eka and MD.

					E-	E-			W-	C-	CW
Gloss	PN	PLa	MD	Eka	DC	HS	YL	XZ	YL	CJ	QY
	x, C-x	Х	х	х	х	х	х	х	х	х	х
pick											
fruit	C-xak ^L	xār	х	Х	/	/	/	Х	/	/	/
iron	xam ¹	xy1	х	Х	х	Х	х	х	G	e	G
louse	xan ¹	xe ¹	х	Х	G	G	G	G	G	G	c

Table 4-17: Development of PN *x in PLa

Table 4-18 shows the development of PN *h in Lalo. PLa, like PN, had a contrast between voiceless velar *x and a voiceless nasalised glottal fricative *h (realised as $[\tilde{h}]$). PLa *h comes from PN *h and *C-, *?- or * \int - prefixed resonants *r, *y, and *w, discussed in §4.2.3. In contrast, the source of PLa *x is PN *x and *C- \int before close front vowels, as discussed in §4.2.2.2. In Central varieties, the PLa *x-*h distinction remains along these lines, but several Lalo varieties have merged the distinction to varying degrees. Eka, MD, and E-DC completely merge *x and *h to /x/, and do not have a voiceless nasalised glottal fricative at all. YL, XZ and W-SLZ merge *x and *h

in most environments. The loss of $[\tilde{h}]$ may have been influenced by contact with Southwest Mandarin, which has no nasalised $[\tilde{h}]$.

Gloss	PN	PLa	Eka	YL	XZ	E- DC	E- HS	W- YL		C-C J	CW QY
to yawn	ha¹	ha¹	х	Х	х	Х	h	h	h	h	h
Han	hjak⊾	he	х	х	/	Х	h	/	h	h	h

Table 4-18: Development of PN *h in PLa

4.2.3 Resonants

PN resonants *r, *l, *y, *w developed in complicated ways in PLa, influenced by the presence and type of prefix and the rhyme. Except for *l, which remained a liquid, PN resonants became voiced, preglottalised, and voiceless fricatives *v, *2v, *3, *y, *f, * \int , and *h in PLa.

4.2.3.1 PN *r > PLa *y, *f, *h

Table 4-19 shows the development of PN *r in PLa and modern Lalo dialects. By the PLa phase, *r had already become a voiced velar fricative * γ , a common development across many Ngwi languages. Both *r and prefixed *k-r merged to * γ by the PLa phase; there is no distinction between these two initials in any Lalo language. After the PLa phase, the C-W group show a partial merger of PLa * γ and *g before non-close vowels * ϵ , *a, *o, and *aŋ, described in §6.5. Besides *r, another source of PLa * γ is * \emptyset before *o, e.g., PN *o¹ 'water buffalo' > PLa * γ o¹, discussed in §4.2.1.

The *?- and *s- prefix often conditioned devoicing of the initial, resulting in voiceless fricatives. *s- pre-empted the initials *r and *y, resulting in PLa palato-alveolar fricative * \int , as in 'difficult' PN *s-ra² > PLa * $\int a^{L}$ and 'ashamed,' PN *s-rak^L > PLa * $\int e^{L}$, seen in the table below. *?conditioned devoicing to the PLa voiceless glottal fricative *h, which later merges with *x in some Lalo varieties, as seen in 'to stand' PN *?-rjap^L > PLa *hy^L and 'night' PN *?-rak^L > PLa *he^L.

In general, the *C- and *k- prefix did not affect the development of the initial, and so the initial develops to PLa * χ , the same as unprefixed *r, as in *C-raŋ² 'vegetable', *k-rwaŋ² 'sell' and *g-rap^L 'needle'. In *k-r-wak^H, 'rat,' and *C-ra¹ 'hundred,' however, the *k- and *C- prefix seem to have conditioned PLa *h, similar to the effect of the *?- prefix.

				E-	E-			W-	W-	C-	CW
Gloss	PN	PLa	Eka	DC	HS	YL	XZ	YL	DT	CJ	QY
	r, k-r	Y	Ŷ	Ŷ	Y	Y	Y	Y	Y	Y	Y
difficult	s-ra ²	∫₫ [⊥]	S	S	S	S	ş	ş	ş	ş	ş
ashamed	s-rak ¹	∫₫	S	S	S	S	ş	ş	ş	ş	ş
night	?-rak [⊥]	her	х	Х	h	х	х	h	h	h	h
stand	?-rjap [⊥]	hy^{L}	х	х	h	Х	Х	h	h	h	h
rat	k-rwak $^{\rm H}$	$h \epsilon^{H}$	/	Х	h	h	h	h	h	h	h
hundred	C-ra ¹	ha¹	X	X	h	h	h	h	h	h	h
strength	ra ²	ya²	v	Y	Y	/	Y	Y	Y	Y	v
big	k/?-ri²	γε²	j	Y	Y	Y	Y	Y	Y	Z	v
chicken	k -ra k^H	γe^{H}	j	j	j	j	j	j	j	j	j
cliff	?-rak [⊥]	$\gamma \bar{\epsilon}^{\rm L}$	v	v	v	/	Y	v	Y	v	v
needle	g-rap ^L	$\lambda\lambda_{\rm L}$	Y	Y	W	Y	W	Ø	W	j	j
vegetable	C-raŋ²	yaŋ²	v	j	Y	W	Y	W	Y	W	W
sell	k-rwaŋ²	γu²	v	Y	Ø	v	v	v	v	/	v
ant	p-rwak	3ū ^H	/	j	Z	/	z	z	z	z	Z

Table 4-19: Development of PN *r in PLa

The subsequent development of PLa * γ in various Lalo varieties is heavily influenced by the rhyme. The merger of PLa *g and * γ which takes place in the C-W subgroup probably occurred before these later developments, as the C-W *g > / γ / set shows the same lenition process as found in original PLa * γ . Before lower modal PLa vowels * ε and *a, * γ remains velar across most varieties, but higher vowels tend to condition shifts to [j], [v] or [w], depending on the quality of the vowel. Before PLa harsh front vowel * ε , from PN rhyme *ak, * γ became palatal glide [j] across Lalo varieties, as seen in 'chicken,' CW-QY [a⁵⁵j ε ³³], PLa * $\gamma \varepsilon$ ^H from PN *k-rak^H. Before harsh * ε , many varieties show [v], as in 'cliff' PN *?-rak^L > PLa * $\gamma \varepsilon$ ^L. Before harsh * γ , as in 'needle' PLa * $\gamma \gamma$ ^L, * γ either remained [γ], as in Eka, YL, and E-DC; lenited to [w] if * γ became back vowel /u/ as in XZ and E-HS; or lenited to [j] if * γ remained / γ /, as in C-CJ and CW-QY. In W-YL, the initial disappears altogether, and in W-DT, the initial becomes /w/ before / γ /.

Before rhyme *an, which became /u/ in Central and W varieties and /a/ elsewhere, *y's development is again influenced by the vowel. If the Lalo dialect develops [a] from *an, then *y usually stays a fricative, as in XZ, E-HS, and Eka (where *y becomes [v]). If *an becomes [u], on the other hand, as it does in W-YL, CW-QY, and C-CJ the *y lenites to the labiovelar approximant [w]. Before PLa *u, which became syllabic fricative [y] in many varieties, *y becomes [v], as in PN *k-rwan² 'sell' > PLa *yu². Before PN rhyme *-wak, which became PLa harsh *u, PN *r became PLa *3, as in 'ant' PN *p-rwak > PLa *3u^H, reflected in many varieties as /z/.

4.2.3.2 PN *j > PLa *3, *f, *h

The resonant *j shows a similar pattern of development as *r in many ways. Table 4-20 shows the development of PN *j in Lalo. Like *r, unprefixed *j is usually reflected as a voiced fricative, and is the main source for PLa *3. In varieties that distinguish palato-alveolar from alveolar fricatives (MD, W-DT, W-YL, CW-QY, C-CJ, XZ), *3 is reflected as palatoalveolar or retroflex. In those varieties that have merged the palatoalveolar and alveolar fricatives (Eka, YL, E-DC), *3 is reflected by alveolar fricatives, seen in PN *ja¹ 'right' and *jet^L 'drunk', etc. These developments suggest that PN *j became [3] or [z] by the PLa phase. In CW-QY, the *3 is weakened to [j] before PLa *e, much the way *y weakened to [w] before close back vowels. In E-DC, *3 has weakened to [j] in all environments, with the exception of 'sleep' PLa *3^L. In E-HS, PN *j is dropped completely in PLa *harsh syllables, 'strangled to death' by the glottal constriction inherent in harsh voice. This same process probably accounts for the loss of the initial across all Lalo varieties in reflexes of PN *jak^L > PLa *j^L 'current', which appears in the compound words for 'today' (PLa *j^L ?ni³), 'this evening' and 'this morning'. PN *j before *u, as in 'to take' PN *ju¹, probably became *w (David Bradley, personal communication, June 3, 2010), which in PLa became fricative *v. The [n] in YL's reflection of 'sheep,' PLa *ʒaŋ¹, is unexpected; the etymon is probably cognate, as rhyme and tone reflexes are regular. One explanation is that, in this variety only, *jaŋ (from TB, also found in Mandarin) underwent metathesis of the final *-ŋ with the intial *j and vowel -a, i.e., *jaŋ > ŋja¹ > [na³³].

				E-			W-	W-	C-	CW
Gloss	PN	PLa	Eka	HS	YL	XZ	YL	DT	CJ	QY
	j	3	Z	Ζ	Ζ	Z	Z.	Z.	Z	Z,
right	ja¹	3a1	/	Z	/	Z	/	Z	Z	j
sheep	jaŋ (PTB)	ʒaŋ¹	Z	j	n	j	z	Z	Z	Z,
drunk	jet ^L	$3\bar{e}_{\rm r}$	/	Ø	Z	۲,	Z,	Z,	Z	j
sleep	jip⊾	$3\dot{l}^{r}$	/	Ø	Z	Z	z	z	Z	Z,
male	g-jok ¹	$3\bar{o}_{\rm r}$	/	Ø	Z	z	Ζ,	z	Z	z
today	jak⊥	<u>i</u> ^L	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
take	ju¹	vu ¹	v	v	v	v	v	v	v	v
twist	s-jøk [⊥]	∫ <u>i</u> L	S	S		ş	/	ş	/	/
eight	C-jet ^L	he	х	h	Х	Х	h	h	h	h
raise										
animals	m-ju ¹	hu¹	f	h	ş	ş	/	ş	h	h
house	k-jim ¹	he ¹	х	h	h	h	h	h	h	h
to fly	b-jam ¹	bjy1	b	b	b	b	b	b	b	b
short	?-n-jum ¹	?ŋy²	n	/	n	Ø	Ø	n	n	?n
small	n-jaj ¹	na¹	/	/	ŋ	ŋ	/	/	/	/

Table 4-20: Development of PN *j in PLa

*s- prefixed *j and *r develop in exactly the same way, with *s-r and *s-j becoming PLa * \int , suggesting an early merger of *j and *r in this environment. The data set does not contain any examples of *?-j, so it is not possible to compare this with *?-r. As with *r, *C- sometimes conditions devoicing to PLa *h, but *C-j is only seen in two examples: *C-jet^L 'eight,' which devoices to PLa *he^L, and *g-jok^L, 'male,' which behaves the same way as unprefixed *j, becoming PLa *30^L. For *m-ju¹ 'to raise animals,' the initial also devoices to PLa *hu¹. The rhyme *u, which became [v] in most varieties, has conditioned the labiovelar initial [f] in Eka and E-DC and the retroflex fricative [s] in YL, XZ, and W-DT. The initial in 'house,' PN *jim¹, also shows devoicing to PLa *h; Matisoff's (2003) PTB reconstruction of this word has prefix *k-, which may explain the devoicing of the initial.

Preemption of prefixed *j also occurs with *b-j becoming PLa *b, as in 'to fly' (see Table 4-7) and *?-n-j becoming PLa *?n, as in 'short' PN *?-n-jum² > PLa *?ny². Even though all Lalo varieties now show alveolar [n] or [?n] in 'short', contrastive *?n is detectable by its effect on the vowel in YL and MD, where *?ny² > [ni²¹]. The expected reflex for *?ny in these varieties is [nə]; instead, the vowel *y has been palatalised by the palatal nasal *?n, moving *y to [i]. Other varieties do not show this palatalisation; instead, there is a merger of *?n and *?n in this environment. For the word 'small' *(n)-jaj¹, the nasal prefix pre-empts in YL and XZ to PLa *na¹, but the cognate is not seen in other varieties, which instead reflect PLa *(3)an¹.

4.2.3.3 PN *w > PLa *v, *?v, *f

Like *j and *r, PN *w develops into a fricative in PLa, and is reconstructed as *v when unprefixed or *k- prefixed. Table 4-21 shows the development of *w in Lalo. Unprefixed *w and *k-w are reflected as a labiodental fricative [v] across most Lalo varieties, with rhymes conditioning additional subsequent developments in some varieties. Eka and MD consistently show a [v] for unprefixed *w, regardless of the rhyme. YL usually has [v], but also shows a tendency to strengthen to [b] before central vowel [ə].

XZ, E-DC, and W-DT show a voiced velar fricative before *a, as in PN *wa² 'snow' > PLa *va² > [γo^{21}], also seen in 'bamboo' and 'trap'. The change from *v > γ occurs only in those varieties that share the change *a > /o/, with the close back vowel [o] providing the conditioning environment for the backing of *v to [γ]. XZ, W-DT, but not E-DC, also show *v > [γ] before PLa * ϵ , as in *v ϵ^{1} , 'to buy'. A similar process of backing, this time to [w], occurs in E-HS, W-YL, and most Central varieties before rhyme *aŋ, which became close back vowel [u] in these varieties, as in 'earring' PLa *vaŋ². Palatalisation of the *v to palatal approximant [j] occurred in W and Central Lalo varieties before PLa *i and harsh *j, respectively, as in 'far' *vi² and 'to wear' *vj¹. For 'to wear', the initial in E-HS is lost due to the influence of the laryngealised rhyme *j, similar to the developments seen for PN *j in §4.2.3.2. When *v occurs before PLa *e/*e, palatalisation does not occur, as seen in 'pig' PLa *a¹ve¹ and 'leech' PLa *yi¹ve¹, which both retain the [v] across all Lalo varieties. The prefix sequence *k-d-w, seen only *k-d-wam¹, 'bear,' shows a velar fricative [γ] across Lalo, thus merging with PN unprefixed *r to PLa * γ , with further weakening to [j] in Central Lalo before close front rounded vowel [y]. The prefix sequence *m-r-w, seen only *m-r-we¹, 'snake,' shows the exact same development as *s-rwe¹, 'yellow/gold,' to PLa * \int .

Two additional PLa protophonemes developed from *C-, *?- and *s- prefixed *w: *?v and *f. Preglottalised fricative *?v developed from PN *C-w, as in PN 'left side' *b-waj² > PLa *?v ϵ^2 , *?-w, as in 'to winnow' and *s-w, as in 'to bloom'. PLa *f developed from *?-w, as in 'wide,' and *s-w, as in 'dry'. However, in *?-wik¹ 'stomach,' the initial became voiceless glottal fricative *h. There are too few examples of *?v and *f to precisely pinpoint the conditioning factors that lead to the distinction of the two protophonemes. However, *v, *?v and *f are contrastive in PLa, as evidenced by the minimal pairs set of 'left' *?v ϵ^2 , 'to buy' *v ϵ^2 and 'dry' *f ϵ^3 , as well as 'wolf' *ve¹ (< PB *wan¹) and 'wide' *f ϵ^1 (< PB *?-wan¹). Another source of PLa *f is *Ø before PN *u, as described in §4.2.1.

CW-QY and C-LJ are the only varieties to preserve the preglottalised *?v. All other varieties either drop the preglottalisation, leaving plain [v] (E-HS, W-YL, C-CJ), or, as in 'to winnow' *?va¹, the preglottalisation takes over the initial completely, resulting in loss of the fricative (in Eka, YL, XZ, W-DT). A combination of preglottalisation and harsh phonation, seen in 'to bloom' *?ve^H, may have conditioned the initial to strengthen to [b] in Eka and MD, while remaining as [v] or [?v] in other varieties.

			1		E-	E-			W-	C-	CW
Gloss	PN	PLa	MD	Eka	DC	HS	YL	XZ	DT	LJ	QY
	w, k-w	v	v	v	v	v	v	v	v	v	V
snow	wa ²	va ²	/	v	Y	v	v	Y	Y	v	v
to buy	waj1	$V \epsilon^1$	v	v	v	v	v	Y	Y	v	v
earring	k-waŋ²	vaŋ²	/	v	b	W	v	b	v	W	W
far	we ²	vi²	v	v	v	v	v	j	j	j	j
wear	wat ^L	vi	v	v	v	Ø	v	j	j	Ø	j
pig	wakı	vēr	v	v	v	v	v	v	v	v	v
leech	k-r-wat ^L	vel	v	v	v	v	v	v	v	v	v
stomach	?-wik [⊥]	hẹւ	x	х	х	h	Х	x	h	h	h
bear	k-d-wam ¹	γy¹	Y	Y	/	/	X	Y	Y	j	j
snake	m-r-we ¹	∫ε¹	ſ	S	S	S	S	ş	ş	ş	ş
left	b-waj ²	?vɛ²	v	/	v	v	/	Ø	Ø	?v	?v
to winnow	$2-wa^{1}$?va¹	Ø	Ø	Ø	v	Ø	Ø	Ø	?v	?v
bloom	s-wat ^H	$2ve^{H}$	b	b	v	v	v	v	v	v	?v
wide	?-wan ¹	fe1	f	/	/	/	/	/	/	f	/
dry	s-we ²	fɛ³	f	f	f	f	f	f	f	f	f

Table 4-21: Development of PN *w in PLa

4.2.3.4 PN *l > PLa *l, *?l, *?x, *h

PN *1 is reconstructed as PLa *1 when unprefixed and is reflected as [1] throughout Lalo varieties, regardless of the following rhyme. Table 4-22 shows the development of *1 in Lalo. *C-1 and *?-1 develop into PLa's preglottalised liquid *?1. *k-1 and *m-1 merged with *1 usually, but before PN close vowels they also developed into *?1, e.g., *k-lup^H 'shake' > PLa *?lu^H, *m-le² 'son's child' > PLa *?le², and *m-liŋ¹ 'neck' > PLa *(?)li¹. CW-QY and C-LJ are the only varieties to preserve the preglottalised *?1. However, preglottalised initials are detectable in other varieties by their effect on the development of Tone *1. In Western Lalo varieties, preglottalisation blocks the development of the low-rising tone, so preglottalisation must have still been present at the time of Western Lalo's Tone *1 split, as discussed in §5.3.3.

Rhymes of close front vowels *i and *e condition the development of *?l into a retroflex fricative [?z] or [z] in some varieties (e.g., CW-QY, W-DT, XZ). In CW-QY, [?z] is an allophone of /?l/ before close central vowel /i/ ([1]); [?z] is not contrastive. In W-DT, W-SLZ, XZ, and E-TS, the earlier phonetic realisation of *?l was probably also [?z] in this environment; with the loss of preglottalisation, [?z] became plain [z], merging with the phoneme /z/. In other Lalo varieties (E-HS, W-YL, YL, CE-YA, C-LJ, C-LB), the preglottalisation 'devours' the rest of the initial, leaving a glottal stop, which is not contrastive before vowels. In two words, *(?)li² 'heavy' and *(?)li¹ 'neck', preglottalisation appears variably. For *(?)li¹ 'neck,' the prefix does not appear in W-SZP, W-DT, XZ, E-DC and E-HS, and the Tone *1 split therefore occurs. Yet in CE-YA and two other Central varieties (C-LB, C-WC), the preglottalisation results in the replacement of the initial with a glottal stop. For *(?)li² 'heavy,' preglottalisation has an effect in most Lalo varieties, influencing the development of z in CW-QY, W-DT, W-YL, and XZ, but in E-HS, preglottalisation does not appear. In CW-QY, both 'heavy' and 'neck' show plain z instead of ?l [?z], suggesting a development to [?z] and a later loss of preglottalisation. CW-QY may be experiencing an ongoing change in the loss of distinctive preglottalisation, a phenomenon reported for nearby Longjie (Björverud 1998).

*s-l, on the other hand, becomes PLa's preglottalised *?x, possibly going through transitional stages such as *s-l > *sl > *?l > *?x. Evidence for PLa's *?x comes from SE-GP and other SE varieties, which show $[k^h]$ as a reflex for PN *s-l, while all other Lalo varieties show either [x], [h],

[c] or [f], depending on the influence of the following rhyme. This is a distinct correspondence set from PLa *?1, as can be seen by comparing the reflexes of PLa *?1 and *?x in Table 4-22. *n-1 develops into PLa voiceless glottal fricative *h, which remains [\tilde{h}] in most Lalo varieties, except Eka, MD, and E-DC. Additional evidence from SE varieties is needed to establish whether *n-1 may have possibly developed into PLa *?x, since SE-GP does not show the cognate for *n-li² 'penis'. The *b- prefix pre-empts the initial in the example *b-lyap^L, 'lightning,' across all Lalo varieties.

			SE-	E-			W-	W-	CW	C-
Gloss	PN	PLa	GP	HS	YL	XZ	YL	DT	QY	CJ
	l, k-l, m-l	1	1	1	1	1	1	1	1	1
butterfly	C-lu ³	?lu³	1	1	1	1	1	1	21	1
tongue	$2-l(y)a^{1}$?la¹	1	1	1	1	1	1	21	1
shake	k-lup ^H	?lu ^H	1	1	1	1	1	z	[?z]	1
old	?-li ¹	?li1	1	Ø	Ø	Z.	Ø	z	[?z]	1
grandchild	m-le ²	?le ²	1	1	Ø	Z,	Ø	Z,	[?z]	1
heavy	C-li ²	(?)li ²	1	1	j	۲,	z	۲,	۲,	1
neck	m-liŋ¹	(?)li ¹	1	1	j	1	1	Z	Z	1
spirit	s-la ¹ (PB)	?xa1	\mathbf{k}^{h}	h	h	h	h	h	h	h
moon	s-la ³ (PB)	?xa³	\mathbf{k}^{h}	х	х	Ø	х	Ø	Х	Х
wind	s-ləy ¹ (PB)	?xy ¹	\mathbf{k}^{h}	h	h	h	G	h	G	G
to rob		?xu³	k ^h	f	/	h	f	h	h	h
penis	n-li ²	hε²	/	h	/	h	h	h	h	h
lightning	b-lyap ¹	bja₋	b	b	b	b	b	b	b	b

Table 4-22: Development of PN *l in PLa

4.2.4 Nasals

PN nasals *m, *n, *n, and *n, like fellow sonorants *w and *l, develop into preglottalised initials when *?-prefixed. Unlike *w and *l, however, *C-prefixed nasals pattern with plain initials and do not develop into preglottalised nasals. This is not surprising, since most Ngwi languages, excepting Bisu, do not distinguish *C-prefixed and plain nasals. Unlike *s-l, the *s prefix with nasals patterns with the *? prefix, resulting in preglottalised nasals, instead of causing a change to voiceless fricative. Although the same basic pattern holds for all nasals, they are dealt with separately to highlight specific differences in their development.

4.2.4.1 PN *m > PLa *m, *?m, *mj, *?mj

PN plain *m and *C-m are reconstructed as PLa *m and are reflected as [m] throughout Lalo, regardless of the following rhyme. Table 4-23 shows the development of *m in Lalo. Consonant clusters of *mr, *ml, and *mj all merge to *mj in most environments and to *?mj when *?-prefixed. PLa *mj is seen most clearly in E-DC and E-HS, which retain the palatal glide. This parallels the development of labial stops *pj and *bj, as discussed in §4.2.1.2. E-HS shows *mj for rhymes *a and *aŋ, but not *o. PLa *mj is reflected in CW-QY and CE-YA by its fronting influence on the rhyme *-a (i.e., 'arrow' PN *mla² > [mi²¹]). *(C)-mjak^H 'eye' becomes *?mje^H, with a slightly different rhyme correspondence set from *?me, as in /?me^I/ 'son-in-law'. In W-DT and YL, the palatal glide in 'eye' conditions a change to [i], whereas 'son-in-law' shows [e]. Davies (1909), a traveller in the early 1900's, also reports the presence of medial *-j- for 'eye,' which he transcribes as 'myet'.

				E-	E-		W-D	C-	CW-
Gloss	PN	PLa	Eka	DC	HS	YL	Т	CJ	QY
m, C-m	m, C-m	m	m	m	m	m	m	m	m
many	C-mja ²	mja²	m	mio	mi	m	m	m	m
see	mraŋ¹	mjaŋ¹	m	mia	mia	m	m	m	m
monkey	mjok [⊥]	тjo	m	mių	m	m	m	m	m
arrow	C-mla ²	mja²	m	m	m	m	m	m	mi
eye	C-mjak ^H	?mje [™]	mi	mi	mi	mi	mi	m <u>e</u>	?m <u></u>
son-in- law	?-mak ^L	(?)me ^L	mi	me	mi	me	me	m <u></u>	m <u>e</u>
soldier	C-mak ^L	(?)me ^L	/	me	mi	me	me	/	m <u>e</u>
mushroom	s-mo ¹	(?)mo ¹	m	m	m	m	m	m	m
earth	?-mre ¹	(?)mi ¹	m	m	m	m	m	m	m
tail	?-mri ²	?me²	m	m	m	m	m	m	?m
teach	s-ma ²	?ma²	m	m	m	m	m	m	?m
brood	?-mu ² (PB)	?my²	m	m	m	m	~	m	?m
cooked	s-miŋ³	?mi ¹	m	m	m	m	~	m	?m
high	?-mroŋ ¹	?mju¹	m	~	~	~	~	m	~

Table 4-23: Development of PN *m in PLa

Although the pattern of PN *?-m and *s-m merging to PLa *?m is clear, there are a number of words that show protovariation regarding the presence of preglottalisation, e.g., *s-mo¹ 'mushroom,' *?-mre¹ 'earth,' *C-mak^L 'soldier' and ?-mak^L 'son-in-law'. For most Lalo varieties that have lost preglottalisation, the only way to detect its previous presence is whether it blocked the development of low-rising tone in Tone *1. The effect of preglottalisation is seen clearly in XZ and CE-YA's high level tone reflex in 'mushroom' and 'earth'. However, most Western, Eastern, and Central varieties show no evidence of preglottalisation for these words. For *C-mak^L 'soldier' and *?-mak^L 'son-in-law,' CW-QY shows a plain nasal, but data from Huang and Dai (1992) and Björverud (1998) from neighboring Wuyin township show a preglottalised initial. For harsh syllables, the likelihood of misperceiving the preglottalised initial as simply harsh phonation may help explain the loss of preglottalisation in CW-QY for these words. In W-DT and W-SLZ, preglottalisation results in the loss of the nasal initial and nasalisation of the vowel before close vowels *i, *y, and *u. The same process happens in most Lalo varieties, except Eka and C-CJ, in the word *?mju¹ 'high'. Loss of the nasal with resulting nasalisation on the vowel is more widespread in the case of PLa *?n, discussed below.

4.2.4.2 PN *n > PLa *n, *?n; PN *p > PLa *p, *?p

Table 4-24 below shows the development of PN *n and *n in Lalo. PN *n and the *n-j prefix sequence becomes PLa *n, which is distinct from PLa *n. The distinction between PLa *n and *n can be seen from near minimal pairs 'younger sibling' PLa *ne¹ and 'few' PLa *ne², which have distinct correspondence sets. PLa *n merges with *n before *i, but remains distinct before *a, *y, and *e. PN *n conditioned the back vowel *o to move forward to PLa *i, seen in *s-no¹, 'finger' and *?-no¹, 'green,' which both become PLa *?ni¹.

				E-D	E-H			W-	C-	CW
Gloss	PN	PLa	MD	С	S	YL	XZ	YL	CJ	QY
younger sibling	?əµi¹	ne¹	ր	ր	ր	/	ր	ŋ	n	n
few	naj ²	ne ²	n	n	n	/	n	/	/	?n
deep	?-nak [⊥]	?ne ^r	n	n	n	n	n	n	n	?n
finger	s-no ¹	?ni1	n	n	n	~	~	~	n	?n
red	?-ni ¹	?ni ¹	n	n	n	~	~	~	n	?n
barrel	/	?nu¹	/	~	~	~	~	~	~	~
sticky	?-njak ^L (PB)	?ɲaٍ⊾	ŋ	/	/	ŋ	ŋ	ŋ	n	/
short	?/s-n-jum ¹	?ŋy²	ր	/	/	ր	~	~	n	?n

Table 4-24: Development of PN *n and *n in PLa

Like other PN nasals, *n and *C-n merge to PLa *n, while *?-n and *s-n merge to *?n. Before close vowels *i and *u, there is loss of the nasal stop and nasalisation of the vowel in many Lalo varieties. Loss of initial is especially widespread before *u, e.g., *?nu¹ 'barrel'> $[\tilde{\gamma}^{55}]$ in most varieties. An interesting development in the opposite direction is PLa's insertion of *n before the \emptyset -initial *u² in 'head': PN *u² > PLa *nu², now often reflected as syllabic [n]. The insertion of *n in 'head' happens in every variety except E-HS, CE-YA, C-QS and C-CJ.

4.2.4.3 PN *ŋ > PLa *ŋ, *ʔŋ, *ŋj, *ʔŋj; PN *ŋw > PLa *ŋw

Table 4-25 below shows the development of PN *ŋ in Lalo. PN *ŋ and *C-ŋ merge to *ŋ in PLa, and *s-/*?-prefixed *ŋ becomes PLa *?ŋ. Before rhyme *a, preglottalisation conditions loss of the nasal initial and following nasalisation of the vowel, as seen in *?ŋa² 'borrow' and 'fish'. In some varieties such as CW-QY and YL, loss of initial did not occur; instead, metathesis between the initial and rhyme occurs, i.e., *?ŋa² > $[a\eta^{21}]$. Compensatory nasalisation is also seen for *?m and *?n, but usually only before close vowels *i and *u. There are no examples of *?ŋ before *i and *u, so it is not known whether initial loss also occurred with close vowels. Before close vowel *y, as in 'fir tree' PLa *?ŋy¹, compensatory nasalisation only occurs in W-DT, E-TS, and C-WC. In other varieties, the initial is retained or, as in most Central varieties, becomes [?n]. The low-rising tone in W varieties suggest a loss of preglottalisation before the Tone *1 split to low-rising (see §5.3).

The velar clusters *ŋj, *?ŋj, and *ŋw are the least well attested of all PLa initials, and *?ŋw is unattested, but theoretically possible. However, distinctive correspondence sets support the reconstruction of *ŋj, *?ŋj, and *ŋw. The source of *ŋj and *?ŋj is PN *ŋj and *s-ŋj, seen in PN *ŋjak^H PLa *ŋja^H 'bird,' and *s-ŋak^H PLa *?ŋja^H 'banana'. The palatal [ŋ] seen in reflexes of 'banana' suggest that the PN reconstructed form should be *s-ŋjak^H. *ŋj and *?ŋj become palatal [ŋ] in YL, XZ, W-SLZ, E-DC, E-TS and [ŋ] in most other varieties, suggesting a merger with PLa *ŋ. However, velar [ŋ] is retained in E-HS, C-QS and MD, making this correspondence set distinct from PLa *ŋ. Evidence for preglottalisation in 'banana' *?ŋja^H is seen in the [?n] reflex of some C varieties, and the loss of initial and compensatory nasalisation that occurs in C-LJ. Unfortunately, none of the three varieties that retain the velar nasal have a cognate form for 'banana'. However, in varieties where cognates are available, the pattern matches that of 'bird,' with preglottalisation in those varieties that preserve it in this environment.

					E-	Е-	W-	W-	C-	C-
	PN	PLa	MD	YL	DC	HS	SLZ	DT	QS	LJ
five	ŋa²	ŋa²	ŋ	ŋ	ŋ	ŋ	ŋ	ŋ	ŋ	ŋ
cry	ŋo¹	ŋo¹	ŋ	ŋ	ŋ	ŋ	ŋ	ŋ	ŋ	ŋ
fish	ŋa²	?ŋa²	\tilde{O}^{21}	aŋ²¹	${\rm \tilde{0}}^{21}$	${\rm \tilde{0}}^{21}$	$\tilde{a}^{_{21}}$	$\tilde{0}^{21}$	$\tilde{a}^{_{21}}$	aŋ²¹
lend	s-ŋa²	?ŋa²	$\tilde{0}^{21}$	aŋ²¹	$0^{2\widetilde{1}}$	${\bf \tilde{0}}^{21}$	\tilde{a}^{21}	$\tilde{0}^{21}$	$\tilde{a}^{_{21}}$	aŋ²¹
fir		?ŋy¹	/	/	ŋə	ŋə	/	ỹ	/	?ny
bird	ŋjak ^H	ŋja ^H	ŋ	ŋ	ŋ	ŋ	n	n	ŋ	n
banana	s-ŋak ^H	?ŋj <u>a</u> ^H	/	/	ŋ	/	ր	n	/	ĩ
tile	ŋwa¹	ŋwε²	bə ²¹	/	ŋε²	VE ²	ϵ^{21}	\mathfrak{g}^{2^1}	VE ²¹	$V \epsilon^{21}$
goose	ŋa-n (PST)	(?)ŋwa¹	ŋ0 ⁵⁵	aŋ ⁵³	$\tilde{0}^{24}$	õ ⁵⁵	ŋue ⁴⁴	wy ⁴⁴	ງຈ ⁵⁵	ny ⁵⁵

Table 4-25: Development of PN *n in PLa

PN * η w, reconstructed in Bradley (2005), is retained in PLa, although there is only one clear example, i.e., 'tile' PN *nwa²pi² > PLa *nwe² p^he², probably an early loan from Chinese (Bradley 2004). While C varieties show [v], a handful of varieties (E-DC, E-TS, W-DT) show [ŋ] and two (W-SLZ, XZ) show loss of the initial, making this correspondence set distinct from both PLa *v and η . Bradley (2003) suggests that $[\eta]$ reflects the earlier loan, but the [v] in C varieties reflects a later loan from Chinese (now pronounced [wa²¹⁴]). However, the rhyme [ɛ] seen across C varieties matches the PLa reconstruction, but does not match the more recent Chinese form, suggesting that [vɛ] reflects the original PLa form. Another example, 'goose' PLa *(?)nwa¹, is a descendant from Proto Sino-Tibetan *na-n (Matisoff 2003). Other Ngwi languages do not offer conclusive evidence for *nw in this word (e.g., Lisu and Lolo's [õ³³] (Bradley 2004)), but the rounded vowel in the second syllable of Hani's 0³¹µø⁵⁵ (Sun 1991) is suggestive of the influence of a labiovelar approximant. In Lalo, the [-w-] medial influences the rhyme to become rounded [y] in the C-W group, but not in E or peripheral varieties, which show simplification to an intermediate form *?na (the [a] later became [o] in MD, E, and XZ). This rhyme correspondence set is distinct from both PLa *y and *a, cf. *?ny¹ 'fir tree' and *?na² 'fish'. Reflexes of 'goose' in W and E varieties suggest preglottalisation, *?nwa¹, as Tone *1 syllables with preglottalised initials remained high ([44] in W, [55] in E-HS) while their plain counterparts became low-rising. Also, E varieties show loss of initial and compensatory nasalisation, of the type commonly found in preglottalised syllables, e.g., in *?na² 'fish'/'to lend'. These factors support reconstructing preglottalisation for 'goose'. However, no C variety preserves the preglottalisation, and E-DC shows a low-rising tone instead of a high level tone, suggesting that the preglottalisation was variable (cf. 'mushroom' in §4.2.4.1 for another example of variable preglottalisation).

4.2.5 Summary of initials

Table 4-26 gives a summary of PN sources of PLa stops' manner of articulation. The PN sources are represented with the labial stop as a cover symbol for all stops and affricates.

Voicing	PLa	PN source
Voiceless unasp.	*p, t, k, ts, t∫, pj, kj	*?p; *?b/_vowel, nasal
Voiceless aspirated	*p ^h , t ^h , k ^h , ts ^h , t∫ ^h , p ^h j, k ^h j	*р , *С-р
Voiced	*b, d, g, dz, d3, bj, gj	*b, *?b/_stop, *m-p, *m-b, *C-b

Table 4-26: Summary of PN sources of PLa stops' manner of articulation

Table 4-27 summarises the PN sources of PLa individual initials. PLa initials that exactly match their PN source are not listed. Aspirated, voiceless, and voiced stops at each place of articulation

are included together, with awareness that the VOT (voice onset timing) of stops was conditioned as summarised in Table 4-26 above.

PLa	PN
*p ^h , *p, *b	*p, *pr, *pl, *b, *b-l, including *?/-s and *C-
*pʰj, *pj, *bj	*pj, *b-j
*tʃʰ, *tʃ, *dʒ	*c, *kj, *?-c, *?-gj, *j
*k ^h , *k, *g	*k; *kr/_PLa *i & *o; *kl & *kr/_PLa *y, *i, *u; *gj/_*up
*kʰj, *kj, *gj	*kl & *kr/_PLa *e, *ε, *a, *aŋ; *kl/_PLa *i & *o
*v	*w, *y/_*u
*?v	*C-w, *?-w, *s-w
*f	*?-w, *s-w; *Ø/_*u
*∫	*∫, *s-r, *s-j, *m-r-w
*3	*3, *y, *p-rwak ^H , *Ø/_*e
*x	*x; *ʃ/_*ik, *i,*e
*?x	*s-1
*γ	*r, *k-d-w; *Ø/_*o
*h	*?-r, *C-r, *C-y, *m-y, *k-rwak ^H , *∫-w, *n-l
*51	*?-l, *C-l; *k-l & *m-l/_*close vowels
*1	*l; *k-l & *m-l/elsewhere
*m	*m, *C-m
*?m	*?-m, *s-m
*mj	*mr, *mj, *ml
*?mj	*?-mr/y/l, *s-mr/y/l
*n	*n, *C-n; *n & *C-n/_*i
*?n	*?-n, *s-n; *?-n, *s-n, & *?-n-j/_*i
*n	*ɲ, *n-j
*?n	*?-n, *s-n, *?-n-j
*?ŋ	*?-ŋ, *s-ŋ
*ŋj	*ŋ-у
*?ŋj	*s-ŋ-y
*?ŋw	some evidence in 'goose,' from PST *ŋa-n

Table 4-27: Summary of PN sources of PLa initials

4.3 Proto Lalo rhymes

This section traces the development of Proto Lalo rhymes from the PB/PN rhyme system, which had vowel-final, nasal-final, and stop-final rhymes. Rhymes are treated as units, as in Bradley (1979) and Matisoff (2003). In general, Bradley's (1979) reconstruction of Proto Ngwi is used, but Matisoff's (2003) reconstructions are utilised as well to clarify some issues. Although the two systems are mostly compatible, notable differences in the reconstruction of rhymes are explored below.

Proto Lalo's system of nine rhymes is presented in Table 4-28. Proto Lalo distinguished three levels of vowel height (close, close-mid, and open-mid/open), and three levels of backness (front, central, and back). PLa had one close front rounded vowel *y, with all other front vowels unrounded. Vowels in harsh phonation mirror their modal counterparts. There is only one

nasal-final rhyme in PLa, *aŋ, impinging on the symmetry of the system. However, it is necessary to reconstruct this rhyme for several reasons: 1) Some varieties (XZ and E-HS) retain *aŋ in some monosyllabic words, an environment in which the loss and subsequent addition of a velar nasal is unlikely; 2) the divergent development of *aŋ (> /u/ in Central and some W varieties, but elsewhere *aŋ > /a/) requires a distinct PLa rhyme whose subsequent developments should be accounted for as simply as possible, and 3) *aŋ is the only PLa rhyme that has no harsh phonation counterpart, suggesting that *aŋ existed outside PLa's monophthong system at the time of the formulation of the PLa rhyme system. Any hypothetical PLa monophthongs developing from PN *aŋ, such as *ɔ or *a, cause more problems than they solve. Further discussion of PLa *aŋ is given in §4.3.3.4.

*i *e	*у	*i	*u *o	
3*			*a	*aŋ

Table 4-29 below gives Matisoff's (2003) interpretation of Benedict's (1972) Proto Sino-Tibetan monophthongs and diphthongs. Matisoff divides these rhymes based on primary, more common rhymes, which were diphthongs, and secondary, or rare rhymes, which were mostly monophthongs. Matisoff's monophthong-diphthong distinction can also be thought of as a vowel length distinction. Matisoff finds that *e, *o, *ew and *oy are marginal, with only a handful of etyma to support their reconstruction. No examples of these rhymes are found in the Lalo data.

Table 4-29: Matisoff's (2003) interpretation of Benedict's (1972) Proto Sino-Tibetanmonophthongs and diphthongs

Primar	y:		Secondary	/:
*əj		*əw	*i	*u
*ej		*ow	*e	*0
*aj		*aw	(*ew)	(*oy)
*a:j	*a	*a:w		

Bradley's (1979b) reconstruction of Proto Ngwi rhymes is presented in Table 4-30:

vowel-final:		*i		*u					
	*we	*e		*0					
	*waj	*aj	*a	*aw					
			*wa						
nasal-final:									
*im		*ur	n	*in		*un	*1	ŋ	*uŋ
	*am				*an			*a	ŋ
	*wam				*wan			*w	vaŋ
stop-final:									
*ip		*up)	*it		*ut	*ik		*uk
				*et			*ek	*ök	*ok
	*ap				*at			*ak	
	*wap				*wat			*wak	

Table 4-30: Proto Ngwi finals (Bradley, 1979b: 118)

Table 4-31 compares Benedict/Matisoff's PB system with Bradley's PN system to clarify the few differences between them. Key differences include Matisoff's distinction between *ej and *i, which Bradley does not make, the overlapping correspondence of Matisoff's *əj with Bradley's *i

and *e, and a difference in notation (Matisoff's *əw ~ Bradley's *o). I suggest a further distinction between *u and *ow at the PB level, which Matisoff (2003: 222) reconstructs only at the PTB level but considers reconstructing at the PB level.

Matisoff's PB	Bradley's PN
(2003)	(1979)
*əj	*i, *e
*ej	*i
*a(:)j	*aj
*wəj	*we
*wa(:)j	*waj
*u	*u
*ow (PTB)	*u
*əw	*0
*a(:)w	*aw

Table 4-31: Comparison of Benedict/Matisoff's PB and Bradley's (1979b) PN open vowels

Evidence from Lalo supports Matisoff's distinction between *ej and *i at the PB level, even though both Written Burmese (WB) and Lahu have merged them to i (Matisoff, 2003: 159). Bradley (1979b) and Matisoff's (1972) earlier reconstructions of PB do not make a distinction between primary (long/diphthong) and secondary (short/monophthong) rhymes, and Bradley (1979b: 176) states that the vowel length distinction of PST/PTB disappeared by the PB/PN stage. However, Matisoff (2003: 206) reconstructs *ej as a separate rhyme at the PB stage, using evidence from Lalo. Unlike WB and Lahu, Lalo did not merge *i and *ej after alveolars: PB *i after alveolars remains PLa *i, but PB *ej after alveolars > PLa * ε , as discussed in Sections 4.3.1.1 and 4.3.1.2. Bradlej's reconstruction of PN *i correponds to Matisoff's *ey and *i, but because of evidence from Lalo, I use Matisoff's separate *ej and *i.

Likewise, Lalo offers evidence to support the reconstruction of separate *ow and *u at the PB level. As with *ej and *i, WB and Lahu merge *ow and *u, but Proto Lalo keeps their developments separate. Again, the distinction is made clear after alveolars: PB *u becomes PLa *y after alveolars, but PB *ow becomes PLa *u in the same environment, as discussed in 4.3.2.2 and 4.3.2.3. Matisoff (2003: 222) mentions in a footnote the desirability of reconstructing *ow at the PB level, given the *i/ej distinction in the front vowels. Since most Ngwi languages merge *ow and *u, Matisoff has no concrete evidence for a PB distinction, resulting in a somewhat asymmetrical vowel system. Lalo furnishes the evidence to confirm Matisoff's hunch. Additionally, several varieties of Lolo and Lipo also keep *ow and *u distinct, with *ow > u and *u splitting to x and u with the same conditioning as Lalo. For example, Nanhua Lolo (CXMW 1988) shows PTB *now 'soft' > [nu²¹] and *tow 'thick' > [t^hu³³], but PN *?-du² 'head' > [dx³³] and *su² 'same' > [sx⁵⁵]. All Lipo varieties reported in CXMW (1988) show the same distinction.

The behavior of the PB close back vowels *u and *ow parallels that of the close front vowels *i and *ej. Monophthongs *i and *u both split, moving to more open or more front positions depending on the conditioning of the initials: *i > PLa * ε after *r, *tsj, *dzj, *kj and remains *i elsewhere, while *u > PLa *y after labials and alveolars and remains *u in other environments. Diphthongs *ej and *ow, with many fewer lexical items, do not split but instead only adjust their position slightly: *ej > PLa * ε , and *ow > *u. The result is a partial merger of *i with *ej and *u with *ow, as shown in Figure 4-1.

PB	PLa
i	↓ i
ej	Ξ
u	→ y
ow	u

Figure 4-1: Partial mergers of *i with *ej and *u with *ow

Another difference between the two systems is that Bradley's *i and *e, a distinction based on evidence from Burmese (David Bradley, personal communication, June 4, 2010), corresponds to Matisoff's *əj. Matisoff's *əj usually corresponds to Bradley's *e, but after alveolar affricates, Matisoff's *əj corresponds to Bradley's *i. PN *i and *e both merge to PLa *i after alveolar affricates, so this difference between the two systems does not impact the discussion of PLa development.

Finally, Matisoff's *aw corresponds to Bradley's *o, a notational difference that does not affect the interpretation of PLa development.

Matisoff's nasal-final rhymes and stop final rhymes usually correspond to Bradley's, with a few differences. Matisoff makes vowel length distinctions of long *i: versus short *i before alveolar finals *-n and *-t, but Bradley does not. Lalo data supports the vowel length distinction, with long *i:n and *i:t becoming PLa *i and *i, and short *in and *it becoming PLa *e and e. Matisoff's vowel length distinction of *u versus *u: before *-k corresponds to Bradley's *ok and *uk, merely a notational difference. These differences are summarised in Table 4-32 below:

Table 4-32: Comparison of Matisoff's (2003) PB and Bradley's (1979b) PN nasal and stop final rhvmes

-	
Matisoff's PB	Bradley's PN
(2003)	(1979b)
*in, *i:n	*in
*it, *i:t	*it
*uk	*ok
*u:k	*uk

4.3.1 PN front vowels *i, *e, *ej, *aj, *waj, *we

Table 4-33 below summarises the development of PB/PN front vowels in Written Burmese (WB) and Lahu (Matisoff 2003), and Proto Lalo. Details of Proto Lalo's development are given in the following sections.

Table 4-33: Development of PB/PN front vowels in Written Burmese, Lahu, and PLa

PB	WB	Lahu	Proto Lalo
i	i	i	i /default; e/labial stops_; ε /r, tsj, dzj, kj_
ej	i	i	ε
əj	e	i/default; i/labials; o/complex laterals	i /default; i /labials, r, kj_
a(:)y	ai	e	ε /default; e /alveolars_
wəj	we	i/default; i/labials	ε /default; i /aspirated velar stops_
waj	wai	e	ε

4.3.1.1 PN *i > PLa *i, *e, *ε, *i

Table 4-34 summarises the development of PN *i in PLa; following each PLa vowel in parentheses is the number of cognates in the wordlist that show that vowel. PN *i developed into

PLa *i, *e, * ε , *i, and *y, with conditioning by the initial. Of the 31 lexical items reflecting PN *i, 19 of them retain *i in PLa, three become *e, seven * ε , one *i, and one *y.

Change	Conditioning	Results
*i > e	labial initials (p, b, m)	e (3), i (2), ε (1)
*i > i	alveolar and palatal initials (t, d, n, n, l, ?n, ?n, ?l)	i (11)
	alveolar and postalveolar affricates and fricatives	i [ງ/ኂ] (6)
$*i > \epsilon$	alveolar affricates plus medial -y-	ε(2)
	r, mr, kj	ε(4)
*i > i	$\int > PLa x_{-}$	i(1)
*i > y	m-d	y (1)

Table 4-34: Development of PN *i in PLa

Table 4-35 gives examples of PN *i's development in PLa. With labial stops, *i > PLa *e, as in *pi¹ 'spicy,' 'piece of tile'> PLa *p^he¹ and *?-bi² 'old' > PLa *be². Although these etyma are reflected in only a handful of varieties, the correspondence set of PLa *e is still identifiable, with MD's [ϵ], E-DC and W-DT's [e], and Central's [i]. CE-YA is the only variety that has retained the PN cognate *?-bi² 'old,' and the [i] may reflect either PLa *i or *e, as Central varieties merged the two rhymes. However, assuming that all labial stops developed in the same way, I reconstruct this etyma as PLa *be². Labial nasal *m shows variation between PLa *i and * ϵ , as in PN *C-mi² 'woman' > PLa *me², but *C-mi¹ 'field' and *mi¹ 'nighttime'> PLa *mi¹.

For *?-prefixed labial stops, the development is ambiguous because of uncertainties in the PN/PB reconstruction. In both examples of PN *?pi ('chin' and 'comb'), *i becomes close central *i, as in PN *?pi¹ 'chin' > PLa *pi¹ and *?pi² 'comb' > PLa *pji². However, Matisoff (2003, p. 196) reconstructs 'comb' as PB *?-g^wi(y)², with the parenthetical (y) in *i(y) reflecting protovariation between *i and *əj for this cognate. Matisoff's *əj usually corresponds to Bradley's *e. After labial initials, *e/əj > PLa *i, as discussed in §4.3.1.3, so Lalo appears to reflect PN *?pe/əj for 'chin' and 'comb,' not *?pi.

In syllables with alveolar and palatal initials (*t, *d, *n, *n, *l, *?n, *?n, *?l), *i is retained, as in PN *di¹ 'insect' > PLa *di¹. In syllables with the aspirated alveolar stop, the initial became palatalised in most Lalo dialects except Eka, as seen in PN *ti² 'one' > PLa *t^hi², Eka /t^hi²/, MD /tJ^hi²/ and CW-QY /t§^hi²/. PN *m-di² 'yeast,' yields PLa *dy², suggesting an alternate PN reconstruction of *m-du² as the origin. Alveolar initials with Bradley's *i that are reconstructed as *ej in Matisoff are discussed in §4.3.1.2 below.

Syllables with initial *r or *nasal plus medial *-r- show PLa * ε , as in *k-ri² 'big'> PLa * $y\varepsilon^2$, and *?mri² 'tail' > PLa *m ε^2 . For *k-ri² 'big,' W-YL, C-LJ, and C-LB show / yi^2 / instead of / $y\varepsilon^2$ /, but this is a subsequent vowel raising due to the velar initial. Other initial consonants that show PN *i > PLa * ε are *n-l, which becomes PLa *h (e.g., *n-li² 'penis'> h ε^2), and *kj, which becomes PLa *t $\int^h (e.g., *kji^2 'raise' > t\int^h \varepsilon^2)$. In PN, *i does not occur after velars, except for after *kj.

					W-		CE-	
Gloss	PN	PLa	MD	Eka	DT	E-DC	YA	C-LJ
spicy	pi1	$p^{h}e^{1}$	ε	i	/	e	i	i
tile	ŋwa¹pi¹	phe1	ε	/	e	/	/	i
old	?-bi ²	be ²	/	/	/	/	i	/
woman	C-mi ²	mε²	ε	3	3	8	8	8
insect	di1	di1	i	i	i	i	i	i
one	ti²	t ^h i ²	i	i	l	1	l	l
big	k-ri ²	γε²	ε	3	3	3	3	i
raise	kji²	t∫ ^h ε²	ε	3	/	/	/	/

Table 4-35: Examples of PN *i's development in PLa

With most alveolar and postalveolar affricates and fricatives, PLa retains *i, as seen in Table 4-36 below. PLa *i after alveolar and palatoalveolar affricates and fricatives was probably realised as apical vowel [η], a situation still seen synchronically in varieties such as YL, although in other varieties such as CW-QY, the subsequent development of initials and finals caused the [η] to be rephonologised as an allophone of close central vowel /i/ (see §3.2). In *tsi² 'lung,' W dialects show [ts^h ϵ^{21} ma³³fy²¹], whereas other dialects show [ts^h η^{21} fy²¹], reflecting possible protovariation in PLa. With PLa palatoalveolar affricates, Eka and MD show [i], and other Lalo varieties show apical vowel [η] or [η], depending on the subsequent development of PLa palatoalveolar affricates to alveolar or retroflex.

Two exceptions to this trend are seen in the development of PLa ϵ in syllables with alveolar affricates plus a medial *-y-, as in 'lard/fat,' PB *tsyi¹ and 'to ride,' PB *dzyi², seen in Table 4-36 below. Bradley reconstructs these etyma as PN *tsi¹ and *dzi², respectively, but these items do not fit the pattern of ϵ is rather counter-intuitive, Matisoff's reconstruction is adopted here to explain the distinct developments of *tsyi¹ 'fat' and *tsi¹ 'lung'.

Before PN *i, *ik and *e, palatoalveolar fricative * \int became PLa velar fricative *x across all Lalo varieties, and the vowel became PLa *i, i.e., PN * $\int i/ik/e > PLa$ *xi. PLa *i is often reflected by apical vowel [η], and it is possible that the apical vowel [η] moved slightly back to close central vowel *i and then conditioned the palatoalveolar initial to move back to velar position.

Gloss	PB	PN	PLa	MD	E-DC	W-DT	CW-QY
barley	*zəj²	*zi ³	*zi ³	/	1	1	1
urine	*m-(d)zyəj ²	*m-zi ²	*zi ²	/	1	1	1
lung	*tsəj²	*tsi ²	*tshi ²	/	1	3	1
hat		*?-tsi ²	*tsi ²	u	1	1	1
liquor	*m-dzəj1	*m-dʒi1	*dʒi1	i	1	l	l
to ride	*dzyi ²	*dzi ²	*dze ²	3	3	3	ε
fat	*tsh(y)i1	*tsi ¹	*ts ^h e ¹	ε	8	3	ε
seven	* <u></u> ji ²	*∫i²	*Xi ²	i	i	i	i

Table 4-36: Further examples of PN *i's development in PLa

4.3.1.2 PN *ej > PLa *ε

Matisoff's *ej corresponds to some etyma with Bradley's *i, but evidence from Lalo suggests that *i and *ej were distinct PB vowels that developed into PLa *i and * ε , respectively. Whereas *i mostly remained *i in PLa but split to * ε after certain initials (i.e., *r, *kj, *tsj, *dzj), *ej became PLa * ε in all environments. The result is a conditioned, partial merger of PN *i and *ej, as illustrated by Figure 4-1 above. The distinction between PB *ej and *i is especially clear after alveolar initials, as exemplified in Table 4-37 below. After alveolars, *i consistently yields PLa *i,

while *ej consistently yields PLa * ε . In the table below, Matisoff's reconstructions without tone markers are at the PTB level.

			c .	•
Gloss	PB/PTB	PN	PLa	Lalo (Central)
insect	*di ¹		*di1	di ⁵⁵
red	*?-ni1	*?-ni ¹	*?-ni ¹	?ni ⁵⁵
hunk/lump	*m-dej ¹		*dɛ¹	dɛ ³³ (Björverud, 1998)
plant	*?-dej ¹	*?-ti ³	*?-dɛ1	$t\epsilon^{55}$
hit	*dip	*m-di ²	*dɛ²	d£ ²¹
fruit	*sej	*si ²	*SE ²	SĒ ²¹
sharpen		*si ²	$*S\epsilon^2$	S£ ²¹
near	*s-na:y X s-nej	*b-ni ²	*ne ²	ng ²¹
younger sibling	*nyej	*?əŋi¹	*jita2	$n\epsilon^{55}za^{21}$
penis	*m-lej X *m-li	*(n)-li ²	*he²	h ²¹
tail	*r-mej	*?-mri ²	*me ²	?m <u>e</u> ²¹

Table 4-37: Examples of PN *ej and *i's development in PLa

4.3.1.3 PN *e > PLa *i, *i, *ε

Table 4-38 below shows the development of PN *e in PLa, with number of supporting examples in parentheses. Bradley's PN *e usually corresponds to Matisoff's (2003) *əj, except after alveolar and post-alveolar affricates and fricatives, where Matisoff's *əj corresponds to Bradley's *i. Out of 29 lexical items in the wordlist with PN *e, twenty show PLa *i, seven show PLa *i, and two show PLa * ϵ .

Table 4-38: Development of PN *e in PLa

Conditioning	Results
alveolar sonorants (?n, l, b-l, s-l, m-l)	i (5)
alveolar and postalveolar affricates (ts, d3)	i (3), ε (1)
r, k plus medial r, l, w, y	i (11), i (1)
labial initials (p, ?p, pr, br, m)	i (5), i (1)
∫> PLa x_	i (1)
$s-w > PLa f_$	ε(1)

Table 4-39 gives examples of the development of PN *e in PLa. PLa shows a merger of PN *e and *i to PLa *i in many environments, such as following alveolar and postalveolar initials. PN *e and *i also show parallel development after * \int , merging to PLa *i, as in 'die' PN * $\int e^2$, PLa * xi^1 . The distinction between *e and *i is maintained, however, after *labial initials, *r, and *kj. After labial initials, *i > PLa *e, but PN *e becomes PLa *i, e.g., PN * pe^2 'rotten' > PLa * phi^2 . After labial stop plus medial -r-, PN *e varies between PLa *i and *i, e.g., PN * pre^1 'untie' > PLa * phi^1 , but PB *m-braj¹ 'tears' > PLa * bi^1 . After *kj, PN *i > PLa * ϵ , but PN *e > PLa *i, as in * kje^2 'borrow' > PLa * $tfhi^2$. While PN *i after *r > PLa * ϵ , PN *e > PLa *i in the same environment, as in 'water' PN * re^1 > PLa * yi^1 .

After *r and velar stops plus medials *-r- and *-l-, PN *e becomes PLa *i, as seen in 'foot/leg' *kre¹, 'bile' *C-?-kre¹, and 'skin' *m-k-re¹. PLa *i shows subsequent developments after these velar initials in different varieties of Lalo: *i is reflected as /i/ in MD, Eka, and E-DC, but in most

other varieties, the velar initial has conditioned the movement of the vowel back to close central /i/. After labiovelar initial *w, PN *e becomes PLa *i, as in 'far'. However, after *s-w, PN *e develops into PLa * ϵ , as in *s-we² 'dry' > PLa *f ϵ ³. The rounded /y/ seen in CW-QY's [a⁵⁵m²¹cy⁵⁵] reflex of PLa *hi¹ 'wind' may be due to the labial nasal in the preceding syllable of the the compound *a¹mo²hi¹, literally 'sky wind'.

			E-D					W-D	C-	CW
Gloss	PN	PLa	С	Eka	MD	YL	XZ	Т	CJ	QY
rotten	pe ²	$p^{h}i^{2}$	/	/	/	/	i	i	i	i
untie	pre ²	$p^{h}i^{2}$	ə	i	i	u	i	i	i	i
die	∫e²	xi ¹	i	i	i	i	i	i	i	i
tears	m-brəj ¹ (PB)	bi1	/	i	i	/	1	J	1	/
borrow	kje ²	t∫ ^h i²	1	1	i	/	l	l	ſ	<u> </u>
day	?ne ³	?ni³	3	i	i	i	i	i	i	3
wind	s-le ¹	hi1	i	i	i	e	i	i	i	у
grandson	m-le ²	?li²	i	i	u	i	i	i	i	i
four	b-le ²	?li³	i	i	i	i	i	i	i	i
leg	kre ¹	$k^{h}i^{1}$	i	/	i	3	i	i	i	i
bile	?kre ¹	ki1	i	i	i	/	i	i	i	i
skin	m-k-re ¹	gi1	i	i	i	/	i	i	i	i
water	re ¹	yi ¹	i	i	i	i	i	i	i	i
far	we ²	vi²	ei	u	ə	ai	i	i	i	i
dry	s-we ²	fɛ³	3	8	3	3	3	3	3	3

Table 4-39: Examples of PN *e's development in PLa

4.3.1.4 PN *aj > PLa *ε, *e, *y

Table 4-40 below shows the development of PN *aj in PLa, with number of supporting examples in parentheses. In general, *aj split to PLa * ε and *e, with * ε as the default and *e developing after alveolar initials. Of the sixteen lexical items showing PN *aj, nine develop into PLa * ε , six into PLa *e, and one to *y.

Table 4-40: Development of PN *aj in PLa

Conditioning	Results
labial initials, both stops and nasals (p, ?p, m)	ε (4), y (1)
r, kr	ε(3)
W	ε(2)
alveolar initials (?d, dz, ts, ?ts, n)	e (5)
no initial > PLa 3_	e (1)

Table 4-41 below illustrates the correspondence sets that reflect PN *aj. The usual reflex after labials is PLa * ε , as in 'tie' PN *paj¹ PLa *p^h ε^1 . One example, 'to divide' PN *baj¹, shows an irregular development to PLa *by¹. The PTB reconstruction for this word is *bral (Matisoff, 2003), so there may be a more accurate PN reconstruction for this word other than *baj¹. After PLa *kj and * γ , CW-QY, C-WC, C-LJ, and C-LB show a subsequent development to close central vowel /i/, conditioned by the velar position of the PLa initials. After alveolar stops, affricates, and nasals, PLa *e develops, which is retained in most Lalo varieties except Central (i.e., in E-DC, YL, XZ, all W varieties except W-YL). In Eka, MD, and W-YL, PLa *e and * ϵ merge to [ϵ], while in all Central varieties, PLa *e and *i merge to [i]. If there is no initial present, as in 'go,' PN *aj¹, then *aj also develops as *e, with insertion of the palatoalveolar fricative *3, discussed in §4.2.1.

						E-		W-		CW
Gloss	PN	PLa	MD	Eka	YL	DC	XZ	DT	C-CJ	QY
divide	baj1	by1	i	i	i	ə	у	у	У	у
tie	paj1	$p^{\rm h}\epsilon^{\scriptscriptstyle 1}$	/	/	8	8	8	8	ε	ε
star	?graj1	kjɛ¹	8	8	8	8	8	8	ε	i
laugh	raj1	γε¹	ε	3	3	3	3	3	3	i
pound	?daj²	te ²	8	8	/	e	e	e	i	i
hoe	?tsaj²	tse ²	ε	i	e	e	e	e	i	i
ten	tsaj1	tshe1	ε	3	e	e	i	e	i	i
few	naj²	ne ²	/	3	e	e	e	e	/	i
go	aj1	e1	3	i	i	i	i	i	i	i

Table 4-41: Examples of PN *aj's development in PLa

4.3.1.5 PN *waj > PLa *ε

PN *waj merges with *aj to PLa * ϵ in all environments, as shown in Table 4-42 below. In a subsequent development, C-LJ merges PLa * ϵ with *a after retroflex affricates, as in 'tusk,' PN *dʒwaj¹ PLa *dʒ ϵ ¹. The same correspondence is also seen in 'pot' PLa *tJ ϵ ¹, 'dragonfly' *dʒ ϵ ², and 'grasshopper' *tJ ϵ ¹. The PN reconstruction for these words could be *aj or *waj, since there are no examples of PN *dʒaj or *tJaj in the data to negate *aj as a possible source.

Gloss	PB	PLa	MD	Eka	YL	E- DC	XZ	W- DT	CW OY	C-LJ
chaff	pwaj ²	p ^h E ²	ε	8	8	8	8	8	- <u>×</u> - E	е <u>11</u> э
		ρτ lε¹		-	-	-	-	-	-	-
easy	lwa(:)j		3	3 8	3	3	3	3	8	3
tusk	dʒwaj¹	dζε1	3	-	3	3	3	3	3	а
pot		t∫ε¹	3	3	3	3	3	3	3	a

Table 4-42: Examples of PN *waj's development of in PLa

4.3.1.6 PN *we > PLa *ε, *i

PN *we merges with *aj and *waj to PLa * ε in most environments, except after non-prefixed velar stops, as shown in Table 4-43 below. After velars *k and *kr, which both merge to PLa *k^h in this environment, PN *we > PLa *i. PLa *i is reflected as /i/ in all varieties, except in E-DC, where PLa *i merged with *i to /i/ after velars. Whereas PN *we becomes PLa *i after velar stops, PN *e > PLa *i in the same environment, as described in §4.3.1.3. MD and Eka provide the crucial evidence for the different development of PN *e and *we after velars. In MD/Eka, 'leg' PN *kre¹ > PLa *k^hi, reflected as /k^hi/, but 'dog' *kwe², 'nest' *kwe¹, and 'daughter-in-law' *krwe² > PLa *k^hi, reflected as /k^hi/. In most other varieties, both PLa *k^hi and *k^hi merge to /k^hi/, and in E-DC only, PLa *k^hi and *k^hi merge to /tſ^hi/. Surprisingly, 'sweat' PN *?krwe² yields PLa *kε², with subsequent raising of the vowel to /ki/ in some Central varieties.

For other initials, *we predictably develops as PLa * ε , as in * $p\varepsilon^1$ 'gray', * $\int \varepsilon^1$ 'gold' and * $s\varepsilon^2$ 'charcoal'. However, PN *swe² 'blood' instead shows PLa *i, reflected as the apical vowel [η] in most varieties, but as [i] in MD. The initial alveolar fricative may have conditioned the rhyme's

change to apical vowel []], although it did not have the same effect in 'charcoal'. In the Burmese loan for 'half' $[k^hw\epsilon^{53}]$, *w ϵ becomes PLa rounded vowel *y.

Gloss	PN	PLa	E- DC	MD	Eka	YL	XZ	W- DT	CW QY	C-LJ
dog	kwe ²	$k^{h}i^{2}$	i	/	/	i	i	i	i	i
nest	kwe ¹	$k^{h}i^{1}$	i	i	i	i	i	i	i	i
daughter-i n-law	krwe ²	$k^{h}i^{2}$	i	i	i	i	i	i	i	i
sweat	?krwe ²	kε²	ε	3	i	8	3	8	i	i
gray	pwe ¹	pε¹	3	а	3	3	3	8	3	3
gold	srwe ¹	∫ε¹	3	8	3	3	3	8	3	a
charcoal	swe ²	SE ²	a	8	i	а	а	8	8	3
blood	swe ²	si ²	i [ๅ]	i	i	i [ๅ]	i [ๅ]	i [ๅ]	i []]	i [ๅ]
half	$[k^hw\epsilon^{5_3}]$	k^hy^2	/	ə	ə	/	/	у	у	у

Table 4-43: Examples of PN *we's development in PLa

4.3.2 PN central and back vowels *a, *u, *ow, *o, *a(:)w, *wa

Table 4-44 below summarises the development of PB/PN central and back vowels in Written Burmese (WB) and Lahu (Matisoff 2003), and Proto Lalo.

Table 4-44: Development of PB/PN central and back vowels in Written Burmese, Lahu, and PLa

PB	PN	WB	Lahu	Proto Lalo
а	a	a	а	a
u	u	u	u	y/alveolars_; u/elsewhere
ow	u	u	u	o/b_; u/elsewhere
əw	0	ui	o; u/ labials	i/alveolars_; o/elsewhere
a(:)w	aw	au	0	o/labial stops_; u/elsewhere
wa	wa	wa	u	y/alveolars_; a/velars

4.3.2.1 PN *a > PLa *a

*a is by far the most frequent rhyme in the data, comprising over 10% of the rhymes in the Lalo wordlist. Table 4-45 gives examples. PN *a remained *a in PLa. Several Lalo varieties (Eastern, W-DT, XZ, Eka, and MD) raise *a to [0], part of a chain shift with the change *aŋ > [a]. However, some very frequent words still show /a/ in these varieties, such as the first syllable in the autonym 'Lalo' *la²lu^H, as well as 'to come' *la¹, the negative marker *ma², the negative imperative *t^ha², and 'what?' *a¹tsa¹.

After PN labials plus medial *-y-, PN *a is retained as PLa *a, but the glide has influence on the subsequent development of the rhyme. The glide is reflected as a palatal onset in diphthongs [-ia] or [-io] in E-DC and E-HS. In some Central varieties (CW-QY, C-WC, CE-YA), the medial has replaced the rhyme after *m, as in PN * C-mja² 'many' > PLa mja², reflected in CE-YA as /mi²/.

			E-	М			W-		CW	CE-
Gloss	PN	PLa	DC	D	Eka	XZ	DT	YL	QY	YA
thin (thing)	ba²	ba²	э	0	0	0	0	а	а	а
fern	m-da ¹	da1	э	0	0	у	0	а	а	а
many	C-mja ²	mja²	io	0	0	0	0	а	/	i
to plow		mja²	ia	0	0	0	0	а	i	i
late		mja ³	io	/	/	0	0	а	i	i
bee	bya²	bja²	ia	0	0	0	0	а	a	а

Table 4-45: Examples of PN *a's development in Proto Lalo

4.3.2.2 PN *u > PLa *u, *y, *o

PN *u becomes PLa *y after most labials and alveolar initials and is retained as *u elsewhere, as illustrated in Table 4-46. After labial initials (except *b), and alveolar stops, nasals, affricates and fricatives, PN *u becomes PLa *y, reflected as [y] in most varieties, and as [ə] in E-DC, MD, Eka, and YL. There are some exceptions to this general pattern, seen in 'vulva' PB *s-tu² and 'nephew' PB *m-du¹, which both reflect PLa *u, not *y. These two words behave the same way as words reconstructed with PB *ow, discussed in 4.3.2.3 below. Also, the voiced labial stop conditioned a merger with PLa *o, which phonetically was probably closer to *[wi], as discussed in 4.3.2.4 below. 'Crow (v)' PB *mbu¹ shows identical reflexes with *bo² 'carry. 'Owe,' no published reconstruction available, was probably *bu³, given Lisu's reflex of it as [bu³³] and not [bo³³].

				E-				W-	C-Q
Gloss	PTB/PB	PN	PLa	DC	MD	Eka	XZ	YL	S
vulva-1	s-tu ²		tu²	r	u	Y	r	Y	ə
nephew	m-du ¹	m-du ¹	du1	r	u	Y	r	Y	ə
crow (v)	mbu¹		bwi ¹	ə	i	i	i[]]	i[]]	i
owe	bu ³		bwi ³	ə	i	/	i[]]	i[]]	i
brood	?-mu ²		?my²	ə	ə	ə	у	у	mļ
gourd	pu²	pu²	$p^{\rm h}y^2$	ə	ə	ə	у	у	у
bury	s/m-du	səm-du ²	ty²	ə	ə	ə	у	у	у
head-2		?du²	dy1	ə	ə	ə	у	у	у
awn	?-/s-nu ¹		?ny¹	ə	ə	ə	У	у	у
same	Su ²		Sy ²	э	ə	ə	у	у	у
face		pju²	p ^h y/aŋ ²	a	3	a	a	u	у
white	plu1	plu1	$p^{h}u^{1}$	r	u	Y	r	Y	Y
butterfly		C-lu ³	?lu³	r	u	Y	r	Y	Y
chopstick		jyu³	dzu³	r	u	Y	r	Y	Y
tendon		gru ²	gu²	/	u	Y	r	Y	Y

Table 4-46: Examples of PN *u's development in PLa

After PN labial clusters *pl and *bl, resonants *r, *l, *y, *w, palatal initials like *j, and no initial, PN *u merges with PN *ow to form PLa's *u. PLa *u is reflected as syllabic fricative / γ / in most Lalo varieties, but also as /u/ in MD, as / γ / with lip compression in E-DC, YL, XZ, W-SLZ, and as / ρ / in CW-QY and CE-YA.

PN *pju² 'face' shows some unexpected reflexes: only C-QS and CE-YA reflect PLa * p^hy^2 ; all other varieties instead reflect * $p^ha\eta^2$, suggesting protovariation.

4.3.2.3 **PB** *ow > PLa *u

In Matisoff's and Bradley's previous reconstructions of PB/PN, *ow was not reconstructed, because PB languages such as WB, Lahu, and Lisu merge PTB *ow and *u. Matisoff (2003, p. 222) reconstructs *ow at the PTB level and considers reconstructing *ow at the PB level in a footnote. Lalo, Lolo and Lipo keep correspondence sets for *ow and *u distinct, suggesting that these vowels were in fact distinct in PB/PN, with *ow > u and *u splitting to [x] and [u] with the same conditioning as Lalo. Nanhua Lolo (CXMW 1988) shows PTB *now 'soft' > [nu²¹] and *tow 'thick' > [t^hu³³], but PN *?-du² 'head' > [dx³³] and *su² 'same' > [sx⁵⁵]. In Lalo, PB *ow becomes PLa *u in all environments, whereas PB *u splits to PLa *y after labials and alveolars, and to *u elsewhere. The result is a partial merger of *u and *ow, somewhat similar to the PB *i/ej partial merger, as illustrated in Figure 4-1 above.

The development of PB *ow to PLa *u is illustrated in Table 4-47. In a later change, all Central varieties merge *u and *i after the labial nasal to /i/, realised as [u] in CW-QY, as seen in 'to work' PLa *mu¹. After alveolar affricates, as in 'fat' and 'boil,' MD and Eka retain PLa *u, reflected as /u/ in MD and as syllabic fricative /y/ in Eka. All other varieties merge *u and *i in this environment to apical vowel [η].

								W-	CW-
Gloss	PTB	PN	PLa	E-DC	MD	Eka	XZ	DT	QY
work	mow		mu ¹	r	u	/	r	Y	i[u]
thick	tow	tu ¹	$t^h u^1$	r	u	Y	r	Y	ə
fat	tsow	tsu ¹	$ts^{h}u^{1}$	/	u	Y	/	1	/
boil	tsyow		tsu ¹	1	u	Y	1	1	1
soft	now	C-nu ²	nu²	r	u	Y	r	Ŷ	ə

Table 4-47: Examples of PN *ow's development in PLa

4.3.2.4 PN *o > PLa *o, *i, *i, *[wi]

PN *o developed into PLa *i after alveolars and palatals, to *i after palatoalveolars, to *wi after bilabial stops, and was retained as PLa *o elsewhere. After the PLa stage, *o continued to develop in complex ways, to the extent that no Lalo variety retains [o] as a reflex of PN/PLa *o. PLa *o changes to central vowel [ə] or [i] in E-DC, E-HS and Eka. In other varieties, PLa *o splits to $/\gamma/(/i/ in MD)$ and /i/, depending on the initial. Table 4-48 gives examples of PN *o's development in PLa.

After alveolar affricates and and palatal nasals, PN *o merged with PN *i and *e to PLa *i. After alveolar affricates and fricatives, PLa's *i was probably pronounced as apical vowel [η]. In most varieties, [η] is as allophone of /i/ in this environment, even though later changes caused [η] to rephonologise as an allophone of close central vowel /i/ in some varieties. In PLa, there is no contrast between *tsi and *tsi. After PLa palatoalveolars, PN *o > PLa *i, as in 'sweet' PN *kjo¹ > PLa *t(hi¹. After palatoalveolars, there is a contrast between PLa *i and *i, with *i often reflected as retroflex apical vowel [η], as seen in the PLa minimal pair *t(hi² 'borrow money,' reflected as MD [te^hi²¹] and PLa *t(hi¹ 'sweet,' reflected as CW-QY [tg^h)⁵⁵].

PN *o after the alveolar stop is retained as PLa *o rather than merging with PN *i, as in 'book/paper' PN *to² yum² > PLa *t^ho²yu². For this correspondence set, *o > [a] in E varieties, XZ and W-DT, and becomes [i] in other varieties.

After labial stops, PN *o experienced two ordered changes: 1) phonetic unpacking to *ws, followed by 2) fronting of the second sound to *wi. The phonetic unpacking of PN *o > *ws probably began with the insertion of a transitional labiovelar glide between the initial bilabial stop and the vowel. The fronting of *ws to *wi occurred at the PLa stage, as every Lalo variety shows some degree of fronting, either to /i /or /i/. In most Lalo varieties, the second segment of *wi remained at /i/, but some varieties experienced subsequent fronting to /i/. In E-DC and E-HS, *wi simplified to /i/, merging with the reflexes of PLa *i. In C-W varieties, XZ, and E-TS, the *w

became a fricative v, which then affected the changes in initials that are described in §6.5. In YL and MD, *wi moved all the way to the front to [i]. The change *o > *wi was not a phonological change, as PLa *o and *wi never contrasted, and *wi did not merge with *i at the PLa stage, only later in some varieties. Noting this phonetic change, however, helps explain the later, more complex changes in initials, described in §6.5.

C, W, and XZ varieties show a partial merger with PLa *u after *m (often reflected as syllabic [m]) and after velars, reflected as $[\gamma]$, or as $[\neg]$ in CW-QY.

				E-				W-D	C-	CW
Gloss	PB	PN	PLa	DC	Eka	MD	XZ	Т	CJ	QY
meet		dzo1	dzi1	i[]]	/	/	/	i[]]	i []]	i[]]
cough		tso ²	tsi ²	i[]]	i[]]	i[]]	i[]]	i[]]	i[]]	i[]]
finger		s-no ¹	?ni ¹	i	i	i	i	i	ņ	i
sweet	kjəw ¹	kjo¹	t∫ʰi¹	i[]]	i[]]	i[]]	i[1]	i[\]	i[լ]	i[\]
	to ²									
book-1	yum ²	to ²	tho ²	а	/	/	а	а	i	i
carry	bəw ²	bo ²	bwi ²	ə	i	i	i[]]	i[]]	i	i
price	pəw ²	$p^{\rm h}o^2$	p^hwi^2	ə	i	i	i[]]	i[]]	i	i
sky	məw ²	mo ²	mo ²	ə	i	i	Y	Y	Y	mļ
mushroom	?məw¹	?mo ¹	?mo ¹	ə	i	a	ņ	Y	m	Ŷ
steal	kəw ²	ko²	ko²	ə	i	i	Y	Y	Y	ə
horn	krəw ¹	kro ¹	$k^{h}o^{1}$	ə	i	i	Y	Y	Y	ə
cry	ŋəw¹	ŋo¹	ŋo¹	ə	i	i	Y	Y	Y	ə

Table 4-48: Examples of PN *o's development in PLa

After velar initials, PN *o is also retained as PLa *o rather than merging with other vowels, because modern reflexes show a correspondence set distinct from all other PN vowels. E-DC, MD and Eka consistently reflect PLa *o as [i] or [ə] in this environment. All other varieties show a subsequent merger with PLa *u, seen in the [γ] reflexes in most varieties and [ə] in CW-QY. The [ə] seen in CW-QY is a fairly recent change that affects all reflexes of PLa *u, and is not a shared innovation with E-DC's development of [ə] from PLa *o. In CW-QY, all PLa *u > ə, but in E-DC, *u > /x/ (with lip compression).

4.3.2.5 PN *aw > PLa *u, *o

In contrast with *a, *aw is rare, occurring in only a few examples in the Lalo wordlist, as seen in Table 4-49 below. After labials, there are only examples with medial *-y-, *-yaw. When *aw is seen without the medial *-y-, as in 'to call' PN *kaw¹ and 'to stir-fry' PN *?-raw¹, the rhyme merges with PLa *u, becoming either syllabic fricative [γ], mid back vowel [γ] with lip compression, or mid central vowel [γ], depending on the variety. PN *(k)-raw¹, 'to count' is also reconstructed with *aw, but Matisoff's reconstruction of *r $\gamma j^{1/3}$ is more consistent with the PLa reflex of * χi^3 , as in E-DC / $\chi \gamma^3$ /.

The two examples of *-yaw after labial stops, $*p(y)aw^2$ 'fart-1' and $*b(y)aw^2$ 'banana-2,' both became PLa $*bjo^2$, with subsequent changes in the initial in some varieties, e.g., to [v] or [dz], a change described further in §6.3. PLa $*bjo^2$ in 'banana' occurs as the second syllable in the PLa compound $*?\eta ja^H bjo^2 be^3$ and merged with PLa $*bo^2$ in most dialects except MD. MD keeps the two correspondence sets distinct: $*bjo^2 > [dzi^2]$ or $[vi^2]$, while $*bo^2$ (and $*bi^2$) > $[bi^2]$. PN $*p(y)aw^2$ 'fart-1' occurs as the first and third syllable in the PLa compound $*bjo^2 ts^{hi^2} bjo^2$, with the second syllable $*ts^{hi^2}$ consistently reflected as $[ts^h]^2$] across most Lalo varieties. The voicing of PN *p to PLa *b, seen across Lalo varieties in this etymon only, is unexpected. The initial syllable $*bjo^2$ should become /dzi²/ in W varieties and XZ, but instead shows /zi²/, an irregularity probably due to dissimilation of manner of the initials of the first and second syllables, i.e., /dz/ and /tsh/. Central varieties should show /vi²/, as seen in CE-YA, but surprisingly C-WC shows /zi²/, possibly through contact with W varieties.

			E-					W-	C-	CE-
Gloss	PN	PLa	DC	MD	Eka	YL	XZ	DT	WC	YA
call	kaw ¹	ku1	r	u	/	r	r	Y	γ	ə
stirfry	?-raw ¹	?lu¹	r	u	u	r	r	Y	Y	ə
fart	p(y)aw ²	bjo²	bi ²¹	vi ²¹	/	Z γ^{21}	Z γ^{21}	Z γ^{21}	Z γ^{21}	vi ²¹
banana	b(y)aw ²	bjo²	/	dzi ²¹	bi^{21}	/	$dz\gamma^{21}$	$dz\gamma^{21}$	vi ²¹	/

Table 4-49: Examples of PN *aw's development in PLa

4.3.2.6 PN *wa > PLa *y, *a

PN *wa became PLa *y after PLa alveolar initials and *a after PLa velar or cavity initials, as shown in Table 4-50 below. For 'chew' and 'rain', which develop into PLa *ga² and *ha¹ respectively, the rhyme merges with PLa *a, subsequently moving to 0 in several varieties. After alveolar initials, as in 'tooth' *swa² and 'handspan' *twa¹, the rhyme merges with other PN rhymes such as *am and *wan to form the close rounded PLa vowel *y, which subsequently moves back to [ə] in E-DC, MD and Eka (with some irregularity seen in 'tooth').

Table 4-50: Examples of PN *wa's development in PLa

				E-				W-	CW
Gloss	PB	PN	PLa	DC	MD	Eka	XZ	DT	QY
chew	m-g ^w ya ²	ga²	ga²	э	0	0	0	0	а
rain	rwa (PTB)	r-ywa/we ¹	ha¹	э	0	0	0	0	а
tooth	swa ²	swa ²	sy ²	ə	0	i	у	у	у
handspan	twa1		$t^{\rm h}y^2$	ə	ə	ə	у	у	у

4.3.3 PN nasal-final rhymes

The only nasal-final rhyme to be retained in Proto Lalo is *aŋ, which subsequently becomes [u] in Central and some W varieties, and [a] elsewhere. All other nasal-final rhymes merge with PLa open vowels. Most rhymes ending in *-m (*am, *um, *wam) and/or with the labiovelar approximant medial (*wam, *wan), merge to PLa *y. Most rhymes with close front vowel *i (*im, *i:n, and *iŋ) merge to PLa *i, while *in and *an merge to PLa *e. Finally, most rhymes ending with velar nasal *-ŋ (*waŋ, *oŋ) and/or close back vowels (*oŋ, *un) merge to PLa *u.

Matisoff retains a vowel length distinction in PB between nasal-final rhymes *in and *i:n, seen in different reflexes in WB and Lahu. Lalo offers some support for this distinction in PB, as discussed in §4.3.3.3.

4.3.3.1 PN *am, *wam, *wan, *um > PLa *y

The rhymes *am, *wam, *wan, and *um are discussed together, since they all merge to Proto Lalo *y, as illustrated in Table 4-51 and Table 4-52 below. In E-DC, MD, Eka, and YL, PLa *y becomes [ə] or [i], with varying conditioning in each variety. In E-DC, *y > [ə] everywhere except after palatalised labial clusters. E-DC preserves the palatal glide, which then influences the development of the rhyme, e.g., PN *byam¹ 'to fly' > PLa *bjy¹ > E-DC [bis²⁴]. In YL, *y > [ə] after alveolars and > [i] elsewhere, whereas in MD and Eka, *y > [i] after [y] (and after [s] in MD but not in Eka) and > [ə] elsewhere. In all other Lalo varieties, PLa *y is retained, though some

varieties show a later merger with *u after velars or the labiovelar approximant, seen in XZ's reflex for 'iron,' $[xy^{55}]$ and 'bear' $[wy^{24}]$.

			E-					W-	C-	CW
Gloss	PN	PLa	DC	MD	Eka	YL	XZ	DT	CJ	QY
*am										
to fly	byam ¹	bjy1	io	ə	ə	i	у	у	у	У
flame	?-lam ¹	?ly¹	ə	ə	ə	/	у	у	у	у
to smell	nam ²	ny²	ə	ə	ə	ə	у	у	у	у
iron	xam ¹	xy ¹	ə	ə	ə	i	Y	у	у	у
*wam										
	p-wam ²									
belly	(PB)	py^1	ə	ə	ə	i	/	у	у	У
bear	k-d-wam ¹	γу¹		i	i	i	Y	у	у	ə
*wan										
hawk	dzwan ¹	dzy1	ə	ə	ə	ə	у	у	у	у
garlic	swan ¹	sy1	ə	1	ə	1	у	у	у	у

Table 4-51: Examples of PN *am, *wam, and *wan's development in PLa

*um follows the same basic pattern as above, as seen in Table 4-52 in 'warm,' 'short,' and 'use,' but there are a few exceptions. In 'dull' PN *dum², Lalo varieties that have this cognate instead reflect PLa *u, not *y. In 'three' PN *C-sum², influence from Mandarin Chinese /san⁵⁵/ has resulted in PLa *a, an irregular development for this rhyme.

			E-					W-S	C-	CW
Gloss	PN	PLa	DC	YL	MD	Eka	XZ	LZ	QS	QY
*um										
warm	lum ¹	ly¹	ə	ue	ə	ə	у	у	у	у
short	?-n-jum ²	?ŋy²	e	i	i	i	у	у	у	у
use	3um²	3y ²	ə	ə	ə	/	у	у	у	у
dull	dum ²	du²	/	r	/	/	/	r	Y	ə
three	C-sum ²	sa1/3	э	а	а	0	0	а	а	a

Table 4-52: Examples of PN *um's development in PLa

4.3.3.2 PN *im, *iŋ > PLa *i

In general, PN nasal-final rhymes *im and *iŋ both merge to PLa *i, although both rhymes show some additional splits. There are only a few examples of *im in the data, given in Table 4-53 below. PN *im split into PLa *i after alveolars, *i after PN *r, and *e after PN *y. 'Dusk,' which Matisoff reconstructs at the PTB level as *rim, is reflected in PLa as * yi^{i} . In most Lalo varieties *i and *i merged to /i/ after velars and thus are useless for distinguishing PLa *i in that environment. However, in MD, Eka, and E-DC, the rhymes remained distinct as [i] and [i] or [ə]. Based on E-DC's reflex of [ə], 'dusk' is reconstructed with PLa *i, since E-DC's [ə] is a regular reflex of PLa *i, whereas in 'sun,' PLa * yi^{1} , E-DC shows [i]. In 'house,' PN * yim^{1} , the vowel is lowered to PLa *e, which is retained in E-DC, YL, and most W varieties, but merges with PLa *i or * ε in others.

					Е-			W-S	C-	CW
Gloss	PN	PLa	MD	Eka	DC	YL	XZ	LZ	QS	QY
cloud	C-dim ¹	di1	/	/	i	/	i	/	i	i
low	?-n-jim ³	?ni ^{1/3}	i	/	i	/	/	i	i	/
raw	dʒim² (PB)	dzi²	i[]]	i	i	i[]]	i[]]	i[]]	i[ๅ]	i[]]
dusk	rim (PTB)	γi¹	/	/	ə	/	i	i	i	i
house	yim ¹	he1	3	i	e	e	i	e	i	i

Table 4-53: Examples of PN *im's development in PLa

PN *iŋ consistently becomes PLa *i, as shown in Table 4-54 below. The two exceptions to this are seen in 'release,' PB *pr/yiŋ^{1/2}, which becomes PLa *p^hjy² instead of *p^{hi²}, and 'nail,' PN *siŋ², which becomes PLa *s ϵ^2 instead of *si². The combination of labial initial plus medial *-r-/-y- in 'release' is the most likely culprit for conditioning the rhyme to *y. Matisoff (2003) reconstructs 'nail' as *sin², not *siŋ²; even if *sin² is the correct reconstruction, PLa still shows an unexpected development of * ϵ instead of *e for *-in, cf. E-DC /se²/ from PN *sin² 'liver,' versus /s ϵ^2 / 'fingernail'.

Other examples of PN *in are regularly /i/ in all Lalo varieties. In all varieties except E-DC, MD, and Eka, PLa *i > /i/ after velars, as seen in 'thread' and 'sun'.

					E-			W-Y	C-
Gloss	PN	PLa	MD	Eka	DC	YL	XZ	L	CJ
release	pr/yiŋ1/2 (PB)	p ^h jy ²	ə	ə	e	у	у	У	у
nail	siŋ²	SE ²	8	ε	3	3	3	ε	ε
pus	m-bliŋ¹	bi1	i	i	i	i	i[]]	i[]]	i[]]
ripe	s-miŋ ^{1/3}	mi ³	i	i	i	i	у	i	i
name	$2-m(y)i\eta^{1}$?mi1	i	/	i	i	/	/	i
long	s-riŋ ¹	∫ĩ¹	i	i	i[]]	i[]]	i[ኂ]	i[\]	i[]]
neck	liŋ¹	li1	i	/	i	i	i	i	i
thread	kriŋ ¹	$k^h i^1$	i	i	/	i	i	i	i
sun	riŋ (PB)	γi¹	/	/	i	/	/	i	i

Table 4-54: Development of PN *in in PLa

4.3.3.3 PN *in, *an > PLa *e; PB *i:n > PLa *i

PN finals *in and *an are grouped together since they both merge to PLa *e. Matisoff (2003) maintains a distinction between *in and *i:n at the PB level, supported by the separate reflexes for these rhymes in WB and Lahu, given in Table 4-55. PLa also shows separate reflexes (albeit tenuously), giving further evidence for a distinction in PB: in > PLa *e and i:n > PLa *i.

Table 4-55: Development of PB *in and *i:n in Written Burmese, Lahu and PLa

PB	WB	Lahu	Proto Lalo
in	an	3	e
i:n	in	i	i

The tenuous nature of the distinction between *in and *i:n is partly due to the scarcity of examples in the data, given in Table 4-56 below. There is only one example of *i:n, PTB *kji:n 'to weigh,' which becomes PLa *tsi¹. Another confounding factor is the subsequent partial merger of PLa *i and *e in several Lalo varieties. Central Lalo varieties merge PLa *e and *i to /i/ in most environments. Non-Central Core varieties (E and W) merge *e and *i to /i/ after palatoalveolar

affricates, as in 'sour' *tfe¹ and alveolar fricatives, as in 'liver' *se² and 'host/owner' *se². After alveolar affricates, as in 'hoe' PLa *tse² and 'ten' *ts^he¹, non-Central Core varieties usually show /e/. The expected reflex in YL, XZ and W-SZP for 'tree' is /dze¹/, parallel to the reflex of 'hoe' from PLa *tse². The development of [η] in 'tree' seen in these varieties is probably due to the influence of the preceding syllable *s<u>i</u>^H in the compound *sik^H dzin¹ 'tree' >/s η ^H dz η ¹/.

Given these confounding variables, there is still evidence for a distinction between *in and *i:n, seen in MD, W-SZP, XZ and E-DC. MD usually shows ϵ as a reflex of PLa *e after alveolar affricates, as in 'ten' and 'hoe,' but for 'weigh,' MD shows /i/. Likewise, W-SZP and XZ usually show /e/ for PLa *e after alveolar affricates, but for 'weigh' they show /i/ realised as [1]. While E-DC consistently shows /e/ from *in, as seen in 'bowl,' 'tree' and 'liver,' it shows the unexpected reflex [t]^{hue⁵⁵}] for *kji:n, 'weigh'.

					Е-			W-S	C-	CW
Gloss	PN	PLa	MD	Eka	DC	YL	XZ	ZP	LJ	QY
ten	tsaj ¹	tshe1	8	8	e	e	i	e	i	i
hoe		tse ²	ε	i	e	ai	e	e	i	i
*in										
tree	dzin ¹	dze ¹	8	i	e	i[]]	i[]]	i[]]	i[]]	i[]]
liver	(J)-sin ²	se ²	i[]]	i	e	i[]]	i[]]	i[]]	i[]]	i[]]
host	sin (PB)	se ²	i	i	i[Ŋ]	i[]]	i[]]	i[]]	i[]]	i[]]
sour	?-kjin ¹	t∫e¹	i	i	i	e	i	i	i	i
bowl	krin ² (PB)	kre ²	ε	i	e	ai	e	e	8	ai
*i:n										
weigh	kji:n (PTB)	tsi1	i	i	ue	ue	i[]]	i[]]	i[Ŋ]	i[]]

Table 4-56: Development of PN *in and *i:n in PLa

PN *an becomes PLa *e in all environments, as seen in Table 4-57 below. There are a few unexpected developments of *an, seen in 'louse' PLa *xe¹, 'field' PLa *de¹, and 'quickly' PLa *mje¹. In 'louse' and 'field,' non-Central varieties such as XZ, YL and W-SLZ should show [e], but instead they show [i]. The rhyme in 'field' *de¹ is probably assimilating to the rhyme of the following PLa syllable *mi¹, from the PN compound *?-dan³ C-mi¹, usually seen as /di¹mi³/ in non-Central Lalo varieties. In 'quickly' PLa *mje¹, MD shows the expected reflex of *e (/ ϵ /), but other varieties reflect PLa *y, not *e. Much like the example of 'release' *prin² above, the combination of labial plus medial *r (> PLa medial *-j-) conditions rounding of the vowel. In this example, however, MD reflects *e, not *y, so the development of *y is probably a subsequent change.

Gloss	PB	PLa	MD	Eka	E- DC	YL	XZ	W- SLZ	C- WC
louse	xan ¹ (PN)	xe ¹	/	i	i	i	i	i	i
wolf	wan ¹	ve1	/	i	e	e	e	e	i
spirit	nan ²	ne ²	/	i	e	ai	/	e	
braid	pan ²	phe ²	/	i	e	ai	e	e	i
field	?-dan ³ (PN)	$de^{1/3}$	ε	8	/	i	i	i	i
stretch	dʒan³	$dze^{2/3}$	/	8	i	ai	i[]]	i	i
finish	bran ¹ (PN)	be1	/	/	/	ai	/	e	/
quickly	mran ¹ (PN)	mje ¹	ε	/	/	ə	у	у	у

Table 4-57: Examples of PN *an's development in PLa

4.3.3.4 PN *aŋ > PLa *aŋ

PN nasal-final *aŋ is the only nasal-final rhyme to be retained in PLa. In PLa, *aŋ becomes [u] in all Central varieties, plus YL, W-YL, W-SZP and W-SLZ, and becomes [a] elsewhere (E varieties, W-DT, MD, Eka), as seen in Table 4-58 below. The change to [u] in many varieties comes after PLa *u's development of lip compression as an articulatory feature, because [u] and [γ] remain distinct in these varieties. In general, PN *aŋ and *u do not merge, but after voiceless velar stops, as in 'mountain,' 'nose,' PN *kaŋ², and 'marrow' PB *?-glaŋ¹, PN *aŋ and *u merge to PLa *u, reflected as [γ] or [γ] with lip compression in most varieties, e.g., $k\gamma^{55}$ 'marrow,' from Björverud (1998).

YL typically shows [u] for *aŋ, but also shows [a] after PLa alveolar stops *d and *t^h (but not *t) and velar cluster *gj, as seen in 'drink,' 'pine tree,' and 'cold'. Both YL and W-SLZ show [a] for the third person singular pronoun (3S), instead of the expected [u]. A number of W and C varieties show reflections of PLa *u after alveolar sonorants *?l and *n, as in 'wait' and 'swallow,' but not for *l, as in 'valley'. Both MD and Eka later change PLa *a > ε after palatal approximant [j], as seen in 3S [j ε ²].

A few common animal names, as in 'rabbit' and 'horse,' all show unexpected developments or variation between PLa *aŋ and open rhymes. For 'rabbit,' most varieties reflect PLa *a, but Eka and C-LB show reflexes of *aŋ. Variation between PLa *aŋ and *u is also seen in 'horse'. MD, Eka, XZ, E varieties, and W-DT, all varieties where *aŋ > a, reflect PLa *mu², but in varieties where *aŋ > u, regular reflexes of *aŋ (/u/) are seen. 'Horse' is not reconstructed as PLa *mu² across all varieties, because PLa *mu is reflected as /y/ in W varieties or /i/ in CW-QY, cf. 'labour' PLa *mu¹ (from PTB mow), W-SLZ /my²⁴/ and CW-QY /mi⁵⁵/. The correspondence sets for 'horse' and 'see' also do not match, even though both descend from PN *mraŋ. 'See' reflects PLa *mjaŋ¹ across all varieties; the glide is retained in E-DC's /ia/ and merges with *aŋ in all other varieties.

					E-			WSL	С
Gloss	PN	PLa	MD	Eka	HS	XZ	YL	Ζ	LB
hill	kaŋ¹	$k^h u^1$	u	Y	r	r	/	r	Y
drink	m-daŋ ¹	daŋ¹	a	а	a	a	a	u	u
pine tree	taŋ²	t ^h aŋ ²	u	а	/	aŋ	a	u	u
ashamed	?-daŋ1	taŋ¹	а	а	/	a	u	u	u
revolve	?-gjaŋ ¹ (PB)	t∫aŋ¹	а	/	a	/	ue	u	u
pull	ŋ-gaŋ¹	gaŋ¹	а	а	а	а	u	u	u
cold	ŋ-glaŋ ¹ (PB)	gjaŋ¹	/	/	а	а	a	u	u
wait	(?)-laŋ ¹ (PB)	?laŋ¹	а	а	/	a	u	r	Y
swallow		naŋ³	/	/	aŋ	aŋ	/	r	Y
valley	laŋ¹	laŋ¹	а	a	a	a	i	u	u
38	3aŋ²	$(3)a\eta^{2/3}$	8	ε	а	а	а	а	u
		t ^h aŋ³∼							
rabbit	taŋ²	tha ³	/	а	0	0	а	а	u
		maŋ²~m							
horse	mraŋ ²	u ²	u	ə	'n	r	u	u	u
see	mraŋ¹	mjaŋ¹	а	a	ia	a	u	u	u

Table 4-58: Examples of PN *aŋ's development in PLa

4.3.3.5 PN *waŋ, *oŋ, *un > PLa *u

PN nasal-final rhymes *wan, *on and *un all merge to PLa *u, as seen in Table 4-59; the two exceptions are 'bracelet' PN *gon¹ > PLa *go¹, and 'flour' PN *?-mun^{1/3}, whose reflexes variably show PLa *u, as in MD, and PLa *y, as in W-DT. Matisoff's *un corresponds to Bradley's *on, although *un and *on show different developments after the voiced velar stop, e.g., 'body' PB *gun¹ > PLa *gu¹, but 'bracelet' PN *gon¹ > PLa *go¹. After preglottalisation, as in 'high' PLa *?mu¹, the nasal initial disappears, leaving a nasalised vowel in its place. The nasalised vowel does not usually show lip compression, as the regular reflex of PLa *u does. 'Fog' *mu¹ also shows some unexpected developments of /i/ and /ə/ in various dialects.

Table 4-59: Examples of PN *wan, *on and *un's development in PLa

			М		E-			W-	С-
Gloss	PN	PLa	D	Eka	DC	XZ	YL	DT	LJ
*waŋ									
open	pwaŋ³	p ^h u ³	u	Y	/	r	u	Y	Y
sell	rwaŋ²	γu²	u	Y	0	r	r	Y	Y
well	dwaŋ² (PB)	du ²	u	/	r	/	/	Y	
*oŋ									
wing	doŋ¹	du1	/	Y	r	r	r	Y	Y
bark	loŋ¹	lu ³	u	ə	/	r	r	Y	Y
high	?-mroŋ³	?mu¹	u	u	r	ĩ	r	ĩ	õ
fog	muŋ (PTB)	mu ¹	i	ə	ə	r	i	/	u
body	guŋ1 (PB)	gu1	i	/	ə	r	r	Y	Y
bracelet	goŋ¹	go ¹	u	Y	r	0	0	Y	u
powder	?-mun ^{1/3} (PB)	$mu^{\scriptscriptstyle 3} \sim my^{\scriptscriptstyle 3}$	u	u	/	/	'n	у	у

4.3.4 PN stop-final rhymes> PLa harsh vowels

PN stop-final rhymes develop into the PLa harsh phonation vowel system seen in Table 4-60 below. Harsh phonation is preserved in Central Lalo, Eka, MD, and partially in E-TS and E-DC. The PLa harsh phonation system mirrors the modal vowel system, without the nasal-final rhyme *aŋ. There are several parallels between the development of the stop-final rhymes and the nasal-final rhymes. Rhymes ending in labial consonants, whether *-p or *-m, develop into the close front rounded *y/y. Also, rhymes with *i tend to merge to PLa *i/j, except short *i before alveolar consonants *-n or *-t, which becomes *e/e.

Table 4-60: PLa harsh vowels

* <u>i</u> , [<u>1</u>]	*у	* <u>i</u>	*ц
* <u>e</u>			* <u>0</u>
<u>3</u> *			* <u>a</u>

4.3.4.1 PN *ip, *it, *i:t, *ik > PLa *<u>i</u>

All stop final rhymes with front vowel *i, except some examples of *it, merge to PLa harsh *<u>i</u>, as summarised in Table 4-61. After alveolar affricates and fricatives, PLa harsh *<u>i</u> is often reflected as apical vowel [$\underline{1}$], and after palatoalveolar affricates and fricatives, as [$\underline{1}$]. Only MD, Eka, and E-DC retain the original <u>i</u> and not the apical vowel.

PN	Conditioning	PLa
ip	all (examples: *s, *y, *s-j)	<u>i</u> (3)
it	after alveolar affricates and fricatives	<u>i</u> (3)
	elsewhere (examples: *?r, *n, *y, *tʃ)	<u>e</u> (4)
i:t	all (examples: *m, *r, *tʃ)	<u>i</u> (3)
ik	PLa *h	<u>e</u> (1)
	elsewhere (examples: *p, *n, *x, *s, *z, *ts, *dz, *ʃ)	<u>i</u> (8)

Table 4-61: Development of PN *ip, *it, *it, *ik in PLa

As with *in and *i:n, Matisoff (2003) suggests a vowel length distinction between PB *it and *i:t, and Lalo appears to support this distinction. PB *i:t becomes PLa *<u>i</u>, while *it becomes PLa *<u>e</u> except after alveolar affricate and fricatives, as seen in the examples of Table 4-62. Though there are only three examples of PB *i:t in the wordlist, there is a PLa minimal pair of *tJ^h<u>j</u>^L 'goat,' from PN *C-tJī:t^L and *tJ^h<u>e</u>^L 'to rip' from PN *m-dʒit^L (the development of aspirated initial is irregular). In W-YL, *tJ^h<u>j</u>^L 'goat' > [t§^h χ ⁵³], while *tJ^h<u>e</u>^L 'to rip' > [te^h ϵ ⁵³]; the vowels in both words are regular reflexes of PLa *<u>i</u> and *<u>e</u>, respectively. This suggests that *it and *i:t were distinct in PB and developed into PLa *<u>e</u> and *<u>i</u>, respectively. This is the same pattern as that seen for PB *i:n (> PLa *i) and *in (> PLa *<u>e</u>), as discussed in §4.3.3.3. PB *it becomes PLa *<u>i</u> after alveolar affricates and fricatives, as seen in *?-tsit^H 'beard,' which is reflected by the apical vowel [<u>1</u>] throughout Lalo. MD, Eka, and E-DC surprisingly show [<u>1</u>] after PLa *ts, whereas after PLa *s they show [i].

PN *ik in most environments becomes PLa *<u>i</u>, but after PB *?-w shows *<u>e</u>. PB *?-wik^L 'stomach,' becomes PLa *h<u>e</u>^L, a homophone with 'eight,' PN *C-yet^L > PLa *h<u>e</u>^L, shown by parallel reflexes with 'eight' in all Lalo varieties. All other environments show PLa *<u>i</u>. For example, PB *?-bik^L 'insect' becomes PLa *<u>pi</u>^L, seen in C-CJ's wu⁵⁵pi²¹, and possibly in W varieties' reflex $[dz_1^{53}]$. PB *s-nik^H 'heart' becomes PLa *?ni^H, seen in CW-QY's ?ni³³.

			М		E-	E-		W-D	C-
Gloss	PN	PLa	D	Eka	DC	HS	YL	Т	LJ
*ip									
thirsty	C-sip ^L	$s\underline{i}^{L}$	i	i	i	l	1	1	1
put to sleep	səjip∟	<u>∫i</u> [⊥]	i	iε	/	l	/	/	l
sleep	yip	<u>3i</u> ¹	<u>i</u>	/	1	<u>i</u>	1	l	<u>i</u>
*i:t									
blink	mi:t ^L (PB)	$m\underline{i}^{H}$	i	i	i	i	<u>i</u>	/	/
reap	ri:t ^L (PB)	γí	i	/	i	i	i	i	i
goat	C-t∫i:t [⊥] (PB)	t∫ <u>hi</u> ⊥	<u>i</u>	i	1	1	1	1	l
*it									
beard	?-tsit ^H	ts <u>i</u> ^H	1	1	1	1	1	1	1
pinch	s-nit ^L	$n\underline{e}^{H}$	<u>3</u>	i	ə	i	i	e	<u>i</u> ɛ
eight	?-rit[⊥] (PB)	he	<u>8</u>	8	e	i	ai	e	æ
drunk	yit (PB)	$3\bar{e}_{r}$	/	/	i	i	ai	i	<u>i</u> ɛ
rip	m-dzit ^L (PB)	t∫he॒⊾	/	/	/	/	i	i	i
*ik									
stomach	?- wik [⊥] (PB)	he	<u>8</u>	8	/	i	ai	e	æ
heart	s-nik (PB)	?n <u>i</u> [∺]	/	<u>i</u>	i	ĩ	i	i	$\tilde{1}$
new	C-∫ik [⊥]	xi	i	i	i	i	i	i	i
tree	sik^H	s <u>i</u> ^H	i	i	i	1	1	1	l
leopard	zik	z <u>i</u> ^L	/	/	i	1	1	1	1
day before yesterday	?ə∫ik ^H	$\int \underline{i}^{\mathrm{H}}$	i	1	1	1	l	l	l

Table 4-62: Examples of PN *ip, *it, *it, *ik's development in PLa

4.3.4.2 PN *et, *ek, *øk > PLa *ε

PN rhymes with close-mid vowels *e and *ö (*et, *ek, and *øk) all merge together by the PLa stage to $*_{\underline{\varepsilon}}$, as seen in the examples in Table 4-63. Lalo provides no evidence for the PN distinction between *ek and *øk, unlike Southern Ngwi languages such as Hani and Akha. PB *b(j)et^L 'vulva-2' > PLa *bj $\underline{\varepsilon}^{L}$, shows a different correspondence set from * $\underline{\varepsilon}$ because of the influence of the palatal glide in *bj. This etyma also shows variation between *L and *2: *2 is seen in Eka, MD and YL's [21] reflex, but XZ's [33] reflex reflects *L. After *s-j, which became PLa palatoalveolar fricative * \int , *øk becomes PLa close central vowel * \underline{i} , which is reflected as apical vowel [$\underline{1}$] in MD and Eka. This correspondence set is in contrast to PLa * \underline{i} , which is reflected as [\underline{i}] in MD and Eka, as shown in Table 4-62 above. Lalo reflexes for *?-bok^H 'jump' and *m-kok^H 'stir' suggest PLa * $\underline{\varepsilon}$, which is an unexpected development for PN *ok but fits the pattern perfectly for PN *øk. Matisoff (2003, p. 378) reconstructs 'jump' as PB *?pøk^H and 'stir' as *C-krøk^H (p. 144).

					E-			W-D	
Gloss	PN	PLa	MD	Eka	DC	XZ	YL	Т	C LJ
*et									
to chip	C-ket ^L (PB)	$k^{\rm h}\underline{\epsilon}^{\rm \tiny L}$	<u>a</u>	<u>a</u>	3	ε	ε	3	<u>a</u>
vulva-2	$b(y)et^{L}(PB)$	bj <u>e</u> ^{L/2}	i	i	/	3	i	/	/
*ek									
kick	tek ^H	$ts^{h}\underline{\epsilon}^{H}$	<u>a</u>	<u>a</u>	ε	3	8	8	<u>a</u>
*øk									
twist	s-jøk [⊥]	∫ <u>i</u> ⊥	1	1	/	/	/	l	/
shoot a gun	m -pø k^H	$b\underline{\epsilon}^{H}$	<u>a</u>	<u>a</u>	8	ε	8	ε	<u>a</u>
slice	?-døk ^H	$d\underline{\epsilon}^{H}$	<u>a</u>	<u>a</u>	8	ε	8	ε	<u>a</u>
jump	?-bok ^H	$p\underline{\epsilon}^{H}$	<u>a</u>	<u>a</u>	3	8	8	3	<u>a</u>
stir	m-kok ^H	$g \underline{\epsilon}^{H}$	<u>a</u>	<u>a</u>	8	8	8	8	<u>a</u>

Table 4-63: Examples of PN *et, *ek, and *øk's development in PLa

4.3.4.3 PN *up, *ut, *uk, *ok > PLa *u, *o, *y, *<u>i</u>

Rhymes with back vowels have multiple mergers and splits, as summarised in Table 4-64. After alveolar and palatoalveolar affricates and fricatives, *up and *uk merge to close central vowel *<u>i</u>; *up becomes PLa *<u>u</u> elsewhere, while *uk becomes PLa *<u>o</u> elsewhere. *ut becomes PLa *<u>y</u> after the bilabial nasal, and merges to *<u>i</u> elsewhere. after all initials. *ok, a more frequent rhyme than *uk, shows a split to PLa *<u>u</u> after prefixed alveolar sonorants (i.e.,*k-prefixed *1 and *?/*s-prefixed *n) and to *<u>o</u> elsewhere.

Table 4-64: Development of PN rhymes with close back vowels *u and *o

PN	Conditioning	PLa
up, uk	after alveolar/palatoalveolar affricates and fricatives	<u>i</u>
up	elsewhere (examples: *k-l, *gj)	ų
ut	after labial nasal	У
	elsewhere	<u>i</u>
uk	elsewhere	Ō
ok	after *k-l, *?-n, *s-n	ų
	elsewhere	Ō

					E-H			W-	CW
Gloss	PN	PLa	MD	Eka	S	XZ	YL	SZP	QY
*up									
breast/suck	C-t∫up [⊥] (PB)	t∫ <u>^i</u> H	1	i	1	l	1	l	1
sew	gjup ^L	gu¹	i	i	X	X	ጃ	Y	ē
shake	k-lup ^H	?1ц ^н	/	/	Y	Y	ĩ	Y	l
*ut									
sweep	sut^{H}	$s\underline{i}^{H}$	1	1	1	1	1	l	1
evening	(C)-kut ¹ / ^H	$k^{\rm h}\underline{i}^{\rm L}$	i	i	ə	/	i	i	i
hiccup	Put^{H}	\underline{i}^{H}	/	/	ə	/	i	/	/
belch	ut [⊥]	<u>i</u> ^L	ē	ē	/	i	i	i	/
blow	s-mut ^H	?my ^H	<u>i</u>	i	ə	i	у	Y	у
*uk									
smoke	(C)- $\int u k^{H/L}$	$\int \underline{\mathbf{\hat{1}}}^{\mathrm{L}}$	1	/	1	/	/	/	1
wear a hat	kuk (PB)	$k^{\rm h}\underline{o}^{\rm H}$	u	ū	0	u	/	0	<u>u[o]</u>
burn	?-duk [⊥]	to₁	ū	u	ō	0	u	u	<u>u[o]</u>
weed	C-mruk ^{L}	т <u>о</u> г	u	u	/	0	u	u	<u>u[o]</u>
*ok									
stone	k-lok ^L	ka¹lu ^H	u	u	0	/	u	u	ē
brains	(C)-nok ^{L}	?nu॒ [⊥]	u	u	Q	u	0	u	ā
bean	$s-nok^H$	nц ^н	u	u	0	u	u	u	ē
graze	?-lok ^L	?lo₁	ū	ū	Q	u	/	u	<u>u[o]</u>
male	g-yok ^L	$3\overline{O}_{\Gamma}$	/	/	/	/	u	u	<u>u[o]</u>

Table 4-65: Examples of PN rhymes with close back vowels *u and *o

The merger of *up and *uk can be seen in the examples 'breast/suck' (*C-tſup^L (PB) > PLa *tſ^hi^H) and 'smoke' (*(C)-ſuk^H/^L > PLa *ſi^L), as seen in Table 4-65 above. These show distinct correspondence sets from PLa *tſ^hi and *ſi, where MD, Eka and E-DC show [i], not [₁]. PLa *i in this environment is reflected as [₁] or [₁] across all varieties. *ok did not participate in this merger, as seen in the development of 'male' PN *g-yok^L, which becomes PLa *30^L, not *3i^L. *ut becomes PLa *i in all environments except after *m, resulting in a partial merger with *up and *uk after *s, seen in 'sweep' PN *sut^H > PLa *si^H. After the labial nasal, the rhyme becomes rounded vowel *y, as in 'to blow' PN *s-mut^H > PLa *?my^H.

*up and *ok undergo a partial merger to PLa *u in certain environments. *up becomes PLa *u in 'sew' *gjup^L and 'shake' *k-lup^H, and *ok > PLa *u after prefixed alveolar sonorants (i.e., PN *k-lok^L 'stone' > PLa *ka¹lu^H, *(C)-nok^L 'brains' > ?nu^L, and *s-nok^H 'bean' > *nu^H). The difference between PLa *o and *u is seen in the development of the syllabic fricative or lip compression for *u, in contrast to the reflex of plain [u] or [o] for *o. CW-QY shows \ni for *u, as it shows \ni for PLa *u. Although there are only a few examples of PLa *u, there is a near minimal pair of 'shake' *?lu^H from PN *k-lup^H, which shows the syllabic fricative or lip compression in most varieties, and 'to graze animals' *?lo^L, PN *?-lok^L, which shows [u] or [o]. CW-QY is the only variety that maintains the distinction between *u and *o after *nasals and k-prefixed *l, as in 'stone' PLa *ka¹ lu^H, 'brains' *?nu^L and 'bean' *nu^H, where it shows \ni . Other varieties have merged with *o in these environments.

4.3.4.4 PN *ap, *wap > PLa *y; *at > PLa *e; *wat > PLa * ε , * \underline{i}

Rhymes with open back vowel *a- develop into a plethora of different vowels in PLa, as summarised in Table 4-66. Both *ap and *wap merge to PLa harsh *y, with the exception of PN *b-lyap^L 'lightning' > PLa *bja^L, in which PN *-ap becomes PLa *a, and the pre-empting prefix *band the medial *-y- become PLa *bj. A more regular example is PN *?-ryap^L 'to stand,' which becomes PLa *hy^L. *at becomes PLa *e after all initials, except after PN *w- where it shows variation between *i and *e. The two examples of *-at with medial *-w- (PN *?-tſwat^H 'to pick fruit' and *C-mwat^L 'hungry') become either *ɛ or *i, depending on the initial.

PN	Conditioning	PLa
ap, wap	all initials	у
	after PN *b-ly	<u>a</u>
at	after PN *w	$\underline{i} \sim \underline{e}$
	elsewhere	e
wat	after PN *ts	<u>3</u>
	after PN *m	i

Table 4-66: Development of PN *ap, *wap, *at, *wat

Table 4-67 below gives examples of the development of rhymes with *a (except before *-k) in PLa. MD interestingly shows harsh \underline{a} as a development of PLa *y, but every other variety shows the expected reflex for harsh *y, which is the same as that for modal *y. MD is the only variety that has different developments of harsh *y and modal *y. Eka and YL show [$\underline{i}/\underline{i}$] after velars instead of the [$\underline{o}/\overline{o}$] that occurs elsewhere as a reflection of harsh *y. PN *b-lyap^L 'lightning' becomes PLa *bja^L, with the palatal glide and the rhyme *a preserved in E-DC, E-HS, and XZ, and merging with PLa * \underline{c} in all other varieties. *at consistently shows development into PLa * \underline{e} , except for 'wear' PN *wat^L, which becomes PLa *ve^L in most varieties, but *vi^L in XZ, C and W varieties. The two examples of *at with medial *-w- both show different developments. PB *?-tfwat^H 'to pick fruit' > PLa *ts^h \underline{c}^{H} , seen only in Core Lalo (E-W-C), and *C-mwat^L 'hungry'> PLa *mi^L, reflected in all Lalo varieties.

					Е-			W-D	C-
Gloss	PN	PLa	MD	Eka	DC	YL	XZ	Т	LJ
*ap									
snot	?-nap [⊥]	?ny₁	a	ē	ə	ə	у	у	у
needle	g-rap ^L	YY^{L}	a	i	ə	i	u	у	у
dry in sun	?-lap ^L (PB)	?ly⊾	a	ō	ə	ə	у	у	у
*wap									
swell	pwap ^L	$p^{\rm h}y^{\rm L}$	a	Ð	ə	ə	i	у	у
*yap									
lightning	b-lyap ^L	bj <u>a</u> ⊾	a	<u>a</u>	iɛ	ε	iε	ε	<u>a</u>
stand up	?-ryap [⊥]	hyı	a	<u>i</u>	ə	ə	у	у	у
*at									
vomit	$C\text{-pat}^{L}$	$p^{\rm h}\underline{e}^{\rm \scriptscriptstyle L}$	<u>3</u>	<u>i</u>	e	ai	e	e	æ
kill	C-sat ^L	se	<u></u>	/	e	ai	e	e	æ
		$v \underline{e}^{\scriptscriptstyle L} \sim$							
wear	wat ^L	Vİ	<u>3</u>	<u>i</u>	e	ai	i	i	<u>i</u>
*wat									
pick fruit	?-tʃwat ^H (PB)	$ts^{\rm h}\underline{\epsilon}^{\rm H}$	/	/	/	/	/	8	<u>a</u>
hungry	C-mwat ^L	m <u>i</u> ⊥	i	i	ə	u	i	i	i

Table 4-67: Examples of PN *ap, *wap, *at, *wat's development in PLa

4.3.4.6 PN *ak > PLa *e, a, *wak > PLa *u, *jak > PLa *e

The velar-final *-ak becomes PLa * \underline{e} in most environments and * \underline{a} after velars, but also becomes * \underline{i} and * \underline{e} , depending on the initial. With medial *-y-, *-ak also develops into * \underline{a} after velars and * \underline{e} elsewhere, with exceptions after PLa *h and *1. *wak becomes PLa * \underline{u} , , a parallel development to PN *wan becoming PLa *u (§4.3.3.5). Table 4-68 below summarises the development of *-ak, *-wak, and *-jak.

PN	Conditioning	PLa
wak	all initials	ū
ak	after r, y	i
	after k-r-w (PLa h)	<u>3</u>
	after velars	<u>a</u>
	elsewhere	e
jak	after h	$\underline{e} \sim \underline{a}$
	after l	<u>8</u>
	after velars	<u>a</u>
	elsewhere	e

Table 4-68: Development of PN *ak, *wak, *jak in PLa

Table 4-69 gives examples of *ak, *wak, and *jak. The two examples of *wak show a consistent reflex of PLa *u across all Lalo varieties. *ak is found in many examples in the wordlist, and splits into PLa * ϵ after PN *(k)-r-w, seen in 'rat,' and to PLa *i after PN *k-r and *y, as in 'chicken' and 'today'. In most other environments, *ak develops into PLa * ϵ . After velars, however, *ak becomes PLa *a, as in 'village'/expensive' PN *kak^H PLa *k^ha^H, 'bird' PN *njak^H PLa *nja^H and 'banana-1' PN *s-nak^H PLa *2nja^H. Medial *-y- influences the rhyme's development

after *1, as in 'lick' *m-ljak^L > PLa * \underline{e} . *(C)-mjak^H 'eye' > PLa *?mj \underline{e}^{H} , with the medial *-ybecoming a glide on the initial and influencing the rhyme to move to [i] or [i] in most varieties; this is a different rhyme correspondence set from * \underline{e} after plain initials, in which XZ, YL, and most W varieties preserve [e]. Finally, Central Lalo shows reflexes for PLa * \underline{a} for *hjak^L 'Han', but other varieties show reflexes of PLa * \underline{e} .

		_							
			М		E-			W-D	C-
Gloss	PN	PLa	D	Eka	DC	YL	XZ	Т	LJ
*ak									
rat	(k)-r-wak ^H	$h\underline{\epsilon}^{H}$	/	а	3	3	3	ε	<u>a</u>
chicken	k-ra k ^H	$\chi \underline{i}^{H}$	i	<u>i</u>	i	i	i	i	i
today	jak⊥	i ²	i	i	i	i	i	i	i
night	?-rak [⊥]	he	<u></u>	<u>8</u>	e	ai	e	e	æ
son-in-law	ʒəmak [⊥]	me₋	/	i	e	ai	e	e	æ
ascend	$\mathbf{?-dak}^{H}$	$d\underline{e}^{H}$	Ξ	<u>i</u>	e	i	e	e	æ
breathe	C-sak ^L	sel	<u></u>	<u>i</u>	e	ai	e	e	æ
village	kak ^H	$k^{h}\underline{a}^{H}$	a	<u>a</u>	а	а	а	а	<u>a</u>
*wak									
exit	2-dwak ^H	$d\underline{u}^{\mathrm{H}}$	Q	u	u	u	u	u	u
ant	p-rwak ^H	<u>3</u> <u>и</u> ^н	/	/	u	/	u	u	u
*jak									
banana-1	s-ŋjak ^H	? <u>ŋja</u> ^н	/	/	ра	/	ра	na	$\tilde{1}$
bird	ŋjak ^H	ŋj₫ ^H	ŋ₫	/	ра	ра	ра	ne	n <u>i</u>
lick	m-ljak ¹	$l\underline{\epsilon}^{H}$	<u>a</u>	<u>a</u>	3	8	8	3	<u>a</u>
navel	$\mathbf{C} extsf{-kjak}^{\mathrm{H}}$	t∫h₫	/	i	/	ai	i	/	i
eye	(C)-mjak ^H	?mje [™]	i	i	i	i	i	i	æ
Han	hjak ^H	$h\underline{e}^{\rm\scriptscriptstyle L} \sim h\underline{a}^{\rm\scriptscriptstyle L}$	<u>3</u>	iε	e	ai	e	e	<u>a</u>

Table 4-69: Examples of PN *ak, *wak, *jak's develoment in PLa

4.3.5 Summary of rhymes

Table 4-70 summarises the PN sources of PLa individual rhymes. Most rhymes with close front vowel *i (*i, *im, *i:n, *iŋ, *ip, *i:t, *ik) merge to PLa *i or *i. Short rhymes with *i- and *a-before alveolar finals *-n and *-t, along with *ak in most environments, merge to *e or *e. Rhymes with *e or *aj (*ej, *aj, *waj, *et, *ek) tend to merge to PLa * ε or * ε . Rhymes ending in labial *-m (*am, *um, *wam) or *-p (*ap, *wap) and/or with the labiovelar approximant medial (*wa, *wan) tend to merge to PLa *y or *y. PLa *i/i is the least frequent of the rhymes, descending from *ut and from splits of rhymes containing close vowels (*i, *e, *up *uk), conditioned by labial, alveolar or palatoalveolar initials. Most rhymes with *u or final *-w (*u, *un, *up, *ow, *aw), or ending with velar nasal *-ŋ (*waŋ, *oŋ) merge to PLa *u or *u. PLa *o descends from PN *o, and *o from rhymes with close back vowels and a final velar stop (*ok, *uk). PLa *a descends from PN *a, while *a comes from *ak after velar initials. *aŋ descends solely from PN *aŋ.

PLa	PN source
*i	*i & *o/alveolar and palatal initials_; *e/elsewhere; *im, *iŋ, *i:n
*e	*i/labial stops_; *e/w_; *aj/alveolar or no initial_; *in, *an
* ε	*i/tsy, dzy, r, mr, kj_; *ej; *aj/elsewhere; *waj, *we
*у	*u/labial and alveolar initials_; *am, *wam, *wan, *um
*i	*i & *e/ <u>_</u> ; *e/labial initials_
*u	*u/elsewhere; *ow; *aw; *waŋ, *oŋ, *un
*0	*o; *-yaw
*а	*a; *wa/velar or cavity initials_
*aŋ	*aŋ
* <u>i</u>	*ip, *it/alveolar fricatives and affricates_; *i:t, *ik
*e	*it/elsewhere; *at; *ak & *jak/elsewhere
<u>*</u>	*et, *ek, and *øk; *wat/ts_
*у	*ap, *wap, *ut/m_
* <u>i</u>	*up & *uk/alveolar & palatoalveolar affricates and fricatives_; *ut
*u	*up/elsewhere; *ok/k-l, ?-n, s-n_; *wak
* <u>0</u>	*uk; *ok/elsewhere
* <u>a</u>	*ak & *jak/velars_

Table 4-70: Summary of PN sources of PLa rhymes

5.1 Phonetic motivations for tone change

In this chapter, I reconstruct the Proto Lalo tonal system and examine subsequent tone changes in Lalo varieties. After briefly reviewing the phonetic bases for tonogenetic and tone change mechanisms, I summarise how the Proto Lalo tonal system developed from its ancestor, Proto Ngwi (Bradley 1977). I use acoustic analysis of several Lalo varieties to posit phonetic values for Proto Lalo tones (§5.2.1), and describe a uniquely Lalo tonal innovation (§5.2.2). In §5.3, I describe how tone in Lalo languages has developed diachronically from Proto Lalo in C, E, and W dialect groups, as well as XZ, YL, and Eka varieties. Section 5.4 is a discussion of how the findings broaden the current understanding of tone change. Tone change in E Lalo and several other varieties shows a variation of the classic voiced-low principle: voiced prevocalic consonants lower the pitch onset of Tone *1 (a high, level pitch), creating a rising contour tone. Tone changes in W Lalo, XZ and YL illustrate how harsh phonation conditioned raising of pitch height in Proto Lalo's *L and *H tones, resulting in various phonetic changes and mergers. Parts of this chapter appear in Yang (2010).

While classic models of tonogenesis (Haudricourt 1954, Matisoff 1973) and Thurgood's (2002) revision are well-attested and phonetically plausible (Hombert et al. 1979), secondary tone change is less well understood. I use Ohala's (1993a, 2003) phonetically grounded framework of sound change, which focuses on the central role of the listener's misperception of subphonemic synchronic variation as the initiation of sound change. In 'mini-sound changes,' the listener either fails to correct for contextual influence (hypocorrection) or wrongly ascribes an inherent property of the phoneme to context (hypercorrection). This is not to negate the cognitive factors that influence systemic changes, such as chain shifts, that may take place after the initiation of sound change (see, for example, Labov 2010). I draw from Kingston (2005), Edmondson & Esling (2006), Pittayaporn (2007b) and Yip (2001) to explore the phonetic motivations of the observed tone changes.

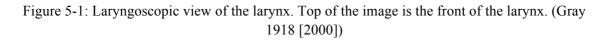
Haurdicourt's (1954) influential model of tonogenesis in Vietnamese and Matisoff's (1973) explanation of the model in a Tibeto-Burman context established basic principles that are still widely accepted. In Haudricourt's (1954) analysis of Vietnamese (also relevant to Old Chinese (Baxter 1992)), two mechanisms happen sequentially: 1) laryngeals in the coda (-? and -h) condition pitch contours, which then become contrastive rising and falling tones when the laryngeals are lost; 2) prevocalic segments condition pitch height, which result in contrastive high and low registers when the contrast between voiced and voiceless prevocalic consonants is lost. Physiologically, laryngeal features of prevocalic segments affect pitch predictably: the lowered larynx and relaxed cricothyroid muscles of voiceless obstruents raise F0 (Hombert et al. 1979, Löfqvist et al. 1989, Honda 2004). In Tang's (2008) survej of tone languages, the pattern of voiced-low, voiceless-high holds in the overwhelming majority of cases.

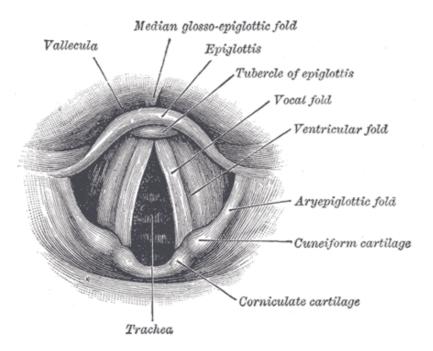
Thurgood (2002) introduces an important refinement to Haudricourt's model, replacing the classic model's consonantal basis with a laryngeal one. Thurgood (2002: 334) holds that it is not segments themselves that condition tone, but rather that 'laryngeal gestures associated with voice qualities are the primary mechanism for pitch assignment'. In Thurgood's view, segments condition the phonation type of the vowel, which then conditions pitch; segments do not directly affect pitch. One weakness of the consonantal model, which Thurgood points out, is the fact that even though tonogenesis usually results in level pitches, prevocalic segments' effects on pitch do

not last through the whole duration of the syllable (Hombert et al. 1979). Thurgood argues instead that voiced obstruents result in breathy phonation, which in turn results in a low pitch that holds over the entire syllable. Final stops may co-occur with glottal closure, leading to a constricted larynx, which can then result in either a falling or rising pitch contour depending on the degree and timing of glottal constriction. Thurgood therefore suggests that the role of segments in tonogenesis is mediated through the phonation types they engender.

Thurgood improves the classic model by explicitly placing the locus of tonogenesis in the larynx. Tone is often not just phonemic pitch, but also phonation, duration, vowel quality, etc. Two of these aspects, i.e., pitch and phonation, are controlled in the larynx, so a segment's laryngeal features are kej in explaining the development of tones. Thurgood's laryngeally-based model is now often called on, for example in re-interpreting proto-Vietic (Honda 2005) or in observing a shift from a register language to a tonal language (Abramson et al. 2007).

However, tonogenesis does not necessarily have to pass through an intermediate phase in which phonation types (whether subphonemic or contrastive) affect pitch. In cases of ongoing tonogenesis, such as Korean (Silva 2006), Kammu (Svantesson & House 2006) and Kurtöp (Hyslop 2009), there is no evidence to suggest that vowel phonation as opposed to segment voicing plays a role. The above reports, based on rigorous acoustic analysis and perceptual experiments, identify an ongoing change in which the voice quality of the prevocalic segments themselves have influenced pitch, not phonation of the vowel. Thurgood's central insight holds: laryngeal gestures influence pitch. I argue that those laryngeal gestures may belong solely to the prevocalic segment or be shared by both the segment and the following vowel (i.e., the entire syllable). I therefore adapt Thurgood's laryngeally-based model of tonogenesis in order to better explain the tone changes seen in Lalo varieties.


The term 'tonogenesis,' originally coined by Matisoff, has sometimes been used to include both the birth of contrastive tone into a language and also subsequent tone splitting (Abramson 2004). For example, Matisoff (2003: 475) and Wayland and Guion (2005: 55) both describe 'tonogenetic mechanisms' for languages that are undergoing tone splits and mergers, not the introduction of tone into a language. The phonetic interactions undergirding both tonogenesis and tone change are a product of human physiology, and are therefore universal and unlikely to differ whether a language is already tonal or not. However, the perception and therefore the outcomes of the phonetic interactions between pitch, segments, and phonation are likely to be different in the process of tonogenesis versus tone change. As Thurgood (2002: 345) notes, the outcome of tonogenesis is almost always a dichotomy, presumably of phonemically level pitches, whereas tone change can result in a myriad of contrasts in pitch height and contour. For example, as shown in §5.3.2, the microprosodic effect of voiced initials conditioned a tone split to a low-rising contour, a result that rarely happens in original tonogenesis. Since Proto Lalo is already a tonal language, I will refer to the subsequent diachronic tonal development in Lalo varieties as tone change, not tonogenesis.


A laryngeally-based model of tone change must include the phonetics of phonation types and pitch and the physiological connection between the two. The correlations between distinct phonation types and pitch provide clues as to what happens when listeners may shift their perception of contrastive phonation to contrastive tone. This will be especially helpful in explaining the W Lalo change of *L to high, and *H to mid-high, discussed in §5.3.3.

Ladefoged (1971) introduced the view that phonation types can be organised along a one dimensional continuum, according to the degree of openness of the aperture between the arytenoid cartilages. Figure 5-1 shows a laryngoscopic view of the glottis, in which the aperture between the arytenoid cartilages is seen at the bottom of the image. The arytenoid cartilages are a pair of pyramid-shaped cartilages located at the back of the larynx, as seen in Figure 5-2; they connect to the posterior end of the vocal folds, and their adduction causes the posterior opening between the vocal folds to decrease (Gray 1918 [2000]). Most open are voiceless sounds; the opening then decreases through breathy, modal, and creaky voice, until ending at complete closure with the glottal stop (Gordon & Ladefoged 2001).

More sophisticated laryngoscopic photography has enabled a more precise picture of how muscles and cartilages simultaneously engage to produce phonation. Instead of a one-dimensional continuum of increasing tension in the glottis, Edmondson and Esling (2006) find that register,

stress, and pitch are controlled by six valves of the throat that work together. This three dimensional model enables new insight into the production of register, the pitch correlates of various registers, and thus the impact phonation types may have on pitch and subsequently on tone change. Edmondson and Esling (2006) identify Valve 1 as the vocal folds, which can either adduct or abduct, as explained above. Valve 2 is the ventricular folds, located on either side of the vocal folds, as seen in Figure 5-1. The ventricular folds move medially towards the vocal folds, coming up over them and dampening their oscillation, resulting in increased tension. Valve 3, known as the laryngeal sphincter, is the thyroarytenoid muscle complex contracting to pull the arytenoids and aryepiglottic folds forward towards the epiglottis. The thyroarytenoid muscle, also called the vocalis muscle, runs parallel to the vocal folds, seen in Figure 5-3. Valve 4, not relevant to Lalo, is the retraction of the tongue and epiglottis, engaged in faucalised ('yawning') voice. Valve 5 is larynx height, controlled by the suprahyoid muscle group (located above the hyoid bone, seen in Figure 5-2). Valve 6, also not relevant to Lalo, is pharyngeal narrowing.

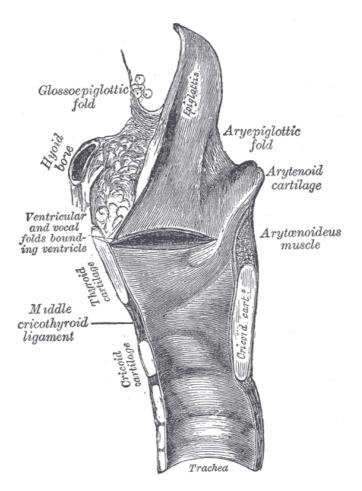
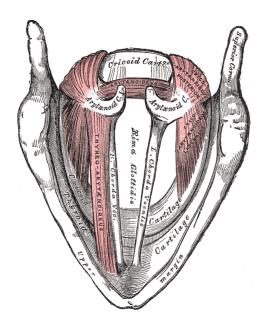



Figure 5-2 Side view of the larynx (Gray 1918 [2000])

Figure 5-3: Thyroarytenoid muscle (Gray 1918 [2000])

Pitch is controlled primarily by tension in the vocal folds (Honda 2004). While the arytenoid cartilages move the vocal folds laterally, increasing aperture and affecting phonation, the cricothyroid (CT) muscles contract to stretch the vocal folds longitudinally, increasing their tension and raising the pitch (Edmondson & Esling 2006). The cricothyroid muscles connect the cricoid and thyroid cartilages, seen in Figure 5-2. The contraction of the CT muscles rotates and translates the cricothyroid joint, pulling the vocal folds forward and down (Honda 2004). Stretching the vocal folds increases their tension and therefore increases pitch. As shown in Kingston (2005), the thyroarytenoid muscle is also involved in increasing vocal fold tension, although its contraction serves to shorten the vocal folds. Besides activities in the glottis itself, lowering the larynx indirectly lowers pitch by rotating the cricothyroid joint down but not translating it forward, thus shortening the length of the vocal folds (Honda 2004).

Kingston (2005) explicitly connects the phonetics of phonation types to tonogenesis as he explains why syllable-final glottal closure led directly to both high tone in some Athabaskan varieties and low tone in others. He posits that the postvocalic glottal stop conditioned tense (harsh) phonation in some varieties, leading to high tone, and creaky phonation in others, resulting in low tone. His key insight identifies the related but somewhat independent mechanisms involved in producing tense (harsh) voice and creaky voice. With tense voice, both the thyroartenoid muscle and the cricothyroid muscle contract. As the thyroarytenoid contracts, the vocal folds are shortened but also stiffened; the increased tension results in higher pitch. With creaky voice, only the cricothyroid muscles contract, so the vocal folds are still loose enough for slow and undulating vibrations, resulting in lower pitch. Kingston (2005) presents a detailed description of the different muscles involved in tense voice versus creaky. However, he limits the scope of description to muscles in the glottis itself, whereas Edmondson and Esling's (2006) laryngoscopic studies show that phonation is controlled through a complex system of valves in the throat, described above.

Phonation types, including creaky and harsh, are distinguished by the valves engaged in their production, as seen in Table 5-1 below. In modal voice, the vocal folds engage as they adduct. In breathy voice, none of the valves are engaged: the vocal folds are slack and abducted, creating a posterior aperture (Edmondson & Esling 2006). In creaky voice, the vocal folds are engaged but not the ventricular folds; thus the vocal folds are loose enough to emit periodic pulses at low frequency. Catford (1964:32) describes the effect as 'like a stick being run along a railing'. The engagement of Valve 3 in both creaky and harsh voice, Valves 1, 2, and 3 are engaged. The ventricular folds adduct, coming up over the vocal folds and dampening their oscillation, in some case completely covering the vocal folds. The difference between creaky and harsh is only the addition of Valve 2; the ventricular folds are engaged in harsh voice, but not creaky.

Harsh phonation is found in Lalo, a diachronic development from the loss of Proto Ngwi syllable-final stops *-p, *-t, and *-k. Most other Ngwi languages, e.g., Nosu, Hani, Lolo, etc., also have harsh phonation. Maddieson & Ladefoged (1985) describe 'tense' phonation in two Ngwi languages, Hani and Nasu, along with Jingpo and Wa. Harsh phonation in another Ngwi language, Nosu, and Bai, a Sino-Tibetan language of western Yunnan, is described in detail through laryngoscopic studies by Edmondson et al. (2001) and Esling and Edmondson (2002). Connecting a model of tone change to the physiology of both pitch and phonation is important, because the muscles and cartilages involved in phonation also affect pitch.

Each phonation type has a pitch correlate (seen in Table 5-1 below), because different valves' engagement impact tension in the vocal folds. In breathy voice, the slack vocal folds allow high-velocity airflow through the glottis, which lowers subglottal pressure and therefore the pitch (Hombert et al. 1979). In creaky voice, the ventricular folds do not adduct over the vocal folds, leaving them slack enough to allow slow, undulating movements at a lower frequency. In harsh voice, however, the ventricular folds incur over vocal folds, causing increased tension and therefore increased pitch.

The differing impact of phonation types on pitch enables a new understanding of the interaction between phonation and tone change. Of course, phonation does not directly determine pitch; e.g., Burmese's breathy tone (Tone 2) has a higher onset [42] than the modal tone (Tone 1) [22]. However, listeners' misperception of the subphonemic pitch correlate as the salient perceptual cue

may lead to either a shift from a register language to a tone language, or to tone change in an already tonal language. As shown in Sections 5.3.3 and 5.3.4, W Lalo and YL listeners probably reinterpreted the subphonemic higher pitch associated with harsh phonation as phonemic, leading to changes in *L and *H as these tone categories shifted from a system of phonation and pitch to contrastive pitch alone.

Table 5-1: Phonation types, pitch correlates, and active valves of the throat. Adapted from
Edmondson and Esling (2006)

Phonation	Pitch	Valve 1:	Valve 2:	Valve 3:	Valve 5:
type	correlate	vocal folds	ventricular	laryngeal	larynx
			folds	sphincter	height
modal	none	+	-	-	-
breathy	low	-	-	-	Lowered or
					neutral
creaky	low	+	-	+	Raised
harsh	high	+	+	+	Raised

Xu and Wang's (2001) Target Approximation (TA) model contributes to the understanding of tone production and perception, and therefore to tone change. Xu and Wang (2001) developed the TA model to explain the various contextual variations in tone realisation observable in Mandarin, which are best interpreted as occurring predictably as pitch targets are approached. Pitch targets serve as the smallest articulatorily operable unit for tone; they are to tone what phones are to phonemes (Xu & Wang 2001, Xu 2004). As Xu (2006: 6) summarises, 'each tone is associated with a pitch target in the form of a simple ideal pitch pattern'. These pitch patterns may either be static (as in level tones) or dynamic (as in contour tones). Xu (2004) integrates articulatory constraints into the TA model, such as constraints on the time needed to change pitch and synchronisation of target approximation and concurrent supralaryngeal movements.

Pittayaporn (2007b) builds on Xu's (2004) TA model and other phonetic studies of tone to introduce a model of the directionality of tone change. He proposes three main mechanisms that govern tone change: segment-tone interaction, contextual variation, and perceptual maximisation. All three mechanisms are seen in Lalo varieties' tone changes. Segment-tone interaction predicts that prevocalic segments' local perturbation of the vowel's F0 affects only the pitch onset, not the pitch offset, and therefore any resultant changes in contour shape are an incidental consequence of the change in tonal onset. In E Lalo, voiced consonants' depression of the tonal onset results in a change from a high level pitch to a low-rising one, described in §5.3.2. Contextual variation predicts that frequent, contextually influenced contours result in subphonemic variants getting mistaken for the phonemic pitch target. For example, articulatory constraints, like the time needed for pitch change, result in peak delay (Xu 2004). Pittayaporn therefore predicts that peaks will show a tendency to slide to the right. As the peak slides, the contour changes from high falling to convex and then to rising. Various stages of peak sliding are seen in different W Lalo varieties, discussed in §5.3.3. Perceptual maximisation refers to the enhancement of contrast between tones through greater pitch excursion (i.e., the difference between peak and trough of the pitch trajectory) in contour tones. Pittayaporn predicts that, if a contour tone has contextually influenced variants that differ in the value of the pitch onset, the variant with the greatest pitch excursion is the one most likely to be generalised. Perceptual maximisation may be one of the factors behind E Lalo's enhancement of the F0 excursion in the Tone *1 split, described in §5.3.2.

5.2 Proto Lalo tones

In order to posit meaningful phonetic motivations for tone changes in Lalo varieties, it is first necessary to establish the phonetic values of Proto Lalo tones. In this section, I trace the development of the Proto Lalo tonal system from Proto Ngwi and reconstruct the phonetic values for Proto Lalo tones.

The PB/PN tonal system had a three-way tone contrast in syllables ending in vowels or nasals: Tones *1, *2, and *3 (Bradley 1977). Matisoff (2002, 2003) speculates that PB tones *1 and *2 may have been differentiated by phonation differences rather than pitch, with Tone *1 in modal voice and Tone *2 in breathy voice. Indeed, CW-QY retains breathy phonation in Tone *2, along with low pitch. Given breathy voice's pitch correlate of low (as seen in Table 5-1 above), the low pitch of Tone *2 seen in many Ngwi languages is not surprising. Based on tonal reflexes in several Ngwi languages, Bradley (1977) posits the following pitch values for these proto-tones: *1 was high, *2 was low, and *3 was mid. Identical pitch values for these tone categories are still seen today in Hani, Central Lalo, Talu (Zhou 2004), and Talu-related languages such as Kuansi (Castro et al. 2010), all of which have kept the Proto Ngwi tonal categories relatively intact. For other languages such as Lisu, Lahu and Sani, evidence for the phonetic values of the Proto Ngwi categories is not as clear, as numerous conditioned splits and tonal innovation chains have drastically rearranged the systems. However, the modern tonal reflexes of all Ngwi languages can still be reasonably traced back to Bradley's hypothesised phonetic values of the Proto Ngwi tone categories.

In syllables ending in final stops *-p, *-t, and *-k, Proto Ngwi underwent a distinctive innovation wherein the voicing of the initial caused a split into two distinct tone categories, *Low-stopped and *High-stopped (Matisoff 1972). The basic rule for the split follows closely along the lines of the voiced-low principle. In general, a voiced *initial or a voiced *prefix conditioned a lower pitch, and voiceless initials conditioned a higher pitch. When changes in the initials (e.g., loss of the *C- prefix) destroyed the conditioning environment, the different pitches became phonemically contrastive.

Voiced stops (including affricates) conditioned entry into the *Low-stopped category, and voiceless initials into the *High-stopped. Voiced, non-nasal prefixes (*b, *d, *g, *r, *l, using *C as a cover symbol) conditioned voiceless stops to enter the *Low-stopped category. The nasal prefix had no effect on the tonal development of syllables with stop initials; neither did the glottal stop prefix, which was a merger of the Proto Burmic *s- and *?- before stops. For fricative initials, both the *C and the nasal prefix pushed syllables into Low-stopped (the glottal stop prefix did not occur before fricatives). For nasal initials, the *s- prefix conditioned *High-stopped, and other prefixes and non-prefixed initials conditioned *Low-stopped. For resonant initials, only those syllables preceded by loosely-bound voiceless prefixes became *High-stopped, with the rest becoming Low-stopped.

In most Ngwi languages, excluding Bisoid, syllable-final *stops merged to a glottal stop, which conditioned laryngealised vocal register on the vowel. Proto Ngwi *High-stopped reflexes are usually a mid pitch with harsh phonation across Central and Southern Ngwi languages. Proto Ngwi *Low-stopped reflexes are often a low, harsh tone in Central Ngwi languages, unless prefixed with the PN glottal stop or *C- prefix. Most Northern Ngwi languages, excluding Eastern Nasu, underwent the change *Low-stopped > high, an independent development from Western Lalo's similar change, but probably also motivated by harsh phonation's higher pitch correlate.

Table 5-2 below shows the development of tones from Proto Ngwi to Proto Lalo. The Proto Lalo tonal system distinguished three pitch heights (high, mid, low) and two types of phonation, harsh and non-harsh. Proto Lalo, like Proto Ngwi, had a three-way pitch height contrast in syllables ending in vowels or nasals: *1, high; *2, low; and *3, mid. Proto Ngwi syllable-final stops merged to glottal stop with harsh phonation on the vowel by the Proto Lalo stage. In Proto Lalo *L and *H, harsh phonation and syllable-final glottal stop were probably concurrent, as is still seen in several varieties, and harsh syllables were probably shorter in duration than their non-harsh counterparts *2 and *3.

For a Central Ngwi language, Proto Lalo is conservative in its tonal development. Central Ngwi languages such as Lisu, Lahu, Lipo and Lolo all show the *?- and *s- prefixes conditioning splits in Tone *2. Also, most Central Ngwi languages show an additional conditioned split in *Low-stopped, conditioned by the *?- and *C- prefix (Bradley 1977, 2004). Proto Lalo shows no evidence of a conditioned split in *L. However, Proto Lalo does show a micro-split in Tone *2, discussed in §5.2.2. Tone *2 syllables preceded by the *?- prefix with *obstruent initials and open

back vowel *-a, as in*?-ba² 'male suffix,' 'frog,' *?-da² 'put down,' and *?-dza² 'feed,' moved to the *L tone category.

Proto Ngwi (Bradley, 1977)	Proto Lalo
*1: High	*1: High
*2: Low	*2: a) Low, breathy
	b) > $L / 2$ -obstruent+a_
*3: Mid	*3: Mid
*L: Low, stop-final	*L: Low, harsh, ?-final, shorter duration
*H: Mid, stop-final	*H: Mid, harsh, ?-final, shorter duration

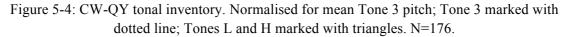
Table 5-2: Proto Ngwi and Proto Lalo tones

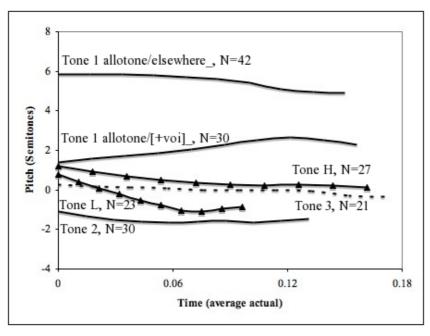
5.2.1 Evidence for PLa tone system from Central Lalo and MD

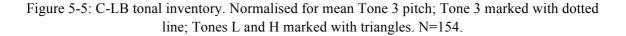
Proto Lalo, with the exception of the Tone *2 split discussed below, basically retains the Proto Ngwi tonal system. Likewise, the Proto Lalo tone system is retained with few changes in most Central varieties and in MD. Evidence for the phonetic values of Proto Lalo tones is most clearly seen in these varieties. Phonetic motivations for the subsequent tonal innovations described in §5.3 can often be clearly linked to the hypothesised phonetic values of PLa tones. Table 5-3 below shows the tonal systems in CW-QY, C-LB, and MD. Phonetic values are given using Chao's (1930) tone letters, in which 5 represents the highest pitch and 1 the lowest. Phonation is modal unless otherwise noted.

Table 5-3: Tonal development in Central Lalo and MD

PLa	CW-QY	C-LB	MD
*1: High	[45]/[+voi]_; [55]/elsewhere	55	55
*2: Low, breathy	11, breathy	21	11
*3: Mid	33	33	33
*H: Mid, harsh,-?	44, harsh	44(?), weakly harsh	44(?), weakly harsh
*L: Low, harsh,-?	31, harsh	21(?), weakly harsh	11(?), weakly harsh


Figure 5-4, Figure 5-5 and Figure 5-6 below show the tonal inventories of CW-QY, C-LB, and MD, respectively, based on the acoustic analysis described in §2.3. Tone *1 has remained intact as the highest pitch in the system in most Central varieties and MD. In CW-QY, voicing of the initial has synchronically conditioned two Tone 1 allotones, shown separately in Figure 5-4. In syllables with voiceless initials and preglottalised initials, the Tone 1 allotone (marked Tone 1 allotone/elsewhere in Figure 5-4) is a high, level pitch, found at the top of the speaker's range. The Tone 1 allotone in syllables with voiced initials (marked Tone 1 allotone/[+voi]) shows a considerably lower pitch onset with a gradual rise in pitch through the midpoint and slight fall at the end of the syllable. The synchronic variation is predictable and not contrastive in native vocabulary. However, Laura Blackburn (personal communication, June 22, 2010) gives examples of Chinese loanwords with voiceless initials in *yangping* tone (2nd tone in Mandarin, a high rising pitch) that are incorporated into Lalo with the high rising allotone, e.g., [fy⁴⁵] from Mandarin [fu³⁵] \mathbb{R} 'to serve'. Whether the high rising allotone becomes fully contrastive in CW-QY remains to be seen. In §5.3.1, I argue that these allotones serve to enhance the contrast between plain and preglottalised initials. In contrast, C-LB and MD, which have lost preglottalised initials, show only slight microprosodic effects of the initial consonant, with voiced initials synchronically conditioning a slightly lower pitch onset than voiceless initials.


Tones *2 and *3 are the most stable of PLa tones, showing no change in any Lalo variety. Tone *2 is reflected as the lowest pitch across all Lalo varieties. In CW-QY, breathy phonation is a subphonemic feature of this tone. Proto Lalo probably retained the breathy phonation of PB Tone


*2, similar to Burmese (Bradley 1980, 1982). C-LB's Tone *2 shows a slight drop in pitch [21], but Yip (2002) suggests that the drop may be an automatic transition to a low pitch. In a system with all level tones, as C-LB is, I do not analyse [21] as a contour tone but rather a low level tone. Tone *3 is reflected as a mid level pitch with modal phonation in all Lalo varieties.

In CW-QY's tonal system, seen in Figure 5-4, *H and *L are pronounced with harsh phonation without a syllable-final glottal stop. Harsh phonation serves to distinguish *H, a mid level pitch from *3, its modal voiced counterpart, and *L from *2. Harsh phonation, through increased tension in the vocal folds (as described in §5.1), conditions raising of the pitch of *H and *L above their modal counterparts *3 and *2 in most Central varieties and in MD. In CW-QY's *L, harsh phonation has raised the pitch onset, giving the pitch a falling contour. The falling contour may not be perceptually salient for listeners, since harsh phonation is the contrastive feature with *2, but perceptual experiments are needed to test this. CW-QY's *L is significantly shorter in duration than *2, enhancing the contrast, while *2 in turn is significantly shorter than *3. *H and *3 do not differ significantly in duration. Harsh phonation's influence on tone change in W Lalo, XZ and YL is further discussed in §5.4.2.

Harsh phonation is auditorily weaker in C-LB and MD than in CW-QY, but still phonemically contrastive. In Figure 5-5 and Figure 5-6 below, showing C-LB and MD's tonal systems, Tone *H in both C-LB and MD is slightly higher than *3, but *L and *2 are indistinguishable in pitch height. Both *H and *L are sometimes heard in citation form with a postvocalic glottal stop, a retention from Proto Lalo. In MD, *H is shorter in duration than *3 at a statistically significant level; *L and *2 are not significantly different, even though *L appears longer in Figure 5-6. In C-LB, there is no significant difference in duration between harsh and modal syllables. In utterance medial form, the contrast between harsh and modal is often neutralised in both MD and C-LB. Neutralisation of harsh versus modal in utterance medial form is also reported to occur in Phola, one of the Phula languages described in Pelkey (2011).

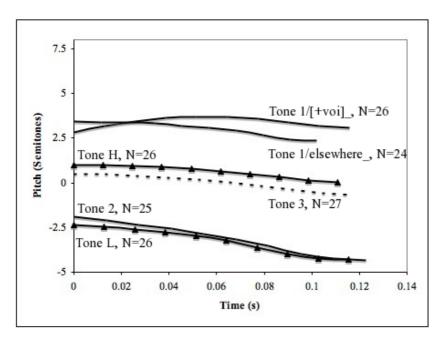
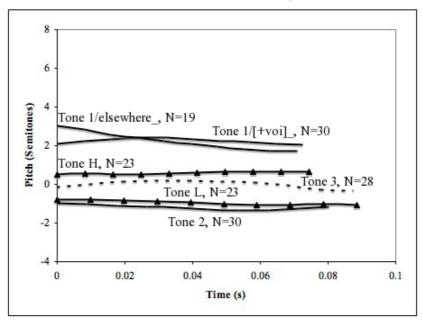



Figure 5-6: MD tonal inventory. Normalised for mean Tone 3 pitch; Tone 3 marked with dotted line; Tones L and H marked with triangles. N=153.

5.2.2 Proto Lalo's Tone *2 split

One of the defining innovations of Proto Lalo is the unusual split in Tone *2, in which Tone *2 syllables preceded by the *?- prefix with *obstruent initials and open back vowel *-a moved to the PLa *L tone category. Examples are given in Table 5-4 below. Harsh phonation is denoted by an underscore under the vowel. Although there are only one or two examples for each obstruent initial, there are examples for almost all PLa places and manners of obstruents: labial, alveolar, and velar stops, alveolar affricates, and alveolar, palatal, and velar fricatives, i.e., PN *b, *d, *g, *dz, *s, * \int , and *r. PN *r, though technically classified as a resonant in PN, was probably already a fricative by the time of Proto Central Ngwi, given *r's reflex as / χ / or / ν / in many Central Ngwi languages.

Cental Lalo varieties reflect the split to L with a low, harsh tone, their usual reflex of L, instead of a low, breathy tone, the usual reflex of 2. E-DC has mid-falling [31] its usual reflex of L, SE-GP shows the high pitch reflecting L in syllables with voiceless initials, and W-SZP shows the high rising-falling pitch typical of its L reflexes.

Gloss	PN/PB	PLa	CW-QY	E-DC	SE-GP	W-SZP
frog	*k-?-pa ²	u¹p <u>a</u> ⊾	ə ⁵⁵ p <u>a</u> ²¹	u ⁵⁵ pu ³¹	o ²¹ poŋ ⁵⁵	om ²⁴ pa ⁴⁵ 3
male suffix	*?-pa ²	p₫	pa ²¹	pu ³¹	p0 ⁵⁵	pa ⁴⁵³
to put/place	*?-ta ²	t <u>a</u> ⊾	t <u>a</u> ²¹	/	to ⁵⁵	ta ⁴⁵³
between	*?-gla ² (PB)	k₫Ľ	k <u>a</u> ²¹	/	/	ka ⁴⁵ 3
feed	*sədza ²	t∫ <u>a</u> ⊥	tşa ²¹	tsu ³¹	tso ⁵⁵	tşa ⁴⁵³
sister's child	*?ə∫a²	s <u>a</u> l	s <u>a</u> ²¹	su ³¹	/	/
sad	*?/s-ra ²	∫₫	<u>şa</u> ²¹	SO ³¹	so ⁵⁵	şa ⁴⁵ 3

Table 5-4: Examples of PLa Tone *2 split

Three conditioning factors in PN must be met for the split to take place: a PN *?- prefix, an obstruent initial, and the low back vowel *a. By the Proto Lalo stage, *?- prefixed stops had become voiceless unaspirated; this also occurs in other Central Ngwi languages like Lisu, but not in Lahu. Table 5-5 below gives examples of lexical items that fail to meet these specific conditions, and therefore do not undergo the split in PLa. Obstruent initials that did not have the *?- prefix, as exemplified by *xa² 'meat' and *ka² 'bitter,' remain in the Tone *2 category. Sonorants preceded by the *?- prefix, as in *?-la² 'trousers,' did not take part in the split either, even if the rhyme was *a. Finally, *?- prefixed obstruents with any other rhyme, such as in *?-gwəj² 'comb,' also did not take part in the split, and instead remained in the Tone *2 category in PLa. SE-GP's Tone *2 split later expanded to include all voiceless unaspirated and preglottalised initials (though preglottalisation was later lost).

Table 5-5: Lexical items failing to meet the conditions for the Tone *2 split

Gloss	PN/PB	PLa	CW-QY	E-DC	SE-GP	W-SZP
meat	*xa ²	xa ²	xa ²¹	X3 ²¹	X0 ²¹	xa ²¹
bitter	*ka²	kha²	kha21	kha21	kha21	kha21
trousers	*?-la ²	?la²	?la ²¹	10^{21}	lo ⁵⁵	la21
comb	*?-g ^w əj ² (PB)	pji ²	pi ²¹	pi ²¹	pi ⁵⁵	pi ²¹

Given the fact that PLa voiceless unaspirated stops descend from PN *?- prefixed stops, one would therefore not expect to find any voiceless unaspirated stops followed by *-a in Tone *2 in PLa. While this is true for labial and alveolar stops, there are a few examples of PLa *ka², shown in Table 5-6: 'armpit,' 'back' and 'to live'. PLa *ka² in 'armpit' may descend from PN *?-ga³, although the tone reflex of PLa *2 is irregular. PLa *ka² in 'back' appears to descend from PB *ka², but the PLa initial has unexpectedly not become aspirated, and shows protovariation between PLa *ka² and *ka². PLa *ka² in 'to live,' from PN *k^wa² (Bradley 2008), has also failed to become aspirated, and shows variation between *ka² and *ka¹. Some C and E varieties reflect *ka¹, as seen in E-DC's mid-falling reflex, but others, as in CW-QY and all W varieties, reflect *ka².

Table 5-6 shows two more puzzles of the PLa Tone *2 split, in 'bow' PB *?-da¹ and 'to know' PB *sey². For 'bow,' C and E Lalo show reflexes of PLa *ta¹nɛ³, suggesting descent from PB *?-da², possibly a competing variant with *?-da¹. W Lalo varieties reflect a Proto W form of *ta²nɛ¹, a subsequent innovation from PLa *ta¹nɛ³. This subsequent change in W varieties may be a result of Proto W tone sandhi in this compound word, in which the low tone of the first syllable depressed the pitch onset of the second syllable, resulting in a low-rising pitch which was then perceived as belonging to the Tone *1 split to low-rising, so PLa *ta¹nɛ³ > P-W *ta²nɛ¹. Harsh phonation in the first syllable must have been lost prior to the W change of *L > high, destroying the environment for the *L > high change and therefore remaining low. PLa *sɛ^L 'to know' may also have taken part in the split, i.e., PB *sey² > *sɛ^L, or it may be reflecting the allofam *set^L, a not

unreasonable suggestion given the abundance of this type of allofamy in Proto Tibeto-Burman. The homophone 'fruit,' also PB *sey², becomes PLa *s ε^2 , not *s ε^{L} . The fact that 'fruit' did not participate in the split suggests that 'to know' reflects allofam *set^L.

Gloss	PN/PB	PLa	CW-QY	E-DC	SE-GP	W-SZP
armpit	?-ga³	ka²	/	ku ²¹	/	ka21
back	ka ² (PB)	$ka(\eta)^2 ta(\eta)^3$	ku ²¹	k3 ²¹	/	k0 ²¹
to live	k ^w a ²	ka²/kaੁ ^L	ka ²¹	ka ³¹	ko ⁵⁵	ka ²¹
bow	?-da1 (PB)	t <u>a</u> ¹nε³,	ta ²¹ na ³³	te42ne33	/	ta ²¹ ne ²⁴
		P-W: $ta^2n\epsilon^1$				
know	sey ² (PB)	SEL	s <u>a</u> ²¹	se ⁴²	ย ⁵⁵	$s\epsilon^{5_3}$

Table 5-6: Puzzles of the PLa Tone *2 split

The Proto Lalo Tone *2 split provides an interesting example of both consonants and vowels interacting with tone. The PN glottal prefix and low vowel *-a were conditioning factors in the tone split. How did these two factors lead listeners to 'mistake' syllables in that environment as belonging to Tone *L, and not *2? A possible phonetic motivation for this split begins by examining the Central Lalo tonal system, given in Figure 5-4. *L and *2, though both in the lower register, differ acoustically in their F0 slope, with *L's F0 slope much steeper than *2's. *L's pitch onset begins much higher than *2 and falls rapidly, while *2 is more or less a level tone. The acoustic differences between *L and *2 are partly due to harsh phonation's effect of raising the pitch onset of *L, an effect that may also have been present in Proto Lalo.

If the acoustic differences between *L and *2 were also present in Proto Lalo, it is possible that the Tone *2 split's conditioning environment led listeners to misperceive the affected syllables as belonging to *L, not *2. In Tone *2, the combination of glottal stop prefix and low vowel may have affected the pitch contour in such a way as to increase the F0 slope, making the affected word's F0 slope more similar to *L than to *2. The glottal stop prefix, through increased tension in the vocal folds, led to an higher pitch onset, while the intrinsically lower F0 of the low vowel -a may have led to a lower pitch offset. At the pitch onset, prevocalic glottalisation increases vocal fold tension and raises the pitch. At the pitch offset, the low vowel's instrinsic F0 lowers the pitch (Whalen & Levitt 1995, Connell 2002). This leads to a steeper F0 slope, making the pitch contour more similar to *L's. While the *glottal stop prefix remained, this variation in F0 slope would have been subphonemic, but once *?- dropped off, the subphonemic variation became phonemic, leading to a reinterpretation of the affected syllables' tone category as *L, not *2.

The Tone *2 split did not affect syllables with *?- prefixed sonorants, because the glottal stop was preserved before sonorants and developed into the Proto Lalo preglottalised initial series. Therefore, for PLa preglottalised initials, the conditioning environment was never destroyed, and so the effect of the glottal stop remains subphonemic to this day, preventing the syllables from changing phonemic tone categories. The effect of preglottalisation on the initial pitch of Tone *2 syllables was acoustically measured by comparing the average initial pitch of preglottalised syllables with the -a rhyme to those with plain sonorants and the -a rhyme (n=14 for each category). Preglottalised syllables were found to have a significantly higher initial pitch (p < .05) when compared to syllables with plain sonorants.

The complexity of the conditioning environment makes this an unusual change, valuable for classifying languages whose affiliation with Lalo is unclear. This is especially useful for the two Lalo languages in Lincang, the Eka ($/o^{21}k^ha^{24}/)$ and the MD Lalo ($/lo^{21}lo^{33}pg^{21}/)$, whose autonyms either do not reflect the PLa autonym * $la^2lo^Hpa^L$, (i.e., the Eka) or may be easily confused with the Lolo ($/lo^{21}lo^{33}/)$ (i.e., the MD Lalo). Table 5-7 illustrates the PLa Tone *2 split in Eka and MD. Both Eka and MD retain harsh phonation, often accompanied by a postvocalic glottal stop. A low, harsh tone is the expected reflex of PLa *L, not *2, and so the harsh phonation seen in the examples prove that MD and Eka share this unusual and distinctly Lalo tonal innovation.

Gloss	PN/PB	PLa	CW-QY	MD	Eka
frog	*k-?-pa ²	u¹p₫Ľ	$\partial^{55} p \underline{a}^{21}$	u ⁵⁵ pa ²¹	0 ²⁴ p <u>0</u> ²¹ j0 ²¹
to put	*?-ta ²	t <u>a</u> ⊥	t <u>a</u> ²¹	to ³³	to ²¹
feed	*sədza ²	t∫a₋	tşa ²¹	ts <u>a</u> ²¹	tsu <u>e</u> ²¹
sad	*?/s-ra ²	∫ <u>a</u> ∟	<u>§a</u> ²¹	s <u>a</u> ²¹	SQ^{21}
meat	*xa ²	xa ²	xa ²¹	X0 ²¹	X0 ²¹
trousers	*?-la ²	?la²	?la²	lo²	lo²

Table 5-7: PLa Tone *2 split in MD and Eka

5.3 Tone change in Lalo varieties

Section 5.2 proposed phonetic values for Proto Lalo tones and used synchronic, acoustic analysis of Lalo varieties' tonal inventories as supporting evidence. This section uses the PLa tonal system as the jumping-off point to a discussion of subsequent tone change in Lalo varieties. Assuming that diachronic change arises from synchronic variation, I compare Lalo varieties' synchronic, acoustic tonal analysis in order to hypothesise phonetic motivations for the observed tone changes.

Central Ngwi languages typically show a conditioned tone split in Proto Ngwi Tone *1, albeit with varying conditioning environments (Bradley 1979, 2004). In Lisu, *?- and *s- prefixed syllables have a mid-high level pitch reflex 44 (Lisu Tone 3), and elsewhere shows a mid-level pitch 33 (Lisu Tone 4). In Lahu, voiceless initials condition a mid-level pitch 33 (Lahu Tone 5), and voiced initials a low-falling pitch 21 (Lahu Tone 2) (Bradley 1979b). Interestingly, most Central Lalo varieties do not show any split in Proto Ngwi Tone *1, unlike other Central Ngwi languages. Other Ngwi languages that do not split Tone *1 are Hani (*1 > [55]), a Southern Ngwi language, and Nosu and Nasu (*1 > [33]), both Northern Ngwi languages (Bradley 1979b).

Several other Lalo varieties, in contrast with C Lalo, do have a conditioned tone split in *1, resulting in the creation of a contrastive, low-rising tone. In E Lalo, along with XZ, W-YL and CE-YA, the conditioning is a combination of the two conditioning environments that caused the splits in Lisu and Lahu, respectively, i.e., voicing and *?-/*s- prefixes. Crucially for this split, Proto Lalo retained the Proto Ngwi *?- prefix before sonorants, resulting in a distinctive series of preglottalised sonorants and fricative, e.g., *?m, *?n *?l, and *?v (*?v comes from Proto Ngwi *?w). Syllables with *preglottalised *and* *voiceless initials retain the high level pitch, but plain, non-prefixed *voiced initials conditioned a low-rising pitch. All E Lalo varieties show this combination of environments for the Tone *1 split. I use E Lalo as the prototype for this split, referring to this conditioning set as the 'Eastern-type' Tone *1 split, even when it is seen in non-E Lalo varieties such as CE-YA. In W varieties, only preglottalised syllables retain the high level pitch, with low-rising seen in all other environments. When preglottalisation was lost in these varieties, the low-rising pitch became a contrastive tone.

As an overview of tone change in Lalo varieties, Table 5-8, Table 5-9, and Table 5-10 below shows the range of tonal development in Lalo varieties. Table 5-8 gives the tonal systems of some W, E, and C varieties, and MD. CE-YA, the only Central Lalo variety to show the Eastern-type Tone *1 split, is discussed in §5.3.1, and E Lalo tone changes are discussed in §5.3.2. Core W and W-YL varieties show a tonal innovation chain, resulting in the reorganisation of Tones *1, *L and *H in the tonal space, which is further discussed in §5.3.3. Table 5-9 summarises SE Lalo's tonal development, notably the voicing conditioned tone splits in *2 and *L, discussed in §5.3.4.

Table 5-10 below shows the tonal development of YL, XZ and Eka, all peripheral Lalo varieties. These peripheral varieties show a range from the fewest contrastive tones of any Lalo variety (i.e., YL young speakers with three) to the most tone categories (i.e., Eka, with six). The various tonal changes seen in YL, XZ and Eka are discussed in §5.3.4. Comparison of the tonal systems in younger and older speakers in YL reveals a change in apparent time. Older speakers show a unique variation of the Tone *1 split, with PLa *voiced and *preglottalised initials showing a low-rising pitch, and *voiceless initials show a mid pitch, merging with *3. Young speakers have merged the low-rising pitch reflex with *3's mid pitch. XZ shows the Eastern-type Tone *1 split, and then a three way merger of *H, *L and *3 to mid pitch. Eka's Tone *1 reflex is low-rising in

all environments, but all other tones basically reflect PLa's tonetic values. However, various conditioning of *1, *2, *H and *L results in the creation of a newly contrastive high level tone (see §3.4).

PLa	W- core	W-YL	E-DC	E-TS & HS	CE- YA	CW- QY	C-LB	MD
*1/ *+voi	24	24	24	24	24	[45]	55	55
*1/ *-voi		44	55	55	55	[55]		
*1/ *?_	44	-						
*Н			33	33	<u>33</u>	33	<u>33</u>	<u>33</u>
*3	33	33			33	33	33	33
*L	(4)53	53	31	21	21	31	21	21
*2	21	21	21	21	21	21	21	21

Table 5-8: Tonal development in W, E, C Lalo and MD

Table 5-9: Tonal development in SE-GP

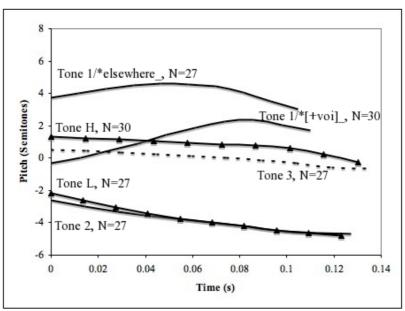
PLa	SE-GP
*1	44
*3 and *H	33
*2/*ʃ, *[-voi, +sg]	55
L/[-voi]	
*L/[+voi]_	<u>21</u>
*2/elsewhere	21

Table 5-10: Tonal development in YL, XZ and Eka

PLa	YL young	YL old	XZ	Eka
*1/ *+voi		24	24	24
*1/ *?_	33			
*1/ *-voi		33	55	
*3				33
*H	53	53	33	<u>33</u>
*L				<u>21</u>
*2	21	21	21	21
Eka only: var	ious conditionin	ig of *1, *2, *H	[,*L	55

5.3.1 Tone change in C Lalo

Table 5-11 below summarises the development of Proto Lalo tones in the Central Lalo dialect cluster. CW-QY and C-LB have retained the phonetic values of the Proto Lalo tone system, while other C Lalo varieties have undergone some minor changes. CW-QY's tonal acoustic analysis is seen in Figure 5-4 in §5.2.1 above. In CW-QY and C-LJ, voicing of the initial has synchronically conditioned two Tone 1 allotones, [45] with voiced initials and [55] with voiceless and preglottalised initials. C-LB (acoustic analysis given in Figure 5-5) and all other C Lalo varieties excepting CE-YA, do not show the allotonic variation of CW-QY; these varieties have also lost the distinction between preglottalised and plain initials. In CE-YA, voiced initials conditioned a tone split to low-rising [24] pitch, which became a distinctive tone when preglottalisation was lost.


CE-YA's conditioning of the Tone *1 split exactly parallels the synchronic, subphonemic variation seen in CW-QY.

Proto Lalo	CW-QY & C-LJ	C-LB, others	CE-YA
1: High/[+voi]_	[45]	55	24
*1: High/*elsewhere	[55]		55
*2: Low	11, breathy	21	21
*3: Mid	33	33	33
*H: Mid, harsh	<u>33</u>	<u>33</u>	<u>33</u>
			<u>21</u> , weakly
*L: Low, harsh	<u>31</u>	$\underline{21}(?)$, weakly harsh	harsh

Table 5-11: Tonal development in Central Lalo

Figure 5-7 below shows the tonal inventory of CE-YA. The Tone *1 reflex with *voiceless and *preglottalised initials (marked Tone 1/*elsewhere) is found at the highest pitch level for Speaker CE-YA1. The Tone *1 reflex for syllables with *voiced initials (marked Tone 1 split/*[+voi]_) has a pitch onset that begins lower than the mid pitch but steadily rises past the midpoint of the syllable before a slight drop off at the end. The depression of the pitch onset is greater in CE-YA than CW-QY's high rising allotone; in CE-YA, the pitch begins in the lower register and rises into the higher register. Because CE-YA has lost *preglottalisation (e.g., *?m, *?l, *?v > m, l, v), Tone *1's high pitch reflex is now seen on syllables with voiced sonorants and the voiced fricative /v/. The Tone *1 split to low-rising is also seen on syllables with voiced sonorants and fricative (from Proto Lalo *plain sonorants and *v). Thus, the high level and low-rising pitch reflexes of Tone *1 are now phonemically contrastive. The loss of *preglottalised fricative and sonorants in E Lalo triggered the change from subphonemic variation to a phonemic tone split.

Figure 5-7: CE-YA tonal inventory. Normalised for mean Tone 3 pitch; Tone 3 marked with dotted line; Tones L and H marked with triangles. N=168.

Besides phonetic factors, social factors also played a role in CE-YA's Tone *1 split. CE-YA is located in Yongjian Township in Weishan County, just to the south of Dali Municipality and right on the border between C and E Lalo. Ties between the CE-YA and E Lalo speakers through marriage, family and friendship result in frequent, sustained contact. Most other innovations in initials and finals, however, identify CE-YA as a Central Lalo dialect, not an Eastern one. CE-YA is underlyingly a Central dialect, but in close contact with Eastern Lalo, and is the only C Lalo

variety to show a phonemic Tone *1 split. As shown in §5.3.2, E Lalo's Tone *1 split exactly parallels CE-YA's.

Other East Mountain varieties vary as to whether they show the split or not. Edwin Lam (personal communication, August 27, 2009) reports that while villages in Yongjian (e.g., CE-YA) and northwest Dacang (e.g., Xinsheng) districts show the split, villages just to the south of this area do not. Speakers in Caochang Village in Miaojie District, to the south of Dacang, claim their ancestors first moved to that location from northwest Dacang (Xinsheng) 200 years ago. Caochang speakers do not show the split, and instead have a high level tone for the entire Tone 1 category. This implies that the Tone *1 split has happened in the past 200 years in those East Mountain varieties located closest to Eastern Lalo. The sociolinguistic contact situation between CE-YA and E Lalo, as well as the geographical distribution of the tone split within the East Mountain area, suggest diffusion from Eastern Lalo, rather than shared innovation.

Splits are not usually the result of diffusion, according to Labov's (2007) model of transmission and diffusion. However, given the synchronic variation in CW-QY and the probable presence of the same allotonic variation in CE-YA, the Tone *1 split is actually a phonetically natural result of the merger of *preglottalised and *plain initials. Also, given the intermarriage of the CE-YA and E Lalo speakers, children are exposed from birth to both varieties, a sociolinguistic factor which may have influenced CE-YA's development of a phonemically contrastive low-rising tone.

CW-QY and C-LJ are the only Lalo varieties in this study to preserve the distinction between preglottalised and plain initials. The allotonic variation seen in these varieties is a natural result of contrast enhancement (Gussenhoven 2004), that is, the use of redundant features to augment the distinctiveness of the contrastive phonetic feature. In this case, variation in F0 is a redundant feature used to enhance the contrast between preglottalised initials and plain initials. The rising and level allotones of Tone *1 are not contrastive, but rather predictable based on the initial. The difference between the two allotones aids the perception of the contrast between preglottalised and plain initials, but is not yet a contrastive feature in these varieties.

Either this enhancement effect on subphonemic pitch was present in Proto Lalo, or is an innovation in CW-QY and C-LJ. I argue that the allotones were probably already present in Proto Lalo. While no one will ever be able to do acoustic analysis on Proto Lalo, the principle of economy, a.k.a. Occam's razor, leads to this hypothesis. I posit that the simplest path of development in all Lalo varieties is the most likely. The Tone *1 split, variations of which are seen in C, W, and E clusters and XZ and YL, is predicated upon this subphonemic variation. The allotonic variation is the necessary seed for the Tone *1 split seen widely across Lalo varieties, as described in the following sections. Proto Lalo also distinguished preglottalised and plain initials, and so the reason for the enhancement was already present in Proto Lalo. CW-QY and C-LJ, the only varieties to preserve the distinction, naturally also preserve the contrast enhancement that aids the perception of the distinction.

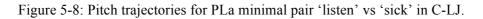

As an illustration of the different developments in C Lalo varieties, Figure 5-8, Figure 5-9 and Figure 5-10 show the pitch trajectories of the Proto Lalo minimal pair *?na¹ 'hear' and *na¹ 'sick' in C-LJ, C-WC, and CE-YA, respectively. The vowel onset, considered the tonal onset of the syllable, is marked with a line on each syllable's pitch trajectory. In C-LJ, seen in Figure 5-8, *?na¹ 'listen' and *na¹ 'sick' are distinguished by the initial: /?na¹/ [?na⁵⁵] 'listen' versus /na¹/ [na⁴⁵] 'sick'. In 'sick' /na¹/, the pitch onset is depressed by the voiced initial, resulting in the high-rising allotone characteristic of this environment.

Figure 5-9 shows the same minimal pair in C-WC, a variety that has lost distinctive preglottalisation, merging *?m and *m, *?n and *n, etc., to the plain initial manner. The minimal pair now has identical initials and pitch trajectories, and is distinguished only by the vowel: $/na^{1/}$ [na^{55}] 'listen' versus $/na^{1/}$ [na^{55}] 'sick'. The vowel change from PLa *a [a] to front [a] may have been conditioned by the preglottalisation, although other vowels do not show parallel changes conditioned by preglottalisation. Contrast enhancement is not seen in C-WC or any other Central Lalo variety that has merged preglottalised and plain initials, excepting CE-YA. Since distinctive preglottalisation has already been lost, enhancement would be pointless.

CE-YA's Tone *1 split is exemplified in Figure 5-10. The Proto Lalo minimal pair *2na¹ 'hear' and *na¹ 'sick' is now distinguished by tone and vowel, not by initial: $[na^{55}] /na^{1a} /$ 'hear' versus

128 Cathryn Yang

[na²⁴] /na^{1b}/. Like C-WC, preglottalisation may have played a role in the vowel's development, although with a different effect than that seen in C-WC. CE-YA, like C-WC, has lost distinctive preglottalisation. C-WC and other Central Lalo varieties that have lost preglottalisation, but did not undergo the split, do not have close contact with E Lalo speakers as CE-YA speakers do. Instead of simply losing the allotonic variation as C-WC does, CE-YA shows a phonemic tone split accompanied by an increase in the F0 excursion of the new low-rising tone. The merger of preglottalised and plain initials is the linguistic tipping point for CE-YA's phonemicisation of the low-rising tone, and contact with E Lalo speakers is probably the key social factor that influenced the spread of the sound change.

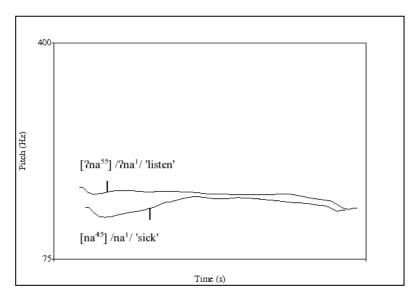
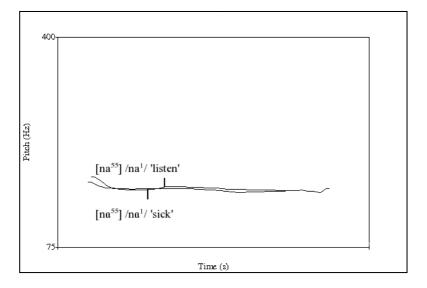



Figure 5-9: Pitch trajectories for PLa minimal pair 'listen' vs 'sick' in C-WC.

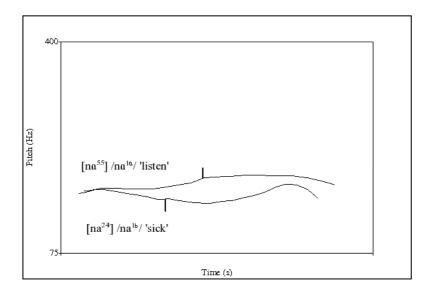
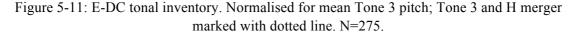


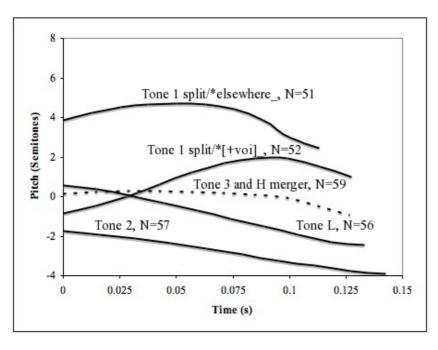
Figure 5-10: Pitch trajectories for PLa minimal pair 'listen' vs 'sick' in CE-YA.

5.3.2 Tone change in E Lalo

Table 5-12 below shows the tonal development of E Lalo varieties. In E Lalo, Tone *1 underwent a phonemic split in which syllables with *voiceless initials and *preglottalised sonorants remained high, but syllables with *voiced initials split to low-rising. E Lalo varieties also show loss of harsh phonation in *H, resulting in a merger of Tone *3 and *H to mid level [33] pitch. E-TS and E-HS have preserved harsh phonation in *L, but E-DC has lost harsh phonation in *L as well as *H, with a resulting phonetic change in *L to mid-falling [32] pitch in modal phonation.

Proto Lalo	E-TS	E-HS	E-DC
1: High/[+voi]_	24	24	24
*1: High/elsewhere	55	55	55
*2: Low	21	21	21
*3: Mid	33	33	33
*H: Mid, harsh			
*L: Low, harsh	21	<u>21</u>	31


Table 5-12: Tonal development in Eastern Lalo


Table 5-13 gives examples of E Lalo varieties' Tone *1 split. In E Lalo, the Tone *1 split became phonemically contrastive when *preglottalised initials merged with their plain counterparts. This parallels the development seen in CE-YA.

Gloss	PLa	E-DC	E-TS	E-HS
light (adj.)	*laŋ1	la ²⁴	la ²⁴	la ²⁴
sick	*na ¹	no ²⁴	no ²⁴	no ²⁴
bamboo	*ma ¹	$m\mathfrak{d}^{24}$	$m\mathfrak{d}^{24}$	mo ²⁴
to winnow	*?va1	o^{55}	u ⁵⁵	va ⁵⁵
tongue	*?la1	lo ⁵⁵	lo ⁵⁵	lo ⁵⁵
listen	*?na1	no ⁵⁵	no ⁵⁵	no ⁵⁵
person	*tshaŋ1	tsha ⁵⁵	tsha ⁵⁵	tsha ⁵⁵
iron	*xy ¹	xə ⁵⁵	xu ⁵⁵	xi ⁵⁵
star	*kɛ¹	$k\epsilon^{55}$	$k\epsilon^{55}$	ke ⁵⁵

Table 5-13: Examples of E Lalo varieties' Tone *1 split

Figure 5-11 gives E-DC's tonal inventory. E-DC's tonal system roughly parallels that of CE-YA, with only two differences: the merger of *3 and *H, and the change of *L from low with harsh phonation to mid-falling with modal phonation. E-TS and E-HS differ from E-DC in that *L is still pronounced with harsh phonation. Much like CW-QY's *L tone, the pitch of *L in E-TS and E-HS is raised above that of *2, due to the effect of harsh phonation. The heightened pitch of *L, a subphonemic correlate of harsh phonation in E-TS and E-HS, has become contrastive in E-DC after the loss of harsh phonation. This interaction of harsh phonation and pitch, and the resultant tone change, is similar to the developments seen in W Lalo, XZ and YL varieties, described in Sections 5.3.3 and 5.3.4 below.

5.3.3 Tone change in W Lalo

Table 5-14 below summarises the tonal development of W varieties. In W Lalo, a tonal chain of innovation occurred. Like E Lalo, Tone *1 underwent a split conditioned by voiced initials. W Lalo lost harsh phonation in both *L and *H, with resulting reorganisation of the tonal system. *L changed from low with harsh phonation to high with modal phonation. *H changed from mid with

harsh phonation to mid-high with modal phonation, and merged with Tone *1's syllables with *preglottalised initials. Although the ordering of the tonal chain is uncertain, a likely ordering is: 1) Tone *1 split to low-rising while Tone *1's *preglottalised initials merged with *H, and then 2) *L was dragged up to the highest pitch slot in the system. Core W varieties (SLZ, SZP, and DT) all share the expansion of the low-rising pitch to syllables with voiceless initials, remaining high only in syllables with *preglottalised initials. Non-core W-YL does not participate in this later change, and is therefore excluded from Core W. However, W-YL shares the other innovations in tone and also in initials that qualify it as a W variety, as discussed in §6.6.3.

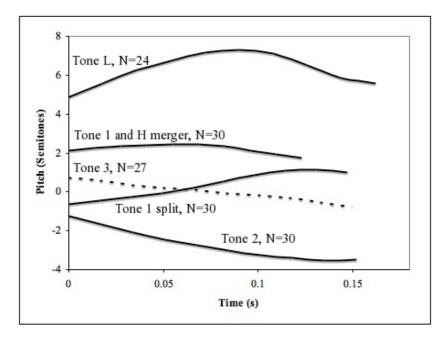
Proto Lalo	W-DT	W-SZP	W-SLZ	W-YL
1: High/+voi_	24	24	24	24
1: High/-voi	24	24	24	44
1: High/?_	44	44	44	44
*H: Mid, harsh	44	44	44	44
*2: Low	21	21	21	21
*3: Mid	33	33	33	33
*L: Low, harsh	45	453	453	53

Table 5-14: Tonal development in W Lalo varieties

Examples of Tones *1 and *H in W Lalo varieties are given in Table 5-15 below to illustrate W's Tone *1 split and merger with *H. CW-QY is given as a reference. In W, Tone *1 with *preglottalised initials merges with *H to mid-high. Core W's low-rising tonal reflex is seen in both voiced and voiceless initials.

Gloss	PLa	CW-QY	W-YL	W-SLZ	W-DT	W-SZP
light (adj.)	*laŋ1	lu ⁴⁵	lu ²⁴	lu ²⁴	la ²⁴	lu ²⁴
sick	*na ¹	na ⁴⁵	ng ²⁴	na ²⁴	no ²⁴	na ²⁴
iron	*xy ¹	¢y ⁵⁵	¢y ⁴⁴	xue ²⁴	xy ²⁴	xu ²⁴
star	*kjɛ¹	ki ⁵⁵	ki ⁴⁴	ke ²⁴	ke ²⁴	kε ²⁴
tongue	*?la1	?la ⁵⁵	le ⁴⁴	la ⁴⁴	lo ⁴⁴	la ⁴⁴
listen	*?na ¹		ne ⁴⁴	na ⁴⁴	no ⁵⁵	na ⁴⁴
bean	*nu ^H	nē33	no ⁴⁴	nu ⁴⁴	nu ⁴⁴	nu ⁴⁴
stone	*lų ^H	lą ³³	lo ⁴⁴	lu ⁴⁴	lu ⁴⁴	lu ⁴⁴

Table 5-15: Examples of Tones *1 and *H in C, E, and W Lalo


Table 5-16 gives examples of *L in CW-QY and W Lalo varieties. W Lalo varieties all show a high pitch reflex for *L, although the phonetic values for *L vary by variety: high-falling in W-YL, high-rising in W-DT, and high rising-falling in W-SLZ and W-SZP. This regional variation in the phonetic value of *L is further discussed below.

Gloss	PLa	CW-QY	W-YL	W-DT	W-SLZ	W-SZP
hand	*le ^L	l <u>e</u> ²¹	$l\epsilon^{5_3}$	le ⁴⁵	le ⁴⁵ 3	le ⁴⁵³
brains	*?nuٍ ^L	?n2 ²¹	no ⁵³	nu ⁴⁵	nu ⁴⁵ 3	nu ⁴⁵
to descend	*ze ^L	$Z\underline{\varepsilon}^{21}$	$z\epsilon^{5_3}$	ze ⁴⁵	ze ⁴⁵³	ze ⁴⁵³
to swell	*phyL	$p^h\underline{y}^{_{21}}$	$p^hy^{5_3}$	$p^{h}y^{45}$	phi ⁴⁵³	$p^hy^{45_3}$

Table 5-16: Examples of *L in C and W Lalo

Figure 5-12, Figure 5-13 and Figure 5-14 below show the tonal inventories of W varieties W-SZP, W-YL and W-DT, respectively. In W-SZP Lalo, seen in Figure 5-12, *L is now the highest pitch in the tone system, with a rise to the midpoint of the syllable followed by a fall. All *H syllables and Tone *1 syllables with *preglottalised initials have merged to a mid-high reflex, a level pitch located roughly equidistantly between the pitch onset of *L and the mid level pitch of *3. Tone *1 with initials other than *preglottalised initials are reflected by the low-rising pitch (marked Tone 1 split), beginning in the lower register and rising to above mid by the end of the syllable.

Figure 5-12: W-SZP tonal inventory. Normalised for mean Tone 3 pitch; Tone 3 marked with dotted line. N=141.

W-YL and W-DT's tonal inventories match W-SZP except for the phonetic value of *L. In W-YL (Figure 5-13), *L is reflected as a high pitch with a slight fall, and in W-DT (Figure 5-14) as a high-rising pitch. W-YL's tonal system also differs from Core W Lalo in that its Tone *1 split follows the conditioning of Eastern Lalo, with *+voi conditioning the low-rising pitch.

Figure 5-13: W-YL tonal inventory. Normalised for mean Tone 3 pitch; Tone 3 marked with dotted line. N=148.

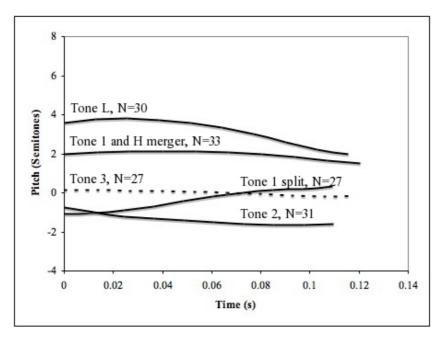
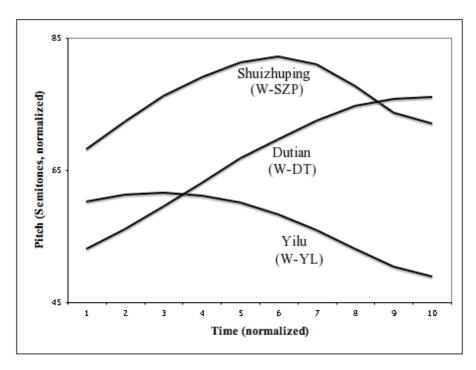


Figure 5-14: W-DT tonal inventory. Normalised for mean Tone 3 pitch; Tone 3 marked with dotted line. N=121.



All W Lalo varieties show *L as the highest pitch in the tonal inventory, but the contour shape varies across W Lalo varieties. The development of *L is variably realised as a high falling pitch, a high rising-falling pitch, or a high rising pitch. Figure 5-15 shows the synchronic reflexes for *L in three Western Lalo varieties: W-YL, W-SZP, and W-DT. W-SLZ, a fourth W variety, shows essentially the same rising-falling contour as W-SZP and so is not included. To compare across speakers, pitch in semitones is normalised according to the maximum and minimum F0 (F0max and F0min), instead of being normalised to the Tone 3 mean, using the following formula:

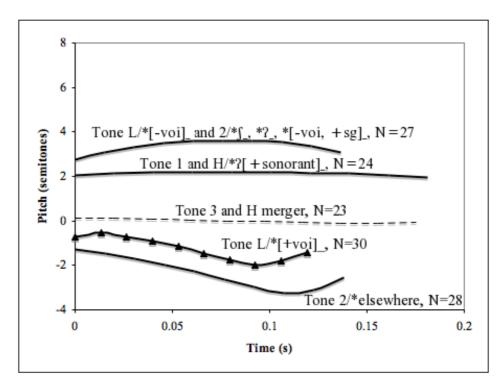
F0normalised=100*(St-F0min)/(F0max-F0min), where St refers to the value of the pitch in semitones.

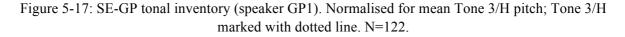
All W Lalo varieties are closely related, and all share the change in which *L > high. In Proto W, I therefore reconstruct *L's Tone feature as high without specifying a contour. The varying contour shapes may have arisen from the physiological factors involved in producing a high pitch target. Xu and Wang (2001) find that physiologically, rises in pitch take a longer amount of time than a fall. The time lag for rising pitch sometimes results in peak delay, in which a rising pitch's peak actually occurs on the following syllable. Building on these findings, Pittayaporn (2007b), in his tone change model, states that pitch peaks are more likely to slide to the right than to the left. A high falling tone is more likely to become a convex contour than the other way around. A convex contour could then in turn become a rising contour. Peak sliding leads to a possible phonetic explanation for the dialectal variation in *L's contour shapes. *L > high across all W Lalo varieties, and the pitch peak has remained at the pitch onset in W-YL. In W-SZP and W-SLZ, the pitch peak has slid all the way to the right, resulting in a high rising pitch contour. Although the geographic variation in pitch contour does not prove peak sliding has occurred, the mechanism of peak sliding is a reasonable phonetic explanation for the variation for the right, resulting in a high rising pitch contour. Although the geographic variation in pitch contour does not prove peak sliding has occurred, the mechanism of peak sliding is a reasonable phonetic explanation for the variation for the variation seen in closely related varieties.

Figure 5-15: Variation in *L in W Lalo varieties. Pitch (in semitones) normalised across speakers according to maximum and minimum F0.

5.3.4 Tone change in SE Lalo

SE Lalo varieties, represented by SE-GP, show a distinct tonal innovation chain in which *2 and *L split to high based on voicing of the initial, *1 is lowered to a mid-high level pitch (possibly pushed down), and *3 and *H merge to mid level pitch. In SE Lalo, Tone *2 syllables with Proto Lalo voiceless unaspirated stops, preglottalised initials, and *∫- became high pitch in, and Tone *L syllables with Proto Lalo voiceless initials became high pitch. The conditioning of the *2/*L tone splits are similar to those seen in Lisu and Lolo: the Proto Ngwi *?/*s- prefix, which conditioned the development of Central Ngwi languages' voiceless unaspirated stops, also conditioned a split to high in *2 and *L in Lisu and Lolo (Bradley 2004). However, SE-GP does not share other Lisu/Lolo tone changes, such as the complete (Lolo) or partial (Lisu) merger of *1 and *3 to mid


level pitch. Instead, SE-GP's *3 and *H show a partial merger to mid level pitch; Tone *H syllables with PLa preglottalised sonorants merge with *1. Table 5-17 gives examples of the reflexes of Proto Lalo tone categories in CW-QY and SE Lalo varieties, in various conditioning environments.


Tone	Gloss	PLa	CW-QY	SE-GP	SE-Ziyou	SE-Runze
*1	drink	*daŋ1	du ⁵⁵	da ⁴⁴	da ⁴⁴	da ⁴⁴
2/[-voi,+sg]_	comb	*pi ²	pu ²¹	pi ⁵⁵	pi ⁵⁵	pi ⁵⁵
2/∫_	seed	*∫ł²	₹ 1 ²¹	$s\gamma^{55}$	sղ ⁵⁵	sy ⁵⁵
2/?_	tail	*?me ²	?mg ²¹	$m\epsilon^{55}$	$m\epsilon^{55}$	me ⁵⁵
L/[-voi]_	to bite	${}^{*}k^{\rm h}\underline{o}^{\rm \tiny L}$	$k^h \underline{0}^{21}$	$k^{h}i^{55}$	kho ⁵⁵	kho ⁵⁵
*L/elsewhere	sew	*gu¹	g _{2²¹}	<u>gi</u> ²¹	$\underline{g}\underline{i}^{21}$	$\underline{g}\underline{i}^{21}$
*2/elsewhere	far	*vi ²	ji ²¹	vi ²¹	vi ²¹	vi ²¹
*3	dry	* fɛ³	fe ³³	fe ³³	fe ³³	fe ³³
*H/elsewhere	sharp	$t^{h}e^{H}$	thig33	thi33	thi33	t ^h i ³³
H/?[+sonorant]_	blow	*?my ^H	?mʉ ³³	mi ⁴⁴	mə ⁴⁴	mə ⁴⁴

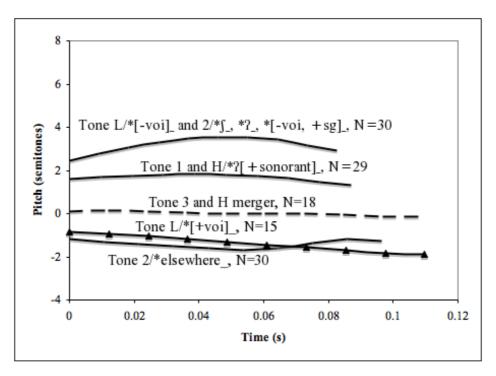
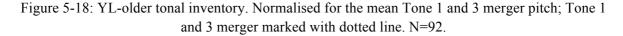

Table 5-17: Examples of tonal reflexes in C and SE Lalo

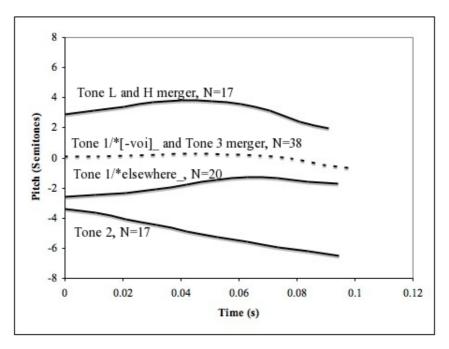
Figure 5-16 and Figure 5-17 show the tonal inventories for SE-GP in citation form and embedded in a carrier phrase. As with other Lalo varieties, the pitch onset for Tone *L with harsh voice begins at a higher pitch than Tone *2. The *L/*2 split to high pitch has a slightly concave shape, which may be perceptually salient to speakers, but a perception experiment is needed to confirm that hypothesis. SE-GP's *L/*2 split shares some commonality with non-Lalo Central Ngwi languages like Lisu and Lolo, which underlines the tendency for voiceless or preglottalised initials to condition a higher pitch in these languages.

Figure 5-16: SE-GP tonal inventory (speaker GP1). Citation form. Normalised for mean Tone 3/H pitch; Tone 3/H marked with dotted line. N=132.

5.3.5 Tone change in XZ, YL and Eka

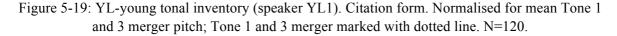
The tonal developments of XZ, YL and Eka are summarised in Table 5-10 in §5.3. Each variety's distinctive developments, along with their acoustic tonal analysis, are described in this section. Table 5-18 below gives examples of Tone *1 in XZ, YL and Eka. Tone *1 development in these varieties, as in W and E Lalo, was influenced by Proto Lalo's subphonemic allotonic variation, as noted in §5.3.1. XZ shows the Eastern-type Tone *1 split, YL shows a slight variation of that split, and Eka shows the spread of the low-rising pitch through almost all environments in Tone *1.

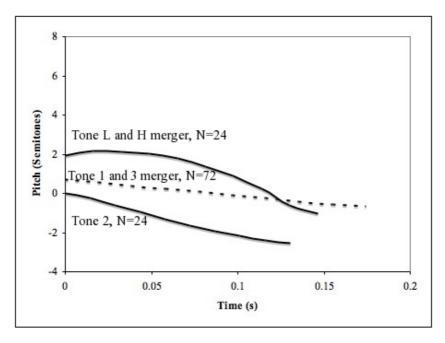

Table 5-18: Examples of XZ, YL, and Eka's developments in Tone *1


Gloss	PLa	XZ	YL-old	YL- young	Eka
light (adj.)	*laŋ1	la ²⁴	lu ²⁴	lu ³³	la ²⁴
sick	*na ¹	no ²⁴	na ²⁴	na ³³	no ²⁴
bamboo	*ma1	mo ²⁴	ma ²⁴	ma ³³	/
to winnow	*?va1	0 ⁵⁵	waŋ ²⁴	waŋ ³³	0 ²⁴
tongue	*?la1	lo ⁵⁵	la ²⁴	la ³³	lo ²⁴
iron	*xy ¹	xγ ⁵⁵	xw ³³	xw ³³	xə ²⁴
star	*kɛ¹	kε ⁵⁵	kε ³³	kε ³³	ki ²⁴

YL, a peripheral variety found in Baoshan, the far western corner of Lalo distribution, shows a variation of the Tone *1 split not seen anywhere else. The split is now only seen in older speakers. Figure 5-18 below shows the tonal inventory for YL-older. Speaker YL2 (over 50 years old) shows a Tone *1 split in which syllables with *voiceless initials merge with *3 to mid, while syllables with all other initials, including PLa *preglottalised sonorants, show low-rising pitch.

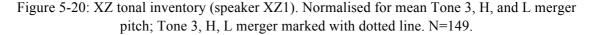
The fact that the low-rising pitch is seen in syllables with PLa *preglottalised initials suggests that this split occurred after the loss of *preglottalisation, which is why *preglottalisation had no effect on the development of the pitch. This relative ordering of changes is in contrast to all other Lalo varieties, in which *preglottalised initials must have been present at the time of the Tone *1 split to affect the development of the pitch. In YL, preglottalised initials before close vowels were often dropped, with compensatory nasalisation on the vowel, as described in §4.2.4. The YL Tone *1 split to low-rising includes the syllables with PLa preglottalised nasals before close vowels, which now have no initial in modern YL. As a result, the low-rising pitch is now seen on syllables with voiced initials and with no initial.


The low-rising tone is contrastive with all other tones, even though no syllable with a voiceless initial occurs with this tone. In syllables with voiced initials or no initial, the low-rising tone contrasts with Tone *3 reflexes, e.g., the Proto Lalo minimal pair *ma¹ 'bamboo' and *ma³ 'female suffix' are reflected as [ma²⁴] /ma^{1b}/ and [ma³³] /ma³/, respectively.



In contrast with YL-older, Speaker YL1 (18 years old) has merged tonal reflexes for voiced and voiceless initials to a mid level [33] pitch. This generational difference suggests that the YL variety of younger speakers has undergone a merger of the Tone *1 split with the already merged Tone *1/[-voi] and Tone *3 category. The tonal inventory of YL-young can be seen in Figure 5-19 below. Only citation forms are available for the Speaker YL1, but citation forms presumably do not radically alter the tonal inventory. The mergers of *1 with *3, and *H with *L, result in the fewest tonal contrasts of any Lalo variety.

Both older and younger speakers of YL share the merger of *H and *L to the highest pitch in the system, as can be seen in their respective tonal inventories. Harsh phonation's effect on pitch is seen in YL through the raising of the pitch heights of both *H and *L. YL is the only Lalo variety to raise both *H and *L to the highest tone. Harsh phonation's effect of raising the perceived pitch is a theme running through many Lalo varieties' tonal development. The theme remains constant, but variation is seen in each variety's development, with a resulting diversity of tonal systems.



XZ's tonal inventory is seen in Figure 5-20 below. XZ shows the Eastern-type Tone *1 split, with *voiced initials conditioning a low-rising tone, and *voiceless and *preglottalised initials a high level tone. XZ most likely followed the same development path for the Tone *1 split as that described for CE-YA in §5.3.1, with subphonemic allotones becoming contrastive tones after the merger of *preglottalised and *plain initials. Unlike other Lalo varieties, however, XZ has undergone a three-way merger of *3, *H and *L to the mid level pitch. Bradley (1977) identifies changes of high or low pitches to mid level as a least-effort type of change. Also, harsh phonation's effect can be seen in the raising of *L to mid. The Tone *1 split and merger of *3, *H and *L leaves XZ with three equally spaced level tones and one rising tone.

Figure 5-21 below gives Eka's tonal inventory, based on the citation form. The utterance medial form shows almost complete neutralisation of the contrast between harsh and modal phonation, a contrast that is present in citation form. Eka, a peripheral group that emigrated from the Lalo homeland in Weishan/Nanjian several hundred years ago, has one of the most complex tonal systems of all Lalo varieties investigated. Besides maintaining the distinction between harsh and modal, Eka has added an additional contrastive high tone, the result of splits from *1, *2, *H and *L.

The conditioning of these splits to high is usually triggered by the *?- or *s- prefix, a typical conditioning environment for Central Ngwi languages. For example, in *L tone syllables preceded by the causative *s-prefix, Eka reflexes show the split, e.g., $[vi^{53}]$ 'to dress (transitive)' from Proto Ngwi *səwat^L. In *H and *2 in a few lexical items, the *?- or *s- prefix has a similar effect, e.g., Proto Ngwi *?əſik^H 'day after tomorrow' > $[s1^{55}]$, and *ʃ-boŋ² 'leg' > $[bi^{55}]$. No other Lalo varieties show these tone splits.

Almost all reflexes of Tone *1 are low-rising pitch in Eka, including most syllables with voiceless initials. Only in a few lexical items, all beginning with voiceless aspirated stops or voiceless fricatives, is the high level pitch retained, e.g. PLa *po1 'rooster' > $[p^{h_{\tilde{i}}55}]$, * $k^{h_{\tilde{i}1}}$ 'leg'> $[k^{h_{\tilde{i}}55}]$ and *sa1la² 'cotton' > $[so^{55}lo^{21}]$. The subphonemic rising allotone of Proto Lalo has been generalised to include almost the entire Tone *1 category.

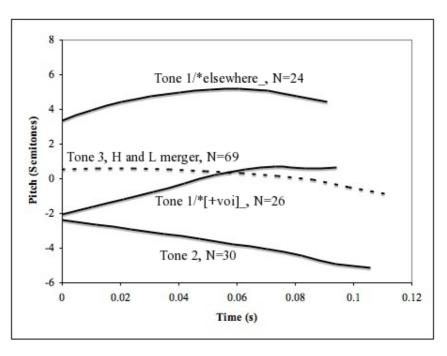
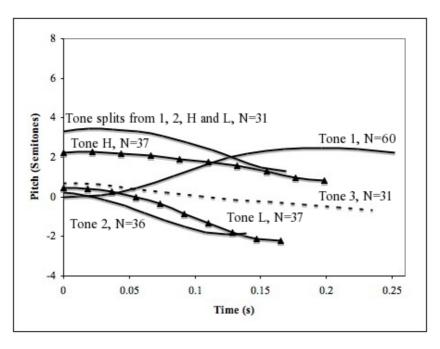



Figure 5-21: Eka tonal inventory. Citation form. Normalised for mean Tone 3 pitch; Tone 3 marked with dotted line, Tone L and H marked with triangles. N=232.

5.4 Discussion

Sections 5.4 and 5.5 conclude the chapter with a discussion and summary of the phonetic motivations of the tone changes seen in Lalo varieties, and the implications these changes have for our understanding of tone change. Special emphasis is given to the changes seen in E and W Lalo, which demonstrate slightly more complex tone changes than other Lalo varieties.

5.4.1 Tone *1 split

The various Tone *1 splits seen in many Lalo varieties are variations on the voiced-low principle so prevalent in tonogenesis. Classic models of tonogenesis (Haudricourt 1954, Matisoff 1973) predict that voiced prevocalic consonants will condition low pitch, and voiceless will condition high pitch, because the lowered larynx and relaxed cricothyroid muscles of voiced obstruents depress F0, while the engaged cricothyroid muscles of voiceless obstruents raise F0 (Löfqvist et al. 1989, Honda 2004).

Differences in pitch after voiced and voiceless obstruents are still significant after 100 milliseconds, well into the pronunciation of the vowel, though not through the whole duration of the syllable (Hombert et al. 1979). Prevocalic segments thus have a microprosodic effect on the pitch, affecting pitch at the vowel onset but not over the entire syllable. In E Lalo's tone change, prevocalic segments' microprosodic effects directly influence the development of contour tones. As seen in Eastern Lalo's Tone *1 split, voiced prevocalic consonants depressed only the pitch onset, not the pitch over the entire syllable. The result is a new rising contour tone. According to Pittayaporn's (2007) tone change model, prevocalic segments' local effects are more likely to affect only the pitch onset, not the pitch over the entire syllable. For example, in Thai, aspirated obstruents conditioned a low-rising tone; this, like the Eastern Lalo Tone *1 split, is a case where prevocalic segments only affected the tonal onset, not the entire syllable.

Insight into the probable path of tonal change may be gained by comparing CW-QY's tonal system, which is the most conservative, to the more innovative Eastern tonal system. The subphonemic variation seen in CW-QY today, as shown in Figure 5-4, was probably found in Proto Eastern Lalo. Because the original pitch target of Tone *1 was /H, h/, voiced segments' lowering of the pitch onset caused the pitch to take on a rising contour, creating a rising allotone. In E Lalo, the rising allotone became contrastive after the loss of *preglottalisation, and the difference between the new rising tone and all other tones became enhanced. The new rising tone was perceived as a contour tone, contrastive not only in pitch height, but also in pitch contour. Pittayaporn (2007b) predicts that, in order to maintain perceptual maximisation, F0 excursion (i.e., the difference between maximum and minimum F0) increases to maintain the contrast. E Lalo's tone change fits this prediction: the pitch onset has fallen from the High register to the Low register, and the F0 excursion is greater in E Lalo than in C Lalo's rising allotone.

E Lalo has shifted from the Proto Lalo system of level pitches and harsh versus non-harsh phonation to a system containing both level and contour pitches, all in modal phonation. Phonologically, the low-rising tone (/L, lh/) contrasts with Tone *2's low tone (/L, l/), and Tone *L's mid-falling /L, hl/. Although low-rising shares the lower register with the low tone and mid-falling tone, all are phonemically contrastive. Low-rising is not simply filling in the low register slot in the system. The salient cue that distinguishes the new tone is its rising contour. This is in contrast to Central Lalo, in which the tones can be phonologically represented as level tones.

In W Lalo's Tone *1 split, preglottalisation blocked the spread of low-rising; syllables with *preglottalised initials maintained the original high, level pitch, while all other syllables took a low-rising pitch. Syllables with *preglottalised initials began with glottal closure. To produce a glottal stop, vocal folds adduct through movement of the arytenoid cartilages and through increased tension in the cricothyroid muscles, the same muscles that control pitch. The increased tension in the vocal folds increases both voice onset time and pitch, thereby decreasing the likelihood of a lowered pitch onset. As discussed in 5.4.2 below, glottal constriction is also the underlying phonetic motivation for the raising of pitch seen in *L and *H tone changes.

5.4.2 Interaction between harsh phonation and pitch in *L and *H tone changes

W, YL, and XZ tone changes in *L and *H show the influence of harsh phonation on pitch. Glottal constriction in the form of harsh phonation conditioned the raising of pitch height, just as *preglottalisation blocked the spread of a low-rising tone. As seen in the tonal inventories of W varieties, *L has become the highest tone in the system, while *H has merged with *1 as mid-high. As described in §5.2, Proto Ngwi's syllable-final *stops merged to a post-vocalic glottal stop, which by the Proto Lalo stage had conditioned harsh phonation on the vowel. Harsh phonation then

conditioned raising of the pitch height, resulting in *L (L, harsh) > /H, h/ and *H (H, harsh) merging with the remnants of Tone *1 to mid-high (/H, l/).

As in §5.4.1, comparison of CW-QY's acoustic tonal analysis to W Lalo varieties' tonal systems yields insight into the probable phonetic basis of the W Lalo tone changes. In the acoustic analysis of CW-QY (Figure 5-4), the pitch heights of both *L and *H are higher than their modal phonation counterparts in *2 and *3, probably a result of the increased tension in the vocal folds that occurs in the articulation of harsh phonation. I suggest that these subphonemically higher pitches existed in Proto Lalo as well. This hypothesis fits both the synchronic evidence and provides maximally simple development paths for the tone changes seen in all Lalo varieties that have lost distinctive harsh phonation. In W Lalo, as harsh phonation was lost, the subphonemic higher pitches became contrastive, resulting in *L's leap to the higher register and *H's merger with the remaining high pitch syllables of Tone *1. XZ and YL also show harsh phonation interacting with the perception of pitch, as in YL's merger of *H and *L to the highest tone in the system, and XZ's raising of *L to merge with *H and *3 to mid level.

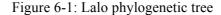
5.5 Summary

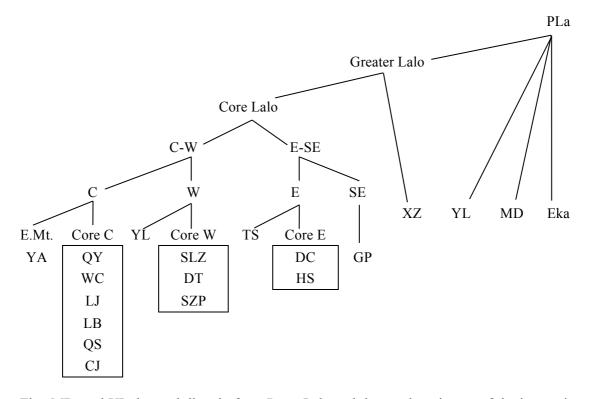
New data from Lalo varieties show interesting interactions between laryngeal gestures and pitch, leading to several different tonal development paths and a striking diversity of tonal inventories. E Lalo's Tone *1 split, also seen in CE-YA, W-YL and XZ, shows voiced prevocalic segments' microprosodic lowering of the pitch onset resulting in the introduction of a rising contour tone into a system that previously only had level pitches. W Lalo's Tone *1 split shows *preglottalisation as a key conditioning factor in maintaining Tone *1's original high level pitch, while all other Tone *1 syllables become low-rising. YL's Tone *1 split probably occurred after the loss of *preglottalised initials, and shows the rising tone in all syllables except for those with voiceless initials.

The correlation between glottal constriction and pitch height is seen again in Lalo varieties' changes in *L and *H. Harsh phonation consistently conditions raising of the pitch. This research is one of the first to link this effect to the physiology of the production of harsh phonation, only recently understood through laryngoscopic studies (Edmondson & Esling 2006). As harsh phonation is lost, pitch height and contour may shoulder the burden of maintaining tonal contrasts, unless the contrast is simply lost, as in E Lalo's *3.*H merger. The resulting mergers or phonetic tone changes vary according to variety.

W varieties show an intriguing dialect variation in the phonetic value of *L, with some varieties showing high falling, others high rising, and still others high rising falling, as described in §5.3.3. Peak sliding (from Pittayaporn (2007b)) is offered as a phonetically based, diachronic explanation for the synchronic, dialectal variation in the realisation of *L's contour shape in W varieties.

6 Diachronic subgrouping of Lalo varieties


6.1 Introduction


This chapter presents Lalo diachronic subgroups and the evidence in support of the proposed subgrouping. I first review previous subgrouping attempts and explain why they are inadequate. I then summarise the subgrouping criteria used and the definitive innovations used as evidence for the subgrouping. The rest of the chapter details the specific innovations that define Lalo subgroups and the contact relationships between certain Lalo varieties that have influenced their development. Parts of this chapter appear in Yang (2009b).

Previously, there have been no rigorous attempts at subgrouping Lalo dialects, as very few Lalo varieties had even been documented (see §1.2). Chen et al. (1985), based on linguistic survey data from the 1950's, describes Lalo as having two dialects, East Mountain and West Mountain, divided by the valley that divides Weishan into eastern and western halves (see Figure 1-5). Until now, this taxonomy was accepted as an adequate picture of Lalo dialect diversity as a whole. Later large scale surveys of Yi languages (Wang 2003, Zhu 2005) echo Chen et al. in applying the East-West dichotomy to Lalo as a whole. 'East Mountain' served as a category for any variety that was not West Mountain, including groups ranging from Midu in the east to as far west as Baoshan (Jin 1983).

However, the labels East and West Mountain only have relevance within Weishan County. Lalo speakers within Weishan recognise these two groups and use the labels to distinguish themselves, using terms such as 'Dongshan-pa' and 'Xishan-pa'. 'Donghan' (East Mountain) and 'Xishan' (West Mountain) are Chinese geographic terms, and -pa is the Lalo male suffix that serves as a generic person marker. Even in neighboring Dali Municipality, these labels are not recognised, for two reasons. First, the geographic motivation behind the labels has already ceased to be relevant, as the Weishan valley does not extend as far north as Dali Municipality. More significantly, Lalo speakers in Dali Municipality belong to the distinct E Lalo subgroup, and are highly aware of the differences between themselves and their Central neighbors. E-HS speakers use the loconym [ci³³mi³³kɛ³³pa²¹], referring to Dali, not Weishan, and call all Lalo from Weishan 'Misha-pa,' regardless of whether they are East or West Mountain. The East Mountain label, as used by previous researchers, conflated the true East Mountain in northeast Weishan and the Eastern Lalo spoken in Dali Municipality. The incorrect perception that Lalo in that area were identical was probably due to their geographic proximity and similar ethnic costume, and the lack of linguistic and sociolinguistic data. Thus, Lalo speakers' inside perspectives on dialect differences and the academic representation of Lalo dialects have been widely disparate until now.

This chapter demonstrates that both East and West Mountain Lalo belong to the Central Lalo subgroup, which in turn is only one of several Lalo subgroups. The proposed Lalo phylogenetic tree is seen in Figure 6-1 below. As there are additional Lalo varieties that have not yet been documented, the subgrouping presented here remains open to expansion and revision. The reconstruction of Proto Lalo in Chapter 4 forms the foundation upon which the proposed subgrouping is formulated. Reconstructing Proto Lalo is a necessary step to subgrouping Lalo varieties, as only after the proto-language has been established does it become clear which shared features are the result of retention or innovation after the Proto Lalo stage.

Eka, MD, and YL descend directly from Proto Lalo and do not share in any of the innovations that define Greater Lalo or subsequent subgroups. Ancestors of the Eka emigrated out of the Lalo homeland area in Dali around the beginning of the Qing dynasty (~1644), according to their oral history and the *Gazetteer of Shuangjiang County* (Zhao 1995). Ancestors of MD speakers took part in a later migration out of the Weishan/Nanjian area, probably around 200 years ago (GMXZ 1995). It is unknown when the ancestors of YL emigrated out of the southern Dali area. Core Lalo varieties plus XZ share an intermediate phase I refer to as Greater Lalo. Core Lalo, which excludes XZ, includes the four dialect clusters C, W, E and SE. C and W form the C-W subgroup, while E and SE form the E-SE subgroup. Within C, W, and E, there is a distinction between central (Core E, Core W, Core C) and peripheral varieties. Core Lalo varieties are all located in or originate from southern Dali Prefecture, the probable area of origin for all Lalo, an area with the earliest historical accounts of a Lalo presence, the highest concentration of Lalo population, and the greatest linguistic diversity. Within Core Lalo, Central Lalo is the most populous group and the one most closely linked historically to the Meng clan of the Nanzhao Kingdom (see §1.3.4).

Subgrouping criteria are phonological, lexical, and morphological innovations that satisfy the standards set out in §1.4.4) linguistic complexity of the innovation, 2) ecological distinctiveness of the innovation, and 3) sociohistorical plausibility (Toulmin 2009). Single sound changes are not considered strong enough evidence for subgrouping, since most types of individual sound changes can diffuse through contact. Rather, a set or cluster of innovations is required as evidence of shared history. Table 6-1 below summarises the innovations that define Lalo subgroups. Relative chronology of changes is marked with ordinal numbers.

Groups	Innovations
PLa	PN $*2 > *L/*$?-+obstruent+*a_
	1) PN *o, $u > o/b_{-}$
	2) PN *o > wi/labial stops_
Eka	a) *1 > low-rising/elsewhere
	b) Splits in *1, *2, *H, *L to high level [55] under various
	conditions
YL	a) *1 > mid/*[-voi]_, low-rising/elsewhere
	b) *L, *H > high (loss of harsh phonation)
MD	a) *y > \underline{a}
	b) $\overline{\mathbf{o}} > \overline{\mathbf{i}}/[+\mathrm{back}]_{-}$
	c) *e, * $\varepsilon > \varepsilon$ a) 'crow' (n) *a ³ nak ^H ('the black one')> *a ¹ ŋja ^H b ε ^H
Greater Lalo: Core plus	a) 'crow' (n) *a ³ nak ^H ('the black one')> *a ¹ nja ^H b ε ^H
XZ	$(\text{'bird'}+b\underline{\epsilon}^{H})$
	b) 'taro' * $a^{1}t \int^{h} \underline{o}^{H}$
XZ	*H, *L, *3 > mid (loss of harsh phonation)
Core Lalo: C-W-E-SE	*-tsa ³³ plural marker in personal pronoun paradigm
E-SE	a) $y \ge i/[+round, -high]_$
	b) $\circ i/[-back]$ and $[+back,+nasal]_$
SE	a) *2/*ʃ, *?_, *[-voi, +sg]> high
	b) *L/*[-voi] > high
Core E: E-HS & E-DC	*y, *o > $i/elsewhere$
E-TS	a) *y, *o > u/[+back, -son]_
C-W	a) $*g > y/_*a$, $*a\eta$, $*\varrho$
	b) 'young' > 'soft years'
С	a) $*e > i$
	b) $\underline{e} > \underline{i}/[+high, -back]_$
	c) * $\underline{\varepsilon} > \underline{a}/[+back]_{-}$
	d) $a > \epsilon / C_{[+anterior, +strident]}$
East Mountain (CE-YA)	a) *f, *v > [+high, +back]/_[+high,+back]
Core C	a) $*_{\underline{\varepsilon}} > \underline{a}/\text{elsewhere}$
W	a) $L > high$
	b) *1/+?_> mid-high
	c) *H > mid-high
Core W	a) *1 > low-rising/elsewhere
(excludes W-YL)	b) metathesis of initials in 'grasshopper'
	c) shared tone sandhi patterns: high > mid-high/_high

Table 6-1: Innovations that define Lalo subgroups

6.2 Membership in Lalo

All Lalo varieties share certain sound changes: a conditioned split in PN Tone *2, the merger of PN *0 and *u after *b to *0, and the subsequent unpacking of *0 to *wx and then fronting to *wi after all labial stops. There is evidence of these changes in all Lalo varieties, but not in any other Ngwi language. Examples are given in Table 6-2. In PLa's Tone *2 split, described in §5.2.2, preglottalised obstruents with rhyme *-a conditioned Tone *2 syllables to shift to the *L tone category. The Lalo Tone *2 split, because of its complex conditioning environment and its exclusive occurrence in Lalo varieties, provides critical evidence for membership as a Lalo language. The shared changes in *0 and *u, and the shared relative chronology of those changes, are also diagnostic of Lalo membership.

W-

SLZ

pa⁵³

şa⁵³

 $dz\gamma^{24}$

dzj³³

 $dz\gamma^{21}$

tshj21

 $p\dot{i}^{21}$

 $dz\gamma^{2\overline{4}}$

dzj³³

dzj²¹

tshj21

 pi^{21}

CW

QY

pa²¹

<u>şa</u>²¹

vi⁵⁵

vi³³

vi²¹

fi²¹

pi²¹

By the PLa stage, PN *u had merged with *o after *b, but not after *p or *ph, as discussed in §4.3.2.2. The evidence for this conditioned merger is seen in two examples, '(for an animal) to crow, to call' and 'owe,' both given in Table 6-2. 'To crow' PB *mbu¹ shows similar reflexes as 'to carry' PN *bo², making the merger unambiguous. While there is not yet a PB reconstruction of 'to owe', it is probably either *mbu³ or *bu³, given its reflex in Lisu as [bu³³] and in Sonaga as [by³³]; both Lisu and Sonaga show [bo] as the reflex of PN *bo. In PLa, there is no contrastive *bu, whereas PLa *pu and *po show distinct developments, as do *phu and *pho. The conditioned *u and *o merger must be ordered before the *bo > *bwi change also seen in PLa, as the first change feeds into the second.

After PN *u and *o partially merged, PN *o > *wr after all labial stops, a type of phonetic unpacking, and then $*w_{2} > PLa *w_{1}$. The features of the *o were first unpacked into two sounds, one with [+round] and the other with [-high, +back]. The second sound then moved frontward to *i, where it remained in most Lalo varieties. In some varieties (C, MD, YL), the *i later moved forward to [i]. *bwi was not contrastive with *bo, but was rather the phonetic realization of *bo at the PLa stage. In C-W, XZ and E-TS, the labiovelar glide became a labiodental fricative, e.g., *bwi > *bvi. The resulting affricates *bv, *pf, and *phf later became alveolar affricates in W, and either palatoalveolar affricates or labiodental fricatives in C, developments that are described in more detail in §6.6.3. MD, YL, E-DC, E-HS, and SE-GP dropped the labiovelar glide. *bwi remained distinct from *bi in all varieties except Eka, E-DC, E-HS and SE-GP, as can be seen by contrasting 'to carry' PLa *bwi², with 'dare,' PLa *pi². Table 6-2 gives examples; the development of *o in other environments is discussed in §4.3.2.4.

PN/					E-	E-	SE-G	
PB	PLa	Eka	MD	YL	DC	HS	Р	XZ
?-pa²	pa₋	$p\underline{o}^{_{21}}$	pā ²¹	pa ⁵³	pu ⁴ 2	p <u>2</u> ²¹	po ⁵⁵	po ³³
?-pa² ?-ra²	∫a₋	SQ^{21}	sa ²¹	sa ⁵³	s3 ⁴²	S <u>2</u> ²¹	so ⁵⁵	§0 ³³

bə²⁴

bə33

 $b \mathfrak{d}^{21}$

 $p^h a^{21}$

 $p \vartheta^{21}$

bi³³

bi33

bi21

 $p^{h}i^{21}$

pu²¹

bi⁵⁵

bi33

bi21

 $p^{h}i^{21}$

pi²¹

bi24

bi³³

 bi^{21}

 $p^{h}i^{2}$

 pi^{21}

bi²⁴

bi33

 bi^{21}

 $p^{h}i^{21}$

 $p\dot{t}^{21}$

 $bi^{\overline{44}}$

bi33

 bi^{21}

 $p^{h}i^{21}$

pi⁵⁵

mbu¹

bu³

bo²

po²

bwi1

bwi³

bwi²

phwi2

pi²

Gloss

male

suffix

sad

crow

owe

carry

price

dare

Table 6-2: PLa innovations

Table 6-3 below shows lexico-semantic innovations for 'wife' and 'bat,' that, while not diagnostic of Lalo membership, are characteristic of Lalo varieties; that is, these innovations are found in most Lalo varieties but not in any other Ngwi language. E Lalo varieties do not show these particular innovations, but they are still grouped with Lalo because of their participation in the phonological innovations. In both cases, E Lalo varieties show forms that are very similar to those found in neighbouring languages, suggesting the possibility of contact-induced change.

'Bat,' PLa *a¹py^H, is a nominalised form of the verb 'to fly,' PLa *by¹. The first syllable is the nominalising prefix *a1- seen in many animal names and kinship terms. In the second syllable, a nominalisation of the verb 'to fly,' the initial has become devoiced and the tone reflects PLa *H, hence *py^H. Both changes are probably due to the presence of the Proto Ngwi *?- prefix, functioning as a nominaliser of the verb, one of the many semantic functions attributed to the PTB/PB glottal prefix (Matisoff 2003). E-DC and E-TS show an alternate form with possible reduplication of *py^H; this form may be due to contact, as similar forms are also seen in Zibusi, Laizisi, and Sonaga, located just north of the Lalo-speaking region (Castro et al 2010). No Lalo variety reflects the PN reconstructed form *bo1, which would have yielded either [dz]²⁴] (W, XZ), $[ba^{24}]$ (E, Eka), $[bi^{33/55}]$ (YL/MD) or $[vi^{55}]$ (C).

Southeastern Ngwi languages also show a nominalised form for 'bat' derived from the verb 'to fly,' in which the compound is a reflex of 'to fly' plus the *wa nominalising suffix, with regressive tonal assimilation, e.g., Phuza [d\ze^21va^21] (Pelkey 2011). Although both SE Ngwi and Lalo show the replacement of 'bat' by 'flyer,' the lexicalisation strategies and resulting compounds are different and probably not genetically related. Some Central Lalo varieties have shifted 'the flyer' compound to refer to 'swallow (n)' instead of 'bat'.

The lexical compound for 'wife' found exclusively in most Lalo varieties reflects PLa *m ϵ^2 ?ny¹ and represents a semantic shift of 'daughter-in-law/younger sister' > 'wife'. Proto Ngwi *mi² 'female' is retained in the first syllable, but the second syllable descends from PTB *s-nam 'daughter-in-law,' instead of PN *ya. Matisoff (2003: 251) finds *s-nam occurring in Lahu no²¹ 'term of endearment usable to persons of either sex'. PN *?əs-nam¹ 'younger sister of a male' (cf. Burmese hnama) may also descend from PTB *s-nam and is reflected in PLa as *?ny²ma³. The tone change from Tone *1 to Tone *2 in PN *?əs-nam¹ > PLa *?ny² is unexpected, but the initial and rhyme are regular. In all Lalo varieties, 'daughter-in-law' PLa *k^hi²ma³ reflects PN *krwe², descending from PTB root *krwəj, an alternate form for 'daughter-in-law'.

Eka has lost PLa *m ϵ^2 and reflects only the second syllable *?ny¹. The form at the PLa stage was most likely *m ϵ^2 ?ny¹, rather than just *?ny¹. PLa *m ϵ^2 is a retention from PN *mi², so reconstructing PLa *m ϵ^2 ?ny¹ avoids the awkwardness of first losing *m ϵ^2 and then regaining it in most other Lalo varieties. In E Lalo, 'wife' reflects *k^hi²ma³, a descendant from the PTB alternate form for 'daughter-in-law,' instead of PLa *m ϵ^2 ?ny¹; the lexical shift of 'daughter-in-law' > 'wife' is still apparent, but has involved a competing form. E varieties' modern form for 'daughter-in-law' is a compound of 'son' plus 'wife,' e.g., E-HS [zɔ²¹k^hi²¹mɔ³³], [zɔ²¹] meaning 'son'. This same pattern is seen in Eastern Lipo, Laizisi and Sonaga, and contact with these or related languages may have influenced E varieties.

Gloss	PN	PLa	Eka	MD	C-CJ	SE-GP	E-DC
	*bo1						
bat	no/na ^{3/2}	a¹py ^H	a ³³ pi ⁵⁵ jo ³¹	a ⁵⁵ pa ³³	a ⁵⁵ py ³³	ha³³pu ⁴⁴	pə ⁵⁵ pə ³³
		me ²					
wife	*mi² ya²	?ny¹	ni ²⁴	ņ²¹nə ⁵⁵	ma ²¹ ny ⁵⁵	me ²¹ ny ⁴⁴	tehi21mo33

Table 6-3: 'bat' and 'wife'

6.3 Peripheral varieties Eka, YL and MD

Eka, YL and MD directly descend from Proto Lalo and do not share in any Greater Lalo innovations. Instead, they show divergent developments that make them decidedly different from any other Lalo variety. As discussed in §5.3.4, YL shows a merger of *1 and *3 to mid and *L and *H to high. While MD does not show distinctive tonal innovations, it shows a number of phonological innovations that distinguish it from other Lalo varieties, such as PLa *e merging with * ϵ to [ϵ] and harsh *y becoming [$\underline{\alpha}$], and *o merging with *i to [\dot{i}] after velar initials.

MD's autonym / $lo^{21}lo^{33}pa^{21}/$ is confusingly similar to the Lolo autonym ($/lo^{21}lo^{33}/$); however, $/lo^{21}lo^{33}pa^{21}/$ could not have descended from the Proto Lolo autonym * $lok^{1}lo^{3}$ (Bradley 2004), as evidenced by the phonation differences between Lolo and MD. In MD, the first syllable is modal and the second is harsh, the opposite of the expected reflex from Proto Lolo. MD's autonym can be systematically derived from PLa * $la^{2}lo^{H}pa^{L}$, given the MD vowel change *a > o. Also, MD shares in all distinctive PLa innovations, so there is little question of MD's membership as a Lalo language.

Eka is located in Shuangjiang County, southern Lincang Prefecture at the far edges of Lalo geographic distribution. Not only does Eka fail to share in any of the innovations that define Greater Lalo, but it also shows divergent developments that no other Lalo varieties show. As described in §5.3.4, Eka's distinctive tonal innovations distinguish it from any other Lalo variety: Eka shows several initial conditioned micro-splits in *1, *2, *H, and *L that result in the creation of an additional high level [55] tonal category. The result is a new [55] tone added on top of the existing tonal system, similar to the diachronic development of Nisu's [55] tone.

At first glance, Eka diverges from all other Lalo varieties to the extent that its status as a member of the Lalo language group is in question. The Eka autonym $(/o^{21}k^{h}a^{24}/)$ cannot be traced back to PLa *la²lo^Hpa^L, but other sociohistorical and linguistic evidence identify Eka as a

descendant of Proto Lalo. Elders in the Eka community claim that the group did call itself /la²¹lu³³po²¹/ at one time in the past, though younger speakers do not recognise the term now. Exonyms given to the Eka by neighboring groups all link the Eka to Menghua or Mengshe, the old name for the Weishan/Nanjian area: the Han Chinese call them 'Menghua people,' the Black Lahu call them Mika, and the Dai call them Mangmao. In addition, the oral history of Eka speakers links them to migration from the Dali area several hundred years ago. Eka speakers claim to have emigrated from the Weishan area approximately 300 years ago, around the beginning of the Qing dynasty, a date which is also reported in the *Gazetteer of Shuangjiang County* (Zhao 1995). Because of Eka's participation in the PLa phonological innovations, its classification as a Lalo variety is reasonable.

6.4 Greater Lalo

Greater Lalo groups XZ with the Core Lalo group based on two lexico-semantic innovations. XZ alone shares these innovations with other Core Lalo varieties, suggesting a closer relationship to Core Lalo than others show. XZ and W-SLZ varieties are both spoken in Wafang District in Baoshan, so there is a question of whether these lexico-semantic innovations are in fact loan words from W-SLZ to XZ. However, XZ reflexes reflect regular diachronic development from Proto Greater Lalo and differ from W-SLZ's reflexes, so the possibility of loans from W-SLZ is discounted.

Table 6-4 below shows the two Greater Lalo lexical innovations, in 'crow (n)' and 'taro'. 'Crow (n)' in peripheral Lalo varieties reflects PN *a³ nak^H, e.g., YL [a⁵⁵ni⁵³], probably related to 'black,' PN *nak^H, as crows are black in color. In Core Lalo and XZ, 'crow' instead reflects a compound of 'bird,' PLa *a¹ŋja^H, plus a following syllable of unknown meaning, *b $\underline{\epsilon}^{H}$ ('speak' is a possible meaning, although 'speak' in PLa is *b $\underline{\epsilon}^{H}$, not *b $\underline{\epsilon}^{H}$). Reflexes of 'bird' and 'black' are included in the table for comparison. SE-GP is unusual in combining the reflex of 'black' *a³ nak^H with *b $\underline{\epsilon}^{H}$. 'Taro' is a Greater Lalo innovative compound *a¹tJ^ho^H, not seen elsewhere in Lalo or other Ngwi languages. XZ's reflex of 'taro' shows the second syllable's vowel assimilating to the frontness of the first syllable's vowel, something that does not occur in W-SLZ.

Gloss	PN	PGLa	XZ	W-SLZ	SE-GP	E-TS	C-QS
		a¹ŋja ^H		a ⁴⁴ na ⁴⁴	a ⁴⁴ ni ⁴⁴		$a^{55}\eta \underline{a}^{33}$
crow	a³ nak ^H	bք ^н	a ⁵⁵ na ³³ bɛ ³³	be ⁵⁵	be ³³	a ⁵⁵ ŋɛ³³ bɛ³³	ba ³³
bird	s-ŋjak ^H	a¹ŋja ^H	a ⁵⁵ na ³³	a ⁴⁴ na ⁴⁴	a ⁴⁴ ŋa ³³	a ⁵⁵ ηε ³³	a ⁵⁵ ŋ <u>a</u> ³³
black	nak ^H	nak^{H}	ne ³³	ne ⁴⁴	ni ⁴⁴	ni ³³	nig ³³
taro	blum ²	a¹t∫ho ^H	sj ³³ te ^h i ³³	a^{44} ts ^h u ⁴⁴	tsho ³³ §J ²¹	$a^{55}ts^{h}u^{33}$	yi ⁵⁵ tsho ³³

Table 6-4: Greater Lalo lexical innovations for 'crow (n)' and 'taro'

6.5 Core Lalo: C-W-E-SE

Core Lalo, one node below Greater Lalo, excludes XZ and consists of the four major Lalo dialect clusters, C, W, E, and SE. Core Lalo varieties are all located in or originated from the traditional Lalo homeland in southern Dali Prefecture, encompassing Weishan, Nanjian, Yongping, Midu, and Yangbi counties, along with Dali Municipality; these are the six counties/municipalities that show the most concentrated Lalo population and the longest historical presence, possibly dating back to the Wu Man of the Nanzhao era (8th and 9th centuries A.D., see §1.2.4). The key morphological innovation that defines this subgroup is an innovative *-tsa³³ plural marker in the personal pronoun paradigm with concurrent tonal assimilation, as shown in Table 6-5 below.

Gloss	PN	PCoreLa	YL	W-SLZ	E-DC	SE-GP	CW-QY
1SG	*C-ŋa¹	ŋa¹	ŋa ³³	ŋa ²⁴	ŋo ⁵⁵	ŋa ⁴⁴	ŋa ⁴⁵
1PL EXCL	*C-ŋa¹ ?-way²/³	ŋa³ tsa³	/	/	ŋɔ³³tsɔ³³	ŋa³³tso³³	ŋa³³tsa³³
1PL INCL		?ŋa²	ŋa ⁵³	$\tilde{0}^{21}$	/	na ⁵⁵	a²va²
2SG	*naŋ1	(?)ni ¹	ni ³³	ni ²⁴	ni ⁵⁵	ni ⁴⁴	ŋ ⁵⁵
2PL	*naŋ¹ ?-way²/³	(?)ni ³ tsa ³	/	ņ³³tsa³³	ni ³³ tso ³³	ni ³³ tso ³³	ņ ³³ tsa ³³
2PL	non-Core:	na²	na ²¹	/	/	/	/
3SG	*3aŋ²	заŋ³	ja ³³	ja ³³	ja ³³	zi^{21}	wu ³³
3PL	*ʒaŋ² ?-way²/³	3aŋ³ tsa³	/	i ³³ tsa ³³	ja ³³ tso ³³	zi ³³ tso ³³	wu ³³ tsa ³³
3PL	non-Core	zaŋ²	ja ²¹	/	/	/	/

Table 6-5: Core Lalo innovative -tsa³³ plural marker in pronoun paradigm

The Core Lalo personal pronoun paradigm has singular forms $na^1 (1SG', *(?)ni^1 (2SG'))$ and $(3)a\eta^3 (3SG')$. The suffix *-tsa³³ is attached to the singular form to mark plural. $(?)ni^1 (2SG')$ reflects contact with Mandarin ($[ni^{35}] (2SG')$), instead of the expected reflex $na\eta^1$ from PN $na\eta^1$. Some Core Lalo varieties distinguish exclusive and inclusive first person plural forms; 1PL exclusive reflects PLa na^3 tsa³, e.g., C-LB's 1PL EXCL is $[na^{33}$ tsa³³]. 1PL inclusive is tentatively reconstructed as na^2 , e.g., C-LB's 1PL INCL is $[u^{21}]$ (metathesis of initial leads to $na^2 > a\eta^2 > u^2$ in this variety).

In 1PL EXCL and 2PL, Tone *1 of the first syllable is assimilated to Tone *3 of the *-tsa³³ plural marker. Thus CW-QY's '1SG' is [na⁵⁵], but 1PL EXCL is [na³³tsa³³], with both syllables having mid pitch, rather than the expected [na⁵⁵tsa³³]. In some Core Lalo varieties (i.e., W-SZP, W-SLZ, W-DT, C-WC, C-QS, C-LJ, C-CJ), the distinction between exclusive and inclusive for 1PL is lost, with the 1PL INCL form *?na² retained as the sole form. These varieties still show the innovative *-tsa³³ plural marker for 2PL and 3PL. The combination of the *-tsa³³ plural marker *and* tonal assimilation makes this a valuable innovation set for subgrouping. The likelihood that these shared forms came about through borrowing or independent development is small.

YL, seen in the table above, and XZ show a different paradigm: 1PL INCL is generalised (as in other varieties, described above) and 2PL and 3PL reflect * na^2 and * ang^2 , respectively. These monomorphemic plural pronouns are an inheritance from a stage earlier than PLa, as cognates can be found in the non-Lalo Central Ngwi languages Nanhua Lolo (Sun 1991) and Kuansi (Castro et al. 2010). They may be an innovation within a subgroup of Central Ngwi. Eka and MD show plural markers that probably reflect the PN plural marker, e.g., in MD, 1PL EXCL is [$a^{55}xi^{33}$], and in Eka, [$no^{55}so^{33}$]. Additionally, neither Eka nor MD shows the tonal assimilation that most Core Lalo varieties show.

The innovative plural marker *-tsa³³, seen in all Core Lalo varieties, is diagnostic of Core Lalo membership. There are other innovations that are seen in most Core Lalo varieties, but not in all. The distribution of these innovations, seen in Table 6-8, may be best explained in terms of the variable spread of the innovations across lects in the Core Lalo area. These innovations are not diagnostic of Core Lalo membership; rather, they reflect changes that have diffused across the Core Lalo region through contact. As all Core Lalo varieties are located in or around Southern Dali Prefecture, it is not surprising that some changes have diffused across the region. The innovations are 1) *p > k and *p^h > f before *u and 2) an additional form for 'white' (PLa *?ve^H) besides inherited PN *plu¹, possibly a conversion from the verb 'to bloom/blossom'. No non-Core varieties take part in this set of changes, suggesting that these innovations spread after non-Core groups left the Lalo homeland area.

Unaspirated *pu becomes /ky/ in all Core Lalo varieties except C-WC and CW-QY, which instead retain /p/. Aspirated *p^hu becomes /fy/ in all Core Lalo except W-DT, where it remains /p^h/, and C-LB and W-YL, where it becomes /k^h/. Examples of *p > k and 2) *p^h > f before PLa *u are given in Table 6-6 below. It is unusual that unaspirated and aspirated stops should develop into

such different segments in the same environment. C-LB and W-YL's parallel development of both *p and *p^h to velar stops is a less unexpected change. However, there was no shared intermediate stage in which *p^hu > *k^hu and then became /fy/ in other Core Lalo varieties. That would entail a merger of *p^hu and *k^hu, but no such merger occurred. In Core Lalo, *k^hu becomes /k^hy/, e.g., PLa *k^hu¹ 'to burn' > C-WC's /k^hy⁵⁵/, and only *p^hu becomes /fy/, e.g., PLa *p^hu¹ 'silver' > C-WC's /fy⁵⁵/. C-LB and W-YL, two neighboring varieties in Yongping County, innovated the *p^hu > *k^hu merger separately from the rest of Core Lalo. CE-YA probably had /f/ for *p^h at an earlier stage, but the *f has now weakened to /x/. The spread of this innovation in SE-GP is incomplete, perhaps reflecting its geographic marginality on the eastern boundary of the Core Lalo area: /p/ and /p^h/ are reflected before *u in some syllables (e.g., *pu¹ 'porcupine' and *p^hu¹ 'silver'), but in others (e.g., *pu¹ 'grasshopper' and *p^hu³ 'open'), the expected Core Lalo innovative reflex is found. Non-Core varieties retain the PLa labial stops before *u in all environments.

A phonetic motivation for the different developments of unaspirated and aspirated labial stops may be the different levels of intensity of the coarticulated [^f] in the transition between the stop and the rhyme. PLa *u was most likely pronounced with lip compression, a manner of articulation in which the lower lip pushes upwards to the upper lip. Lip compression is seen in many Ngwi languages, usually transcribed as the syllabic fricative [γ]. Lip compression of the vowel probably spread to the labial initial, resulting in the insertion a labiodental fricative in the transition from initial stop to vowel, i.e., [$p^{hf}\gamma$]. The labiodental affricate *[p^{hr}] then simplified to /f/ before / γ /. *p probably also had a labiodental fricative in the vowel-rhyme transition, but with less noise than the aspirated stop, making [p^{f}] the less likely candidate for merger with *f. Instead of simplifying to *f, *p became unaspirated stop /k/ and thus avoided a merger with *p^h.

			W-	W-	E-	SE-	CE-	C-	C-	CW
Gloss	PLa	C-LB	YL	SZP	DC	GP	YA	LJ	CJ	QY
porcu- pine	*pu1	ky ⁵⁵	ky55	/	kڀ ⁵⁵	pi ⁴⁴	kə ⁵⁵	ky ⁵⁵	ky ⁵⁵	/
steam	*pu ²	ky ²¹	ky ²¹	ky ²¹	<u>k</u> ڀ ⁴ 2	ku ⁵⁵	kə²1	$k\gamma^{21}$	$k\gamma^{21}$	pi ²¹
open	$p^{h}u^{3}$	$k^{\rm hf} \gamma^{\rm 33}$	$k^{\rm hf}\gamma^{\rm 33}$	fy ³³	/	fu ³³	Xə ³³	fy ³³	fy ³³	fy ³³
silver	$p^{h}u^{1}$	$k^{\rm hf} \gamma^{55}$	$k^{\rm hf} \gamma^{\rm 55}$	fy ²⁴	f۲ ⁵⁵	$p^{h}\dot{i}^{44}$	xə ⁵⁵	fy ⁵⁵	fұ ⁵⁵	fy ⁵⁵

Table 6-6: Phonological innovations in *pu and *phu

One lexical innovation that was adopted by most Core Lalo varieties is the addition of a synonym for 'white,' seen in Table 6-7 below. Most Core Lalo varieties have two words for white, one reflecting PN *plu¹ and one reflecting Proto Core Lalo * $?ve^{H}$. * $?ve^{H}$ possibly reflects PB/PN *s-wat^H 'flower/blossom (v)'. For PLa 'flower,' the innovative form *ga¹lu³ has replaced PB/PN *s-wat^H, although CW-QY has combined both forms, i.e., [$ya^{55}la^{33}?ve^{33}$]. The innovative 'white' may be a lexical change in which 'flower/blossom (v)' is converted to an adjective to convey the colour 'white,' a common colour of flowers.

Table 6-7: Lexical innovation for 'white'

	P-Core		W-	W-		C-		C-	CW
Gloss	Lalo	E- HS	SZP	YL	C- LB	WC	C- LJ	CJ	QY
bloom	$2ve^{H}$	vi ³³	ve ⁴⁴	ve ⁴⁴	vie ³³	v <u>i</u> e ³³	væ ³³	v <u>i</u> e ³³	?v <u>e</u> ³³
white	?ve ^H	vi ³³	ve ⁴⁴	ve ⁴⁴	v <u>i</u> e ³³	v <u>i</u> e ³³	væ ³³	v <u>i</u> e ³³	$2v\bar{\epsilon}^{33}$
white	$p^h u^1$	fڀ ⁵⁵	fy ²⁴	$k^{\rm hf} \gamma^{55}$	$k^{\rm hf}\gamma^{55}$	hə ⁵⁵	fy ⁵⁵	fy ⁵⁵	fy ⁵⁵

Table 6-8 presents the distribution of the lexical and phonological innovations discussed above; a check (\checkmark) denotes the locations that show a particular innovation. Almost all Core Lalo varieties share in most or all innovations described in this section. The lexical innovation 'blossom' > 'white' is seen in the fewest varieties, and only one E Lalo variety shows this innovation. As for the

phonological changes, only a few varieties either retain the PLa initial or show a different innovation, as shown in the bottom three rows of Table 6-8. W-YL and C-LB, neighboring varieties, merge *p^h and *k^h before *u instead of taking part in the *p^hu > fu change, while W-DT retains PLa *p^hu without change. CW-QY and C-WC, also neighboring varieties, retain PLa *pu without change. W-DT and E-TS do not reflect any *pu cognates, so it is impossible to confirm whether they share the *pu > /ku/ innovation or not. Since E-TS shares the change *p^hu > /fu/, I assume that E-TS's unaspirated *p developed similarly to other E varieties.

	SE		W				С						Е		
	G	D	SL	SZ	Y	L	Q	W	Q	L	Y	С	D	Η	Т
	Р	Т	Ζ	Р	L	В	Y	С	S	J	Α	J	С	S	S
white		\checkmark		\checkmark		\checkmark		\checkmark							
p>k	\checkmark	nd	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	nd
p ^h >f	\checkmark		\checkmark	\checkmark			\checkmark								
$p^{h>k^{h}}$					\checkmark	\checkmark									
$p^{\rm h} \sim p^{\rm h}$	\checkmark	\checkmark													
$p \sim p$	\checkmark						\checkmark	\checkmark							

Table 6-8: Distribution of innovations in *pu, *phu, and 'white'

6.6 E-SE

All E-SE varieties share a chain of rhyme innovations: *o and *y partially merge to /i/, followed by a > 0/# and $a_0 > 1/4$. The conditioned merger of *o, *y and *i to /i/ is an innovation unique to this cluster. The specific conditionings of the merger are 1) *y > [i] after unpalatalised labials ([+round, -high]), and 2) *o > [i] after all labials and the velar nasal. The *o > [i] conditioning can be described as following [-back] and [+back,+nasal] initials; in PLa, *o does not occur after any alveolar initial or velar fricative. E-DC and E-HS then share a later expansion of *o and *y > [i] to all environments, resulting in a complete merger of *o, *y, and *i.

Table 6-9: *a, *aŋ, *o, *y, and *i in E-SE

Gloss	Proto Lalo	E-HS	E-DC	E-TS	SE-GP
carry	*bwi ²	bi ²¹	bə²ı	dzj ²¹	bi ²¹
rooster	*p ^h wi ¹	$p^{h}i^{55}$	$p^{h} \vartheta^{55}$	ts ^h J ⁵⁵	$p^{h}i^{44}$
mushroom	*mo ¹	mi ²⁴	mə ²⁴	mi ²⁴	mi ⁴⁴
to cry	*ŋo¹	ŋi ²⁴	ŋə²4	ŋi²4	ŋi ⁴⁴
to steal	*kho ²	$k^{h}i^{21}$	$k^{\rm h} \vartheta^{\scriptscriptstyle 21}$	k ^h u ²¹	$k^{h}i^{21}$
eggshell	*kjo²	ki ²¹	kə ²¹	ku ²¹	ku ⁵⁵
melon	*p ^h y ²	$p^{h}i^{21}$	$p^{\rm h} \vartheta^{{\scriptscriptstyle 21}}$	$p^{h}i^{21}$	$p^{h}i^{21}$
flour	*my³	mi ³³	mə ³³	mi ³³	mi ³³
iron	*xy ¹	xi ⁵⁵	xə ⁵⁵	xu ⁵⁵	xu ⁴⁴
dew	*kjy²	t∫i²¹	tsə ²¹	tcu ²¹	tcy ⁵⁵
release	*p ^h jy ²	$p^{h}i^{21}$	phei ²¹	$p^{\rm h}y^{\rm 21}$	$p^{h}u^{21}$
to untie	$p^{h}i^{1}$	$p^{h}i^{55}$	$p^{h} \vartheta^{55}$	$p^{h}i^{55}$	$p^{h}i^{55}$
water	*yi¹	yi ²⁴	$\gamma \vartheta^{2^4}$	yi ²⁴	yi ²⁴
exchange	*pa1	po ⁵⁵	p3 ⁵⁵	pu ⁵⁵	po ⁴⁴
meat	*xa ²	X3 ²¹	$X\mathfrak{I}^{21}$	$X\mathfrak{I}^{21}$	X0 ²¹
ear	*paŋ1	pa ⁵⁵	pa ⁵⁵	pa ⁵⁵	pa ⁴⁴
clean	*xaŋ1	xa ⁵⁵	/	ha ⁵⁵	xa ⁴⁴

The later merger of *o, *y, and *i serves to group E-HS and E-DC as Core E, to the exclusion of E-TS, which fails to share this later change. In E-TS, *y and *o merge to [u] after velar obstruents; *y remains [y] elsewhere, while *o > [i] elsewhere. In SE-GP, the conditioned splits are even more complex: *o > [i] elsewhere except after *kj, where *o > [u], and *y > [u] after palatalised labials and unpalatalised velars, remaining [y] elsewhere. Table 6-9 below gives examples of the different developments of *a, *aŋ, *o, *y, and *i in E-SE Lalo. In E-DC, [ə] appears instead of [i], a later lowering of the vowel.

E-SE rhyme innovations are summarised in Table 6-10 below. The chain shift of $*a > [o]_{\#}, *an > [a]$ also occurs in W-DT, XZ, MD, Eka, and in other Ngwi languages, including Nanhua Lolo (Sun 1991). Bradley (1979) finds this isogloss insufficient for Ngwi subgrouping due to its dispersed geographical distribution: $*a > [o]_{\#}$ happened independently in different languages belonging to each of the Ngwi sub-branches (Central, Southern, and Northern). Therefore, it is dubious to group together all varieties that show $*a > [o]_{\#}, *an > [a]$. In E-SE, $*a > [o]_{\#}$ must have happened after *o > [i]/labials_, because PLa *a rhymes do not participate in the *o > [i] change; that is, $*a > [o]_{\#}$ must be placed in counter-feeding order with *o > [i]. So, $*a > [o]_{\#}$ happened after E-SE Lalo varieties broke off from Core Lalo. The E-SE cluster does not participate in any of the C-W distinctive innovations described in §6.7 below.

	E- DC	E- HS	E- TS	SE- GP	XZ	MD	Eka	W- DT
1) * $o > i/[-back]$; [+back,+nasal]	✓	✓	\checkmark	✓				
$*y > i/[+round, -high]_$	✓	\checkmark	\checkmark	\checkmark				
*y, *o > i /elsewhere	\checkmark	\checkmark			-			
*y, *o > u/[+back,-son]_			✓					
2) *a > o #	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$*a\eta > a$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓

Table 6-10: Summary of E-SE rhyme innovations

6.7 C-W

Within Core Lalo, the C and W clusters group together to the exclusion of the E and SE clusters. The main phonological innovation that C and W clusters share is the lenition of PLa *g to Proto C-W * γ before rhymes with open back vowel *a (i.e., *a and *aŋ) and harsh *o. Examples are given in Table 6-11 below. Before close vowels *i, *e, *y, *i, and *u, C-W varieties retain *g, merging with PLa consonant cluster *gj. All other Lalo varieties, including E Lalo, retain PLa *g in all environments and do not show this lenition. Most C-W varieties show a further expansion of the lenition to include modal *o and * ϵ as conditioning environments. W-DT alone retains the original conditioning for the lenition, as seen in its reflexes of [g] for 'wound' PC-W *g ϵ^2 and 'thunder' PC-W *go². Subsequent change of Proto C-W's * γ to [w] or [γ ^w] before modal or harsh [o] is seen in most C-W varieties except W-YL and C-CJ, which instead show a change to [j] before * ϵ .

Gloss	PLa	P-C-	W-	W- DT	W-YL	CW-	C- LB	C- CJ
		W	SZP			QY		
bend	$g \varrho^{\rm L}$	$\Upsilon \Omega^{\rm L}$	wo ⁵³	$v v^{45}$	$\gamma 0^{45_3}$	WQ^{21}	$\chi^w \underline{0}^{21}$	$\gamma^{w}\underline{Q}^{21}$
buckwheat	ga²	ya²	ya ²¹	γ0 ²¹	ya ²¹	γa ²¹	ya ²¹	γa ²¹
drive cattle	g₫Ľ	γā ^l	$\gamma \epsilon^{5_3}$	ya ⁴⁵	ya ⁴⁵ 3	γ <u>a</u> ²¹	<u>γ</u> <u>a</u> ²¹	<u>γ</u> <u>a</u> ²¹
pull	gaŋ¹	γaŋ¹	W0 ²⁴	/	γ0 ²⁴	wo ⁵⁵	/	$\gamma^w u^{55}$
wound (n.)	ge ²	ge ²	γε ²¹	ge ²¹	je ²¹	$\chi \underline{\epsilon}^{21}$	$\gamma \epsilon^{_{21}}$	ji ²¹
thunder	go ²	go ²	γ0 ²¹	$g \gamma^{21}$	/	$\gamma \vartheta^{21}$	/	/
bracelet	goŋ¹	go ¹	W0 ³³	gy ³³	γ0 ³³	wo ⁵⁵	wu ⁵⁵	wo ⁵⁵

Table 6-11: C-W phonological innovation of $*g > *y/_*a$, $*a\eta$, $*\varrho$

A distinctive C-W lexico-semantic innovation is the reinterpretation of lexical compounds 'young' to 'soft timespan/years'. In PLa, 'young' is a compound of modified noun + modifier: $*t^hy^2$ nu¹, $*t^hy^2$ meaning 'years/timespan' and $*nu^1$ meaning 'young'. PLa $*nu^1$ in 'young' may be a reflex of PN $*nay^1$ 'young,' as the PLa initial and tone match the expected development, even though the rhyme shows an unexpected development to PLa *u. In contrast, 'young' in P-C-W is $*t^hy^2$ nu², literally 'years/timespan+soft;' this glossing of the compound was given to me by one Core Lalo language speaker during the elicitation process. The phonetic similarity between $*nu^1$ 'young' and $*nu^2$ 'soft' may have facilitated the reinterpretation of the compound. XZ, YL, MD, Eka, and E varieties retain the PLa compounds, but all C-W varieties reanalyse the compound as 'years + soft'. Reflexes from C-W varieties, as well as the non-C-W variety YL, are shown in Table 6-12 below.

In a later development, all C-W varieties except W-DT show the same type of reanalysis for 'glutinous rice'. This change may have spread through the C-W area after W-DT broke off from W Lalo. In PLa, 'glutinous rice' is a compound *tʃhe¹na², literally 'rice+glutinous'. PLa *na² 'glutinous rice' may be an early loan from Chinese, possibly from Middle Chinese 'glutinous rice' *nwaH (H represents the Departing Tone, a falling pitch) (Baxter 1992, Baxter & Sagart 2008). Across the C-W area, however, 'glutinous rice' reflects *tʃhe¹nu², literally 'rice+soft,' shown in Table 6-12 below.

Gloss	PLa	P-C	YL	W-DT	W-YL	C-LJ	C-CJ
		W					
soft	nu²	nu²	<u>מצ</u> ²¹	ny ²¹	ny ²¹	ny ²¹	ny ²¹
young	t ^h y ²	$t^{\rm h}y^2$	•	1	,	1	'
	nu¹	nu²	thə²¹no³3	$t^h y^{21} n \gamma^{21}$	$t^h y^{21} n \gamma^{21}$	$t^h y^{21} n y^{21}$	$t^{h}y^{21} ny^{21}$
glutinous	t∫ʰe¹ɲ	t∫ʰe¹n					
rice	a ²	u ²	te ^h i ⁵⁵ pa ²¹	tehi ⁴⁴ pa ²¹	$te^{h}i^{44}nv^{21}$	$tc^{h}i^{55}nv^{21}$	tehi ⁵⁵ ny ²¹

Table 6-12: C-W lexico-semantic innovations involving 'soft'

6.8 Lower-level clusters: E, W, C and SE

6.8.1 Tonal innovations that distinguish W, E, and SE

In this section, I discuss the divergent developments of tones that provide evidence for distinct W and SE clusters. Detailed description and phonetic motivations for these tonal innovations are given in Chapter 5 and Yang (2010). Table 6-13 below presents all innovations in tone shown by various Lalo varieties, but only the innovations enclosed with a line are considered diagnostic of phylogenetic grouping. Most Lalo varieties, excluding MD and C, show a split in Tone *1 to low-rising in syllables with voiced initials and remaining high elsewhere. I refer to the original

conditioning of the Tone *1 split as the Eastern-type split, as Eastern varieties, along with W-YL and XZ, retain the original conditioning of the Tone *1 split without further innovation.

Core W, however, show an expansion of the low-rising tone to syllables with voiceless, non-preglottalised consonants, resulting in the conditioning now seen (*1 >mid-high/preglottalised, low-rising/elsewhere). The W expansion of the Tone *1 split must have happened before the loss of preglottalised initials, as preglottalisation blocked the low-rising tone from developing. In YL, however, the loss of preglottalised initials must have happened before the split, since the split to low-rising is seen in syllables with PLa *preglottalised initials (which became voiced sonorants and fricatives in YL).

I choose not to posit a phylogenetic link between all varieties that show some type of Tone *1 split to low-rising. I instead suggest that the various Tone *1 splits are independent developments based on the allotonic variation that was found in Proto Lalo. As I discuss in §5.3.1, the rising and level allotones of Tone *1 seen in CW-QY were most likely also present in Proto Lalo and transmitted to the ancestors of W, E, and other Lalo varieties. With the merger of *preglottalised and plain initials, which may have taken place at different times in the different clusters, the low-rising pitch became contrastive in W, E, and XZ. In YL, the merger of *preglottalised and *plain initials occurred before the split, and the low-rising pitch became contrastive only after Tone *1 conditionally merged with Tone *3 in syllables with voiceless initials.

The distribution of the Eastern-type split is geographically non-contiguous, found in E Lalo, non-core XZ, one W variety (W-YL), and one Central variety (CE-YA). The same exact conditioning also results in the same split in Tone *1 in non-Lalo languages in the Central Ngwi branch: Limi, spoken in Lincang Prefecture, and Gomotage, spoken in Eryuan County in Dali Prefecture, based on preliminary analysis of wordlists gathered there during my fieldwork in 2008. The non-contiguous distribution of the split within Lalo, occurring in each of the Core Lalo clusters and in non-core Lalo varieties, and even occurring in languages that are clearly not Lalo, suggests that this split is not a very useful subgrouping criterion for linking dialect clusters.

Secondly, the phonetic naturalness of this change also lessens its value for subgrouping. Voiced initials conditioning a low pitch follows the voiced-low principle found in many other tonal languages, such as Lahu (Bradley 1977) and Tai languages (Li 1977). Eastern Lalo's Tone *1 split presents a slight variation on the voiced-low principle: only the tonal onset is lowered, not the pitch of the entire syllable. Since the original pitch target of Tone *1 was probably high, depressing the onset results in a rising contour. Plus, the allotonic variation seen in Central Lalo (high with voiceless and preglottalised initials, rising with voiced initials) suggests that the contrastive low-rising tone follows naturally after the merger of preglottalised and plain sonorants.

Thirdly, the split appears to have occurred in CE-YA as a result of contact with Eastern varieties, as discussed in §5.3.1. The split has happened in the past 200 years in East Mountain varieties such as CE-YA that are located closest to Eastern Lalo. A tone split is an unusual result of diffusion (Labov 2007), but both linguistic and sociolinguistic circumstances were favorable to the diffusion of the split: 1) linguistically, the phonologisation of Tone *1's low-rising allotone arises from the merger of *preglottalised and *plain initials, as described in §5.3.1, and 2) sociolinguistically, CE-YA and E speakers are in close contact through the practice of bride exchange between villages, in particular between CE-YA and E-DC. Children are therefore exposed from birth to both varieties and may have acquired the split during the learning process.

Finally, phonological and lexico-semantic innovations, as described in §6.6 above, suggest a C-W subgroup, to the exclusion of the E-SE cluster. When weighed against a series of innovations, the Tone *1 split seems paltry evidence for a higher-level subgrouping of E and W clusters. The non-contiguous distribution of the Eastern-type split, including languages that are clearly not Lalo, the phonetic naturalness of the conditioning of that split, and the apparent ease of its spread to neighboring varieties all weaken the Eastern-type Tone *1 split's value as a unique, subgroup-identifying criterion.

There are other tonal innovations that distinguish lower-level clusters of W and SE. All W varieties share a tonal innovation chain: Tone *1 becomes low-rising in syllables with *voiced initials, *L becomes high, and *1 in *preglottalised syllables merges with *H to mid-high. Harsh phonation is completely lost in W, enabling the merger of *1 and *H. Core W varieties (SLZ, SZP,

and DT) all share the expansion of the low-rising pitch to syllables with voiceless initials, remaining high only in syllables with *preglottalised initials. Non-core W-YL does not participate in this later change, and is therefore excluded from Core W.

SE shows the partial merger of *L and *2 to high, described in §5.3.4, and also merges *3 and *H to mid. Eastern varieties also merge *3 and *H to mid. E-HS and E-TS lose harsh phonation in *H, but not in *L, while E-DC loses harsh phonation completely. Since the partial or complete loss of harsh phonation is an ecologically non-distinctive change (see §6.8), this merger is not considered a diagnostic criterion; justification for the E-SE cluster is primarily based on shared rhyme innovations, described in §6.6 above. Peripheral varieties YL and XZ show divergent tonal innovations that do not qualify them for membership in any of the lower-level clusters. XZ shows the Eastern-type Tone *1 split and a three-way merger of *L, *H and *3 to mid, along with loss of harsh phonation. YL older speakers show an unusual split in Tone *1, becoming mid after voiceless initials and low-rising elsewhere, a split that must have occurred after the loss of preglottalisation, as discussed above and in §5.3.4. YL also shows a merger of *L and *H to high and loss of harsh phonation.

Location	Y	Х	E-	E-	Е	W-	W-S	W-S	W-	SE	CE
Innovation	L	Ζ	DC	HS	TS	DT	LZ	ZP	YL	GP	YA
*1 > low-rising											
/[+voi]_	\checkmark										
Loss of harsh											
phonation	\checkmark	\checkmark	\checkmark	(p)	(p)	✓	\checkmark	\checkmark	\checkmark	(p)	
*L > high						\checkmark	\checkmark	\checkmark	\checkmark		
1> mid-high/?						\checkmark	\checkmark	\checkmark	\checkmark		
*H > mid-high						\checkmark	\checkmark	\checkmark	\checkmark		
*1 > low-rising										-	
/non-?						\checkmark	\checkmark	\checkmark			
*H, *3 > mid			\checkmark	\checkmark	\checkmark				-	\checkmark	
*1 > mid/[-voi]_	\checkmark										
*L, *H> high	\checkmark										
*L, *H, *3 > mid		\checkmark									
*2/*ʃ, *?_, *[-voi,											
$+sg]_>high$										\checkmark	
L/[-voi]> high										\checkmark	

Table 6-13: Innovations in tone from Proto Lalo

6.8.2 C and W innovations in initials

Distinct developments of PLa *bwi provide evidence for lower level divisions between C and W. Table 6-14 below summarises the innovations. In both the table and the following discussion, *b is used as a cover symbol for PLa bilabial stops *p^h and *b, since the set develops in parallel. Unfortunately, there are no examples of PLa unaspirated *po in the wordlist. Given the *bwi/*bi merger in Core W, *po is predicted to be [ts₁] in W varieties, as *pi > [ts₁], but the development of *po is still unclear for C varieties. The first column in Table 6-14 shows the relative ordering of changes in both C and W (unmarked) and the separate innovations that occurred in C (marked C) and W (marked W, but includes XZ and E-TS).

					V	N				(С		
		Х	E-	D	SL	SZ	Y	Y	Q	W	Q	L	
#		Ζ	TS	Т	Ζ	Р	L	А	Y	С	S	В	LJ
1.	*bwi>*bvi	\checkmark											
2.	$b^{v}i > b^{v}i$	\checkmark											
2.W	$b^{v} > dz$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						
3.W	*bi > *b ^v i	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							
4.W	$b^v > dz$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							
3.C	$b^{v} > v$							\checkmark	\checkmark	\checkmark	\checkmark		
3.C	$b^v > dz$											\checkmark	\checkmark

Table 6-14: Innovations involving *bwi and *bi

All C-W varieties (plus XZ and E-TS) went through an intermediate stage in which the labiovelar glide became a labiodental fricative, i.e., *bwi >*bvi, and the vowel moved forward to /i/. Most other Lalo varieties do not share the (af)frication innovation; instead, the labiovelar glide is dropped. Some Lalo varieties still show remnants of this labiodental affricate, as in $[pf^{h_155}]$ 'rooster' (< $*p^{h_01}$) in C-QS. Although the exact phonetic quality of the Proto Lalo vowel is uncertain, the vowel may have been pronounced with lip compression, resulting in the insertion a labiodental fricative in the transition from initial stop to vowel, much the same as $*p^{h_u}$, discussed in §6.5. Lahu also has labiodental affricates as reflexes of *bo (>/pu/ [pfu]) and $*po (>/phu/ [pf^{h_u}])$ as a result of synchronic processes; in Lahu, labiodental affricates are allophones of bilabial stops before /u/, which in turn is always found with lip compression in this environment (Bradley 1979a). A similar phenomenon occurs in Lisu (David Bradley, personal communication, February 20, 2009). The intermediate phase of *labiodental affricates, still seen in C-QS (e.g., $[pf^{h_155}]$ 'rooster'), makes sense given their development into alveolar affricates in W varieties and into palatoalveolar affricates in C-LB and C-LJ.

The *labiodental affricates contrasted with plain labials when *wi became [i], so that there was a contrast between *b^vi and *bi. The feature that kept the contrast between these two correspondence sets was the manner of the initial (*bv versus *b), which prevented their merger. This can be seen by the separate correspondence sets of *b^vi and *bi: *b^vi became [dz₁] in W, and [vi] or [dzi] in C, whereas bi remained [bi] in W-YL and most C varieties. See Table 6-15 and Table 6-16 below for examples of the separate developments of *bwi and *bi.

In Core W (plus XZ and E-TS, both in contact with Core W varieties), there was an additional, later development of *bi > *b^vi > /dzi/ [dz₁]. Apical vowel [₁] was at that stage an allophone of /i/ after alveolar affricates or fricatives, though subsequent changes transferred this vowel to be an allophone of close central vowel /i/ in several varieties. Core W *bi > *b^vi is placed in counter-feeding order with P-C-W *b^vi > /dzi/ [dz₁]. *bi > *b^vi must have happened after W-YL broke off from Core W, because W-YL does not merge *bi and *b^vi, but rather retains *bi as /bi/.

The evidence does not suggest a C-W shared intermediate stage of *alveolar affricates $*ts^h$ and *dz, which then simplify to [f] and [v] in Central Lalo. Proto Lalo already had *alveolar affricates, and if Central Lalo had merged the *labiodental affricates with the *alveolar affricates, the series could not then un-merge to today's distinct labiodental fricatives and alveolar affricates.

Table 6-15 below gives examples of the developments in *bwi, while Table 6-16 shows *bi. CE-YA shows variation in its reflexes of *bwi, in keeping with its transitional nature and contact effects. While CE-YA's reflexes of *p^hwi², *bwi¹ and *bwi² match the usual Central Lalo reflexes, *p^hwi¹ 'rooster' and *bwi³ 'owe (v.)' show the alveolar affricate. The majority of Central Lalo varieties (CW-QY, C-CJ, C-WC, C-QS) show a consistent labiodental fricative. C varieties C-LJ and C-LB show alveopalatal [tc^h] and [dz] in this environment. This is not a shared innovation with W Lalo, since C-LJ/C-LB show alveopalatal affricates rather than alveolar.

				CE-		CW-	
Gloss	PLa	W- DT	W-YL	YA	C- CJ	QY	C- LJ
crow (v.)	*bwi ¹	dzj ²⁴	$dz\gamma^{24}$	vi ²⁴	vi ⁵⁵	vi ⁵⁵	dzi ⁵⁵
carry (v.)	*bwi ²	dzj ²¹	$dz\gamma^{21}$	vi ²¹	v <u>i</u> ²¹	vi ²¹	dzi ²¹
owe	*bwi ³	dz٦³³	dzj ³³	dzj ³³	vi ³³	vi ³³	dzi ³³
butterfly	*bwi² lu³	dzj ²¹	$dz\gamma^{21}$	/	vi ²¹	$v\underline{i}^{21}$	dzi ²¹
price	*p ^h wi ²	$ts^{\rm h}\gamma^{21}$	tc ^h i ²¹	fi ²¹	fi ²¹	fi ²¹	tc ^h i ²¹
rooster	*p ^h wi ¹	tshj ²⁴	ts ^h J ⁴⁴	ts ^h ə ⁵⁵	fi ⁵⁵	fi ⁵⁵	tc ^h i ⁵⁵

Table 6-15: *bwi

Table 6-16: *b	1
----------------	---

				CE-		CW-	
Gloss	PLa	W-DT	W-YL	YA	C- CJ	QY	C- LJ
pus	*bi1	dzj ²⁴	bi ²⁴	bi ²⁴	$dz\gamma^{24}$	vi ⁵⁵	dzi ⁵⁵
full	*bi³	dz٦ ³³	bi ³³	bi ³³	dz٦33	vi ³³	bi ³³
spit	$phi_{\overline{l}}$	$ts^h\gamma^{45}$	/	$p^{h}\underline{i}^{21}$	$ts^h 1^{21}$	$f\underline{i}^{_{21}}$	$f\underline{\epsilon}^{_{21}}$
older woman	$p^{h}i^{2}$	$ts^h\gamma^{21}$	$p^{\rm h}i^{{\scriptscriptstyle 2}{\scriptscriptstyle 1}}$	$p^{h}i^{21}$	$ts^{h}\gamma^{21}$	fi ²¹	$p^{h}i^{21}$
grandparent+ grandchildren	*pi² la²	tsj ²¹	pi ²¹	pia ²¹	tsj ²¹	pi ²¹	pi ²¹

Comparing the two tables reveals that W-DT, representative of Core W, now has /dzi/ [dz₁]) as a reflex of both *bi and *bwi. I argue above that this apparent merger of *bi and *bwi in Core W actually took place in two intermediate stages, with *bi > dz₁ occurring after W-YL broke off from Core W varieties. CE-YA, while a bit erratic in its reflex of /vi/ for *bwi, nonetheless consistently shows /bi/ for *bi. C-CJ shows *b^vi > vi, but *bi > dz₁, a distinct correspondence set from other C varieties. CW-QY shows an almost complete merger of *bwi and *bi to /vi/, except that *pi is retained as [pi], e.g., in 'grandparent + grandchild (family group classifier)'. C-LJ consistently shows [dzi] for *bwi, but irregularly shows both [dzi] and [bi] for *bi. C-LJ's reflex of /f ε^{21} / for p^h<u>i</u>^h is unexpected (the expected reflex is t ε^{h} <u>i</u>²¹) and may have diffused from surrounding C varieties.

These innovations in the bilabial stops provide supporting evidence for distinguishing C and W clusters. No C variety shows *bwi > *b'i > /dzi/, but all W varieties do. Complicating this neat subgrouping is the fact that XZ and E-TS take part in all Core W innovations of *bwi and *bi. Therefore, for subgrouping W, these changes provide less clear evidence than the tonal innovation chain described in §6.7.1.

6.8.3 C rhyme innovations

The C Lalo cluster is also distinguished by innovations in rhymes: a conditioned merger of harsh *e and *i to /i/ after [+high, -back] initials, an unconditioned merger of *e and *i to /i/ in modal phonation, a merger of *e and *a to /a/ after [+back] initials, and a complex vowel assimilation process affecting the *-a rhyme.

Examples of the vowel mergers of are given in Table 6-17 below. Harsh <u>i</u> is realised as diphthong [i<u>e</u>] in several C varieties, which is also the case in some Nisu varieties. C-LJ shows the original conditioning of Proto C's *<u>e</u> > <u>i</u>/[+high, -back]_, i.e., after palatal *<u>n</u>, palatoalveolar initials *t<u>f</u>, *d₃, *<u>f</u>, *₃, and palatalised velar consonants *kj and *<u>g</u>j. Elsewhere, C-LJ reflects *<u>e</u> as harsh /<u>e</u>/, realised as [<u>æ</u>], which is contrastive with /<u>i</u>/ [i<u>e</u>] except after the initials that triggered the partial merger of *<u>e</u> and *<u>i</u>. Proto C's *<u>e</u> > <u>i</u>/[+high, -back]_ took place after Proto C's *<u>y</u> > <u>j</u>/<u>e</u>, since 'chicken' PLa *<u>ye</u>^H participates in the change: *<u>ye</u>^H > C-LJ [j<u>e</u>³³].

CE-YA shows the original conditioning of Proto C's partial merger of $\underline{\varepsilon}$ and \underline{a} to \underline{a} after [+back] initials, that is, after velars and *h. As shown in the table below, after velars or /h/, CE-YA shows /a/, but elsewhere shows / ε /. In Core C, which excludes CE-YA, the conditioning of $\underline{\varepsilon} > /a/_{\text{later}}$ later spread to all initials. CE-YA is additionally distinct from Core C by its innovation of labiodental fricatives becoming velar before *u, i.e., *f, *v > [+high, +back] /_[+high,+back]. This innovation comes after *p^h > [f]/_/u/, as CE-YA's reflex of *p^hu is [xə] (*u > ə in CE-YA). While most Central varieties have /i/ but no /e/ or / ε / due to the complete merger of *e with *i and *e with *a, CE-YA and C-LJ have contrastive /i/ and / ε /.

Gloss	PLa	C-WC	CW-QY	C-CJ	CE-YA	C-LJ	C-LB	W-YL
cat	ni1	ni ⁵⁵	ni ⁵⁵	ni ⁵⁵	ni ⁵⁵	ni ⁵⁵	ni ⁵⁵	ni ²⁴
heart	?n <u>i</u> [∺]	ni <u>e</u> 33	?n <u>i</u> ³³	/	/	$\tilde{\underline{1}}^{33}$	i <u>ẽ</u> ³³	ni ⁴⁴
pound(v.)	te ²	te ²¹	ti ²¹	ti ²¹	ti ²¹	ti ²¹	ti ²¹	te ²¹
carry	$t\underline{e}^{\mathrm{H}}$	ti <u>e</u> 33	t <u>i</u> ³³	t <u>i</u> ³³	ti <u>e</u> 33	tæ ³³	ti <u>e</u> 33	te ⁴⁴
ashamed-1	∫₫	¢i <u></u> ²¹	$G\underline{\varepsilon}^{21}$	c <u>i</u> ²¹	¢i <u>e</u> ²¹	6 <u></u> <i>E</i> ²¹	ci <u>e</u> ²¹	$\epsilon\epsilon^{55}$
chicken-2	γe ^H	ji <u>e</u> 33	<u>j</u> <u></u> 2 ³³	<u>ji</u> ³³	<u>j</u> <u></u> 2 ³³	<u>j</u> <u></u> ³³	ji <u>e</u> ³³	jε ⁴⁴
lack	$k^{\rm h}\underline{\epsilon}^{\rm \tiny L}$	$k^{h}\underline{a}^{21}$	$k^{h}\underline{a}^{21}$	$k^{h}\underline{a}^{21}$	$k^{h}\underline{a}^{21}$	$k^{h}\underline{a}^{21}$	$k^{h}\underline{a}^{21}$	/
rat	$h\underline{\epsilon}^{H}$	ha ³³	h <u>a</u> ³³	h <u>a</u> ³³	hā33	h <u>a</u> ³³	h <u>a</u> ³³	ha ⁴⁴
mend	?n <u></u> ₽ [⊥]	n <u>a</u> ²¹	?n <u>a</u> ²¹	n <u>a</u> ²¹	$n\underline{\epsilon}^{21}$	n <u>a</u> ²¹	n <u>a</u> ²¹	na ⁵³

Table 6-17: Vowel changes in Central Lalo

Also, all Central varieties show complex conditioning for a regressive vowel assimilation process affecting the *-a rhyme: $*a > /\varepsilon/$ in a syllable beginning with an alveolar obstruent if the following syllable has a front vowel, i.e., *i, *y, *e, or $*\varepsilon$, i.e., $*a > /\varepsilon//*C[+anterior,+strident]_$CV[+front]$. Examples are given in Table 6-18. PLa palatoalveolar obstruents, as seen in $*fa^{1}xe^{1}$ 'centipede,' have become retroflex in C Lalo and block the assimilation from taking place. Syllables with alveolar sonorants, as seen in $*la^{1}f\varepsilon^{1}$ 'snake,' are not affected by the assimilation process either.

Gloss	PLa	CE-YA	CW-QY	C-LJ	C-LB
daughter	za ² me ²	$z\epsilon^{21}m\epsilon^{21}$	$z \underline{\epsilon}^{21} m \underline{\epsilon}^{21}$	$z\epsilon^{21}m\epsilon^{21}$	$z \underline{\epsilon}^{21} m \underline{\epsilon}^{21}$
walnut	sa ² me ¹	seŋ ³⁵³	sɛ²¹mi ⁵⁵	se ²¹ mi ⁵⁵	sɛ²¹mi ⁵⁵
cucumber	sa²kjɛ²	se ²¹ kei ²¹	se ²¹ ke ²¹	se ²¹ ke ²¹	se ²¹ ke ²¹
peach	sa²?ly²	$s\epsilon^{21}wu^{21}$	s@ ²¹ ?@ ²¹	se ²¹ ?ly ²¹	$s\epsilon^{21}ly^{21}$
centipede	∫a¹xe¹	/	şa ⁵⁵ ci ⁵⁵	şa ⁵⁵ ¢i ⁵⁵	/
snake	la¹∫ε¹	la ³³ se ⁵⁵	la ⁵⁵ εε ⁵⁵	la ⁵⁵ şa ⁵⁵	la ⁵⁵ ξε ⁵⁵

Table 6-18: Vowel assimilation in Central Lalo

Table 6-19 summarises the distribution of the C Lalo rhyme innovations described above. No variety outside of the C cluster shows all of the innovations, although a few participate in one or two of the changes. E-TS and E-HS both show the merger of harsh and modal *e, *e with *i, *i. W-YL, Eka, and MD show the merger of *e and *a to /a/. W-YL and E-HS, both of which have C Lalo neighbors, irregularly show the *a > / ϵ / change in the same environment as C Lalo varieties. The irregularity of their reflexes, however, suggests contact rather than a transmitted innovation.

	E-	E-	W-	CE	CW	C-	C-	C-	C-	C-
	HS	TS	YL	YA	QY	WC	CJ	QS	LB	LJ
*e > i	\checkmark	\checkmark		\checkmark						
* $\underline{\varepsilon} > \underline{a} / [+back]_{-}$			\checkmark							
$*\underline{e} > \underline{i}/$ [+high,										
-back]	\checkmark	\checkmark		\checkmark						
$*a > \varepsilon$										
/*C[+ant,+stri]										
_\$CV[+front]	irr.		irr.	\checkmark						
$*\underline{\varepsilon} > \underline{a}$ / elsewhere			\checkmark	•	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$*\underline{e} > \underline{i}$ elsewhere	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Table 6-19: Summary of C Lalo rhyme innovations

6.8.4 Core W innovations

Besides the tonal chain of innovations described in §6.7.1, Core W varieties also show metathesis of initial consonants in 'grasshopper,' and shared tone sandhi patterns in which high > mid-high/_high. W-DT, W-SZP, and W-SLZ take part in both innovations, and thus are considered Core W members. W-YL takes part in neither innovation, and is therefore excluded from the Core W cluster.

Table 6-20 shows the reflexes of the two Core W Lalo innovations. In the compound word 'grasshopper' PLa *tf ϵ^{1} pu¹, the initial consonants of each syllable metathesise so that PLa *tf ϵ^{1} pu¹ > P-Core W *p ϵ^{1} tfu¹. W-YL, in contrast, retains the PLa compound with subsequent developments of *pu > /ku/, described in §6.5, and an unexpected development in the rhyme of the first syllable, which is possibly assimilation to the second syllable's rhyme. Interestingly, a form reflecting *p ϵ^{1} tfu¹ is also seen in C-WC's /p ϵ^{55} tşu⁵⁵/, possibly a result of diffusion from C-WC's Core W neighbor, W-SZP.

Core W varieties (W-DT, W-SZP, and W-SLZ) show a tone sandhi pattern in which the high tone, the reflex of *L, merges with mid-high when the following syllable's tone is high: high > mid-high/_high. This can be seen by comparing the different forms for 'goat' and 'ram' in Table 6-20 below. In 'goat' PLa *a¹tJ^hj¹, the reflex for *tJ^hj¹ is the expected high tone (realised as rising-falling in W-SLZ and W-SZP, as high rising in W-DT, and high falling in W-YL). However, in 'ram,' PLa *a¹tJ^hj¹pa¹, 'goat' is modified by the male suffix *pa¹, so the compound has consecutive syllables with the high tone (reflexes of *L). In 'ram,' the reflex for *tJ^hj¹ has the mid-high tone instead of the expected high tone. The result is a neutralisation of contrast between high and mid-high before a high tone syllable. Other examples of this phenomenon are seen in 'tree branch' *sj^Hka¹le¹: W-SLZ has a mid-high tone on [ka⁴⁴] in the compound [s1⁴⁴ka⁴⁴le⁴⁵³] instead of the expected reflex of *L, [ka⁴⁵³]. Also, in 'wrist' PLa *le¹tsi¹, W-DT has mid-high [le⁴⁴] instead of high-rising [le⁴⁵].

W-YL, on the other hand, does not show the same tone sandhi pattern. Instead of merging with mid-high, W-YL's reflexes of *L in this environment remain high. W-YL's high tone is realised as high level, an allophone of the high tone when occurring before another high tone. Although in both Core W and W-YL, the contour has been leveled, only in Core W Lalo varieties is the result a neutralisation of contrast between the reflexes of *L and the *1/*H merger.

Gloss	PLa	W-SZP	W-SLZ	W-DT	W-YL
grass- hopper	t∫ε¹pu¹	pe ⁴⁴ tşu ⁴⁴	pa ⁴⁴ tşu ⁴⁴	pe ⁴⁴ tşu ⁴⁴	t∫o ⁴⁴ ku ⁵
goat	a¹t∫h <u>i</u> ⊥	a ³³ tş ^h J ⁴⁵³	a³³tջհՂ ⁴⁵ 3	a²¹tşʰՂ ⁴⁵	a ⁴⁴ tջհՂ ⁵ 3
ram	a¹t∫ <u>hi</u> rpar	$a^{33}ts^{h}1^{44}pa^{53}$	$a^{33}ts^{h}t^{44}pa^{53}$	$a^{21}ts^{h} \sqrt{44}po^{53}$	$a^{21}ts^{h}t^{44}po^{53}$
tree branch	s <u>i</u> ^H k <u>a</u> ¹ l <u>e</u>	/	sj ⁴⁴ ka ⁴⁴ le ⁴⁵ 3	/	sj ⁴⁴ ka ⁵⁵ lɛ ⁵³
wrist	l <u>e</u> ₋ts <u>i</u> ^L	/	/	le ⁴⁴ tsj ⁵³	le ⁵⁵ tsy ⁵³

Table 6-20: Other W Lalo innovations

6.9 Contact relationships

Contact, both between Lalo varieties and with non-Lalo languages such as Southwest (SW) Mandarin, has had a considerable impact on Lalo varieties' development. The superstratal pressure of SW Mandarin remains the most powerful influence on Lalo varieties as a whole. Mandarin's presence in Lalo territory has been expanding ever since Yunnan's full incorporation into the Chinese political system during the Yuan dynasty, particularly after the intense migration of Han Chinese to Yunnan during the Qing dynasty (Giersch 2006).

Bilingualism in SW Mandarin is a widespread attribute of the Lalo speech community as a whole, as discussed in \$1.3.5. In some areas, Lalo communities have already shifted to SW Mandarin, or are shifting at a rapid rate, as shown in \$8.2. Contact-induced change as a result of the influence of SW Mandarin is a natural consequence of the linguistic ecology in western Yunnan. Such contact-induced change can be seen through the following widespread changes seen in all Lalo subgroups: the loss of *harsh phonation, *preglottalised initials, *retroflex fricatives and affricates, and nasal glottal fricative * \tilde{h} . Table 6-21 below shows the distribution of these changes among Lalo varieties.

The four features mentioned above (*harsh phonation, *preglottalised initials, etc.) existed in Proto Lalo, but do not exist in SW Mandarin. As bilingual Mandarin-Lalo speakers function in a Mandarin dominated world, they assimilate SW Mandarin features into Lalo. These changes are ecologically non-distinctive and are likely the result of contact-induced change; therefore, they have not been used in subgrouping Lalo varieties.

The distribution seen in Table 6-21 also presents an interesting implicational hierarchy. Those varieties with more exposure to Mandarin are the ones who show loss of three or more of the PLa features that Mandarin does not have. Non-Core Lalo varieties such as Eka, MD, XZ, and YL emigrated out of the Lalo homeland and are now found mostly in pockets with small populations and sometimes completely out of contact with other Lalo varieties. As such, these groups have a more intense contact relationship with SW Mandarin and other languages, and therefore are more likely to show contact-induced changes.

Likewise, E Lalo speakers are all located within half an hour's bus ride to Xiaguan, Dali's prefectural capital and the main urban center of Dali. Many E Lalo speakers live and work in Xiaguan, returning home only for special occasions and when crops need intense attention, such as harvest time. Thus, E Lalo speakers are also more likely to have undergone the changes in Table 6-21 than, for example, Central Lalo speakers who live in areas with a more concentrated Lalo population. Just as non-Core varieties, E speakers show a greater tendency to lose PLa features that differ from Mandarin than C-W varieties. C-W varieties show a loss of two or less, and this may be due to the fact that their social networks are more Lalo-centered, with a less intense contact relationship with Mandarin. C-W varieties are also more likely to have higher ethnolinguistic vitality than peripheral varieties.

Partia comp	l or lete loss of:	*preglottalised initials	*retroflex fricatives and affricates	*harsh phonation	*ĥ
Eka		\checkmark	\checkmark	\checkmark	\checkmark
	MD	\checkmark		\checkmark	\checkmark
	YL	↓	\checkmark	\checkmark	\checkmark
	XZ	\checkmark		\checkmark	\checkmark
SE	GP	\checkmark		\checkmark	
	DC	\checkmark	\checkmark	\checkmark	\checkmark
E	HS	\checkmark	\checkmark	\checkmark	
	TS	\checkmark	\checkmark	\checkmark	
	YL	\checkmark		\checkmark	
W	DT	\checkmark		\checkmark	
**	SZP	\checkmark		\checkmark	
	SLZ	\checkmark		\checkmark	
	YA	\checkmark	\checkmark		
	QS	\checkmark	\checkmark		
	CJ	\checkmark	\checkmark		
С	WC	\checkmark			
	LB	\checkmark			
	LJ				
	QY				

Table 6-21: Summary of ecologically non-distinctive changes in Lalo

While SW Mandarin is the dominant language in all Lalo-speaking areas, Lalo speakers are often in contact with other indigenous minority groups such as Bai, Wotizo, Dai and Lahu. Table 6-22 below shows which Lalo varieties are in contact with these other languages. MD speakers in southern Lincang have adopted the Dai Buddhist religion, and Eka speakers have become Christians through the influence of their Lahu neighbors. XZ, YL and W-SLZ are all located in townships where Lalo and Bai villages are interspersed. E-HS and E-DC speakers, when using Mandarin to explain the difference between their speech and that of CE-YA, referred to themselves as 'Bai Yi' and to CE-YA as 'Han Yi,' and further explained that the difference between themselves and CE-YA was that they have a stronger contact relationship with Bai than CE-YA has.

Table 6-22: Other languages in contact with Lalo

	Dai (Lincang)	Lahu (Lincang)	Bai
MD	\checkmark		
Eka	\checkmark	\checkmark	
XZ, YL, W-SLZ			\checkmark
E-HS, E-DC			\checkmark

Contact relationships also exist between Lalo varieties, relationships that cut across Core Lalo cluster boundaries, as well as between W-SLZ and XZ. One example of contact-induced change is CE-YA's Tone *1 split, discussed in §5.3.1, which could be the result of contact with E-DC and E-HS speakers. Other East Mountain varieties to the south of CE-YA, which do not have close contact with E Lalo, do not show the split. E-TS and XZ's affrication of labial stops, discussed in §6.7.3, may be a result of contact with W varieties. C-LB and W-YL's parallel development of PLa labial stops before *u, discussed in §6.5, is another example of the diffusion of change across

dialect clusters. While the comparative method is largely able to identify and disregard changes resulting from diffusion, the impact these contact relationships have on the synchronic classification of Lalo varieties is still important to consider in terms of language planning, as is discussed further in §7.2.

6.10 Summary

This chapter provides evidence supporting the Lalo phylogenetic tree presented in Figure 6-1. Eka, MD and YL descend directly from Proto Lalo; the early migrations of these groups' ancestors out of the Lalo homeland result in their failure to share in any subsequent innovations that define Lalo subgroups. The ancestors of Eka speakers left the Lalo homeland area over 300 years ago. Ancestors of MD emigrated out of southern Dali at a later time than Eka, probably less than 200 years ago. The migration history of YL, located in the far western periphery of Lalo distribution, is as yet unknown. All other Lalo varieties are grouped within Greater Lalo, which includes XZ and Core Lalo varieties.

In contrast with peripheral groups and XZ, Core Lalo varieties are all found in and around the traditional Lalo homeland of southern Dali Prefecture. Core Lalo contains the four major dialect clusters of Lalo: C, W, E and SE. Within Core Lalo, C-W and E-SE form distinct clusters. Each lower-level cluster shows distinct sets of innovations that serve to define them as a cluster. W Lalo varieties share a chain of tonal innovations, C Lalo varieties share changes in initials and rhymes, SE varieties share a conditioned tone split, and E Lalo varieties share innovations in rhymes. Later changes divide divergent varieties from the inner core within W, C, and E clusters. The patterns of change described in this chapter create complex synchronic correspondence sets that negatively impact cross-dialectal comprehension, to the extent that intelligibility between the three groups is negligible, as shown in §7.3.

The shared innovations described in the above sections are summarised in Table 6-23 below. This list of innovations is by no means exhaustive, but adequately demonstrates the distinctive innovations sets that define Lalo subgroups after the PLa stage. As peripheral varieties Eka, MD, and YL do not share any innovations after the PLa stage, they are not included. Innovations that distinguish the groups are enclosed with lines, and labels are given above the respective subgroups. The key to the innovation numbers is given below Table 6-23.

		1	2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0
		Gre	eater	· Lal	0						2	3	4	5	0	/	0	9	0		
		01	Juio	Lui	0															1	S
	XZ	\checkmark	\checkmark	Co	re L	alo												E-3	SE		Е
S E	GP	\checkmark	\checkmark	\checkmark														\checkmark	\checkmark		\checkmark
Е	TS	\checkmark	\checkmark	\checkmark									\checkmark					\checkmark	\checkmark		
	DC	\checkmark	\checkmark	\checkmark											C	Core	Е	\checkmark	\checkmark	\checkmark	
	HS	\checkmark	\checkmark	\checkmark	C-'	W		W]			\checkmark					\checkmark	\checkmark	\checkmark	
W	YL	\checkmark	Co	re W	7					\checkmark											
	DT	\checkmark																			
	SZP	\checkmark					-														
	SLZ	\checkmark		(2					-											
С	YA	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							\checkmark	\checkmark	\checkmark	\checkmark	Сс	ore C			
	WC	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
	QY	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
	LB	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
	QS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
	CJ	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
	LJ	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				

Table 6-23: Summary of distinctive Lalo subgroup innovations

Key to Table 6-23 innovation numbers:

- 1) 'crow' (n) *a³nak^H ('the black one')> *a¹ $\eta j \underline{a}^{H} b \underline{\epsilon}^{H}$ ('bird'+ $b \underline{\epsilon}^{H}$)
- 2) 'taro' $a^{1}t\int^{h} Q^{H}$
- 3) *-tsa³³ plural marker in personal pronoun paradigm
- 4) *g > $\gamma/_*a$, *aŋ, *o
- 5) reinterpretation of 'young' as 'soft years'
- 6) *L > high
- 7) *1/+?_>mid-high
- 8) *H > mid-high
- 9) *1 > low-rising/elsewhere
- 10) metathesis of initials in 'grasshopper'
- 11) shared tone sandhi patterns: high > mid-high/_high
- 12) *e > i
- 13) * $\underline{e} > \underline{i}/[+high, -back]_$
- 14) * $\underline{\varepsilon} > \underline{a}/[+back]_$
- 15) $a > \overline{\epsilon} / C_{[+ant, -stri]} CV_{[+front]}$
- 16) * $\underline{\varepsilon} > \underline{a}$ /elsewhere
- 17) *y > $i/[+round, -high]_$
- 18) *o> i//[-back] and $[+back,+nasal]_$
- 19) *y, *i > i/elsewhere
- 20) *2/*ʃ, *?_, *[-voi, +sg]__ > high; *L/*[-voi]__ > high

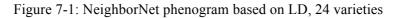
7 Synchronic subgrouping of Lalo varieties

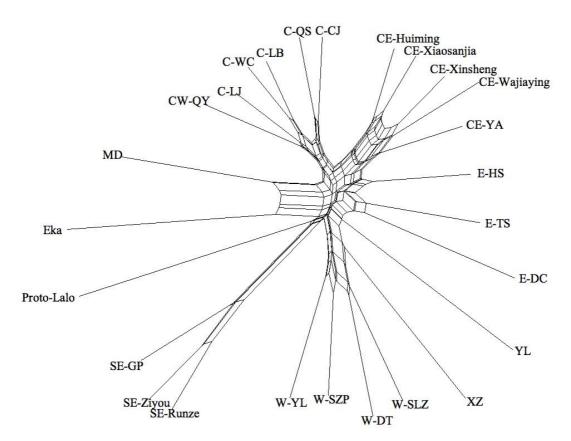
7.1 Introduction

While Chapter 6 provides evidence for subgrouping Lalo varieties from a diachronic, phylogenetic perspective, this chapter uses phonetic distance, intelligibility, and perception to classify Lalo varieties from a synchronic perspective. NeighborNet and multidimensional scaling diagrams based on phonetic distance identify lower-level clusters of E, SE, W, and C Lalo, and individual non-Core varieties Eka, MD, YL and XZ (§7.2). Intelligibility test results indicate that cross-cluster intelligibility is usually low, unless a variety has significant cross-cluster contact (§7.3). In §7.4, intelligibility test results show a strong, significant correlation with phonetic distance, thus providing an external validation of the phonetic distance results. Finally, speaker perceptions and interactions show native speaker awareness of dialect similarity and difference, enriching the overall picture of Lalo dialect relationships (§7.5).

7.2 Phonetic distance results

Phonetic distance as measured by the Levenshtein distance (LD) algorithm, unlike the comparative method, does not differentiate between retention and innovation, nor does it distinguish contact-induced change from genetically shared change. Therefore, results based on phonetic distance should not be equated with a phylogenetic tree based on shared innovations, though there are often similarities. Similarities between diachronic trees and synchronic networks are due to inherent aspects of dialect diversification, namely, that historical innovations cause phonological divergence between different dialect clusters. Yet contact, retention, and drift are also inherent characteristics of the progression of language through time. The comparative method attempts to sift out contact, retention, and drift and identify innovations that are useful for subgrouping. However, a more complete picture of Lalo linguistic ecology should incorporate both divergent and convergent evolutionary effects.


The usefulness of phonetic distance is to be found in its strong correlation to speaker perception and intelligibility (Gooskens & Heeringa 2004, Gooskens 2006), as discussed in §1.4.3. For the purposes of language planning, factors such as overall phonetic similarity (whatever the cause), speaker's perceptions of difference, and intelligibility are often more important than shared innovations. Critically for endangered languages, historical linguistics and language development efforts must be considered in tandem. As shown in §7.2.1 and 7.2.2 below, phonetic distance results usually match the subgroups of Chapter 6, especially in the identification of distinct E, SE, C, and W clusters. Yet the discrepancies between the diachronic and synchronic classifications have fruitful implications for language planning.


For example, Central East Mountain (CE) speakers in northeastern Weishan County are in close contact with E Lalo varieties E-DC and E-HS, located in eastern Dali Municipality. This contact is probably responsible for the development of the contrastive low-rising tone in CE-YA, as discussed in §5.3.1. However, shared innovations identify CE-YA as a C Lalo variety, as shown in Chapter 6. The NeighborNet phenogram in Figure 7-1 portrays CE varieties as a distinct branch halfway in between the C and E clusters. This reflects the hybrid nature of CE varieties, located as they are in an area of convergence of the C and E clusters. This finding has implications for language planning

efforts in this area. Language planners should consider including CE-YA and E Lalo speakers in the same community-based language planning efforts. For CE-YA speakers, non-print media in Lalo, such as a video on AIDS prevention, may be more effective in an E Lalo variety than, for example, in a West Mountain C Lalo variety such as CW-QY.

7.2.1 NeighborNet network analysis

Figure 7-1 below shows the NeighborNet phenogram using the equal angle method on the phonetic distance matrix for 24 Lalo varieties, plus Proto Lalo. Data from six CE and SE varieties come from Lam and Chan (2009): CE-Huiming, CE-Xiaosanjia, CE-Xinsheng, CE-Wajiaying, SE-Runze, and SE-Ziyou. Figure 7-1 is not a historical tree, in that it does not illustrate genetic relatedness. This phenogram shows Lalo varieties' relative distance from each other in terms of the differences in their pronunciation of the 175 cognates contained in the Swadesh 200 subset of the 1,001.item word list (see §2.4.1). The reticulated or net-like lines show ambiguity or mixed signals in the data: while some pronunciations are shared, others are different. Reticulation in a linguistic phenogram is a result of either independent shared developments or borrowing through contact (McMahon et al. 2007). Fewer reticulated lines mean a clearer signal and thus a more clearly defined cluster. The relative length of the lines depicts relative difference: the longer the branch, the more different the variety is.

In Figure 7-1, all C varieties branch off together and then quickly bifurcate into two sub-branches in the upper half of the phenogram. Core C varieties form a tight cluster with fewer reticulations and shorter lines connecting them, while CE varieties forming a slightly looser cluster. All E Lalo varieties are found in one area of the phenogram, though not as a tightly bundled cluster. This result is consistent with the phonological differences found among E Lalo varieties, as described in §3.6. For example, while E-DC has lost harsh phonation in both *L and *H tone categories, E-HS and E-TS have preserved harsh in *L but not in *H. YL, a non-Core, peripheral Lalo variety, does not cluster with any Core or non-Core Lalo varieties. Instead, it branches off

from the root of the W cluster and diverges away from all other varieties with a long single line. The YL node leans in the direction of W varieties, probably because of YL's tonal changes, described in 5.3.4. YL shows the L > high change as W varieties do, although in YL both H and L merge to high.

W varieties form a rather long reticulated branch in the bottom half of the phenogram. Although W forms a more clearly defined cluster than E Lalo varieties, it is still not as tightly bundled as C Lalo varieties. This is consistent with the differences among W varieties' phonological inventories as described in §3.5. For example, W-DT shows the *a > o, *an > a set of changes, while other W varieties do not. XZ is seen as linked to W varieties; this perhaps may reflect XZ's participation in Greater Lalo innovations. SE varieties are separated from other Lalo varieties by even longer lines than the W branch, reflecting the substantial phonetic differences between SE varieties and the other Core Lalo clusters.

MD and Eka appear to form a cluster through a long, reticulated branch, but are then separated from each other by long individual lines. The long lines separating MD and Eka from other varieties reflects their early migration out of the Lalo area, which occurred before the Core Lalo innovations did. The apparent MD and Eka cluster is a result of shared retentions and areal influence, not innovations, and they are not grouped together on historical grounds. Synchronically, though, both Eka and MD are located in the same area of southern Lincang Prefecture, and are thus part of the same linguistic ecological region. Both Eka and MD are in contact with the languages of this region, such as Dai and Black Lahu. From a language planning perspective, their geographical proximity and shared areal influence make them ideal candidates for partnership in community-based language planning efforts.

Figure 7-2 below gives the NeighborNet phenogram for Core Lalo varieties only, providing a closer look at NeighborNet's identification of the four Core Lalo clusters. As in Figure 7-1, Core C Lalo varieties form the tightest cluster, W and SE clusters form long, reticulated branches, and E varieties cluster loosely, with CE varieties between Core C and E. NeighborNet does not represent the historical link between E and SE or between C and W, as described in §6.6 and 6.7. This is probably due to W and SE varieties' multiple tone splits and mergers, as described in §5.3, which increases the distance between W and C varieties, and between E and SE varieties.

Within the C Lalo cluster, C-CJ and C-QS branch off together, which matches their geographical proximity and some shared developments. C-CJ and C-QS are both located in the southern area of C Lalo distribution, with C-CJ in southern Nanjian County and C-QS in northern Jingdong County. Also, both C-CJ and C-QS show the merger of retroflex fricatives with alveolar fricatives. C-LB and C-WC are loosely paired. Like CJ and QS, LB and WC have lost preglottalised initials and gained a contrast between /a/ and /a/, but unlike CJ-QS, LB and WC have retained retroflex fricatives, as LJ and QY do. These developments and retentions, some shared with the CJ-QS pair and some with the LJ-QY pair, help explain LB-WC's position in between the CJ-QS and LJ-QY pairs, though a bit closer to LJ-QY. LJ-QY pair off together as the only two Lalo varieties in this research that have retained the Proto Lalo preglottalised initials. They are also geographically contiguous to one another.

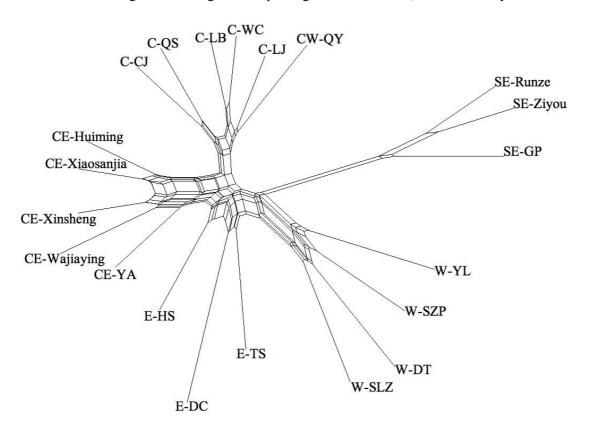


Figure 7-2: NeighborNet phenogram based on LD, Core Lalo only

7.2.2 Multidimensional scaling (MDS)

Figure 7-3 and Figure 7-4 show the results of using Kruskal's (1964) method of MDS on the phonetic distance matrix. Figure 7-3 shows all Lalo varieties, while Figure 7-4 shows only Greater Lalo (Core Lalo plus XZ). In general, these results are consistent with NeighborNet's network diagrams given in §7.2.1.

Figure 7-3: Multidimensional scaling (Kruskal's method) of all Lalo varieties

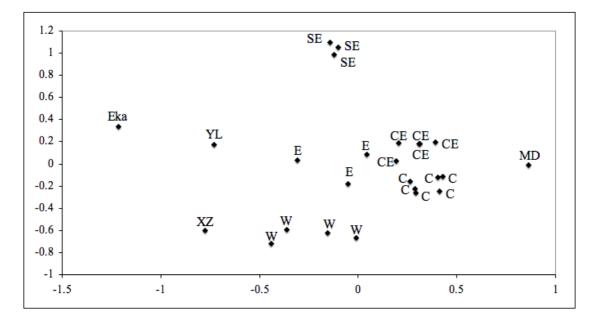


Figure 7-3 shows all C and CE varieties clustering together, with E varieties close by. Peripheral varieties YL, Eka and MD are far apart from each other and from everyone else, and do not form a cluster with anyone. Historically, these varieties do not take part in any Greater Lalo innovations. The MDS distance also matches the geographic distance these Lalo varieties have with Core Lalo, with Eka and MD to the far south and YL to the far west of Core Lalo distribution. XZ belongs to Greater Lalo but is not part of Core Lalo, which is reflected by its proximity to the W cluster. C, CE and SE clusters are clearly defined, while the W and E cluster is less clearly defined, similar to the results given in §7.2.1.

0.4 CE-Xinsheng CE-Huiming CE-Wajiaying 0.2 CE-Xiaosanjia E-HS E-DC 0 CE-YA E-TS C-LJ -0.2 C-LB C-WC -0.4 W-SLZ W-SZP -0.6 W-YL -0.8-0.3 0.1 0.2 0.3 0.5 -0.5 -0.4 -0.2 -0.10 0.4

Figure 7-4: Multidimensional scaling (Kruskal's method) of Lalo varieties, Core Lalo only

Figure 7-4 above shows MDS based solely on Core Lalo without the SE cluster. Within the C cluster, as in NeighborNet's Figure 7-2, C-CJ and C-QS cluster together. However, C varieties do not pair off completely; instead, a triplet grouping of C-LJ, C-WC and C-LB is seen, with CW-QY slightly off to the right. This may be due to some of the distinctive developments of CW-QY, such as the change of Proto C Lalo's *y to /ə/. The fuzzy border between CE and E clusters is consistent with the dialect convergence zone seen in northeast Weishan and eastern Dali Municipality. W varieties show pairs of W-DT and W-SLZ versus W-SZP and W-YL. While E-TS and E-HS are relatively closer to each other, E-DC is more distant. E-DC's distance from other E Lalo varieties is hinted at in its relatively longer line seen in Figure 7-2, but becomes more visually apparent in Figure 7-4. This finding is consistent with the divergent nature of E-DC's tonal developments, as noted in §7.2.1.

7.3 Intelligibility test results

Intelligibility tests, based on Recorded Text Testing (RTT) methodology described in §2.5, measure levels of comprehension when a listener from variety A listens to a short narrative from variety B. Intelligibility test results gauge the impact on comprehension of cross-varietal differences in the phonetics, phonology, lexicon, and syntax of the two tested varieties. From a language planning perspective, cross-varietal intelligibility is a crucial factor in the planning and dissemination of language materials, both print and non-print. Intelligibility test results also provide external validation for the phonetic distance results through the strong, significant correlation found between them, presented in §7.4 below.

Table 7-1 presents the RTT intelligibility test results for all varieties that were tested during fieldwork. The limitations of listeners' patience and travel time, as discussed in §2.5, made testing

all RTTs at every datapoint not feasible. RTT results of E varieties listening to CW-QY are marked with an asterisk to denote that E speakers listened to a different CW-QY text than other varieties, and were tested with the traditional RTT question and answer format, as opposed to the RTT retelling format used in all other locations. Reasons for this discrepancy are given in §2.5.

Text:	CW-	C-	CE-	Е-	E-	C-	C-	W-	W-
Listener:	QY	LJ	YA	HS	DC	CJ	WC	DT	YL
MD	0.01	0	0		0				
Eka	0								
YL	0.02								
W-DT	0.10	0.35			0.04		0.66		
W-YL	0.62	0.86						0.62	
W-SLZ	0.34			0.14					0.24
XZ	0.07			0.05				0.60	0.11
E-TS	0.25*								
E-DC	0.18*			0.88					
E-HS	0.40*								
SE-GP	0.30		0.24	0.65					
CE-YA	0.68				0.70				
CW-QY				0.58					
C-WC	0.79	0.93			0				
C-QS	0.67	0.64				0.32			
C-LJ	0.79		0.53		0.06				
C-LB	0.59	0.70		0.17				0.24	
C-CJ	0.61	0.75							

Table 7-1: RTT intelligibility test results

Figure 7-5 shows the RTT results for listeners when responding to the CW-QY text. As explained in §2.5, CW-QY was tested in the most places because of its candidacy as a reference dialect for C Lalo language planning.

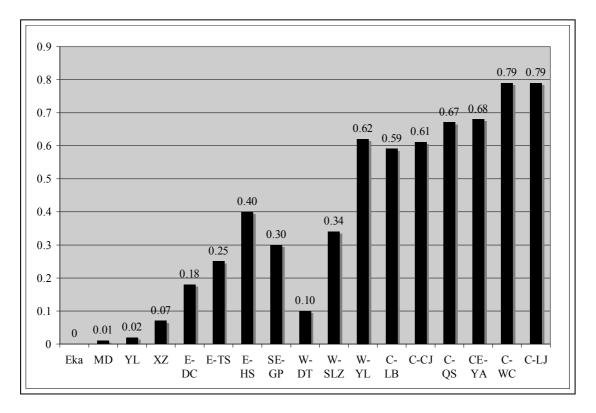


Figure 7-5: RTT results for CW-QY text

In general, RTT results match expectations based on the historical divergence and synchronic dissimilarity explored in Chapter 6 and in §7.2 above. Peripheral Lalo varieties Eka, MD, YL, and XZ listeners all showed very low comprehension of the CW-QY text. E Lalo listeners showed slightly higher comprehension than peripheral varieties, but still quite low (all below 40%). W varieties range widely on their comprehension, from 10% in W-DT to 62% in W-YL. W-YL is on the border between C and W varieties and is in contact with C varieties such as C-LB. The unexpectedly high score for W-YL may reflect acquired rather than inherent intelligibility, i.e., may be due to contact rather than structural similarity. Within the C cluster, C-WC and C-LJ score the highest, which reflects their geographic and historical proximity to CW-QY. Other C Lalo varieties also score relatively high (above 60%), especially when compared with listeners from the E and W clusters.

Figure 7-6 shows the RTT results for listeners when responding to the C-LJ text, another C Lalo variety. The trend matches that of Figure 7-5: non-C listeners show low comprehension of C Lalo, while other C varieties show high comprehension. Again, W-YL's high score is anomalous, suggesting the effect of contact.

In general, non-E varieties show low comprehension, as seen in results for MD, XZ, W varieties, and most C varieties. The intra-cluster score of E-DC listening to E-HS is much higher at 88%. CE-YA's intermediate score of 70% when listening to E-DC is probably due to contact, as the two varieties are geographically contiguous and share many social ties through intermarriage and other social exchanges. Because of the close contact between these two communities, it was impossible to screen out CE-YA participants who had already been exposed to E-DC, as all adults in the community had already experienced contact with E-DC. SE-GP's intermediate score of 65% when listening to E-HS arises from a similar language contact situation.

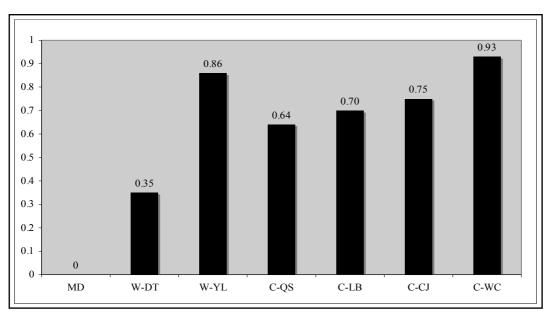
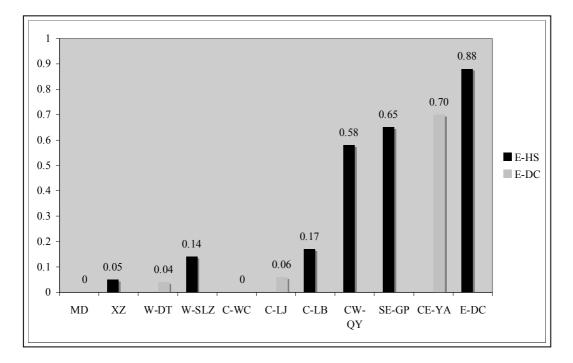
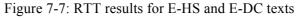




Figure 7-6: RTT results for C-LJ text

Figure 7-7 shows the RTT results for listeners when responding to E-HS (marked in black) and E-DC (marked in gray) texts.

Finally, Figure 7-8 shows the RTT results for listeners when responding to the W-DT (marked in black) and W-YL (gray) texts. These texts were collected towards the end of fieldwork, and so were tested in the least number of locations. Still, a few observations can be made. Not surprisingly, C-LB shows low comprehension of W-DT, while W-YL shows high comprehension. Unexpectedly, W-SLZ shows low comprehension when listening to the W-YL text, but this may reflect the peripheral nature of W-YL's membership in the W cluster. XZ's scores are low for the W-YL text, but rather high for W-DT. Both XZ and W-DT share the *a > o, $*a\eta > a$ chain, so this may have aided XZ's comprehension.

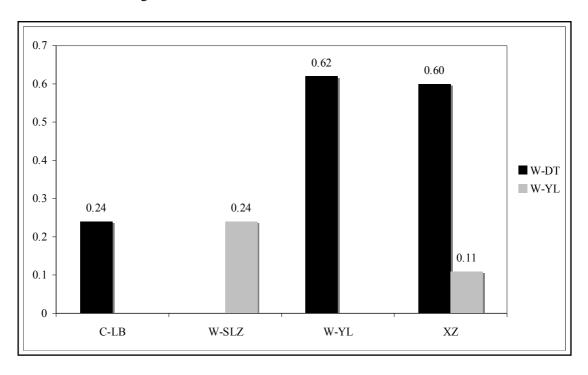


Figure 7-8: RTT results for W-DT and W-YL texts

In summary, intelligibility test results agree with the classification of Lalo varieties presented in Chapter 6 and in §7.2 above. Intra-cluster intelligibility tends to be high, as seen in C Lalo varieties' scores when listening to CW-QY and C-LJ texts, and in E-DC's high score on the E-HS text. Cross-cluster intelligibility tends to be low, unless there is significant contact. This is seen, for example, in the low scores of all non-C speakers when listening to C texts, and of non-E speakers listening to E texts. Contact is usually a factor in unexpectedly high scores of cross-cluster listeners, as in the case of CE-YA listening to E-DC, and of W-YL listening to CW-QY and C-LJ texts.

7.4 Correlation between phonetic distance and intelligibility

Besides revealing the tendency for low cross-cluster intelligibility, RTT results are also used to provide external validation for the phonetic distance results given in §7.2 above. The strong, significant correlation between intelligibility and LD has already been noted for Scandinavian languages (Gooskens 2006) and Sinospheric, tonal languages such as Nisu (Yang 2009a), Bai and HSH Zhuang (Yang & Castro 2008). These correlations suggest that LD is a good approximation of intelligibility for both Indo-European and East Asian tone languages.

Table 7-2 shows the correlations between LD and intelligibility for all RTT results, and for the CW-QY text only. 'All RTT results' include all RTT scores given in Table 7-1, which includes listeners' responses to different texts. 'CW-QY text only' includes listeners' scores only when listening to a CW-QY narrative. In the column headings, N is the number of observations, R is Pearson's correlation coefficient, R squared is the proportion of variance explained by the model, and P is the level of significance. The closer R is to 1 or -1, the stronger the correlation between the two variables. The negative R values in Table 7-2 indicate a negative relationship between LD and intelligibility, i.e., the greater the phonetic distance, the lower the intelligibility score. R squared, calculated simply by squaring the value of R, indicates how well a regression line approximates real data points, i.e., how much variance in intelligibility can be explained by LD. The closer to 1 R squared is, the better LD is at predicting intelligibility. The P value is the probability of finding the current R if the real R were in fact zero. P values of less than .05 are usually accepted as statistically significant. Very low P values, as seen in Table 7-2, indicate a low probability of accepting that there is a relationship between LD and intelligibility when there really is not.

Both correlations given in Table 7-2 are high and statistically significant, with R = -0.71, P = 0.000000 for all RTT results, and R = -0.85, P = 0.000001 for the CW-QY text only. The difference between the R values of all RTT results versus CW-QY text only is probably due to the lack of comparability between different RTT texts. Not all RTT texts are equal in terms of ease of understanding, as some may have more predictable plots or Chinese loanwords that enable guessing. Therefore, a better way of external validation is to include only the RTT scores of the CW-QY text; in this way, all listeners are responding to the same or similar stimuli. E Lalo speakers, however, listened to a different CW-QY story and used a slightly different format than other listeners, so the stimulus is not exactly the same for all listeners. Yet the stimuli are similar in the sense that all listeners are responding to the same variety. If the RTT results from E listeners are taken out, the correlation increases slightly to -0.86, with a slightly higher p value (0.00009) that is still strongly significant.

With CW-QY results only, the R squared is very high at 0.72. This means that LD alone is able to explain 72% of the variance in intelligibility scores. The remaining 27% of the variance is probably due to cross-varietal differences in lexicon and syntax, as well as other factors such as attitude and previous exposure to CW-QY. If the cross-varietal differences were included in a multiple regression model, we would be able to see which level (phonetic, lexical or syntactic) contributes the most to difficulties in comprehension. That, however, is beyond the scope of this book.

	Ν	R	R squared	Р
All RTT results	44	-0.71	0.50	0.000000
CW-QY text only	17	-0.85	0.72	0.000001

Table 7-2: Correlations between LD and Intelligibility

Figure 7-9 shows the scatter plot of intelligibility versus LD for all RTT results, with intelligibility as the Y variable and LD as the X variable. Outliers are labeled, with the listener variety listed first, followed by the text. Most outliers appear above the regression line, indicating unexpectedly high RTT scores. W-YL's unexpectedly high scores when listening to C varieties, and CE-YA's high score when listening to E-DC, are due to acquired intelligibility through contact, as noted already in §7.3. E-DC's high score when listening to E-HS also appears above the regression line, even though both are E varieties. In this case, perhaps LD's sensitivity to small phonetic differences has negatively impacted its approximation of intelligibility. The only outlier below the line is C-QS listening to C-CJ. Even though these two varieties cluster closely together from both diachronic and synchronic perspectives, QS listeners score poorly when listening to the C-CJ text. This may be due to the difficulty of the C-CJ text or to some other external variable, a question for future investigation. In general, however, intelligibility scores decrease as LD increases.

Figure 7-10 shows the scatter plot of intelligibility versus LD for CW-QY RTT results only. The regression line fits well, with only W-YL appearing as an outlier, due to contact with C varieties. C Lalo varieties cluster in the top left with high comprehension and low LD, E and W show lower comprehension and higher LD, and peripheral varieties show almost no comprehension and high LD.

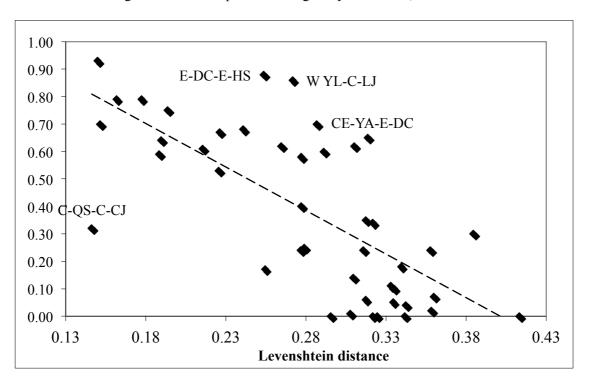
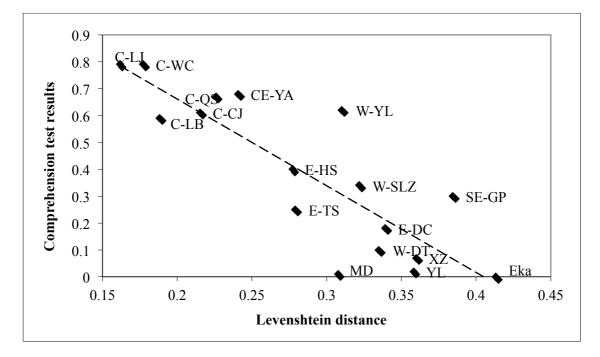



Figure 7-9: Scatter plot of intelligibility versus LD, all RTT results

Figure 7-10: Scatter plot of intelligibility versus LD, CW-QY RTT results only

7.5 Speaker perception and interactions

As discussed in §2.6, subjective measures of difference such as the perception of sameness or difference can reveal yet another aspect of the synchronic relationships between Lalo varieties. Lalo speakers' perceptions of other varieties were explored through the indicators of prestige and perceived sameness or difference. Prestige was probed through asking which village spoke the best Lalo and which village was the most important. In almost all cases, participants preferred their own

variety to others. Only one location, C-LJ, responded that CW-QY sounded better because CW-QY speech contained fewer Chinese loanwords. The general egalitarian structure among Lalo varieties is similar to the sociolinguistic situation of the Sui, an indigenous minority language spoken in Guizhou (Stanford 2007, Stanford & Preston 2009). Stanford (2007) identifies the lack of a standardised form of the indigenous language and the prestige attached to Chinese as factors in explaining why varieties of Sui do not differ in prestige. The same factors are also seen in the Lalo sociolinguistic context. However, the perception of Weishan as the traditional homeland of the Lalo gives this area a subtle prestige, especially the western Weishan area where CW-QY is located. While direct probes of prestige (i.e., which village spoke the best Lalo) did not reveal Weishan's slightly raised status, asymmetrical patterns in perceived sameness or difference did, as discussed below.

To evaluate perceived sameness or difference, respondents labelled the speech of Lalo villages in their area as 'the same,' 'a little different' and 'very different' from their own speech. Participants were also asked to give a subjective evaluation of their comprehension of that variety. The same perceptual questions were asked about the speech of brides who married into the respondents' village from that particular variety.

Results from the different probes were combined to classify the named villages into the three categories of 'same,' 'a little different,' and 'very different'. Following the tradition of perceptual dialectology (Preston 1999, Long & Preston 2002), these categorisations are represented in the form of maps in Figure 7-11 and Figure 7-12. The villages or townships named in the interviews are given in Table 7-3. A thick, dark line links the datapoints to villages named as 'same,' a lighter line marks villages named as 'a little different,' while a dashed line marks 'very different'. Arrows marking directionality of perception are given when respondents named another datapoint included in the research, to clarify ambiguity. Named townships are labeled on the map, but not individual villages; both townships and villages are all listed in Table 7-3.

Figure 7-11 shows the responses of the majority of datapoints, excluding those in Baoshan, which are given in Figure 7-12, and those in Lincang (Eka and MD), which only named one other village. As expected, respondents show a tendency to identify Lalo villages located nearby as 'same' or 'a little different,' whereas villages located more distantly are more likely to be labeled 'very different'. A more interesting trend is the asymmetrical nature of datapoints' perceptions towards each other. This asymmetry is especially striking in how datapoints outside of Weishan view those inside Weishan, and how CE-YA (E Mt.) views C Lalo varieties in western Weishan. Datapoints located outside of Weishan tend to label Weishan datapoints as more similar than Weishan datapoints label them. For example, C-WC, located in Yangbi County, named CW-QY in Weishan as 'the same,' but CW-QY labeled C-WC as 'a little different'. E-DC, located in Dali Municipality, named CE-YA as 'a little different,' whereas CE-YA labeled E-DC as 'very different'. Similarly, CE-YA tends to claim more similarity with varieties in western Weishan than those same varieties extend to CE-YA. While CE-YA labeled CW-QY, C-LJ, and Qinghua Township as slightly different, both CW-QY and C-LJ label CE-YA as 'very different'.

This asymmetry is probably related to a combination of prestige and population concentration factors. These two factors overlap, as the areas of highest population concentration are also found in western Weishan, part of the traditional homeland of the Lalo. For example, CW-QY, with a high concentration of Lalo population, is more likely to think of other datapoints as slightly or very different, whereas areas with lower Lalo population concentration, such as CE-YA or C-WC, are more eager to claim affinity with a high concentration area. Prestige is also attached to the whole of Weishan County as well, as seen in the differing names used in reference to E-DC and CE-YA. While E-DC speakers refer to CE-YA speakers as $[mi^{55}Ja^{21}pa^{21}]$, meaning 'person from Misha (Weishan),' CE-YA speakers refer to E-DC speakers as $[a^{21}w\epsilon^{33}pa^{21}]$, meaning 'person who speaks awkwardly'. The difference in linguistic prestige revealed in the names is paralleled by the asymmetry of perception seen between E-DC and CE-YA.

Social contact is also an important factor influencing speakers' perceptions of sameness or difference. Contact was assessed through bride exchange, participation in periodic markets, shared cultural festivals, and travel between Lalo villages. In general, more frequent contact exists between datapoints and varieties located nearby, which usually are the same varieties identified as

'the same' or 'a little different'. One puzzle of Figure 7-11 is that E-DC ranks CE-YA as 'a little different' while they rank E-HS as 'very different,' even though CE-YA is a C Lalo variety and E-HS belongs with E-DC to the E Lalo cluster. Patterns of contact help explain this puzzle. In terms of bride exchange, E-DC identified CE-YA and the surrounding E Mountain villages as frequent givers and receivers of brides, whereas E-HS was not identified as a destination or sender of brides at all. The high level of contact between E-DC and CE-YA has most likely influenced E-DC speakers to classify CE-YA as more similar to them than they perceive E-HS to be, even though E-HS is phylogenetically closer to E-DC than CE-YA is.

Figure 7-11: Lalo dialect perceptions, excluding Baoshan and Lincang. Arrows indicate directionality of perception.

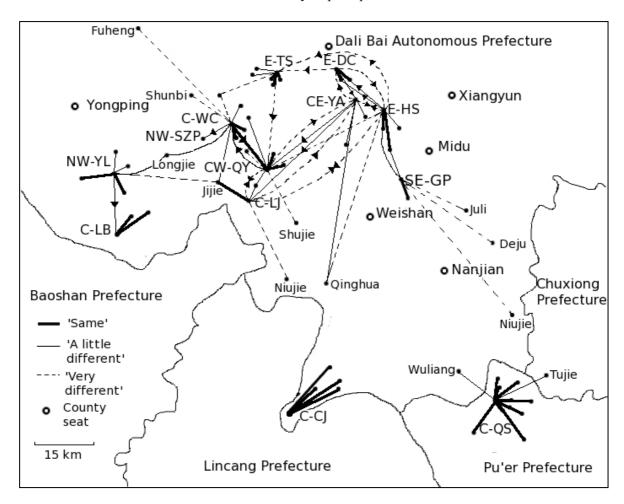


Figure 7-12 is a Lalo dialect perception map of the datapoints located in Baoshan, i.e., W-SLZ, XZ, and YL. Because of these datapoints' increased distance from other Core Lalo varieties and from Weishan, the asymmetrical pattern associated with Weishan's prestige is not seen among these varieties. Ability to evaluate perceived sameness is dependent on some level of contact with the variety in question. Baoshan varieties, located in the far west of Lalo distribution, are not physically close enough to have contact with Weishan varieties. The closest a Baoshan datapoint gets to evaluating Weishan is W-SLZ's identification of Changning, a county within Baoshan Prefecture that borders Weishan, as 'very different'. Baoshan datapoints, on the other hand, identify and comment on other Lalo varieties located within Baoshan Prefecture. The pattern emerges of an area of relative homogeneity in Wama Township, where W-SLZ is located. W-SLZ identifies several villages in Wama Township as 'same,' including one village (Meilanshan) in Wafang Township directly to the south of Wama. Datapoint respondents reciprocally view each other as 'very different'. Both XZ and W-SLZ view the other as 'very different;' XZ also identifies YL as 'very different,' while YL respondents do not label XZ at all.

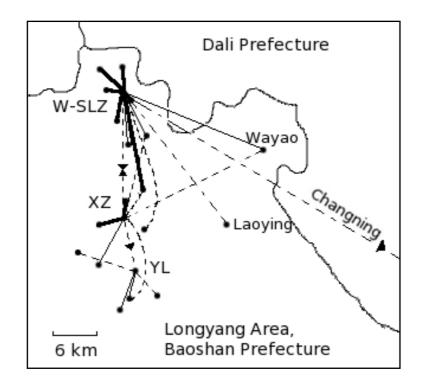


Figure 7-12: Lalo dialect perceptions, Baoshan (W-SLZ, XZ, and YL). Legend same as Figure 7-11.

Table 7-3 lists all the village clusters and townships named by respondents during the group interview. Individual villages belonging to a village cluster with a different name are given with the village cluster name in parentheses. Counties are given in parentheses only when the village is located in a county different to the datapoint's, or when the village name is the same as another datapoint's name.

7.6 Summary

This chapter uses three different methodologies to explore the synchronic relationships between Lalo varieties, a perspective that enriches the overall picture of Lalo linguistic ecology. NeighborNet phenograms and multidimensional scaling diagrams based on phonetic distance identify distinct separations between the three non-Greater Lalo varieties (Eka, MD, and YL) and Greater Lalo (Core plus XZ). The four lower-level clusters of SE, E, W, and C Lalo are clearly defined. This analysis more or less agrees with the subgrouping given in §6.1, but lacks many characteristics of the phylogenetic tree. Greater Lalo is the only higher-level grouping uncovered by MDS (see Figure 7-3); other higher-level groupings of Core Lalo, C-W, and E-SE are not evident.

Intelligibility test results indicate that cross-cluster intelligibility is usually low, unless a variety has significant cross-cluster contact. C Lalo varieties show a relatively high degree of intelligibility within their cluster, and E-DC shows high comprehension of fellow E Lalo variety E-HS. Intelligibility between W varieties, however, is more varied, with W-SLZ showing very low comprehension of W-YL, but W-YL showing relatively high comprehension of W-DT. The correlation between intelligibility test and phonetic distance is very strong and significant, especially when only considering responses to the CW-QY text (R=-0.855, P=0.000001), thus providing an external validation of the phonetic distance results.

Finally, speaker perceptions and interactions provide a glimpse into how Lalo speakers categorise the varieties they are in contact with. While perceptions of difference usually parallel geographic and phylogenetic distance, in some cases prestige and contact influence speakers' perception, leading to interesting asymmetrical patterns of perceived sameness. These patterns

highlight the prestige attached to the Weishan area, especially the areas of concentrated Lalo population in western Weishan.

	'Same'	'A Little Different'	'Very Different'
MD		Mengguo (Cangyuan)	5
Eka		Yinchanghe	
YL		Ping'an (in Chashan village cluster), Yuzhu	Lianhe, Xiaohe (in Pingzhang village cluster)
XZ	Sikeshu, Dalang	Hewan	YL, SLZ, Meilanshan, Anbang, Chashan,Wayao
W-S LZ	Meilanshan, Shanglabao, Gumi, Shanxin, Niuwanzhou (in Wama village cluster), Zhazishu (in Wama), Xinzhai (in Mianga)	Anbang, Yangcao, Wayao	Sikeshu, Chahua, Bailongjing, Laoying, Changning
W-Y L	Wapang, Lutang	Longjie (Yongping), Qichang, Yanbei, Shuixie	Jijie (Yangbi)
E-TS	Jizao, Wuxi, Luowu, Zijin (Weishan)	Shiping, Gaofa, Diantou (Yangbi)	CW-QY, Shunbi (Yangbi)
E-DC	Baita, Damaidi	CE-YA	E-TS, E-HS
E-HS	Qingshuigou, Jingang	E-DC, Damaidi, Liwei	E-TS, CE-YA, CW-QY, C-LJ, Qinghua
SE-G P	Duohu	Qingshuigou, Jingang	Deju, Juli, Niujie (Midu)
CE-Y A		Xinsheng, Tuanjie, Qinghua, CW-QY, C-LJ	E-DC, E-HS
CW- QY	Hongqi, Huoshancun	C-WC, Henan, Zijin, Tiankoucun, Xingfu	E-DC, CE-YA, C-LJ, Sansheng, Sanhe, Shujie, Waniwu (Yangbi)
C-LJ	Jijie (Yangbi)	Henan	E-HS, CE-YA, Niujie, CW-QY
C-W C	Ruhe, Shema, CW-QY	W-SZP, CE-YA, Heima, Dacun, Jijie (Yangbi), Longjie (Yongping)	Shunbi, Fuheng, Luoshideng
C-QS	Jiucun, Qinhe, Qingyun (Jingdong), Qinglian, Wangfu, Boluolin, Xingwang, Shala, Hedi, Wenlong	Dajie, Wuliang (Nanjian), Tujie (Nanhua)	
C-CJ	Longjie (Nanjian), Longmen, Yingpan, Shenzhou		
C-LB	Abo, Wenku		

Table 7-3: Villages named as 'same,' 'a little different' and 'very different'
--

8.1 Introduction

The goal of this book has been to classify Lalo regional varieties in relation to each other from several different perspectives: diachronic and synchronic, linguistic and sociolinguistic. In pursuit of this goal, I first analysed the phonologies of sixteen Lalo varieties (Chapter 3), reconstructed Proto Lalo phonology (Chapters 4 and 5), and then classified varieties according to their shared innovations, phonetic and perceptual distance, and cross-dialectal intelligibility (Chapters 6 and 7). The various perspectives inform each other and enable a rich understanding of the ecology of Lalo varieties, synthesising evidence from the fields of historical linguistics, dialectometry, and sociolinguistics. In the remaining sections of this chapter, I first assess Lalo varieties' ethnolinguistic vitality, an important aspect of Lalo's linguistic ecology. I then summarise the major findings, identify the contributions of the book and suggest directions for future research.

8.2 Degree of endangerment of Lalo regional varieties

Assessing the degree of endangerment of Lalo varieties reveals the fragility of Lalo's ethnolinguistic sustainability. Lalo is an eroding language, with many villages, such as YL, C-LB, and W-SZP, already irrevocably on the path to extinction. Lalo endangerment is occurring in the context of what most linguists agree is a global crisis, the loss of most of the world's linguistic diversity during this century. The alarming state of Lalo vitality highlights the urgency for further research on Lalo varieties. Table 8-1 summarises the degree of endangerment of Lalo regional varieties. Results are based on sociolinguistic interviews with village leaders and groups of Lalo speakers (see Appendix C for interview schedules). Methodology for analysing the interview responses is described in §2.7. Table 8-1 uses Krauss's (2007) terminology, with categories 'stable' through 'definitively endangered' and abbreviations from the American grading system, 'a' through 'e'. The numbered columns represent the nine factors that UNESCO (2003, 2009) has identified as key in language maintenance. Each factor is evaluated on a scale of 0-5, given in Table 8-1, with further explanation in Table 8-2. The nine factors are the following: 1) Intergenerational Language Transmission, 2) Absolute Number of Speakers, 3) Proportion of Speakers within the Total Population, 4) Trends in Existing Language Domains, 5) Response to New Domains and Media, 6) Materials for Language Education and Literacy, 7) Governmental and Institutional Language Attitudes And Policies, 8) Community Members' Attitudes toward their Own Language, and 9) Amount and Quality of Documentation.

Factor 2 (total population), though relevant to Lalo as a whole, is not included in Table 8-1, as each datapoint represents only one village. There are now approximately 300,000 Lalo speakers, a comparatively large number for a minority language, but this number represents only 60% of the Lalo population (Factor 3). As I explain below, this number will probably decrease by one third in the next fifty years. Even in areas of highest Lalo concentration, i.e., Weishan, Nanjian and Yangbi counties, Lalo are still in the minority at the county level; for example, in Nanjian County, Lalo only accounted for 46% of the total population in 2004 (YNSY 2004). Throughout all Lalo speaking areas, Factors 3, 5, 6, 7 and 9 are all at Level 3 or below (on a scale of 0-5). Even in stable datapoints, Factor 5 (new media) is minimal, but with some hopeful developments seen in the recording and dissemination of home videos of Lalo traditional song and dance performed during cultural celebrations. In some villages, growing access to video cameras and editing technology

have facilitated the increasing popularity of these videos in the last five years. There are no educational materials in Lalo; there is not even a Lalo orthography, which prevents the use of Lalo in any new print domains such as the Internet. There is no governmental or institutional support for Lalo; though the Chinese constitution gives minorities the right to develop their language, there is no monetary or administrative support for the Lalo to do so. Besides Björverud's (1998) grammar of Longjie Lalo and a handful of phonological sketches and wordlists from the Longjie area, documentation of Lalo varieties is lacking. Most Lalo varieties are documented in this book for the first time, but the documentation only includes the phonological sketches presented in Chapter 3 and the wordlist in Appendix E.

Variety	Location	Category/Gi	ade	1	3	4	5	6	7	8	9
CW-QY	Weishan	stable	а	5.	3	4	1	0	3	4	3
C-LJ	Weishan	stable	а	5.	3	4	1	0	3	4	3
CE-YA	Weishan	stable	а	5.	3	4	1	0	3	4	2
C-WC	Yangbi	stable	а	5.	3	4	1	0	3	4	2
E-DC	Dali Municip.	stable	а	5.	3	4	1	0	3	4	2
E-HS	Dali Municip.	stable	а	5.	3	4	1	0	3	4	2
E-TS	Dali Municip.	stable	а	5.	3	4	1	0	3	4	2
SE-GP	Midu	stable	а	5.	3	4	1	0	3	4	2
MD	Gengma	stable	а	5.	3	4	1	0	3	4	2
C-CJ	Nanjian	partly stable	а-	5.	3	4	0	0	3	4	2
XZ	Longyang	partly stable	a-	5.	3	4	0	0	3	4	2
W-YL	Yongping	eroding	a	4	3	3	0	0	3	4	2
Eka	Shuangjiang	eroding	a	4	3	3	0	0	3	3	2
W-DT	Yangbi	eroding	a	4	3	3	0	0	3	3	2
C-LB	Yongping	definitively	b	3	3	2	0	0	3	3	2
C-QS	Jingdong	definitively	b	3	3	2	0	0	3	3	2
W-SZP	Yangbi	definitively	b	3	3	2	0	0	3	3	2
W-SLZ	Longyang	definitively	b	3	3	2	0	0	3	3	2
YL	Longyang	definitively	b	3	3	2	0	0	3	3	2

Table 8-1: Degrees of endangerment of Lalo varieties (1)

In all stable datapoints, Factors 1, 4, and 8 are at Level 4 or above. Factor 1 (intergenerational transmission) is at Level 5., indicated by all children in the village learning to speak Lalo as their first language and using Lalo when playing with their Lalo peers. However, Chinese is encroaching on the home domain with the introduction of new media domains such as TV. Factor 4 (domains) and Factor 8 (attitudes) are at Level 4, indicated by the use of Lalo not only in the home, but also in public domains such as village meetings and in the classroom; also, participants' identified the Lalo language as an important aspect of their cultural identity that they wish to pass on to their children. One level below 'stable' are the two 'partly stable' varieties of C-CJ and XZ, which have not made use of the recently available videography technology to record Lalo media products.

In the remaining Lalo datapoints, however, Factors 1, 4, and 8 are at Level 4 or below. In the three 'eroding' varieties, Factors 8 (attitude) and 4 (domains) are crucially lower, usually 3 or below. Speakers of these varieties are characterised by a more laissez-faire attitude toward the transmission of Lalo; they do not mind if their children do not learn to speak Lalo. Also, Chinese is used in all public domains, including village meetings, and parents have begun speaking Chinese to their children in the hopes of giving them an advantage in school. Eroding varieties will probably shift to definitively endangered within the next twenty years, as children today will probably not teach their children Lalo. Five Lalo varieties have already entered the definitively endangered

category and speakers have ceased to transmit Lalo to their children. These varieties will probably become severely endangered or extinct in the next fifty years.

Factor	Level	Description					
1	5	Safe but threatened: unbroken intergenerational transmission, but					
		Chinese is encroaching on some domains					
	4	Unsafe: all children in limited domains					
	3	Definitely endangered: no longer learned as mother tongue					
3	3	Definitely endangered: only 60% of the Lalo still speak Lalo					
4	4	Multilingual parity: Lalo used in most domains, even in village					
		meetings, but not in school after third grade					
	3	Dwindling domains: Lalo used in most domains, but Chinese begins to					
		penetrate home domains					
	2	Limited domains: Lalo only spoken in home; parents first teach Chinese					
		to children					
5	1	Minimal: Lalo is used in only a few new domains, i.e., videos of Lalo					
		cultural celebrations.					
	0	Inactive: Lalo is not used in any new domains.					
6	0	No orthography is available to the community.					
7	3	Passive assimilation: although minorities have a constitutional right to					
		develop their language, there is no government support for Lalo					
		language development, and Chinese prevails in the public domain.					
8	4	Most members support language maintenance.					
	3	Many members support language maintenance; many others are					
		indifferent or may even support language shift.					
9	3	Fair: C-LJ has one good grammar (Björverud 1998) and several					
		published wordlists; CW-QY has several unpublished texts and wordlists					
		(Blackburn, unpublished), both have audio and video recordings, but no					
		dictionary and no everyday media					
	2	Fragmentary: Other Lalo varieties have only short phonological					
		sketches, wordlists, and audio and video recordings, most of which were					
		collected as part of this book.					

Table 8-2: UNESCO (2009) endangerment scales in the Lalo context

In Table 8-3 below, the scales are simplified so that a plus '+' designates Level 4 and above, while a minus '-' indicates Level 3 and below. Varieties in which Factor 5 (new media) is at least 1 are marked with a plus as well. Together, Factors 5, 8, 4 and 1 form an implicational hierarchy. A positive for Factor 5 (new media) implies a positive for 8, 4, and 1; 8 (attitudes) usually implies 4 and 1, and 4 (domains) implies 1 (transmission). The enthusiastic recording and watching of Lalo videos (Factor 5) is a positive sign of ethnolinguistc vitality; wherever this phenomenon is seen, Lalo vitality is stable. Positive attitudes towards Lalo (Factor 8) usually co-occur with the use of Lalo in public domains such as village meetings or in the classroom (Factor 4), except in the case of W-DT, where attitudes are positive but Lalo's domain is limited to the home. If Factor 8 or 4 is a minus, vitality is weaker and intergenerational transmission may become threatened.

Variety	Location	Category/Grade		1	4	8	5	3	6	7	9
C-LJ	Weishan	stable	а	+	+	+	+	-	-	-	-
CW-QY	Weishan	stable	а	+	+	+	+	-	-	-	-
MD	Gengma	stable	а	+	+	+	+	-	-	-	-
C-CJ	Nanjian	partly stable	a-	+	+	+	-	-	-	-	-
XZ	Longyang	partly stable	a-	+	+	+	-	-	-	-	-
W-YL	Yongping	eroding	a	+	+	-	-	-	-	-	-
Eka	Shuangjiang	eroding	a	+	-	-	-	-	-	-	-
W-DT	Yangbi	eroding	a	+	-	+	-	-	-	-	-
C-LB	Yongping	definitively	b	-	-	-	-	-	-	-	-
YL	Longyang	definitively	b	-	-	-	-	-	-	-	-

Table 8-3: Degrees of endangerment of Lalo varieties (2)

Of the nineteen varieties studied, fourteen are still being transmitted to children and five are definitively endangered. The majority of the selected Lalo datapoints are stable or partly stable, but this does not mean that the vitality of Lalo as a whole is robust. As described in §2.2.1.1, I selected villages that were reported to be the most vital in a particular area. Government workers in the township-level Ethnic Minority and Religious Affairs Bureaus were asked to identify highly vital villages. The selection of datapoints that are eroding or definitively endangered therefore implies that other Lalo villages in the area are either at the same degree of endangerment or worse. Counties such as Jingdong and Yongping are thus areas where ethnolinguistic vitality is rapidly decreasing. In Yangbi and Longyang, most areas are eroding or worse, with a few pockets of stable or partly stable areas. The only counties where Lalo is consistently vital are Weishan and Dali Municipality, only two counties out of the nine visited. The selected datapoints do not include counties such as Fengqing and Yun where Lalo was already critically endangered at the time of the study.

Ethnic Lalo population is around 500,000, but less than 300,000 are speakers. In the next fifty years, the speaker population will likely decrease by over 100,000 as Lalo speakers die off in eroding or definitively endangered areas without teaching their children the language. The overall picture for Lalo vitality is therefore characterised as eroding (a--). Speakers in core Lalo areas in Weishan and Dali Municipality may be able to maintain Lalo vitality if steps towards the improvement of Factors 5 (new media), 6 (educational materials), 7 (institutional support) and 9 (documentation) are taken.

8.3 Summary of findings

The key question of this work is the phylogenetic relationships between Lalo varieties. To identify shared innovations, a reconstruction of Proto Lalo is required. In order to reconstruct Proto Lalo, it is first necessary to collect lexical data from many varieties, analyse their phonologies, and discover the systematic correspondences between the varieties. This reconstruction process constitutes Chapters 3 through 5, the first half of the analysis section. The final half of the analysis section presents the diachronic and synchronic classification of Lalo varieties. Chapter 6, the diachronic subgrouping of Lalo varieties, is the payoff of the reconstruction process; shared innovations that occurred after the Proto Lalo stage are used to group Lalo varieties phylogenetically. Chapter 7, the synchronic classification of Lalo varieties in terms of phonetic distance, intelligibility, and perceptions of difference. The following subsections summarise the results of the two halves of this book, the reconstruction of Proto Lalo and the classification of Lalo varieties.

8.3.1 Reconstruction of Proto Lalo

Chapter 3 presents phonological sketches of sixteen Lalo varieties, most of them documented for the first time in this book. The synchronic analysis of Lalo phonologies provides the basis for the reconstruction of Proto Lalo. This analysis also reveals a striking diversity of phonological systems found among the varieties that affiliate under the Lalo autonym. Tonal inventories range from three (YL) to six tones (CE-YA, Eka). MD and Central Lalo varieties have phonation contrasts and level pitches; E-DC, XZ, YL and W varieties have no phonation contrasts, but have contour tones, while CE-YA, Eka, E-TS and E-HS have both phonation contrasts and contour tones. Initial consonant inventory size ranges from the maximum of 33 (CW-QY and C-LJ) to a minimum of 22 (Eka and C-CJ). There are also certain characteristics shared by most Lalo varieties, some of which are areal features, e.g., monosyllabicity. The syllable template is typically (C)VTP, but a few varieties have syllable-final nasal -ŋ (i.e., Eka, YL, XZ). All Lalo varieties have a syllabic nasal that assimilates to the place of articulation of the following initial, but the conditioning of the syllabic nasal's diachronic development varies across dialects (see §3.2 for an example of this variation). Most varieties have a front rounded vowel [y], at least one nasalised vowel, usually [ĩ], and a vowel pronounced with friction and lip compression, usually [v].

Proto Lalo (PLa) segmental phonology is reconstructed in Chapter 4 by tracing PLa's descent from Proto Ngwi and Proto Burmic through comparison of the nineteen Lalo varieties' systematic correspondences. Proto Lalo is a monosyllabic language with syllable template (C)V(-ŋ)TP, with an optional initial, obligatory vowel, optional nasal final -ŋ (which can only follow -a), and tone and phonation contrasts. PLa has 48 initial consonants, including palatalised labial and velar consonants (i.e., *pj, *p^hj, *bj, *mj, *?mj, *kj, *k^hj, *gj, *ŋj, *?ŋj) and preglottalised initials (i.e., *?m, *?mj, *?n, *?ŋ, *?ŋ, *?ŋ, *?l, *?v and *?x). The palatalised initial series developed from Proto Ngwi's consonant clusters of stop plus medial, and preglottalised initials developed from the coalescence of Proto Ngwi's *?- or *s- prefix with initial sonorants. Proto Lalo's eight vowel system distinguishes three levels of height and three degrees of backness, with one front rounded vowel /y/. There is also one nasal final rhyme *-aŋ, which is a retention from Proto Ngwi and is still retained in some varieties.

Chapter 5 provides evidence for the phonetic values of Proto Lalo tones and traces the subsequent tone changes in Lalo varieties. As in Proto Ngwi's hypothetical tonal system, PLa appears to have distinguished high, mid, and low level pitches in syllables with non-harsh phonation (Tones *1, *2, and *3), and mid and low level pitches in syllables with harsh phonation (Tones *H and *L). Central Lalo retains PLa's tonal system intact. Acoustic analysis of CW-QY's tonal inventory reveals two allotones of Tone *1, the high level tone; voiced prevocalic segments lower the pitch onset, conditioning a high rising pitch, while elsewhere Tone *1 remains high level. The diachronic conditioning of the Tone *1 split seen in many varieties such as E Lalo falls along the exact same lines as C Lalo's synchronic conditioning of Tone *1 allotones. E Lalo's Tone *1 split, seen with the same conditioning in CE-YA, W-YL and XZ, results in the development of a contrastive low-rising contour tone. This development leads to the hypothesis that PLa's Tone *1 also had two allotones, the diachronic seeds of the Tone *1 split, which later became contrastive in E Lalo after the loss of preglottalised initials. In all non-Central Lalo varieties, harsh phonation consistently conditions raising of the pitch in *L and often in *H as well. This work links this effect to the increased tension in the vocal folds that accompanies the production of harsh phonation, only recently understood through laryngoscopic studies (Edmondson & Esling 2006). In most non-Central varieties, harsh phonation is lost, leaving a system of contrastive pitch height and contour. The resulting mergers or phonetic tone changes vary according to variety.

8.3.2 Classification of Lalo varieties

Chapter 6 is the focal point of this book, the phylogenetic subgrouping of Lalo varieties. The reconstruction of Proto Lalo helps clarify which features in modern day varieties are retentions and which are innovations that occurred after the Proto Lalo phase. Shared innovations that meet the criteria for subgrouping, as described in Chapter 1, are used to subgroup Lalo varieties. Working from the bottom up, Lalo can be grouped into the Eastern, Southeastern, Western, and Central

dialect clusters, with peripheral varieties XZ, YL, MD, and Eka. Peripheral varieties represent emigrations out of the Lalo homeland area of southern Dali Prefecture at different stages of history: the pre-Eka left approximately 300 years ago, the pre-MD approximately 100-200 years ago, and YL at an unknown time. The E, SE, W, and C clusters, whose ancestors remained in the Lalo homeland, form the Core Lalo group. Core Lalo and XZ together form Greater Lalo, so XZ's ancestors must have migrated out of the Lalo homeland after YL, MD and Eka did. All Lalo varieties can be traced back to Proto Lalo through the distinctive Tone *2 split, described in Chapter 5.

Central Lalo is the heart of the Lalo language, its historical, demographic, and social core. Linguistically, Central Lalo is the most conservative dialect cluster, retaining PLa's tonal system and preglottalised initials. Historically, Central Lalo speakers can be reasonably linked to the ancient Meng clan who became the leaders of the Nanzhao Kingdom (7th-9th centuries A.D.). In terms of demographics, Central Lalo has by far the largest population of all the groups; more than 70% of Lalo speakers speak a variety of Central Lalo. Finally, Central Lalo in Weishan is the most ethnolinguistically vital and is the most hopeful in terms of language maintenance. This is not to say that other varieties are less valuable or less important. E Lalo is also a highly vital area and is the only cluster to preserve PLa's palatalised labials. Each Lalo variety, no matter how small the population of speakers, adds to the understanding of Lalo as a whole.

As a complement to Chapter 6's diachronic subgrouping, Chapter 7 uses phonetic distance, intelligibility and perception to give a synchronic perspective on the relationships between varieties. The Levenshtein distance algorithm is used to measure phonetic distance between varieties, which is then used as input for NeighborNet network analysis and multidimensional scaling. NeighborNet and multidimensional scaling clearly identify the lower-level clusters of E, SE, W, and C Lalo. C Lalo is shown to be a relatively more homogeneous cluster when compared to E and W Lalo clusters. Peripheral varieties YL and XZ do not clearly affiliate with any other varieties. These findings are in keeping with the subgrouping in Chapter 6.

However, there are some discrepancies between the diachronic and synchronic analysis. Contact influences varieties that are not genetically related to become more phonetically similar, as in the case of CE-YA, a C Lalo variety that shows the E Lalo Tone *1 split; in the NeighborNet network, CE-YA appears in between the C and E clusters. Also, MD and Eka group together loosely in the NeighborNet diagram, but this grouping is not supported by the diachronic analysis. The synchronic pairing of MD and Eka is probably due to shared retentions and to a shared linguistic environment in southern Lincang Prefecture, where they are both in contact with languages such as Lahu and Dai. While synchronic analysis reveals the lower-level clusters, it is unsuccessful at uncovering the upper-level subgroups of C-W, E-SE, or Core Lalo. There are two reasons for this discrepancy. First, the shared innovations that characterise the upper-level subgroups do not have a large effect on the lexicon, in contrast with the later changes in the tonal systems that characterise the lower-level clusters. Second, subsequent changes after the upper-level shared innovations have lessened the subgroups' phonetic similarity, e.g., after C-W's *g > γ lenition, in certain varieties the γ changes to [w] or [v].

Phonetic distance and intelligibility test results are strongly, significantly correlated, a result consistent with previous findings (Gooskens 2006, Yang & Castro 2008). Intelligibility within the C Lalo cluster is high, but intelligibility across clusters is usually low unless there is significant contact. These intelligibility results suggest that language development materials based solely on Central Lalo will be of limited benefit to non-Central Lalo speakers. Test results also show that non-print media in the CW-QY or C-LJ varieties should be comprehensible in most C Lalo areas. Speaker perceptions of difference usually correspond to geographic and phylogenetic distance, but asymmetrical patterns of perceived sameness suggest that speakers outside of western Weishan perceive the Central Lalo spoken there as more prestigious. A synthesis of vitality, intelligibility and perception results indicates that western Weishan is an optimal location for beginning any language maintenance efforts.

8.4 Contributions of this book

The key empirical contribution of this work is the documentation of the previously unrecorded Lalo varieties MD, Eka, XZ, YL, and W, SE, and E clusters. All of these varieties, excluding MD, SE and E Lalo, will probably become extinct in the next fifty years. Without this initial documentation, these varieties may have become extinct before the linguistic community even knew of their existence, and the myth of Lalo only having two minor dialects would have been perpetuated. As each new variety is documented, possibilities for both typological and historical understanding expand. For example, the collection of these varieties' lexicons makes possible a more accurate reconstruction of Proto Lalo. Another empirical contribution is the recording of seven Central Lalo varieties, expanding on the previous C Lalo documentation of Björverud (1998), Huang and Dai (1992), Hu and Duan (2000), and Sun (1991).

This work is also useful for language planning and maintenance efforts. Orthography design for Central Lalo can now be informed by the phonological analyses of several C varieties. Correspondences between different varieties' phonemes can be worked out systematically through the phonemes' development from PLa, which can help planners design a writing system that will be easier for speakers from all C varieties to learn. Intelligibility test results, which indicate that non-Central listeners do not understand C Lalo, can guide the dissemination of print and non-print media products, avoiding costly efforts in areas that would not benefit. Conversely, evidence from this work shows that CW-QY or C-LJ varieties would be a good starting place for language corpus and status planning. Through this research, speakers of peripheral varieties Eka and MD were connected with other Lalo speakers, a connection that opens up possibilities for co-operation and partnership between Lalo groups, a crucial step towards preservation.

Besides empirical and practical contributions, this work makes several theoretical and methodological contributions as well. Reconstruction of a complex language phylum such as Tibeto-Burman, and even the Burmic branch, is built upon and clarified by the careful, detailed micro-comparison involved in the reconstruction of individual languages such as Lalo. For example, the development of Proto Lalo clarifies the need for a distinction at the Proto Burmic level between *ey and *i and between *ow and *u, as shown in §4.2. Matisoff (2003) tentatively hypothesised an *ow/*u contrast, but the distinction was unattested until the evidence from Lalo varieties showed it to be necessary. Besides Bradley's (1979a) Common Lahu, Proto Lalo is the only other reconstruction of a Ngwi language cluster. As such, Proto Lalo reconstruction is an important step toward filling in the gaps in the linguistic history of Ngwi languages. As I discuss in §8.5 below, Proto Lalo opens up new questions and hypotheses about key innovations that characterise Central Ngwi languages.

Tracing Lalo varieties' tone changes since Proto Lalo provides a valuable case study of secondary tone change, especially the development of contour tones and the effect of harsh phonation on pitch. Two of Pittyaporn's (2007) proposed mechanisms of secondary tone change are attested in Lalo varieties' development of contour tone: segment-tone interaction and peak sliding. In E Lalo's Tone *1 split, segment-tone interaction is seen in voiced initials' depression of Tone *1's initial pitch resulting in a low-rising tone. Different stages of peak sliding, in which the tone's peak slides rightward, provide a phonetically-based explanation of W varieties' different outcomes of tone change in *L: falling, rising-falling, and rising contours. Harsh phonation has been recently distinguished from creaky phonation by the incursion of the ventricular folds over the vocal folds, resulting in increased vocal fold tension (Edmondson & Esling 2006). This book links that increased tension to the raising of pitch in *L and *H in non-Central Lalo varieties. This effect may also be the conditioning factor in the raising of *L seen in several Northern Ngwi languages, as documented in Bradley (1979b).

Levenshtein distance as a measure of phonetic distance on East Asian tone languages has only been previously used on Chinese (Tang 2009), HSH Zhuang and Bai (Yang and Castro 2008), and Nisu (Yang 2009a). The strong, significant correlation between Levenshtein distance and intelligibility test results helps validate this method as a useful tool for the synchronic grouping of dialects of Ngwi languages. The comparison of dialectometric results with diachronic subgrouping confirms the method's ability to identify dialect clusters at a relatively shallow time depth. NeighborNet's failure to uncover the higher-level subgroups of Core Lalo or C-W implies that while these dialectometric tools are useful for synchronic analysis, they cannot replace the comparative method. However, phonetic similarity is at least as important to good language planning as identifying shared innovations, whether the phonetic similarity is a result of shared innovations, retentions, drift, or contact. With this caveat in mind, the dialectometric methods used in this work may enable Ngwi dialectologists to quickly analyse and visualise the synchronic relationships between a language's varieties, which is useful for both language planning and as a starting place for hypotheses about diachronic relationships.

8.5 Directions for future research

As this work is the initial study of Lalo dialects, there are many additional research questions that may be pursued in this area. First, I am aware of at least two more Lalo varieties that I was not able to document due to time constraints, located in Mengguo Village in Cangyuan County and Fuheng Township in Yangbi County. These varieties urgently need to be documented before they become moribund. Also, as this work has focused primarily on phonology, it would be valuable to reconstruct Proto Lalo syntax and see if the pattern of shared syntactic innovations agrees with the grouping presented here. Needless to say, each Lalo variety identified in this book is an ideal candidate for more description and documentation, in the form of texts with interlinear glossing, dictionaries, and grammars. The contact zone between E and C Lalo in eastern Dali Municipality and northeast Weishan County would be a fruitful site for a more in-depth study of how inter-dialectal contact influences tone change, as was seen in CE-YA's development of the E Lalo Tone *1 split (Chapter 5). A tone split is an unexpected contact-induced change, because adults, who are usually the speakers with external contact, rarely add phonemic categories (Labov 2007). However, intermarriage between E and C Lalo speakers in this area means that young children are exposed to both varieties from a young age. This type of sociolinguistic situation provides a complex, fascinating case study that blurs the line in Labov's transmission-diffusion dichotomy.

Finally, this book lays the foundation for assessing Lalo's relationship to other Central Ngwi languages. Proto Lalo fails to meet several criteria for Central Ngwi membership, such as a tone split in *L. Also, the Proto Lalo Tone *2 split shows a different result and a much narrower conditioning environment than the Tone *2 split seen in any other Central Ngwi languages. One hypothesis that needs further investigation is that Proto Lalo's Tone *2 split preserves the original conditioning for the initial Central Ngwi Tone *2 split, with other Central Ngwi languages later expanding the conditioning. Another tantalising question is Lalo's relationship to the Ngwi languages of northern Dali Prefecture and Yongsheng County in Lijiang, e.g., Talu (Zhou 2004) and Kua-nsi (Castro et al. 2010). Zhou (2004) suggests that Lalo and Talu share a close genetic relationship, but the shared feature he cites (preglottalised initials) could be interpreted as a shared retention from Proto Ngwi. Further documentation of Talu related languages and further comparative work is needed to establish definitively whether Lalo and Talu form a subgroup.

8.6 Conclusion

The purpose of this book is to clarify the relationships that exist between Lalo regional varieties from multiple perspectives. The linguistic and sociolinguistic data gathered in nineteen Lalo villages reveal a much more complex picture of Lalo regional varieties than was previously known. The documentation of several previously undescribed varieties and the reconstruction of Proto Lalo enable the diachronic and synchronic classification of Lalo varieties. Results from the comparative method, phonetic distance, and intelligibility tests, as well as sociolinguistic studies of dialect perception, contact and ethnolinguistic vitality are integrated in this rich depiction of Lalo dialect diversity and inter-dialectal relationships. Lalo, previously characterised as only having two varieties with minor differences, instead comprises the four Core Lalo dialect clusters of E, SE, W, and C Lalo, and at least four peripheral varieties, MD, Eka, XZ and YL. Core Lalo varieties cluster around the traditional Lalo homeland of southern Dali Prefecture, with the Central Lalo group as

the historical, demographic and sociolinguistic heart of the Lalo language. As Lalo is an eroding language, language maintenance efforts and further documentation of Lalo dialects are urgently called for, before the disappearance of these under-researched tongues.

Appendix A: Sources of Lalo population statistics by county

In alphabetical order:

Cangyuan Wa Autonomous County:

Li Mingfu & Xiao Guoguang. 1998. Cangyuan Wazu zizhixian zhi [Gazetteer of Cangyuan Wa autonomous county]. Kunming: Yunnan Minzu Chubanshe.

Changning County:

- Zhang Jinhui & Pu Jiaxing. 1990. *Changning xian zhi [Gazetteer of Changning county]*. Dehong: Dehong Minzu Chubanshe.
- CNXQ. 2003. Changning xianqing, 1991.1995 年 [Yearbook of Changning county, 1991.1995]. Kunming: Renmin Zhengfu.

Dali Municipality:

DLSZ. 1998. Dali shi zhi [Gazetteer of Dali municipality]. Beijing: Zhonghua Shuju.

DLSMZZ. 1997. Dali shi minzu zhi [Ethnic nationality gazetteer of Dali municipality]. Kunming: Yunnan Minzu Chubanshe.

Fengqing County:

- FQXZ. 1993. Fengqing xian zhi [Gazetteer of Fengqing county]. Kunming: Yunnan Renmin Chubanshe.
- GDZ. 2004. Guodazhai xiang jianjie [Introduction to Guodazhai township]. http://www.ynfq.gov.cn/fqxrmzfmh/5410515300867112960/20061117/85351.html. (accessed 13 Apr, 2009).

Gengma Dai Wa Autonomous County:

- GMXZ. 1995. Gengma Dai zu Wa zu zizhixian zhi [Gazetteer of Gengma Dai Wa autonomous county]. Kunming: Yunnan Minzu Chubanshe.
- GMDMZ. 1985. Gengma Dai zu Wa zu zizhixian dimingzhi [Geographic place name gazetteer of Gengma Dai Wa autonomous county]. Gengma: Renmin Zhengfu.

Jingdong Yi Autonomous County:

- JDXZ. 1994. Jingdong Yizu Zizhixian zhi [Gazetteer of Jingdong Yi autonomous county]. Chengdu: Sichuan Cishu Chubanshe.
- JDDMZ. 1985. Jingdong Yizu zizhixian diming zhi [Geographic place name gazetteer of Jingdong county]. Jingdong: Renmin Zhengfu.

Jinggu Dai Yi Autonomous County:

- JGXZ. 1993. Jinggu Daizu Yizu Zizhixian zhi [Gazetteer of Jinggu Dai Yi autonomous county]. 1st edn. Chengdu: Sichuan Cishu Chubanshe.
- JGDMZ. 1986. Jinggu Daizu Yizu zizhixian dimingzhi [Geographic place name gazetteer of Jinggu county]. Kunming: Jinggu Daizu Yizu Zizhixian Renmin Zhengfu.

Longyang Area, Baoshan Prefecture:

- Fang Guoyu. 2003. *Baoshan xian zhi gao [Annals of Baoshan county]*. Kunming: Yunnan Minzu Chubanshe.
- BSSZ. 1993. Baoshan shi zhi [Gazetteer of Baoshan Municipality]. Kunming: Yunnan Minzu Chubanshe.
- BSDMZ. 1984. Baoshan shi diming zhi [Geographic place name gazetteer of Baoshan municipality]. Baoshan: Baoshan Renmin Zhengfu.
- BSDQZ. 1998. Baoshan diqu zhi [Gazetteer of Baoshan Prefecture]. Beijing: Zhonghua Shuju.
- He Jinxing. 2004. Baoshan nianjian [Baoshan Yearbook]. Baoshan: Yunnan Meishu Chubanshe.

Midu County:

- MDXZ. 1993. *Midu xian zhi [Gazetteer of Midu county]*. Chengdu: Sichuan Cishu Chubanshe.
- MDDMZ. 1984. *Midu xian dimingzhi [Geographic place name gazetteer of Midu county]*. Midu: Renmin Zhengfu.

Nanjian Yi Autonomous County:

- NJXZ. 1993. Nanjian Yizu Zizhixian zhi [Gazetteer of Nanjian Yi autonomous county]. Chengdu: Sichuan Cishu Chubanshe.
- NJMZZ. 1995. Nanjian Yizu zizhixian minzu zhi [Ethnic nationality gazetteer of Nanjian Yi autonomous county]. Kunming: Yunnan Minzu Chubanshe.
- NJDMZ. 1983. Nanjian Yizu zizhixian dimingzhi [Geographic place name gazetteer of Nanjian county]. Nanjian: Renmin Zhengfu.

Shuangjiang Lahu Wa Bulang Dai Autonomous County:

Zhao Chenglong. 1995. Shuangjiang Lahu zu Wa zu Bulang zu Dai zu zizhixian zhi [Gazetteer of Shuangjiang Lahu Wa Bulang Dai Autonomous County]. Kunming: Yunnan Minzu Chubanshe.

Weishan Yi Hui Autonomous County:

- WSXZ. 1993. Weishan Yizu Huizu Zizhixian zhi [Gazetteer of Weishan Yi and Hui autonomous county]. Kunming: Yunnan Renmin Chubanshe.
- WSDMZ. 1987. Weishan Yizu Huizu zizhixian diming zhi [Geographic place name gazetteer of Weishan county]. Weishan: Renmin Zhengfu.
- Cha Chongliang. 2005. Weishan Nianjian [Weishan Yearbook]. Dehong: Dehong Minzu Chubanshe.
- Cha Chongliang. 2002. Weishan Nianjian [Weishan Yearbook]. Dehong: Dehong MinzuChubanshe.
- Cha Chongliang. 2003. Weishan Nianjian [Weishan Yearbook]. Dehong: Dehong Minzu Chubanshe.
- Zhang Qinghua. 1996. Weishan Nianjian [Weishan Yearbook, 1991.1994]. Yunnan: Yunnan Nianjian Zazhishe.
- Yangbi Yi Autonomous County:
- YBXZ. 2000. Yangbi Yizu zizhixian zhi [Gazetteer of Yangbi Yi autonomous county]. Kunming: Yunnan Renmin Chubanshe.
- Cui Shaoquan & Zuo Yanjun. 1991. Yangbi Yizu zizhixian dimingzhi [Geographic place name gazetteer of Yangbi Yi autonomous county]. Yangbi: Renmin Zhengfu.

Yongping County:

- YPXZ. 1994. Yongping xian zhi [Gazetteer of Yongping county]. Kunming: Yunnan Renmin Chubanshe.
- YPDMZ. 1986. Yongping xian dimingzhi [Geographic place name gazetteer of Yongping county]. Yongping: Renmin Zhengfu.

Yun County:

- YXZ. 1994. Yun xian zhi [Gazetteer of Yun county]. Kunming: Yunnan Renmin Chubanshe.
- YXXXW. 2005. Yun xian renmin zhengfu gongzhong xinxi wang [Yun county government information website]. <u>http://www.ynyx.gov.cn/list.aspx?cid=8</u>. (accessed June 20, 2007).

Appendix B: Elicitation frames from Pelkey (2008)

Translated overview of elicitation frames used in lexical data collection (reproduced with permission).

Class		Primary Frame	Alternate Frame
Count Nouns		3S (FAMILY) three CLF have	3S (POSS) good INTF
	e.g.,		His <u>brain</u> is very good.
Mass Nouns		3S (FAMILY) three	3S (POSS) (NEG) good
		CLF _M have	INTF
	e.g.,	His family has three piles of	His <u>bile</u> is no good.
Meteorological No	ouns	<u>manure</u> . (Today) (NEG) good INTF	(Today) bright/big INTF
	e.g.,	<u>Frost</u> is no good.	The <u>sun</u> is very bright today.
Activity Predicate	s^1	38 PFV	() CPV
	e.g.,	He has <u>ridden</u> (before).	The wood <u>burned up;</u> His father died.
Statives		3S SPV.INTF	DEM LOC INTF
	e.g.,	He is extremely <u>thin</u> .	That place is very <u>far</u> (from here).
Interrogatives and		[each unique]	[each unique]
General Adverbia	ls	Who hit me? Why didn't he	Come again tomorrow.
e.g.,		come?	
Time Adverbials		3S hither come	NA
	e.g.,		
		<u>yesterday</u> .	
Numerals		CLF good INTF	NA
	e.g.,	<u>'nine</u> of them (are/would be)	
Locatives and		3SEXIST	ThingCLF good INTF
Demonstratives e	.g.,	He's on the <u>left side</u> .	<u>That</u> thing is very good.

¹ The state of affairs lexicalized in the semantics of certain activity predicates make them more complex—justifying their recognition as further verb categories (e.g., Accomplishments, Achievements, etc.)—some of which prohibit certain modifications, such as the use of progressive aspect (see Van Valin and LaPolla 1997).

Appendix C: Sociolinguistic interview schedules

Lalo Sociolinguistic Group Questionnaire²:

Informed consent

Participants	1.	2.	3.	4.
Given				
Not given				

Preliminary information

- 1. Questionnaire number:
- 2. Interview County, Township:
- 3. Community, Village:
- 4. Interviewer Name:
- 5. Date:
- 6. Language of elicitation:
- 7. Language of response
- 8. Interpreter used?
- 9. Comments (anything unusual or noteworthy about this interview):

Toponyms

- 1. Village name:
- 2. District name:
- 3. County name:

Ethnic titles

- 1. How do you say___?我想学一点你们的话。_____咋个说?
 - a. Autonym frame: 我是彝族(或我是腊罗巴):
 - b. Glossonym frame: 彝族话好听(或腊罗巴话):
 - c. Loconym frame: 我是(这个地方)的人:
 - d. Menghua area: 蒙化:

² Based on: Nahhas, R. W., Kelsall, J., & Mann, N. (2005). RAID: Research and Instrument Design Tool. SIL International. AND Pelkey, Jamin R. (2008). The Phula languages in synchronic and diachronic perspective, La Trobe University, PhD dissertation.

- e. Menghua people: 蒙化人:
 - i. Are you Mishaba?
- 2. Besides (answer to 3a), do you call yourself any other name?
 - a. What does it mean?
- 3. What do the Han call you?
 - a. Do you like this name?
- 4. What do [Bai/Dai/other ethnic groups] call you?
 - a. Do you like this name?

Domains of language use

1. I want to ask you about what languages you use with people in your house. In your house, what languages do you speak...

	1.	2.	3.	4.	5.
with your parents?					
with your					
grandparents?					
with your siblings?					
(if married) with					
your spouse?					
(if have children)					
with your children?					
with your					
grandchildren?					

2. Next, I want to ask you about what languages you use **outside your house**. When you are **not in your house**, what languages do you speak...

	1.	2.	3.	4.	5.
with Lalo people in					
your village?					
with non-Lalo					
people in your village?					
at a funeral?					
at a village meeting?					
with a village gov't					
worker?					
with a township					
gov't worker?					

Children's language use

- 1. What language do Lalo children in this village speak first?
- 2. Do Lalo children speak any other languages **before** they start school?
 - a. Yes or no
 - b. What languages?

- 3. Do Lalo children speak any other languages **after** they start school?
 - a. Yes or no
 - b. What languages?
 - c. At what grade are they able to speak these languages?

4. What language do the teachers speak to the children in first grade in order to explain things to them?

- a. Second Grade?
- b. Third Grade?
- 5. What language do Lalo children in the village speak when they
 - a. play with Lalo children?
 - b. play with non-Lalo children?
 - i. (if not only Lalo) How do you feel about that?
 - ii. (if not only Lalo) Why?
 - c. ... with Lalo classmates at school?
 - d. ...with non-Lalo classmates at school?
 - e. ...with their teacher?
- 6. Do your children ever speak anything other than Lalo at home?
 - a. (if yes) What else do they speak?
 - b. (For each language) How do you feel when they do that?
 - c. (For each language) Why?
- 7. Do you think the Lalo children in this village speak Lalo well?
 - a. Yes or no
 - b. (if no) In what ways do they speak it not well?
 - c. (if no) How do you feel about that?
 - d. (if no) Why?

Cultural heritage

- 1. Where do the elders say the people of this village emigrated from before they came here?
- 2. In ancient times what place did your ancestors leave to immigrate to this region?
- 3. What annual festivals do you celebrate?
 - a. What other Lalo villages celebrate these festivals with you (refer to map)?
 - b. What other ethnic groups celebrate these festivals with you?
- 4. Other than speaking Lalo, how are Lalo people different from non-Lalo people?

	Different from whom	Different how
Customs (打歌)		
Dress		
Food		
Religion		
Housing		

- 5. What parts of being Lalo would you like to see your children continue?
 - a. For example: customs, dress, housing style, food, language, festivals, religion
 - b. Why?

Dialect perceptions

List of nearby villages from DMZ; map with nearby villages

- 1. Does X village speak Lalo the same as here?
 - a. (If no) a little different or very different?
 - b. Can you understand their Lalo?
 - c. How do you feel about the way they speak?
 - d. can you understand them when they talk?
 - e. how do you feel about the way they talk? 你觉得他们说的怎么样?
- Out of all the Lalo villages/towns, which village is the most important?
 a. Village/town
- 3. Out of all the Lalo villages/towns, where is Lalo spoken the best?
 - a. Village/town
 - b. Why?

Intermarriage

- 1. Is it common for Lalo people from this village to marry non-Lalo speaking people?
 - a. Yes or no
 - b. (if yes) What non-Lalo speaking people do they marry?

	Lalo man		Lalo woman	
	Han woman	other min. womn	Han man	other min. man
how many:				
few, some, half,				
most				
what language do				
their children				
speak?				
(if not Lalo) can				
the children also				
speak Lalo?				

- 2. What Lalo villages do you send brides to?
 - How many brides do you send: few, some, half, most?
 - Do the brides understand their Lalo?
 - How long does it take to understand?
 - Do they understand the brides' Lalo?
 - Do these villages send brides here?

Lalo Village Leader Sociolinguistic Questionnaire³

Informed consent Participants 1. 2. 3. 4. Given Not Given

Preliminary Information

- 1. Questionnaire Number:
- 2. Interview County, Township, Village:
- 3. Interviewer Name:
- 4. Date:

Participant details

- 1. Gender:
- 2. What is your job?
- 3. What is the highest level of education you have completed?
 - c. Level
- 4. Where were you born and where did you grow up?
- 5. What nationality are you?
- 6. What languages do you speak?

Demographics

- 1. How many houses are in this village?
- 2. What is the total number of people in this village? (adults and children)
- 3. How many houses are in this community?
- 4. What is the total number of people in this community? (adults and children)
- 5. Is this village all Lalo people or are there others living here as well?
 - a. (if others, too) What groups live here?
 - b. (if others, too) About how many houses in this village are from (each group)?
- 6. About how many people in this village are from (each group)?
- 7. (For each non-Lalo group) Do the (non-Lalo group) living in this village speak Lalo?
- 8. When you speak to (non-Lalo group), what language do you use?
- 9. What is the common last name people have in this village?

³ Based on: Nahhas, R. W., Kelsall, J., & Mann, N. (2005). RAID: Research and Instrument Design Tool. SIL International. AND Pelkey, Jamin R. (2008). The Phula languages in synchronic and diachronic perspective, La Trobe University, PhD dissertation.

Folk History

- 1. When was this village first established?
- 2. Where did the people who established this village move from?
- 3. Do you still have contact with people from that place?
- 4. Where did the Lalo come from originally?
 - a. When did they come to this area?
 - b. Why did they leave their former home?
 - c. Do people from there ever come here? Why?
 - d. Do people from here ever go there? Why?

Periodic Market

- 1. What periodic market(s) do you usually go to?
- 2. What days do these markets occur on?
- 3. What other Lalo villages attend this market?
- 4. What other ethnic groups attend this market?

Travel

- 1. Do people from this village travel to other Lalo villages? List locations (Ask the following for each location.)
 - a. Do very many go, or just a few?
 - b. Are they able to speak to each other in Lalo or do they have to use another language?
 - c. (if they use Lalo) Do you understand their Lalo?
 - d. Do they understand your Lalo?
 - e. (if they use Lalo) Do you have to change your accent to communicate?
 - f. Do they come here too?
- 2. Are any of your young people now working in cities?
 - g. Yes or no
 - h. Where do they usually go?
 - 1. List locations
 - i. (if yes) Do very many go or just a few?
 - j. (if yes) While they live there, do they still speak Lalo?
 - k. (if yes) Do they ever come back to live here (to stay)?

School

1.

- Is there a school in this village?
 - a. Yes or no

- b. (if yes) What levels are taught in the school?
- c. (if yes) What is the language of instruction?
- d. (if yes) What language(s) do the schoolchildren use with each other?

2.

- Do any children go to any other villages/towns for school?
- a. Yes or no
- b. (if yes) About what proportion of children go to secondary school?
- c. Where?
- d. (if yes) What is the language of instruction in that place?
- e. (if yes) What ethnic groups attend that school?
- f. (if yes) About what proportion of that school is from each language group?
- g. (if yes) What language(s) do the schoolchildren use there with the other children?
- 3. About how many years of education do children from this village usually complete?

Language Use

- 1. Other than Lalo, what languages are spoken in this village?
- 2. (for each LWC)
 - a. Are there any types of people in this village who speak [LWC] poorly?
 - i. What types
 - ii. Why?
- 3. Not including Lalo, which of these languages is used by the most people?
 - a. Language
 - b. About what percent speak that language?
- 4. Are there Lalo people in the village who have stopped speaking Lalo?
 - a. Yes or no?
 - b. (if yes) Why?
 - c. (if yes) Do you think this is good or bad?
 - d. (if yes) Why?
- 5. Are there cassettes/CDs in Lalo?
 - a. Do young people like to watch them?
- 6. What language is used at public meetings?
 - a. Do people ever use Lalo in public meetings?
- 7. What language is used in official announcements?

Appendix D: Sample RTT score chart (CW-QY)

县乡村:			
参与者号码:	同意	不同意	
性别:	岁数: 20-40	41-60 60+	
翻译者? 是	否		
个人	父亲	母亲	配偶
1.	1.	1.	1.
2.	2.	2.	2.
3.	3.	3.	3.
4.			
5.	5a.		
6.			
7.	7a.	7b.	

段落

直点

	大市	五四
1	四月份,我去山上放羊、砍柴	 四月份 放牧 / 放羊
2	实际上,我们四个人都去,两个儿子	• 四父娘子
3	他们两母子,我们两父子在砍一棵树	 两父子 砍柴
4	另外两母子在放羊	 两母子 放羊
5.6	他们两母子放羊的地方和我们砍树的地方有一个山坡, 相隔,相隔一个山坡,他们那天	 他们 / 放羊地方 我们 / 砍树的地方 相隔一个山 / 岭岗
7.8	以为我砍柴已经砍好了,下午的时候,就试一下叫我, 他们叫我之前	 砍柴砍好了 叫我
9	试着砍一棵树,那个刀子的翻面	• 砍一棵树 / 砍柴 • 刀子
10	砍到我的脚,他们没来之前,我	 砍到 脚 / 腿 / 膝盖
11	出了很多很多血,包扎也没有办法包扎,人影	 出了很多血 没法包扎 / 止血
12	都没见,最后,他们两母子在山坡上来叫的时候	 没人 他们两母子 在山坡上 来叫
13	松树底下流了很多血	• 松树底下• 流了很多血

14.15	他们两母子以为我 出来了,所以说进来找我	•	找我
16.17	那时候,我流了很多血,可能流了一斤左右,流了斤把 左右,那个血象杀猪时候一样在松树底下流了很多	•	血象杀猪的时候
18.19	最后他们两母子来了以后,问我怎么弄到的,我说是这 样弄到的,用刀砍树的时候,那刀就反弹过来砍到脚	•	他们来了 问我怎么弄到的 我说是这样弄到 的
20— 21	然后他们两母子,我穿了一件衣服,他们就撕了我衣服 上的布,用布包起来,但不能止血,最后我	•	衣服 用它包 不能止血

Translation:

Location of test (county, township, village): Participant No.: Informed Consent: Agree Disagree Age: 20-40 41.60 60+ Sex: Interpreter used? Yes No Screening questions Father's language Mother's language Spouse's language 1. 1. 1. 1. 2. 3. 2. 2. 3. 2. 3. 3. 4. 5. 6. 5a. 7. 7a. 7b.

	Segment	Elements
1	In April, I went up to the hills to graze my sheep and cut firewood	 April graze herd/graze sheep
2	Actually, it was the four of us, me, my wife and two sons	• me, my wife and two sons
3	My wife and one son; I and one son went to cut firewood	father and soncut firewood
4	Wife and son put the sheep out to graze	wife and songraze sheep
5.6	The place where my wife and son went to graze the sheep and the place we were cutting firewood was separated by a hill. That day they	 the place wife and son went to graze the sheep the place we were cutting firewood separated by a hill
7.8	thought I had finished cutting firewood; in the afternoon they tried to call out to me, but before they called to me	finished cutting firewoodcall to me
9	I was trying to cut down a tree, and the back of the knife	cutting down a treethe knife
10	cut into my leg. Before they came to me, I	 cut into leg/foot/knee
11	was bleeding heavily, and had nothing to wrap it with. No one	bleeding heavilynothing to wrap/stop the

			bleeding
12	was around. Finally, my wife and son called me from the hill	•••	no one around wife and son called from the hill
13	At the foot of the evergreen tree, there was a lot of blood	•	foot of the evergreen tree a lot of blood
14.15	They thought I had come out, so they came looking for me	•	looking for me
16.17	By that time, I had bled a lot, maybe a pound or so, bled a pound or so. There was so much blood at the foot of the tree, like after you kill a pig	•	so much blood, like after you kill a pig
18.19	Finally, they arrived and asked me how I did it. I said I did it this way: when I was using the knife to cut the tree, the knife bounced back and cut into my leg.	•	they arrived asked me how I did it I told them how I did it
20- 21	Then my wife and sonI was wearing a shirt; they took the shirt, ripped it and used it to wrap my leg, but it didn't stop the bleeding. Finally I	•	clothing/shirt used shirt to wrap couldn't stop the bleeding

Appendix E: Sample language data and Proto Lalo reconstructions

No	Gloss	Proto-Lalo	CW-QY	MD	YL
	A. Nature				
1	sky (a)	mo ² di ² ma ³	ņ ²¹ di ²¹ ma ³³	i ⁵⁵ se ⁵⁵ mo ³³	ŋ²¹kȝ²¹
2	sky (b)	mo²daŋ¹			
3	sun	a ¹ mo ² yi ¹	a ⁵⁵ ŋ²¹ɣi ⁵⁵ ma³³	a ⁵⁵ mi ⁵⁵	$a^{55}m^{21}ts^{h}a^{33}$
4	sunshine	a ¹ mo ² ts ^h a ¹	a ⁵⁵ ņ ²¹ ts ^h a ⁵⁵	$a^{55}mi^{55}k^{h}i^{55}p^{h}\epsilon^{33}$	a ⁵⁵ m ²¹ ts ^h a ³³ sai ⁵⁵
5	moon	xa³ba³	xa ³³ ba ³³ k ^h i ⁵⁵	xo ³³ bo ³³ mo ³³	xa ³³ ba ³³ k ^h i ³³
6	star	kjε¹	ki ⁵⁵	a ⁵⁵ ke ⁵⁵ ke ⁵⁵	ke ³³
7	cloud	a ¹ mo ² ti ¹	a ⁵⁵ ņ ²¹ ti ⁵⁵	mi ⁵⁵ ki ²¹	mi ⁵⁵ k ^h 2 ³¹
8	wind	a ¹ mo ² hi ¹	a^{55} µ ²¹ ¢y ⁵⁵	a ⁵⁵ mi ²¹ fi ⁵⁵	mi ²¹ he ³³
9	rain	a ¹ mo ² ha ¹	a ⁵⁵ ŋ²¹ha ⁵⁵	a ⁵⁵ mi ²¹ xo ⁵⁵	a ⁵⁵ m ²¹ ha ³³
10	lightning	a¹mo²bj <u>a</u> ⊥	$a^{55}m^{21}b\underline{a}^{21}$	a ⁵⁵ m ²¹ bæ ²¹	$a^{55}m^{21}b\epsilon^{42}$
11	thunder	a ¹ mo ² go ²	a^{55} η^{21} γ^{21}	$\eta^{21}gu^{21}$	m ²¹ go ²¹
12	rainbow (a)	a ¹ mo ² se ¹ yi ¹ da		$a^{55}s\epsilon^{55}\gamma i^{33}$	$yi^{45}bi^{21}cio^{55}$
13	rainbow (b)	ŋ ¹ a ¹ mo ² ts ^h a ¹ yi ¹ don ¹	a^{55} n ²¹ ts ^h a ⁵⁵ ?n <u></u> ϵ^{33} də ⁵⁵		lo ⁴ 2
14	snow	daŋ ¹ va ²	vä ²¹	$mi^{55}p^hu^{55}$	va ²¹
15	water (a)	γi¹	γi ⁵⁵	γi^{55}	¥i ³³
16	water (b)	gje ^H		$\eta^{33}g\epsilon^{33}$	
17	fog	mu ¹	$mu^{55}\gamma\dot{t}^{33}$	mi ⁵⁵ ki ²¹	mi ⁵⁵ k ^h 2 ³¹
18	frost	?ni ¹ p ^h u ¹	$i^{55} f \gamma^{55}$	mi ⁵⁵ p ^h u ⁵⁵	i ⁵⁵ fy ³³
19	dew	kjy²	ky. ²¹	tsj ²¹ yi ⁵⁵	lu ³³ suei ²¹
20	hail	?lo॒ ^н ha¹	?lo³³ha⁵⁵	ko²¹sε²¹	va ²¹
21	earth	?mi¹di²	mi ⁵⁵	mi ⁵⁵ mo ³³ lo? ³³	ai ³³ ts ^h J ²¹ bə ³³
22	soil	e²ts ^h i²	i ²¹ ts ^h J ²¹	ņ²¹tɕʰi²¹nā³³	mi ³³
23	mud	e²haŋ²	i²¹hə²¹	u ³³ nā ³³	ai ³³ ts ^h J ²¹ la ⁵³
24	river (a)	yi¹dzaŋ²/ma³		yi ⁵⁵ dza²¹	yi ⁵⁵ x0 ³¹
25	river (b)	laŋ¹dzaŋ²			

26	ditch (a)	yi1kha2	γi ^{₅₅} k ^h ą²¹	yi ⁵⁵ k ^h 0 ²¹	wy ³³ ky ³³
27	ditch (b)	laŋ¹ka॒⊾	lu ⁵⁵ ka²1		
28	pond	yi1by3	γi ⁵⁵ by ³³	yi⁵⁵dəŋ³³	a²¹bə³³
29	puddle	yi1by3za2		yi⁵⁵dəŋ³³jo²¹	a²¹bə³³za²¹
30	well inside	tsɛ³du²	tsɛ³³də²¹		
31	well outside	yi¹du²	γi ⁵⁵ d∂ ²¹	γi ⁵⁵ du²1	yi ⁵⁵ tsin ²¹
32	mountain	k ^h u¹dʒɛ²	k ^h ə⁵⁵dzɛ²¹	k ^h u⁵⁵dʒa²¹	tə ⁵⁵ ta ³¹
33	cliff	γĔ	vā²¹tsj²¹	va ²¹ k ^h u ²¹	i ⁵⁵ k ^h &42
34	valley	laŋ¹ka॒⊾	- k ^h ə⁵⁵dzɛ²¹tsๅ³³	la55ka21mo33	li ³³ tɛ ³³
35	cave	k ^h u¹du¹	sy ²¹ k ^h ə ⁵⁵	k ^h u ⁵⁵ d3a ²¹ k ^h u ⁵⁵	
36	hole	k ^h u ¹	k ^h ə ⁵⁵ də ⁵⁵	jɛ²¹kʰu⁵⁵	tu ⁵⁵ tu ⁵³
37	gold	∫ε¹	6E ⁵⁵	Sε ⁵⁵	tsai ³¹ sɛ ³³
38	silver	p ^h u ¹	fγ⁵⁵	p ^h u ⁵⁵	tsai ³¹ p ^h u ³³
39	iron	xy1	6y ⁵⁵	Xə ⁵⁵	xi ³³
40	tin			la ³³	6i ³³
41	coal			mei ²¹	mei ²⁴
42	stone	ka¹lu ^н	ka ⁵⁵ lə ³³	a ⁵⁵ lo ³³ k ^h ɛ ³³	kou55lu55
43	sand	∫a³	şa ³³ ts1 ³³	a ⁵⁵ lu ³³ sei ³³	6a ³³
44	fire	a¹toႍ⊾	a ⁵⁵ to ²¹	a ⁵⁵ to? ²¹	a ⁵⁵ tu ⁵⁵
45	flame	a¹toႍ²ly¹	a ⁵⁵ to ²¹ ?ly ⁵⁵	a ⁵⁵ to ²¹ lə ⁵⁵	a ⁵⁵ tu ⁵⁵ p ^h ai ⁵⁵
46	smoke	?mu²kʰo²sē॒¹	ŋ²¹kʰə²¹	$\mathfrak{y}^{\mathtt{21}}k\mathfrak{i}^{\mathtt{21}}s\mathfrak{l}^{\mathtt{21}}$	mi ⁵⁵ k ^h 2 ³¹
47	night	hẹ₋	h£21	xē ²¹	xai ⁵⁵
48	day	?ni³	?ɲɛ³³	ni ³³	ĩ ³³
49	today	i²?ni³	?ɲiŋ³³,iŋ³³	i ²¹ ni ³³	ņ ²¹ ti ⁵⁵ ĩ ³³
50	yesterday	a²?ni³	aŋ ³³	a ²¹ ni ³³	a ²¹ ni ³³
51	day before yesterday	∫ <u>i</u> ^H ?ni³	រូəŋ ³³	6i ³³ ni ³³	s] ³³ ni ³³
52	three days ago	∫į́ ^н γu²?ni³	şղ ³³ wuŋ ²³	6i ³³ wu ²¹ ni ³³	sj ³³ wu ²¹ ni ³³
53	four days ago		?zJ ³³ ?nɛ ³³ ņ ²¹ ti ³³	li ³³ ni ³³ wo ²¹ sɛ ⁵³	s] ³³ lu ³³ ni ³³
54	tomorrow	a²gy¹?ni³	a ²¹ gy ⁵⁵ ņ ³³	a ²¹ giŋ ⁵⁵	$\epsilon^{_21}gi^{_33}mi^{_33}$
55	day after tomorrow	ts ^h a¹p ^h ẽ ^H ?ni³	tsha55phem33	tsa ⁵⁵ p ^h in ³³	ts ^h a ⁵⁵ pe ⁵⁵ ni ³³
56	three days from now	a²pʰḗʰʔni³	a ²¹ p ^h ɛm ³³	a²¹pʰin³³	a ²¹ p ^h e ⁵⁵ ni ³³

57	four days from now	a²yo³?ni³		a ²¹ paŋ ³³	a ²¹ wu ³³ ni ³³
58	year	k ^h o ^l	k ^h 0 ²¹	k ^h u? ²¹	k ^h 0 ⁵⁵
59	new year	k ^h o ^r x <u>i</u> ^r	$k^h \underline{o}^{21} x \dot{\mathbf{i}}^{21}$	k ^h u ²¹ xi ²¹	k ^h 0 ⁵⁵ k ^h 0 ⁵⁵ lɛ ⁴²
60	this year	t∫ ^h i²n <u>i</u> ^H	tşʰป²²ɲiɛ̃³³	tc ^h i ²¹ n <u>i</u> ³³	ts ^h i ⁵⁵ ĩ ⁵³
61	last year	a²nį ^H	a ²¹ niɛ ³³ si ⁵⁵	a ²¹ n <u>i</u> ³³	$a^{21}\tilde{1}^{53}$
62	year before	∫ <u>i</u> ^H ni ^H	şl³³niɛ̃³³si⁵⁵	6i ³³ n <u>i</u> ³³	s] ³³ i ⁵³
63	last three years	∫ <u>i</u> ^H γu²n <u>i</u> ^H	şป ³³ wu ²¹ niɛ ³³ si ⁵⁵	6i ³³ wu ²¹ n <u>i</u> ³³	s] ³³ wu ²¹ i ⁵³
64	ago four years ago	a²ɣu²n <u>i</u> ^H		$li^{33}k^{h}u^{21}w0^{21}s\epsilon^{53}$	s] ³³ lu ³³ i ⁵³
65	next year	?na²hẹ¹	na²¹'nɛ²²¹si⁵⁵	$n\epsilon^{21}x\epsilon^{21}$	na ²¹ xai ⁵³
66	year after next	na(ŋ) ¹ n <u>i</u> ^H	nə ⁵⁵ ɲɛႍ ³³ si ⁵⁵	no⁵⁵ni?³³	nu ⁵⁵ ĩ ⁵³
67	three years from now	na(ŋ)¹ɣu²n <u>i</u> ^H	nə ⁵⁵ wu ²¹ µɛ̃ ³³ si ⁵⁵	no ⁵⁵ mo ²¹ ni? ³³	nu ⁵⁵ wu ²¹ ĩ ⁵³
68	four years from now			li ³³ k ^h u ²¹ wa ⁵⁵ ti ³³	nu ⁵⁵ lu ³³ ĩ ⁵³
69	daytime		iŋ ³³ si ⁵⁵	lā ³³	mi²¹li²¹ka³³
70	dawn		a ⁵⁵ ņ ²¹ t ^h i ³³]a ⁵⁵	xo ³³ məŋ ²¹ soŋ ⁵³	ņ²¹tʰai³³ɲa³³
71	morning	da²nẹ⊥	a ⁵⁵ ņ ²¹ t ^h i ²¹ si ⁵⁵	xi ³³ pi ⁵⁵	pa ³³ tsu ²¹
72	noon	dza¹dʒi²dza²	dza ⁵⁵ dze ³³ dza ²¹ va ³³		dza ²¹ i ³³ dza ²¹ k& ³³
73	afternoon	a¹mo²kʰɨ̯́Ľ	a ⁵⁵ ŋ ²¹ k ^h <u>i</u> ²¹ ji ⁵⁵	la²¹vã⁵⁵	ņ ²¹ k ^h i ⁵³
74	dusk/eveni ng	a¹mo²ɣɨ¹	a ⁵⁵ ŋ²¹ɣɨ ⁵⁵ ø ⁵⁵ ji ⁵⁵	la²¹vã⁵⁵wo²¹vɛ³³	mi& ⁴⁵ tə ⁴² na ³³
75	dusk/eveni	a¹mo²kʰɨ̯́			mi& ⁴⁵ tə ⁴² na ³³
75	ng night	mo²kʰɨႍ²se¹	$\eta^{21}k^{h}\underline{i}^{21}si^{55}$	ŋ²1ki²1s155	sa ³³ p ^h i ³³
76	this	i²mi¹	i ²¹ mi ⁵⁵	1 ²¹ mi ⁵⁵	ņ²¹ti⁵⁵sa³³pʰi³³
77	evening this morning	i²sy¹ny¹	i ²¹ sy ⁵⁵ ny ⁵⁵	e ²¹ nə ⁵⁵	i ²¹ sə ³³ nə ³³
	B. Animals				
79	cow	a ¹ ni ²	a ⁵⁵ ŋ ²¹	a ⁵⁵ ni ²¹	a ⁴⁵ ni ⁵¹
80	cow	a ¹ ni ²	a ⁵⁵ ŋ ²¹	a ⁵⁵ ni ²¹	a ⁴⁵ ni ⁵¹
80	buffalo	yo¹ni²	γ ⁵⁵ ŋ ²¹	γi ⁵⁵ ni ²¹	ve ⁴⁵ ni ⁴²
81	field cow	a¹ni²∫ε¹	a ⁵⁵ ŋ ²¹	a ⁵⁵ ni ²¹	a ⁴⁵ ni ⁵³ sɛ ³³

82	horse	a ¹ mju ²	t∫aŋ²¹	a ⁵⁵ mu ²¹	a ⁵⁵ mu ²¹
84	sow	a¹veٍrma³	a ⁵⁵ vɛ²¹ma³³ky³³	a ⁵⁵ vɛ²¹mo³³	a ⁴⁴ vei ⁵⁵ ma ³³
85	piglet	a¹veٍ²za²	a ⁵⁵ vɛ ²¹ zạ ²¹	a ⁵⁵ vɛ²¹jo²¹	a ⁴⁴ vei ⁵³ za ³¹
86	boar	a¹veٍrpar	vɛ²¹pā²¹	$a^{55}v\varepsilon^{21}xa^{55}$	a ⁵⁵ vei ⁵³ pa ⁵³
87	wild boar	a¹veٍ⊾kaŋ²		a ⁵⁵ vɛ²¹te²¹	
88	(a) wild boar (b)	e²vē [⊥]	<u>i</u> ²¹ v£ ²¹		ai ²¹ vei ⁵³
89	goat	a¹t∫ʰį́∟	a ⁵⁵ tş ^h l ²¹	a ⁵⁵ tɕʰi̯²¹	a ⁴⁴ ts ^h l ⁵³
90	ram	a¹t∫ʰi॒rpa॒r	a ⁵⁵ tş ^h l²1pā21	a ⁵⁵ tɕʰi?²¹pʰi⁵⁵	a ⁴⁴ ts ^h l ⁵⁵ pa ⁵³
91	sheep	a¹ʒaŋ¹	a ⁵⁵ zu ⁵⁵		na ³³
92	dog (a)	a1khi2	a ⁵⁵ k ^h į ²¹		a ⁵⁵ k ^h i ²¹
93	dog (b)	a¹na²		a ⁵⁵ no ²¹	
94	cat (a)	a¹ne¹	a ²¹ ni ⁵⁵		a ²¹ ni ³³
95	cat (b)	a ¹ mi ¹		a ²¹ mia ⁵⁵	
96	rabbit	hɛ̃ ^H tʰa³la³	hā³³thō³³lõ³³		h& ⁵⁵ t ^h a ³³ la ³³
97	dragon	lu²	ləŋ²1	γi ⁵⁵ dʒu ²¹	lɣ ²¹
98	animal	a1dze2	a ⁵⁵ dzi ²¹ a ⁵⁵ la ²¹		a ⁵⁵ dzə ³¹ m ²¹
99	wild animal	dze²kaŋ²	kö²¹dzi²¹	jɛ²¹ka²¹	də²¹vy³³
100	bear	a²ɣy¹	a ²¹ jy ⁵⁵	a ⁵⁵ yi ⁵⁵	үі ³³ ра ⁵³
101	tiger	la²pa⊥	la ²¹ pa ²¹	lo ²¹ pā ²¹	la²¹dzɛ³³
102	leopard	z <u>i</u> ^r	zl²¹pā²¹	lo²1pā²1sɛ ⁵⁵ ɣɨ ³³	z] ²¹ pa ⁵³
103	wolf	ve1	tʃʰā²¹laŋ²¹	a ³³ no ²¹ ma ³³ nai ³¹	vei²³pʰə³³ma³³
104	monkey	mjo₋	a ⁵⁵ mo ²¹	a ⁵⁵ mu ²¹	a ³³ mo ⁵³
105	otter	∫y¹		boy²4	suei ³³ t ^h a ³³ mao ³
106	weasel	hɛ̃ ^н la²pa॒⊾	ha³³la²¹€€⁵⁵		vei ²³ p ^h ð ³³ ma ³³ z a ²¹
107	pangolin	t ^h aŋ²kʰjɛ²kʰỵ ^н	t ^h u ²¹ k ^h a ²¹ k ^h y ³³	tsa²¹kʰε²¹	t ^h a ²¹ k ^h i ⁵³
108	muntjak deer	tʃʰɨ¹	tşʰl⁵⁵	ts ^h l ²²	ts ^h l ⁵³ pa ⁵³
109	sambar deer	ts ^h eੁ∟		tc ^h £ ³³	ts ^h ai ⁵⁵
110	porcupine	pu1		pu ⁵⁵	ργ ³³
111	rat	$h\underline{\epsilon}^{\scriptscriptstyle H}$	a ⁵⁵ ha ³³	a ⁵⁵ tc ^h e ²¹	& ⁴⁴ h& ⁵³
112	squirrel		hā³³tşʰu²¹pā²¹	a ⁵⁵ tc ^h ɛ ²¹ mɛ ²¹ bu ³³	h& ⁵⁵ p& ⁴¹ p& ³¹
113	chicken	$a^1 \gamma \underline{e}^H$	a ⁵⁵ jɛ ³³	a ⁵⁵ j <u>i</u> ³³	a ⁵⁵ ji ⁵³

114	rooster	a¹ɣɐ̃ ^ʰ pʰo¹pāַၬ	a ⁵⁵ jɛ ³³ fi ⁵⁵ pa ²¹	a ⁵⁵ j <u>i</u> ³³ p ^h i ⁵⁵	a ⁴⁴ ji ⁴⁴ pa ⁶³
115	hen	a ¹ γe ^H ma ³ ko ^H	a ⁵⁵ jɛ ³³ ma ³³ ko ³³	a ⁵⁵ j <u>i</u> ³³ mo ³³	a ⁵⁵ ji ⁵⁵ ma ³³
116	duck (a)	$a^{1}b\epsilon^{2}$	u j <u>e</u> mu ko	$a^{55}b\epsilon^{21}$	u ji illu
117	duck (b)	a ¹ e ^H		u ee	
118	goose	a¹ŋwa¹	a ⁵⁵ yø ⁵⁵	a ⁵⁵ ŋo ⁵⁵	0 ²¹ aŋ ⁵³
119	bird	ŋja ^н	a ⁵⁵ nɛ ³³	a ³³ ŋa ³³	a ⁵⁵ na ⁵³
120	swallow	ру ^н	a ⁵⁵ p@ ³³	a ³³ ŋa ³³ no ²¹ ?ɛ ⁵⁵	jan ⁵⁵ tsj ³³
121	sparrow	dʒa¹mu²	dzε ⁵⁵ μ ²¹	a ³³ ŋa ³³ dʒo ⁵⁵ ka ³³ l	mi ³³ kə ³³ tæ ⁵³
	-F	uju illu		a^{21}	
122	sparrow	dʒa¹mu²	dzɛ ⁵⁵ ņ²1	a³³ŋa³³dʒ0⁵⁵ka³³l	mi ³³ kə ³³ tɛ ⁵³
122	crow (a)	a¹ŋjaੂ ^H bɛ ^H	a ⁵⁵ nɛ̃ ³³ bā̃ ³³	a ²¹	
123	crow (b)	a ¹ ne ^H		a ⁵⁵ nɛ̃ ³³	a ⁵⁵ ni ⁵³
124	magpie	a ît∫£r	a ⁵⁵ tşa ²¹	u n <u>e</u>	a ⁵⁵ tsɛ ⁵³
126	pheasant	a tję a¹∫u²	a^{55} ε^{21}	a ⁵⁵ j <u>i</u> ³³ ka ²¹	to ²¹ so ²¹
127	eagle	a¹dzy¹	a ⁵⁵ dzy ⁵⁵	$a^{55}dze^{55}$	tsə ³³ ma ³³
128	owl (a)	gy ³ ly ²	wu ³³ ly ²¹	a ³³ ŋa ³³ lo ²¹ pɑ ²¹	
129	owl (b)	xi ¹ hu ³			j€ ⁵⁵ xu ³³
130	bat	$a^{1}py^{H}ma^{3}$	mai ³³ ma ²¹ ha ³³	a ⁵⁵ pā ³³	jie ³³ t ^h ie ³³
131	frog	² p <u>y</u> ma ?mu¹pa॒⊾	$\partial^{55}pa^{21}$	u ⁵⁵ pā ²¹	a ⁴⁴ pe ⁴⁴ lx ⁴²
132	toad	?mu¹paַ [⊥]	ə ⁵⁵ pā ²¹ dzaŋ ⁵⁵ p ^h y ³³	u ⁵⁵ pa ²¹ dzo ⁵⁵ jɛ ²¹	lai ³³ tui ³³ li ³¹
133	fish	?ŋa²		õm ²¹ pa ⁵⁵	
134	snake	•	aŋ ²¹ la ⁵⁵ 6ɛ ⁵⁵	lo ³³ εε ⁵⁵	aŋ ²¹ la ³³ sɛ ^{.33}
135	lizard	la¹∫ε¹		$\tilde{\epsilon}^{21} x \tilde{a}^{55}$	14-52-
136	leech		a^{33} m $a^{33}l\epsilon^{21}a^{22}$ wo ³³		vi33a o i55
130	spider	γi¹vē [⊥]	$\chi i^{55} V \xi^{21}$	$\chi i^{55} V \xi^{21}$	yi ³³ pai ⁵⁵
138	insect (a)	ho?	a ³³ mai ³³	$bom^{21}b\epsilon^{21}l\epsilon^{21}x\epsilon^{55}$	xam ³³ pao ²¹
139	insect (b)	bo² bi²di¹	bu ²¹ di55	bi²¹di⁵⁵	bi ²¹ bi ³³
140	ant		bʉ²¹di⁵⁵		
141	termite	$bo^2 3 \overline{o}^H$		bi ²¹ si ⁵⁵	bi²¹jao⁵³
141	termite	$a^2 z u^2$	(h 21) 21 liss	.221 .21 1:55	1:21 55 h 22
141		a ² 30 ^H p ^h u ¹	t ^h u ²¹ bʉ ²¹ di ⁵⁵	6i ³³ bi ²¹ di ⁵⁵	bi ²¹ ma ⁵⁵ p ^h y ³³
142	mantis	a¹tſʰi॒ĽloႍĽ		i ⁵⁵ sɛ ⁵⁵ mo ³³ ga ²¹ lɨ ²¹ yɨ ²¹	tshai55dza33py33
143	roach		pu ⁵⁵ tşı ²¹	me ³³ sæ ⁵⁵ la ⁵⁵	tsao44m²1tşɛ³³
145	honeybee	bja²	ba ²¹	do55ka33bo21	ba²²ɲ0²1
	I	I	I	I	I

146	wasp (a)	bja²tu¹	ba²¹də⁵⁵		ba ²² to ³³ sɛ ^{.33}
147	wasp (b)	bja²∫ε¹		b0 ²¹ sɛ ⁵⁵	ba²²to³³sɛ³³
148	mosquito	yaŋ¹b <u>i</u> ∟	ɣɨ ⁵⁵ ɕɛ ⁵⁵ ḥ²¹dzŋً³³	i ⁵⁵ sɛ ⁵⁵ kɛ ⁵⁵ kaŋ²1	րɛ ^{.33} m²¹dzๅ ⁵³
149	dragonfly	dʒɛ²ṃ²kʰa³la ³	dzɛŋ²¹kʰa³³la³³	bi ⁵⁵ 6i ⁵⁵ li ⁵⁵	t6 ^h iŋ ³³ t ^h iŋ ³³
150	butterfly	bo²?lu³	vi ²¹ ?lə ³³	a ⁵⁵ bɛ²¹fu³³	k€ ⁵⁵ l€ ⁵⁵ pu ²¹
151	cricket	bi¹tʃɛ॒¹	bỵ²¹tşı²²¹	ε ³³ toŋ ³³	a ⁵⁵ k ^h i ⁴¹ tsa ²¹ pɛ ³ ³ lo ²¹
152	grasshoppe r	t∫ɛ¹pu¹	a ⁵⁵ pā²¹tşə ⁵⁵ fy ⁵⁵	tse⁵⁵pu⁵⁵	tsa ³³ pu ³³
153	flea	k ^h i²xe¹	k ^h i²¹ɕi ⁵⁵	ko²¹xε⁵⁵	k ^h 0 ²¹ 6i ⁵⁵
154	louse	xe ¹	6i ⁵⁵	i ⁵⁵ pu ⁵⁵	6i ⁵⁵ ma ³³ p ^h u ³³
155	centipede	∫a¹xe¹	şa ⁵⁵ 6i ⁵⁵	sa ⁵⁵ xɛn ⁵⁵	
156	earthworm	a¹di¹	şa⁵5khə³3bʉ²1di55?ni⁵ ₅	a ⁵⁵ di ⁵⁵	bi²¹la³³kɛ⁵⁵
157	worm	bo²di1	bʉ²¹di⁵⁵	bi ²¹ di ⁵⁵	bi ²¹ bi ³³
158	caterpillar		bʉ²¹di⁵⁵?na³³	bi²¹di⁵⁵tsʰๅ⁵⁵ɣɨ⁵⁵	bi²¹sๅ²¹pa⁵³
159	maggot	họ ^H	vi ²¹	x0 ³³ j0 ²¹	h0 ⁵³
160	nest (a)	k ^h i ¹	k ^h i ⁵⁵	jɛ²¹kʰɨ⁵⁵	tə ³³ tə ³³
161	nest (b)	ty1			tə ³³ tə ³³
162	egg	fu³	fy ³³	jɛ²¹fu³³	fy ³³ fy ³³
163	wing	du¹le॒⊾	də ⁵⁵ lɛ²¹	du ⁵⁵ lɛ²¹	dx្³³lai⁵³
164	talon (a)	k ^h i¹kji³			
165	talon (b)	k ^h i¹kaŋ³	k ^h i ⁵⁵ ko ³³		
166	hoof	k ^h i¹by [⊥]	b@ ²¹	k ^h i ⁵⁵ bā ²¹	t ^h i ²¹ k ^h ɛ ³³
167	horn	k ^h 01	k ^h ə ⁵⁵	jɛ²¹kʰi⁵⁵	k ^h x្ ³³
168	tail	?mɛ²	?mɛ̯²¹	je ²¹ me ²¹	$m \varepsilon^{21} t^h \varepsilon^{21} s j^{33}$
169	tail	?mɛ²pʰɛ²			
170	tusk	dʒɛ¹	dzε⁵⁵	jɛ²¹dʑɛ⁵⁵	xu ²¹ ja ²¹
171	cocks- comb	kjo1	a ⁵⁵ jɛ̃ ³³ kø ⁵⁵	jɛ²¹ko⁵⁵	kei ³³
	C. Plants				
172	tree	s <u>i</u> ^H dze ¹	sl ³³ dzl ⁵⁵	εi³³dzε⁵⁵	s] ⁵³
173	pine tree	thaŋ²dze1	t ^h ų²¹dzๅ⁵⁵	t ^h u²¹po³³dzɛ⁵⁵	t ^h a²¹ɕy³³sๅ⁵³
174	fir tree	?ŋy¹dze¹	nə⁵⁵dzๅ⁵⁵		a ⁵⁵ ji ⁵⁵ san ³³ sŋ ⁵³
175	willow tree	yi1mi2dze1	yi ⁵⁵ ŋ ²¹ dz1 ⁵⁵		၂၁ႄ ^{.33} ၮု ²¹ ၭ႑ ⁵³
176	bamboo (a)	va²	va ²¹ ma ⁵⁵	wan ²¹ to ⁵⁵	

177	bamboo (b)	ma¹	ma⁵⁵dzๅ⁵⁵	mon⁵⁵dze⁵⁵	ma ³³
178	bamboo shoot		ma ⁵⁵ bə ³³	waŋ ²¹	ma ³³ mo ⁵³
179	wheat	∫a¹	şa ⁵⁵	kha²¹ɕɛŋ⁵⁵	sa ³³
180	buckwheat	ga²	hạ²¹sẹ²¹	g0 ²¹	ga²¹kʰa²¹
181	millet	ts ^h ⊻ [⊥]	ts ^h @ ²¹	ts ^h ā ²¹	suei ³³ pai ⁵⁵ tsa ³³
182	barley	zi ³	ZJ ³³		Z0 ³³
183	sorghum	?lu²	?lə ²¹		kao ³³ liaŋ ³³
184	job's tears	na²baŋ²sɛ²	ts1 ⁵⁵ ka ⁵⁵	a ⁵⁵ mu ²¹ tsi ⁵⁵ la ³³ pe 55	ho⁵⁵sɛ⁴¹
185	corn	∫a¹mi²	şa ⁵⁵ mʉ ²¹ ,şam ⁵¹	sə ⁵⁵ nə ⁵⁵	tci ⁵⁵ mi ³³
186	ear of grain	?ny1	?ny⁵⁵	$j\epsilon^{21}v\epsilon^{33}$	
187	peanut	loan	lɛ̃²¹ti⁵⁵soŋ³³,lõ²¹ti⁵⁵s oŋ³³	a ⁵⁵ nu ³³ t ^h a ⁵⁵ t ^h a ²¹	lo²¹soŋ³³
187	walnut	sa²me1	s£ ²¹ mi ⁵⁵		sa ²¹ mi ³³
188	cotton	sa1la2	sa ⁵⁵ lä ²¹	so ⁵⁵ lo ²¹	sa ³³ la ³³ xuɛ ³³
189	ramie	dzi²	dzJ ²¹	dzi ²¹	dzj²¹sɛ⁺²¹sj⁵³
191	melon	p ^h y ²	a ⁵⁵ p ^h y ²¹	p ^h ən ²¹	
192	gourd	p ^h y ²	a ⁵⁵ mʉ ²¹	a ⁵⁵ p ^h i ²¹	a ⁵⁵ p ^h i ⁴¹
193	cucumber	sa²kje²	sɛ²¹kɛ²¹	sa ²¹ ki ²¹	sa ²¹ kai ²¹
194	eggplant	ga¹zi³	ha ⁵⁵ zJ ³³	aŋ⁵⁵kɛ⁵⁵lɛ⁵⁵	
195	vegetable	γaŋ²t∫eႍ⊾	WÜ ²¹	ya ²¹	wy ²¹ ts ^h ai ³³
196	vegetable	γaŋ²t∫eႍ⊾			wy ²¹ ts ^h ai ³³
196	cabbage greens	yaŋ²	wü ²¹	γa ²¹ p ^h ε ⁵⁵	t¢ ^h iŋ³³ts ^h ai³³
197	radish	γaŋ²t∫ʰe¹	wü²¹tɕʰi⁵⁵	ya²¹tɕʰɛ⁵⁵	wy ²¹ tsJ ²¹
198	garlic	kha²sy1	k ^h a²¹sy ⁵⁵	k0 ²¹ s1 ⁵⁵	k ^h a ²¹ si ³³
200	galangal		a ⁵⁵ şo ³³ lo ³³	pa³³t∫a³³ji⁵⁵	k& ³³ no ²¹ t ^h u ³³ t ^h u ⁴³
201	chili pepper	p ^h e ¹	la ⁵⁵ tsj ³³	ma ⁵⁵ p ^h i ²¹	la³³tsj³³
202	fruit	SE ²	S£ ²¹	je ²¹ 6e ²¹	55 S ϵ^{41} S ϵ^{21}
203	peach (a)	sa²vy²	s¤ ²¹ ?¤ ²¹	tsha²¹ɣi²¹	
204	peach	sa²vy²	s¤ ²¹ ?¤ ²¹	tsha²¹ɣi²¹	
204	peach (b)	sa²?ly²			
205	persimmon	mu²bɛ¹	$m^{21}b\epsilon^{55}$		a ⁵⁵ m²¹bɛ³³
206	banana	?ŋja [⊮] bjo²be³		a ⁵⁵ dzi ²¹ sɛ ²¹	

208	taro (b)	bi ²		bi ²¹	bi²¹tʰo³³
209	tobacco		jin ³³ ts1 ³³	a ⁵⁵ k ^h i ²¹	j0 ³³ j0 ³³
210	grass (a)	∫i²byı	\$l ²¹		pə ⁵⁵ s1 ²¹
211	grass (b)	mo²		m0 ²¹	
212	thatch		ş2 ²¹ hə ⁵⁵ ş2 ²¹	i ⁵⁵ sJ ²¹	mao ³³ ts ^h ao ³³
213	reed		a ⁵⁵ k ^h a ³³	0 ²¹ na ²¹	
214	mushroom	mo1	mu⁵⁵lu⁵⁵,ŋ⁵⁵lu⁵⁵	ma⁵⁵lɛ⁵⁵jɛ⁵⁵	m ³³ nai ²¹
215	seed	∫i²	ş2²¹,ha⁵⁵ş2²¹	$j\epsilon^{21}s\gamma^{21}$	s] ²¹ k ^h a ³³
216	root	kji ³	tci ³³	je ²¹ ke ³³	kən³³tci³³
217	stem	dze1		jε ²¹ to ⁵⁵	sj ⁵⁵ dzj ³³
218	leaf	p ^h e₋	p ^h ē ²¹	$j\epsilon^{21}p^{h}\epsilon^{21}$	s] ⁵⁵ p ^h ai ⁵⁵
219	sprout	$b \underline{i}^{H}$	bi ³³	jɛ²¹bɨʔ³³	dzɛ ^{.33}
220	flower	ga¹lu³	ha ⁵⁵ lə ³³ ?vɛ ³³	gu ⁵⁵ lu ³³	ge ³³ no ³³
221	wood	s <u>i</u> ^H da ¹	sl ³³ da ⁵⁵	6i? ³³	s] ⁵⁵ da ³³
222	board (a)	pɛ³			pe ³³
223	board (b)	p ^h e ²	ti ²¹ p ^h i ²¹	$to^{21}p^{h}\epsilon^{21}$	
224	stick	?mɛ¹tu¹	?mɛ ⁵⁵ tə ⁵⁵ k ^h i ⁵⁵		ka44ts133
225	stick	?mɛ¹tu¹	?mɛ⁵⁵tə⁵⁵kʰi⁵⁵	a ⁵⁵ tũ ⁵⁵	ka44ts133
225	branch	si ^H ka ^l e	s <u>1</u> ³³ p ^h ą ²¹	6i ³³ ka ²¹ la ²¹	s] ⁵⁵ lə ²¹
226	tree bark	sį ^H gi¹kó ^H	s <u>1</u> ³³ gi ⁵⁵	€i ³³ gi ⁵⁵	s] ⁵⁵ gi ³³ gi ³³
227	unhulled rice	t∫ ^h e¹se²	t6 ^h i ⁵⁵ ,t6 ^h i ⁵⁵ s8 ²¹	tgi ⁵⁵ se ²¹	tɕ ^h i⁵⁵sɛ⁴¹
229	cooked rice	dza1	dza ⁵⁵	dzo ⁵⁵	dza ³³
230	glutinous rice	t∫ʰe¹ɲa²	t¢ ^h i ⁵⁵ nä ²¹	t6 ^h i ⁵⁵ ɲa²¹	t¢ ^h i⁵⁵ɲa⁴¹
231	rice seedling	?li²	?zlj21]i ²¹	jaŋ ³³
232	rice hulls	t∫ ^h e¹p ^h ε²	tehi55phë21	tsi ⁵⁵ phæ ²¹	t€ ^h i⁵⁵p ^h €⁴¹
233	chaff	ha¹/dza¹kjo²	ha ⁵⁵ kg ²¹		
234	fruit peel	gi¹koੂ ^н	gi ⁵⁵ ko ³³	je ²¹ se ²¹ gi ⁵⁵	gi ³³ gi ³³
235	eggshell	kjo²	fy ³³ kg ²¹	jɛ²¹ko²¹	$k^{h}\epsilon^{21}k^{h}\epsilon^{53}$
236	thorn	dzy²	a ⁵⁵ dzy ²¹	a55dʒə21	dzə ²¹
237	moss (a)	yi¹ɲªHbe²	bi ²¹	na ³³ xã ³³	fu ³³ p ^h i ²¹
238	moss (b)	yi¹me²			
238	fern (a)	da¹vaŋ²	da ⁵⁵	da55wo21	
239	fern (b)	da¹kʰy¹			da ³³ gi ³³

240	yeast	dy²	dy ²¹	də ²¹	də ²¹
	D. Body Par	'ts			
242	body	gu¹tsʰj²/³	gi ⁵⁵ tş ^h l ²¹	gi ⁵⁵ ts ^h l ²¹	go ³³ ts ^h l ³³
243	head (a)	nu²dy1	ņ ²¹ dy ⁵⁵	ņ ²¹ də ⁵⁵	ņ ²¹ də ³³
244	head (b)	nu²kaŋ²			
245	brains	?nuٍ⊾	?nə²1	pu ⁵⁵ no ²¹	no ⁴⁵³
246	forehead	?nuٍ¹kaŋ¹	?nao²¹ko⁵⁵	ŋ²¹ko⁵⁵tɕɛ⁵⁵	no ⁴⁴ k ^h 0 ⁵³
247	head hair	ņ²ts ^h y1	ņ²¹tsʰy⁵⁵	ņ ²¹ də ⁵⁵ ts ^h ə ⁵⁵	ņ²¹tsʰə³³
248	braid	ņ²ts ^h y1p ^h e²	n^{21} ts ^h y ⁵⁵ p ^h i ²¹	ņ²1də55tshə55d3a²1	ņ²¹tsʰə³³pʰai³¹
249	face	pʰjaŋ²?mjeੁ ^ʰ	p ^h ų ²¹ ?mɛ̃ ³³	$p^{h}\epsilon^{21}m\epsilon^{33}$	p ^h a ²¹ mi ⁵⁵
250	face	p ^h jaŋ²?mjeH	p ^h ų ²¹ ?mɛ̃ ³³	$p^{h}\epsilon^{21}m\epsilon^{33}$	ba²¹wy²¹,
250	eyebrow	?mje ^H ts ^h am ¹	?mɛ̃³³ha⁵⁵	mɛ ³³ ko ⁵⁵ ts ^h ə ⁵⁵ nə ⁵ 5	p ^h a ²¹ mi ⁵⁵ mi ⁵⁵ ts ^h ð ³³
251	eye	?mje ^H sε²	?mɛ̃³³sɛ²¹	mi ³³ 6e ²¹	mi⁵⁵s€⁴¹
252	eyeball	?mje ^H sε ²	?mɛٟ³³?ly³³	mi ³³ 6ɛ²¹ka⁵⁵ni³³	mi ⁵⁵ 0 ³³ lo ³³
254	nose	?na¹kʰaŋ²/³	?na⁵⁵kʰə³³	no ⁵⁵ k ^h u ³³	na ⁵⁵ k ^h 0 ²¹
255	ear	?na²paŋ¹	?na²¹pu⁵⁵	no²¹pa⁵⁵kɛ³³	na²¹pu³³
256	cheeks	ba²	ba²¹kʰə⁵⁵tsๅ³³		ba²¹wy²¹te³³
257	mouth	k ^h a²pe [⊥]	k ^h a²¹p ^h ε³³	mə³³t∫u⁵⁵	ma ²¹ ne ⁵³
258	lips (a)	mi²la³		ņ²1lā³³	
259	lips (b)	mi²be³dzi³	mʉ³³dzๅ³³		ma ²¹ ne ⁴⁵ be ⁵³
260	teeth	sy ²	sy ²¹ ĥa ⁵⁵	so ²¹ ko ⁵⁵	\$∂ ²¹
261	front teeth		a ⁵⁵ k ^h ai ²¹ ma ³³ p ^h ɛ ³³	dzo⁵5ko⁵5jo²1	yi ²¹ ĩ ³³ su ³³ sə ²¹
262	back teeth			dzo ⁵⁵ ko ⁵⁵ mo ³³	ŋa ³³ ni ²¹ su ³³ sə ²¹
263	gums		sy²¹ĥa⁵⁵kʰə⁵⁵tɕi³³	soŋ²¹ko⁵⁵xo²¹	
264	tongue	?la1	?la⁵⁵	lε55pε55	la ³³
265	beard	$ts^{h}\underline{i}^{H}$	$n^{21}ts^h\underline{j}^{33}$	m²¹pɨ⁵⁵t∫ʰๅ³³	fy²¹tsj³³
266	chin	mu²pi¹daŋ¹	ņ²1la³3dz1³3	m ²¹ pi ⁵⁵	6a ³³ ba ³³ k ^h o ³³
267	neck	li¹kaŋ²tsi³	zղ⁵⁵tsๅ³³	li ⁵⁵ bi ⁵⁵	jĩ³³pu²¹
268	throat	ly¹tʰy³	ly ⁵⁵ t ^h y ³³	li ⁵⁵ bi ⁵⁵ k ^h oŋ ³³ k ^h oŋ ³³	jĩ³³tʰə²¹
269	shoulder	pha1khe2dzJ3	pha55khɛ²¹ŋ²¹dzๅ³3	lu ⁵⁵ p ^h u ²¹ dʒu ³³	$\dot{m}^{21}p^h \vartheta^{21}$
270	joint	vu²ts <u>i</u> ^r	wo²¹tsj²¹	x0 ²¹ yi ²¹ tGi ²¹	wy ²¹ ki ³³ ts1 ⁵⁴ ts1 ⁵³

271	hand/arm	leٍıphé ^H /vu²	$l \underline{\epsilon}^{21} p^h \underline{\epsilon}^{33}$	$l\epsilon^{_21}p^h\epsilon^{_33}$	lei44phei53
272	hand		lɛ²¹pa³³tṣaŋ²¹	li ²¹ yi ²¹	lei55tsa43pa33
273	arm		lɛ²¹ka³³'n²¹da⁵⁵	li ²¹ yi ²¹ ti ²¹	lei45m42pa21
274	palm			li ²¹ t ^h a ³³	
275	wrist	ts <u>i</u> ^L	lɛ²¹wo²¹tsj²¹	li²¹tʰa³³tɕi²¹	lei⁴⁴tsๅ⁵⁵ku&⁴²k u&²¹
276	elbow	ts <u>i</u> ^L	lɛ²¹kuai̯²¹tsj³³	li ²¹ pi ²¹ n <u>i</u> ³³	lei⁴⁴tsๅ⁵⁵ku&⁴²k u&²¹
277	finger	?ni1	l£ ²¹ ?ni ⁵⁵	li²¹ni⁵⁵	lei ⁵⁵ k ^h i ³³
278	index		lɛٟ²¹?ni⁵⁵kʰɨ²¹sๅ³³	li²¹ni⁵⁵mo³³	
279	finger pinkie finger	leٍ¤?ni¹za²	lɛ²¹?ni⁵⁵zạ²¹	te⁵⁵ke⁵⁵ne⁵⁵	lei55khi33za21
280	thumb	ma ³	lɛ²¹?ni⁵⁵ma³³ko̯³³	li²¹mo³³	lei55k ^h i33ma33
281	fingernail	le²ku²sɛ²	lɛ̃²¹kä²¹sɛ̃²¹	li²¹ku²¹sɛ²¹	lei ⁵⁵ k ^h i ³³ sɛ ²¹
282	buttocks	daŋ¹	tshj²¹tə³³khə⁵⁵	$p^{h}\epsilon^{21}d\epsilon^{21}$	tsh& ²¹ bi ³³ bi ³³
283	hip		du55phɛ²¹tsj³3	da⁵⁵yi²¹t∫o³³	
284	foot/leg	$k^{\mathbf{h}}i^{1}p^{\mathbf{h}}\underline{e}^{^{\mathrm{H}}}$	$k^{\mathbf{h}}\mathbf{i}^{55}p^{\mathbf{h}}\mathbf{\bar{\epsilon}}^{33}$	$k^{\rm h}i^{\rm 55}p^{\rm h}\epsilon^{\rm 33}$	kε ³³ vγ ²¹
285	leg	k ^h i ¹	$k^{h}i^{55}p^{h}\epsilon^{33}$	khi55phe33	li ²¹ ku ³³
286	foot		$k^{h}i^{55}p^{h}\epsilon^{33}$	k ^h i ⁵⁵ t ^h a ³³	kɛ ³³ vy ²¹
287	thigh		p ^h ä ²¹ t ^h uei ²¹	da ⁵⁵ yi ²¹ pi ⁵⁵ tsa ²¹	li²¹ku³³vɛ²¹
288	calf (of leg)		k ^h i ⁵⁵ wu ²¹ a ⁵⁵ pʉ ²¹	da ⁵⁵ yi ²¹ na ²¹ k ^h ɛ ³³	li²¹ku³³za²¹
289	sole (of foot)		k ^h i ⁵⁵ ts ^h ä ²¹ ti ²¹ tsJ ³³	k ^h i ⁵⁵ t ^h a ³³	kε ^{.33} vγ ²¹ ti ³³ pε ^{.21}
290	heel			k ^h i ⁵⁵ bi ²¹ ni ³³	
291	ankle (joint)	k ^h i¹?mj <u>e</u> H	k ^h i ⁵⁵ ?mɛ ³³ sɛ ²¹	a ⁵⁵ tɕʰi²¹mɛ³³ta³³	kε ^{.33} wγ ²¹ lo ²¹ s] ³³
292	knee		ĥε⁵⁵0³³dzๅ³³	bu ⁵⁵ lu ³³ k ^h u ⁵⁵	k ^h ə ⁴⁴ ts1 ⁴⁴ t ^h & ⁵³
293	toe		k ^h i ⁵⁵ ?ni ⁵⁵	k ^h i ⁵⁵ ni ⁵⁵	kɛ ^{.33} wy ²¹ lei ⁵⁵ k ^h i ³³
294	big toe		k ^h i ⁵⁵ ?ni ⁵⁵ ma ³³ ko ³³	k ^h i ⁵⁵ m0 ³³	
295	chest			tu ⁵⁵ k ^h u ²¹	p ^h u ²¹ 60ŋ ³³
296	back	ka(ŋ)²ta(ŋ)³si ³	kə²¹ta³³	p ^h ɛ ⁵⁵	zu ⁵⁵ pa ⁴¹
297	breast	a¹t∫iౖ ^H be ^H	a ⁵⁵ tşl ³³ bɛ ³³	a ⁵⁵ tʃJ ³³	a ⁵⁵ ts1 ⁵⁵ bi ⁴⁵³
298	armpit	ka²	l£ ²¹ t4 ²¹ i ⁵⁵ ta ⁵⁵ k ^h ə ³³	li²¹ku²¹lɛ³³	ts€ ²¹ ts€ ⁵⁵ k ^h 0 ³³
299	skin	gi¹koੁ ^H	gi ⁵⁵	jɛ²¹gi⁵⁵	xa ²¹ sai ⁵³
300	bone	yo²	ha²¹da⁵⁵dzๅ³³	x0 ²¹ yi ²¹	vy ²¹ ki ³³
301	rib	?ny1	?ly ⁵⁵	ne55khe55	nəŋ44ki55pa41

302	stomach	heٍL	hɛ²¹ma³³ko̯³³	x0 ²¹ xe ²¹ m0 ³³	xai ⁵⁵ m²¹tʰə³³
303	belly (a)	heٍıma³dzๅ³			
304	belly (b)	heٍ¹py¹	hɛ²¹pə⁵⁵də⁵⁵	xɛ²¹pə⁵⁵	xai ⁵⁵ pi ³³
305	navel	t∫ ^h e ^H du¹/²	tshɛ³³ma³³də²¹	toŋ²¹tsu⁵⁵lu³³	tshai55do41
306	waist	dʒo॒⊾	dz <u>o</u> ²¹	d30 ²¹	
307	kidney	di1	di ⁵⁵	ma⁵⁵laŋ³³	
308	intestines	h₽₋vu¹	$h \epsilon^{21} \gamma^{55}$	x0 ²¹ wu ⁵⁵	xai ⁵⁵ vy ³³
309	heart	?n <u>i</u> [⊮] ma³	?ɲɛႍ³³ma³³	mo ³³ se ²¹	i ⁵⁵ ma ³³
310	liver	se²tsɛ¹	sj ²¹ tsɛ ⁵⁵	$xo^{21}s\gamma^{21}$	s] ²¹ ki ³³
311	liver	se²tsɛ¹	sj ²¹ tsɛ ⁵⁵	$XO^{21}SJ^{21}$	s] ²¹ ki ³³
311	lung	ts ^h ɛ²ma³p ^h u²	tshj²1fy²1	$xo^{21}s\eta^{21}p^{h}a^{21}$	fei ⁴¹
312	bladder	tshi²phu²	se ²¹ pi ²¹	€i ⁵⁵ p ^h u ²¹	ts ^h a ²¹ p ^h o ²¹ lo ³³
313	gallbladder	ki1	ki ⁵⁵	ja ²¹ ki ⁵⁵	dan ²⁴
315	sweat	kjɛ²	ki ²¹	kε ²¹	k&21
316	blood	si ²	sy ²¹	¢iŋ²¹ki⁵⁵	sJ ²¹
317	snot	?ny⊾	?n@21	ng ²¹	nəŋ ⁴⁵³
318	phlegm	ti²kʰa²	ti ²¹ k ^h a ²¹	ti ²¹ yi ⁵⁵	tsi ²¹ k ^h e ²¹
319	phlegm	ti²kʰa²	ti ²¹ k ^h a ²¹		tsi ²¹ k ^h e ²¹
319	saliva	ti²ɣi¹	t <u>i</u> ²¹ yi ⁵⁵	pi ²¹ sJ ²¹ yi ⁵⁵	m²¹pʰai⁵⁵ɣɨ³³
320	milk	a¹t∫íౖ [∺]	a ⁵⁵ tşı ³³	a ⁵⁵ tʃ <u>1</u> ³³	a ⁵⁵ ts1 ⁵³
321	excrement	k ^h ji²	ts ^h l ²¹	k ^h i ²¹	tshj21
323	pus	bi1	vi ⁵⁵	bi ⁵⁵ yi ⁵⁵	bi ³³
324	sore (wound)	ge ²	hɛ²¹	po ³³ no ⁵⁵	pu ⁵⁵ na ³³
325	body hair	ts ^h y ¹	ts ^h y ⁵⁵	ja²¹t∫ʰๅ⁵⁵	
326	penis	hε²	h£ ²¹	do ²¹ bi ⁵⁵	
327	vulva (a)	tu²	tə ²¹	do²1bi⁵⁵	
328	vulva (b)	bje₋		bi ³³ la ²¹	bĩ²¹tşʰɛ³³
329	anus		ts ^h l²¹tə²¹kʰə⁵⁵	$p^{h}\epsilon^{21}t\epsilon^{21}k^{h}u^{55}$	
330	tendon	gju²t∫a³	gə ²¹ tşa ³³	xo ²¹ gu ²¹ po ³³ tso ³³	
331	breath	sērxa1	s£ ²¹ xa ⁵⁵	SE ²¹ XO ⁵⁵	
332	strength	ya²	vä ²¹	V0 ²¹	
	E. Society				
333	person	ts ^h aŋ¹	ts ^h u ⁵⁵	ts ^h a ⁵⁵ jo ²¹	ts ^h u ³³

334	male	30 [⊥]	zo ²¹ pā ²¹	jɛ²¹pā²¹	zu ⁴² pa ⁴⁵³
335	female	za²mɛ²	mā21?ni25u21	ņ²¹nə⁵⁵jo²¹	za ²¹ mɛ ^{.21}
336	Autonym	la²lo [∺] pa₋	lā²1?lo³3pā²1	lo ²¹ lo ³³ pā ²¹	la ²¹ lu ⁴⁵³
337	Autonym	la²lo [∺] pa₋	lā²1?lo³3pā²1	lo ²¹ lo ³³ pā ²¹	la ²¹ lu ⁴⁵³
337	Han	hẹַـ/hạַ-pạַ	hā²¹pā²¹	$x\epsilon^{21}p\bar{q}^{21}$	xai ⁵³ pa ⁵³
338	Chinese Non-Lalo	la²bi²	la²¹bʉ²¹		la ²¹ bi ²¹
339	Yi/Lo				
340	Dai		tai ²¹⁴	p€ ⁵⁵ p₫ ²¹	bɛ⁺⁵ji⁵³
341	child	a¹ne¹za²	a ⁵⁵ ni ⁵⁵ zạ ²¹	a ⁵⁵ ni ⁵⁵ jo ²¹	a ²¹ ɲɛ ³³ ma ⁵³
343	older man	a²pa1	a ²¹ pa ⁵⁵ mu ²¹	a ²¹ po ⁵⁵ ma ²¹	ts ^h u ³³ mu ²¹ pa ⁵³
344	older	a²pʰi²	a ²¹ fi ²¹ mu ²¹	a ²¹ p ^h i ²¹ ma ²¹	ts ^h u ³³ mu ²¹ ma ³³
345	woman boy	su¹leႍrpaႍr	s1 ⁵⁵ lɛ²¹pā²¹	su ⁵⁵ lu ²¹ pa ²¹	sɛ ³³ lɛ ⁵⁵ za ²¹
346	girl	su¹le॒rma³	s] ⁵⁵ lɛ̃ ²¹ ma ³³	$d_{30^{21}}m\epsilon^{_{21}}l\epsilon^{_{21}}$	$za^{21}m\epsilon^{21}\partial^{33}n\partial^{33}$
347	friend		tā³³pē³³	tsi ⁵⁵ ts ^h a ²¹	ka³³tsʰo²¹
348	enemy		ti ³³ zɛn ³³	k ^h i²¹j0²¹	
349	host	si²pha²		6i ⁵⁵ p ^h 0 ²¹	
350	host	si²pʰa²		6i ⁵⁵ p ^h 0 ²¹	sj ²¹ ma ³³
350	guest	se¹ɣe³	si ⁵⁵ y ²¹	SE ⁵⁵ VE ³³	sj ⁵⁵ vei ³³
351	guest	se¹ɣe³	si ⁵⁵ ŋ ²¹ , siŋ ⁵³	SE ⁵⁵ VE ³³	sj ⁵⁵ vei ³³
351	lame (a)	k ^h i¹p ^h a³			
353	official	dzi²/3	a ⁵⁵ yi ²¹ a ⁵⁵ dz1 ³³		۲ ²¹
355	low official	dzi²/³		wu ⁵⁵ ɕi ⁵⁵	x្ ²¹ za ²¹
356	emperor	vu¹te²	huaŋ²¹ti³³	wu ⁵⁵ tɛ ²¹	huan²¹ti³³
357	doctor		ji ³³ sən ³³	no ⁵⁵ ku ³³ su ⁵⁵	na ³³ ko ³³ su ³³
358	blacksmith		sy ⁵⁵ de ²¹ sJ ⁵⁵	a ⁵⁵ t ^h 0 ²¹ dɛ ²¹ su ⁵⁵	xi ³³ dai ²¹ su ³³
359	soldier	mēr	$m \underline{\epsilon}^{21} p \underline{a}^{21}$		mai ⁵³
360	bride		$k^{h}\dot{i}^{21}ma^{33}l\underline{\epsilon}^{21}x\underline{\dot{i}}^{21}$	k ^h i ²¹ mo ³³ xi ²¹	ma ²¹ nə ³³ xɨ ⁵³
361	groom			$mi^{21}xi^{21}$	$\dot{m}^{21}dz\epsilon^{33}x\dot{i}^{53}$
362	widow	mε²t∫ʰu²ma³	lɛ̃³³ma³³	mε²¹t∫ ^h u²¹mo³³	m& ²¹ ts ^h J ²¹ ma ³³
363	widower	me²t∫ʰu²pā॒⊾	lɛ̃³³pā²¹	mε²¹t∫ ^h u²¹pa²¹	m& ²¹ ts ^h J ²¹ pa ⁵³
364	blind (a)	la³tɛ¹			
365	blind	?mje ^H tɛ¹/ɕa³	?mɛ²³³ɕa³³	me ³³ te ⁵⁵	mi ⁵⁵ t& ³³
366	deaf	?na²baŋ²	?na ²¹ bu ²¹	t ^h a ²¹	na ²¹ bu ²¹

367	father's father	a²pa1	a ⁵⁵ ku ³³	a ²¹ po ⁵⁵	a ²¹ pa ³³
369	GP father	a ¹ tsu ²	a ⁵⁵ ku ³³	a²¹po⁵⁵liŋ⁵⁵	a ⁵⁵ tsu ²¹ pa ⁵³
370	GP mother	a1maŋ²/the1	a ⁵⁵ mu ²¹	a ²¹ p ^h i ²¹ liŋ ⁵⁵	a ⁵⁵ tsu ²¹ ma ³³
371	GP mother	a1maŋ²/the1			a ⁵⁵ tsu ²¹ ma ³³
372	father	a¹ba²	a ⁵⁵ ti ³³	a55bə21	a ⁵⁵ tiɛ ³³
373	mother	a¹ma³	a ⁵⁵ ma ³³	mə ³³	a ³³ ma ⁵³
374	wife's	30 ¹ p ^h a ²	$z_{\underline{0}^{21}}p^ha^{21}$	0 ³³ vi ⁵⁵	zu ⁵⁵ pa ⁵³
375	father wife's mother	3॒o⁻ma³	zo ²¹ ma ³³	0 ³³ ni ⁵⁵	zu ⁵⁵ ma ³³
376	older brother	a¹ka¹	a ⁵⁵ ka ³³	a ²¹ a ⁵⁵	a ⁵⁵ ki ³³
377	older sister	a ¹ tse ²	a ⁵⁵ tsi ²¹	a ⁵⁵ tsi ³³	a ⁵⁵ tcie ²¹
378	younger brother of a male	pe¹za²	ງາε⁵⁵zạ²¹	ɲε⁵⁵jo²¹	ja ³³ t ^h ai ³³ zu ⁵⁵ pa ⁵³
379	younger brother of a female	p ^h a²maŋ¹			
379	younger sister of a	?ny²ma³	?ny ²¹ ma ³³		ja ³³ t ^h ai ³³ za ²¹ mε ₂21
380	male younger sister of a	pe¹ma³	ni⁵⁵ma³³	ງາε⁵⁵mo³³	
381	female siblings		⁵⁵ ?ny⁵⁵	ne ⁵⁵ jo ²¹ ne ⁵⁵ mo ³³	a ⁵⁵ ki ³³ a ⁵⁵ t ^h ai ³³
383	second sibling				e ^{.33} me ^{.21}
384	third				sa³³mæ²¹
385	sibling husband	dʒε¹	ŋ²¹dzɛ⁴⁵	p²¹dzε⁵⁵	m²¹dzɛ³³
386	wife	mɛ²?ny1	mā ²¹ ?ny ⁵⁵	ņ²¹nə⁵⁵	m€ ²¹ n∂ ³³
387	son	za ²	zậ ²¹	j0 ²¹ , z0 ²¹	za ²¹
388	daughter	za²mɛ²	zɛ²¹mɛ²¹	$jo^{21}m\epsilon^{21}$, zo ²¹ m ϵ^{21}	za ²¹ mɛ ^{.21}
389	daughter-in -law	k ^h i²ma³	k ^h i ²¹ ma ³³	k ^h i ²¹ mo ³³	k ^h i²¹ma³³
390	son-in-law	?mērλo₁	$m \underline{\epsilon}^{21} \gamma^{55}$	mɨŋ²4	mei ⁵⁵ vy ³³
391	brother's	za²du¹	zạ²¹də⁴⁵	da⁵⁵du²1	za ²¹ do ³³
392	son brother's daughter	za²mɛ²du¹	zɛ̯²¹mɛ̯²¹də⁴⁵	da⁵⁵mo³³	za²¹mɛ²¹do³³
393	sister's child	∫₫r	sā ²¹		
394	son's son	?li²pąĽ	?zl²1pā²1	lu ²¹ pā ²¹	i ²¹ za ²¹

395	son's daughter	?li²ma³	?zJ ²¹ ma ³³	lu²1mo³3	i ²¹ ma ³³
396	ancestor	p ^h i²p ^h a²	$a^{21} fi^{21} a^{21} p^h a^{21}$	a ²¹ p ^h i ²¹ a ²¹ po ⁵⁵	p ^h i ²¹ p ^h a ²¹
397	father's OB	ta ⁵⁵ tiɛ ³³	pa ²¹ ti ²¹	a ⁵⁵ jɛ ²¹	ta ⁵⁵ tiɛ³³
398	father's BW	ta ⁵⁵ ma ³³	pa²¹ti̯²¹ma³³ko³³	a ⁵⁵ jɛ²¹mo³³	ta ⁵⁵ ma ³³
399	father's OS	ku ³³ ma ³³	ku³³ma³³	a ⁵⁵ ti ²¹ tei ³³	ku ³³ ma ³³
400	father's YB	a¹ʒe³	a ⁵⁵ ji ²¹	a ⁵⁵ jɛ ²¹	a ⁵⁵ jei ³³
401	mother's OB		a ⁵⁵ t£0 ⁵⁵	a ⁵⁵ tɛ ²¹	a ²¹ t60 ⁵³
402	mother's OS		ta ⁵⁵ ma ³³	a ⁵⁵ ma ²¹	ji ²¹ ma ³³
403	male suffix	jaŋ²pa॒⊾	pā ²¹	jɛ²¹pā²¹	ja²¹pa⁵³
404	female suffix	jaŋ²ma³	ma ³³	jɛ³³mo³³	ja ²¹ ma ³³
405	father+chil dren (CLF)	pā ¹ la²	pā ²¹ lä ²¹	pā ²¹ la ²¹	pa ⁵⁵ la ²¹
406	mother+ children (CLF)	?ma³la²	?ma ³³ lä ²¹	mo ³³ lo ²¹	ma ⁵⁵ la ²¹
407	grandparent +grandchil dren (CLF)	pi²la²	pi ²¹ lä ²¹		p ^h i ²¹ li ²¹
408	grandmothe r+grandchil dren (CLF)	pi²la²	pi ²¹ lä ²¹		p ^h i ²¹ li ²¹
	F. Material	Culture			
408	house	he1	hi⁵⁵	Χε ⁵⁵	hei ⁴⁴
410	wall	lu¹di³	lu⁵⁵di³³	lu ⁵⁵ liŋ³³tɛ²¹	ts ^h iaŋ ²⁴
411	roof	he¹dzi³		xε⁵⁵ɲo³³	hei44ma33dzJ21
412	tile	ŋwɛ²pʰe²	٧£ ²¹	bəm²⁴pʰɛ²¹	
413	beam [main]		li⁵⁵mu⁵⁵kaŋ³³	a⁵⁵t∫a⁵⁵mo³³	liaŋ ³¹
414	beam [small]	he¹du²	hi ⁵⁵ dy ²¹	a⁵⁵t∫a⁵⁵jo²¹	hein44dx21
415	post		zJ³³kʰə⁵⁵dzJ³³	tsi ⁵⁵ k ^h u ⁵⁵	tso ²¹ zJ ³³
416	door	a1khjɛ²/L	a ⁵⁵ k ^h a <u>i</u> ²¹	a ⁵⁵ ku ³³ k ^h i ²¹	$a^{55}k^h\epsilon^{21}$
417	room	hi¹kɛ³	hi⁵⁵ka³³	xɛ ⁵⁵ na ³³	p€ ⁵⁵ ta ³³
418	fire	a¹toႍ⁺beႍ՟	a ⁵⁵ to ²¹ bɛ ²¹	a ⁵⁵ to ²¹ k ^h u ²¹ pi ⁵⁵	a ⁴⁴ tu ⁴⁴ bei ⁵³
419	charcoal	sa²ŋi²	sɛ²¹'n²¹tsʰĵ²¹	seŋ²1khi²1	sa ²¹ mi ²¹
420	charcoal	sa²ŋi²	sɛ²¹'n²¹tsʰĵ²¹	seŋ²¹kʰi²¹	sa ²¹ mi ²¹
420	wet field	de1mi1	t¢ ^{hi55} mi ⁵⁵	d€⁵⁵	ti ³³ mi ³³

421	dry field	mi¹bɛ¹	mi ⁴⁵	k ^h u ⁵⁵ dza ²¹ dɛ ⁵⁵	m ³³ bε ³³
422	garden	yaŋ²(k ^h y¹)mi	wu ²¹ mi ⁴⁵	ya ²¹ mi ⁵⁵	k ^h ei ³³ ka ³³
	5	1	wa mi	ju ill	K CI KU
424	granary	gi¹thu²	ha ⁵⁵ sɛ²¹gɨ²¹tʰə²¹	d3055ka21	
425	shrine	ne²he¹	η ²¹ hi ⁵⁵	va ²¹	nai ²¹ hei ³³
426	tomb	moº ^H / ^L bɛ¹	mo ²¹ be ⁵⁵	liŋ²¹dʒo⁵⁵	m ⁵⁵ bɛ ^{:33}
427	graveyard	moº ^H / ^L bɛ¹kʰy¹	$m \varrho^{21} b \epsilon^{55} k^h y^{55}$		
428	head		?mɛ ⁵⁵ ņ²¹ɕɛ³³	a⁵⁵t∫o³³	$\dot{m}^{21}t^{h}\partial^{53}$
429	headdress		?mɛ ⁵⁵ ņ²¹ɕɛ ³³	a ²¹ ta ²¹	
430	hat	nu²tsi²	ņ ²¹ tsJ ²¹	a ²¹ tsu ²¹	ņ ²¹ ts] ²¹
431	earring	?na²vaŋ²	?nε0⁵³	nu ²¹ su ⁵⁵	na ³³ vy ²¹
432	bracelet	le ¹ go ¹	lɛ²¹a²¹wo⁵⁵	lu²¹gu⁵⁵	lei55go33
433	ring	ku³	tee55tşJ21	li²¹ni⁵⁵sɛ³³	kai⁵⁵ts€³³
434	clothing	pʰja(ŋ)1	p ^h u ⁵⁵	lo ²¹ p ^h a ⁵⁵	p ^h a ³³
435	collar	pʰja(ŋ)¹kʰjɛ²	p ^h u ⁵⁵ k ^h ε ²¹	p ^h a ⁵⁵ lu ²¹ k ^h u ⁵⁵	pha ³³ kh& ²¹
436	sleeve	pʰja(ŋ)¹le॒⊾	p ^h u ⁵⁵ lɛ̃ ²¹	p ^h a ⁵⁵ li ²¹ yi ²¹	p ^h a ³³ nai ⁵³
437	button	pʰja(ŋ)¹sɛ²	k ^h i ⁵⁵ ta ³³	pha ⁵⁵ sɛ ²¹	pha ³³ sɛ ²¹
438	palm rain cape	ga¹by¹	gi ⁵⁵ by ⁵⁵	€i⁵⁵k ^h uai⁵⁵	ga ³³ bi ³³
439	pants	?la²	?la ²¹	lo ²¹	la ²¹
440	belt		?la²¹kʰɨ⁵⁵ɕɛ³³pɛ³³tɕa³ ₃	lo ²¹ po ³³ tso ³³	la ²¹ k ^h 0 ³³ sɛ ²¹
441	shoes	$k^{h}i^{1}n\underline{e}^{^{H}}$	k ^h i ⁵⁵ nɛ ³³	k ^h i ⁵⁵ nɛ ³³	k ^h ei55ni53
442	cloth	?mɛ¹	?mε⁵⁵	me ⁵⁵	p ^h iao ²¹
443	baby sling		a ⁵⁵ ki ⁵⁵ ti ³³	a ⁵⁵ tso ³³	$\epsilon^{55} v \gamma^{53}$
444	shoulder	ta²la²py³	tɛ²¹lɛ²¹py³³	ta²¹pə³³	ta ²¹ pi ³³
445	bag blanket (a)	?la²ba²	?la ²¹ ba ²¹	la²1bo²1	€ ⁵⁵ vy ⁵³ la ²¹ ba ²¹
446	blanket (b)	?mɛ¹bo³			
447	pillow	nu²ka॒⁺du¹	ŋ²¹kā²¹də⁵⁵	i²¹kʰa²¹du⁵⁵	m²1ka55dx33
448	pillow	nu²ka॒⁺du¹	ŋ²¹kā²¹də⁵⁵	i²¹kʰa²¹du⁵⁵	m²1ka55dx33
448	mat	gi¹phu²	gi ⁵⁵ fy ²¹	sa ³³ fu ²¹	pε ^{⋅33} fγ ²¹
449	mat	gi¹phu²	gi ⁵⁵ fy ²¹	sa ³³ fu ²¹	pε ^{⋅33} fγ ²¹
449	rice powder	mu ³	dza²¹kʰa⁵⁵mʉ³³	dzo ⁵⁵ mu ³³	t6 ^h i ³³ fy ³³ ga ²¹ m ³
451	porridge		dza ⁵⁵ hə ²¹ yi ²⁴	dzo ⁵⁵ ma ²¹ næ ³³	dza²¹fy²¹la⁵³
453	lard	$ts^{h}\epsilon^{1}$	ts ^h ɛ ⁵⁵	xo ²¹ ts ^h ɛ ⁵⁵	ts ^h & ³³

454	salt	taha2ha ^H	taha21ha33	la²1ba²1khi55	ts ^h a ²¹ mi ⁵⁵ mi ⁵³
455	meat	ts ^h a²bo ^H	ts ^h a ²¹ bo ³³		
		xa ²	xa ²¹	X0 ²¹	xa ²¹
456	soup	yaŋ²yi¹	wu ²¹ t6ɛ̃ ²¹ ɣɨ ⁵⁵	a ²¹ t6e ²¹ yi ⁵⁵	m ²¹ m ³³
457	liquor	dʒi¹	dzl42	dzi ⁵⁵	dzī ³³
458	tea	la²	lä21Åi22	la ²¹ p ^h 0 ²¹	la²¹ɣi³³
459	sugar (a)	∫a¹ba²	şa ⁵⁵ ba ²¹	bi ²¹ tʃʰ] ⁵⁵	
460	sugar (b)	∫a¹da²			
461	jaggery	∫a¹da²(?ni¹)	şa ⁵⁵ da ⁵⁵	bi²¹tʃʰๅ⁵⁵tɛ³³	
462	saw	<u>γi</u> [⊥] tsy³	γ <u>i</u> ²¹ tsy ³³	yi ²¹ tsə ³³	yi ⁵⁵ tsj ³³
463	knife	a¹tʰa²	a ⁵⁵ t ^h a ²¹	a ⁵⁵ t ^h 0 ²¹	a ⁵⁵ t ^h a ²¹
464	kitchen knife	a¹tʰa²ba²	a ⁵⁵ t ^h ạ²¹bạ²¹	$a^{55}t^{h}\epsilon^{21}l\epsilon^{21}$	bo ³³ tao ³³
465	pointed knife	a¹tʰa²lē̥⊾	a ⁵⁵ t ^h ậ ²¹ lɛ̃ ²¹	a ⁵⁵ t ^h ɛ²¹lɛ²¹ņ²¹də ⁵⁵ pu ⁵⁵	a ⁵⁵ t ^h a ²¹ t ^h i ³³
466	sickle	ņ²ts ^h o ^H	liaŋ⁵⁵tao³³	n^{21} t h u^{33}	ņ²¹tsʰu⁵³
467	hatchet	a ¹ ts ^h o ^H	a ⁵⁵ ts ^h o ³³	a ⁵⁵ tʃʰu³³	a ⁵⁵ ts ^h u ⁵³
468	hoe	tse ²	tsi ²¹ ts ^h o ³³	tse ²¹ mo ³³	tsai ²¹
469	plow	sį ^H go ^L	s <u>1</u> ³³ wo ²¹	mo ²¹ k ^h i ²¹	s0 ³³ k0 ⁵³
470	yoke	la²le ^H	lạ²1lɛ̃³³	i⁵⁵kai⁵¹	a ⁵⁵ ni ⁵⁵ wan ²¹ taŋ ³³
471	thing	dze¹ku¹	xa ⁵⁵ ŋa ⁵⁵	k ^h 0 ⁵⁵ m0 ³³	dzɛ ^{.55} ko ³³
472	loom		dz£ ³³	dzaŋ²1, koŋ²1	ji ⁵³
473	needle	ΫЙг	a ⁵⁵ j@ ²¹	w <u>a</u> ²¹	a ⁵⁵ yi ⁵³
474	awl		tsao ²¹ sa ³³	m0 ⁵⁵ w0 ²¹	tsuei ³³ tsj ³³
475	thread	k ^h i ¹	k ^h i ⁵⁵	k ^h i ⁵⁵ tso ³³	k ^h i ³³
476	thread ball		k ^h i ⁵⁵ ?ly ³³	k ^h i ⁵⁵ tso ³³ sɛ ²¹	$k^{h}i^{33}t^{h}\epsilon^{21}$
477	rope		i ⁵⁵ ts ^h l ⁵⁵	po ³³ tso ³³	v€ ³³ tsa ³³
478	chain	∫ó ^н		tεε⁵⁵mo³³	xi ³³ so ⁵³
479	horse whip	la²kʰo̯ʰ	lei45phi21	tso ⁵⁵ wai ⁵⁵	la²¹ti³³
480	winnowing	?va¹	?va55ma33	0 ⁵⁵ m0 ³³	oaŋ³³
481	basket bamboo sieve	?va¹ki¹	?va ⁵⁵ k ^h i ⁵⁵ tsj ³³	0ŋ ⁵⁵ ki ⁵⁵	aŋ²¹ki³³
482	whetstone	a ¹ t ^h a²sɛ²ka¹lu ^н	a ⁵⁵ t ^h a²1sɛ²1ka ⁵⁵ lə³³	a ⁵⁵ t ^h 0 ²¹ sɛ ²¹ k0 ⁵⁵ lu ³³	$x\dot{i}^{33}s\epsilon^{21}lo^{53}$
483	millstone	n <u>i</u> ^L	niɛ²¹lə²¹	mo ⁵⁵	wai ⁵³
484	hammer		tɕʰue²¹	tɛ²¹lu⁵⁵	xi ³³ ts ^h uən ²¹

485	chisel		tso ³³ tsj ³³	$xi^{55}t^h\epsilon^{21}$	
486	rice huller	ts ^h y ¹	ts ^h i ⁵⁵ l∂ ²¹	k ^h o ²¹ naŋ ²¹	ts ^h ə ³³
487	rice	, , , , , , , , , , , , , , , , , , ,	ts ^h a ²¹ lu ²¹	k ^h 0 ²¹ , k ^h 0ŋ ²¹	lei55tshə33
488	pounder mortar		ts ^h a ²¹ lu ²¹	ma ⁵⁵ p ^h iŋ ²¹ k ^h oŋ ²¹	ts ^h a ²¹ ts ^h o ³³
489	pestle		ts ^h a ²¹ ti ²¹ sJ ³³		tsha ²¹ tsho ³³ bi ⁵⁵
					bi ⁵³
490	medicine	nɛ/eºHtshi²	?nɛ²³³tsʰĵ²¹	na ³³ ts ^h i ²¹	n& ⁵⁵ ts ^h J ⁴¹
491	medicine	nɛ/eºHtshi²	?nɛ²³³tsʰĵ²¹	na ³³ t¢ ^h i ²¹	n& ⁵⁵ ts ^h J ⁴¹
492	bamboo basket		k ^h a ³³ lə ⁵⁵	k ^h a³³lu⁵⁵	p& ³³ lo ³³
493	broom	gi^1si^H	$g_{\underline{i}}^{\underline{i}^{55}}s_{\underline{l}}^{33}$	gi ⁵⁵ sl ³³	g& ³³ s1 ⁵³
494	wok	a²t∫ʰɛ¹	a ⁵⁵ ts ^h e ⁵⁵	a ⁵⁵ ts ^h a ⁵⁵ pɛ ³³	a ²¹ ts ^h & ³³
496	barrel	?nu¹	ə ⁵⁵ lə ⁵⁵ pi ⁵⁵	t ^h aŋ ⁵³	Õ ³³
497	washbasin	laŋ²	p ^h u ²¹ ?mɛ ³³ ts ^h l ²¹ p ^h ų ² 1	pan²¹doŋ³³	p ^h a ²¹ ni ⁵⁵ ts ^h J ²¹ l 0 ²¹
498	bag	la¹?lį́Ľ	pā ²¹ k ^h ε ²¹	me ³³ ne ³³	dzj ²¹ no ³³
499	comb	m²pji²	m²¹pʉ²¹tɕɛ̃³³	$\eta^{21} p i^{21}$	m²¹pai²¹
500	fine toothed comb	m²pji²dzi¹	m²¹pʉ²¹dz1⁵⁵	ŋ²¹pɨ²¹dzi⁵⁵	m²¹pai²¹mo⁵³
501	bowl	a¹kje²	a ⁵⁵ kai ²¹	i ⁵⁵ 6ɛ ²¹	a55kai41
502	small bowl	a1kje2za2	a ⁵⁵ kai ²¹	i ⁵⁵ 6ɛ²¹j0²¹	a ⁵⁵ kai ⁴¹ za ²¹
503	large bowl		pa ⁵⁵ t ^h u ³³	i ⁵⁵ 68 ²¹ m0 ³³	a⁵⁵kai⁴¹yɛ²¹
504	chopsticks	a¹dʒu³	a ⁵⁵ dzə ³³	a⁵⁵dʒu³³	a ⁵⁵ dzə ³³
505	bed	gy²	gyn ²¹	go ²¹ tsa ³³	gi ²¹
506	ladder	de ^н go₋	dɛ̃ ³³ wõ ²¹	dɛ³³gu²¹	di ⁴⁵ gi ²¹
507	firewood	s <u>i</u> ^H	s1 ³³	6i ³³	s7 ⁵³
508	manure	k ^h i²	k ^h į ²¹	k ^h i ²¹	k ^h i ²¹
509	road (a)	gja¹ma³	ga ⁵⁵ ma ³³	g0 ⁵⁵ ka ³³	
510	road (b)	gja¹ka³		g0 ⁵⁵ ka ³³	
511	road (c)	ka³k <u>i</u> H			ka ³³ ki ⁵³
512	bridge	dzy1	dzy ⁵⁵	γi ⁵⁵ dzε⁵⁵	dzə ²¹ dzə ³³
513	market	dʒi³	dzl³3	ba⁵⁵dzi³³	kai ³³ ts1 ³³
514	money	gi²p ^h e²	gi ²¹ p ^h i ²¹	phi ⁵⁵ dze ²¹	yi ³³ ma ³³
515	price	p ^h O ²	fi ²¹	jɛ²¹pʰi²¹	p ^h u ²¹
516	folksong		bε⁵⁵tsʰε⁵⁵	bε ⁵⁵ ko ³³	xai ⁵³
517	song		k0 ³³	k0 ³³	ts ^h aŋ ³³ ku ³³
	Ι	l	I	I	1

518	story		ko²¹pʉm²¹	kam ³³ pim ³³	ku ²¹ sJ ³³
519	word		t ^h iau ²¹ ts1 ⁵⁵	su ²¹ tu ⁵⁵	ร _ั ร ²¹
520	(written) speech	yɛ¹?li¹	νε ⁵⁵	da ²¹	bei55ŋɛ33
521	speech	γε¹?li¹	$V\epsilon^{55}$		bei⁵⁵ŋɛ³³
521	voice (a)	sēr	S£ ²¹	62 ²¹ t ^h ð ⁵⁵	
522	voice (b)	k ^h o²t ^h y¹		62 ²¹ t ^h ð ⁵⁵	k ^h 0 ²¹ t ^h ə ³³
523	book	t ^h o²yu²	t ^h iau ²¹ pʉm ²¹		
525	dream	ʒį́Ľ?mẽ [⊬]	z <code>l²1?mɛ̃³³</code>	i ²¹ mɛ ³³ kʰa ⁵⁵	zJ ⁴⁵ m ⁴³ k ^h a ³³
526	shadow	a¹ɣɨ³	li ⁵⁵ yi ³³	x0 ⁵⁵ yi ³³	ha55yi33
527	deity	yi¹sa¹	ni²1	ne ²¹	
528	God	yi¹sa¹	ņ ²¹ 6i ⁵⁵	i ⁵⁵ sɛ ³³ mo ³³ tso ³³	yi ³³ se ³³
529	soul (1)	ha¹	ha⁵⁵	a ⁵⁵ yi ³³	ha55yi33
530	spirit (evil)	ne ²	la²¹ki³³	p ^h ɛ ⁵⁵	nai ²³¹
531	boundary marker		kɛ⁵⁵tɕʰi²¹a²¹gə⁵⁵	jɛ²¹dʑi²¹	kai ³³ 6ĩ ⁵³
531	fence	k ^h y1	k ^h y ⁵⁵	k ^h ə⁵⁵pi³³	p ^h i ³³ sa ⁵³
532	gun		tshiaŋ55	a ⁵⁵ to ²¹ ma ²¹	ts ^h iaŋ ³³
533	bow	taٍınε³	ta ²¹ na ³³	ta ²¹ nā ³³	t€ ⁵⁵ no ³³
535	arrow		ta²¹na³³miֵ²¹¹'n²¹dy⁵⁵	mu²¹jon²¹də⁵⁵	
536	(head) cage		ty ⁵⁵	k ^h a ³³ lu ⁵⁵	lo ²¹ lo ²¹
537	drum		ku ²¹	koŋ⁵⁵	
538	gong			jaŋ⁵⁵	maŋ ³³
539	town		էşʰəŋ²¹ş၃³³		pa ³³ tsj ³³
540	village	$k^{\mathbf{h}}\underline{a}^{^{\mathrm{H}}}$	k ^h ā ³³	k ^h a³³	k ^h ε ^{₅3}
541	custom			li ⁵⁵ ki ³³	sĩŋ ³³
542	ritual tree			nɛ²¹dʑi⁵⁵	
543	invocation		şa ³³ fy ³³	tə²¹ka⁵⁵tsʰa⁵⁵to³³	to ²¹ ko ⁵³
544	bell		tGi ⁵⁵ SE ⁵⁵ nə ⁵⁵	xɛŋ⁵⁵	xə ³³]ə ³³]ə ³³
545	flute	gjy²ly²	gy ²¹ ly ²¹	də²1lə²1	ti ²¹ li ²¹
546	gourd reed	by1	by ⁵⁵	bə⁵⁵	
547	pipe		jan ³³ t ^h oŋ ²¹	a ⁵⁵ k ^h i ²¹ a ³³ da ³³	
548	trap	va ³	va ³³	voŋ ³³	va ³³
549	poison	dor	to ²¹ ?n£ ³³ ts ^h 1 ²¹	tu ²¹ na ³³ ts ^h i ²¹	tu ⁵⁵
	G. Verbs				

550	look at	?ni1	?µi⁵⁵	i ⁵⁵	vaŋ ⁵³
551	see	mjaŋ¹	mu ⁵⁵	i ⁵⁵ ma ⁵⁵	va ⁵⁵ m ³³
552	show		?µi⁵⁵to³³	i ⁵⁵ to ³³	gi ²¹ vaŋ ⁵³
553	listen	?na¹	?na⁵⁵	no ⁵⁵	na ³³
554	hear	gja²	ga ²¹	p0 ³³ g0 ²¹	ga ³³ pa ²¹ , na ³³ ŋa ³³
555	eat	dza²	dzä ²¹	dzo ²¹	dza ²¹
556	feed	t∫a॒⊾	dzä²¹to³³	tsa ²¹	tsa ⁵³
557	feed animals	t∫ <u>a</u> ⊥	tşā ²¹	tsa ²¹	tsa ⁵³
558	feed animals (liquid)	taŋ³	tu ³³	ta ³³	
559	drink	daŋ¹	du⁵⁵	da55	da ³³
560	give to drink	taŋ³	du⁵⁵to³³	da ⁵⁵ to ³³	gi ²¹ ta ³³ , yi ³³ tu ³³
561	bite	khōr	k ^h 0 ²¹	k ^h u ²¹	k ^h 0 ⁵³
562	chew	ga²	hạ²1	g0 ²¹	gua ²¹
563	lick	lēr	l <u>a</u> ²¹	l <u>a</u> ²¹	lie ⁵³
564	savor	my1	my ⁵⁵	mə ⁵⁵	mə ³³
565	swallow (a)	naŋ³			
566	swallow (b)	gjo1	hø55	gi ⁵⁵	gi ³³
567	spit	p ^h i ^L	fɛ²¹	p ^h i ²¹	p ^h ai ⁵³
568	vomit	p ^h e₋	$p^{h} \bar{\epsilon}^{21}$	$p^{h} \bar{\epsilon}^{21}$	p ^h ai ⁵³
569	suck		6i ⁵⁵	t∫hๅ⁵⁵	сі ³³
570	blow (on)	?т <u>у</u> ^н	?mʉ ³³	mi ³³	mi ⁵³
571	say	bе ^н	bε ³³	bɛٟ³³	bei ⁵³
572	speak	t ^h y1	t ^h y ⁵⁵	t ^h ə ⁵⁵	bei ⁵³
573	tell	be ^H gu ²	bɛ²³gu²¹	bɛ²³³gi²¹	bei55gi33
574	call	ku1	kə⁵⁵	ku⁵⁵	k٣ ³³
575	ask	?na¹	?na55	nə⁵⁵ĩ⁵⁵	mĩ²¹
576	answer	ро́ ^н	po ³³		ta ²⁴
577	send for	ts ^h ɛ³	ts ^h ɛ ³³	$t^h \partial^{55} t^h \partial^{21}$	tş ^h ε ^{⋅33}
578	smell	ny²	ny. ²¹	nə ⁵⁵	nəŋ²ı
579	touch	то́ ^н	mo ³³	V0 ²¹	mu ⁵³
580	take	vu1	٧ү ⁵⁵	vy ⁵⁵ , vu ⁵⁵	νγ ³³
581	grasp		tsa ³³ tee ²¹	SJ ²¹	VY ³³

582	grab		tşua ³³ teɛ²¹	tsu ³³	vvv33
583	pick (a)	val	เร็นสารีเธยาว		٧٧ ³³
584	pick (b)	xār taba ^H	t-h-33	X£ ²¹	
585		ts ^h £ ^H	ts ^h a ³³	t£ ⁵⁵	p ^h & ⁵³
586	rub	VEL	Va ²¹	V <u>a</u> ²¹	VE ^{.53}
	rip	t∫ ^h e⊥	t6 ^h £ ²¹	6i ³³	ts ^h i ⁵³
587	twist	ſįĽ	nio ²¹	s1 ³³	nio ²¹
588	pick up	go ^H	WQ ³³	gu ⁵⁵	gu ⁵³
589	catch		tşə ²¹	tsu ³³	tsỵ²1
590	scatter	Ĵi²	şl ²¹ ,pi ²¹	sj ²¹	sJ ²¹
591	throw away	?lo ^н	?lo ³³	u ⁵⁵ tsa ⁵⁵ pɛ ³³	lu55ei33
592	pitch	?lo [™]	?lo ³³	lu ⁵⁵	lu55ei33
593	toss	?ló ^н	?lo ³³	pe ³³ ke ⁵⁵	lu55ei33
594	stretch (a)	dʒe³	dzi ³³		
595	stretch (b)	dʒe²			dzai ²¹
596	stretch (c)	t∫ʰe³	t6 ^h i ³³	t¢ ^h i ⁵⁵	
597	pound	te²	ti ²¹	te ²¹	dzJ ²¹
598	lift	t∫ĥε²		ts ^h ɛ²¹tu⁵⁵	dzai²¹ti⁵⁵li³³
599	fold		tge ⁵⁵	ti ⁵⁵	dzi ³³
600	squeeze	n <u>i</u> ^L		ηε³³	naŋ ⁵³
601	pinch (a)	tsh <u>i</u> r		tsu ³³ tɕ ^h i ²¹	
602	pinch (b)	tso ^H	tso ³³	tsu ³³ t¢ ^h i ²¹	
603	massage	3 <u>i</u> ^l	tso ³³	tsā ⁵⁵	i ⁵³
604	bend	go ^l	٧Ÿ ⁵⁵ WQ ²¹	tsa ⁵⁵ gu ²¹	ts ^h J ²¹
605	pull (a)	xi ³	tci ³³		
606	pull (b)	gaŋ¹	W0 ⁵⁵	ga ⁵⁵	gu ³³
607	push	dy²	tşē ³³	də ²¹	
608	kick	t∫ħ₽́ ^H	tş ^h a ³³	pε⁵⁵	tşʰε⁺⁵³
609	kneel	gi²tɛ¹	ni ²¹ gi ²¹	ta55ku21	g0 ²¹
610	sit (a)	ni1	ni ⁵⁵		ts ^h 0 ⁵³
611	sit (b)	di1		di₅	ts ^h 0 ⁵³
612	carry, on back	bo²	vi ²¹ ,mɛ ⁵⁵	bi ²¹	bi ²¹
613	carry, in	te ^H	t <u>ē</u> ³³	t§ ⁵⁵	ti ⁵³
614	arms carry, by hand	t∫ ^h ε²	t ^h i ²¹	t6 ^h ɛ²¹	t ^h i ²¹

615	carry, mid pole	py ²	py ²¹	pə ²¹	pi ²¹
616	fall	?ly²	?ly ³³	bε ³³	
617	lean	₽ ^H		€ ³³	
618	spend night	hẹ₋	hg²1	xē ²¹	xai ⁵³
619	rest	na²	nạ²¹	no ²¹	6a ⁵⁵ la ²¹
620	sleep (a)	<u>ʒi</u> ₋da(ŋ)²		ji?21	zj ⁵⁵ ta ⁵⁵
621	sleep (b)	?neٍ⁺da²	?ɲɛႍ²¹da²¹		
622	put to sleep	х <u>і</u>		6i? ²¹	
623	awake	ха [⊥]	he55xa21	t∫l³³mi₅₂	han55tə33
624	awaken	ku²xār	kə⁵⁵xa²¹	ni ²¹	kƴ²¹haŋ⁵⁵
625	do (work)	pe1	pi ⁵⁵ ,mʉ ⁵⁵	mu ⁵⁵	pai ³³ , m ³³
626	labor	mja²ni²?mu¹	lo ²¹ mʉ ⁵⁵	lo ²¹ mu ⁵⁵	ma ²¹ ni ²¹ m ⁴⁴
627	to plow	mja²	mi ²¹	$mo^{21}\epsilon^{33}$	ma ²¹
628	dig (a)	k₽Ľ		ką?21	k€ ⁵³
629	dig (b)	ku²	kạ²1		
630	plant (a)	k ^h a³	k ^h a ³³	k ^h 0 ³³	k ^h a ³³
631	plant (b)	tε1	te55	te ⁵⁵	t€ ³³
632	water	xy ²	б <u>у</u> ²¹	XØ ²¹	
633	slice (a)	$ts^h e^{H}$	d <u>a</u> ³³	su ³³	ts ^h ai ³³
634	slice in half	bε²	bε ²¹	be ²¹	ts ^h ai ³³
635	split	k ^h jε²	k ^h ɛ²¹	k ^h e ²¹	k ^h ɛ ^{.21}
636	chop	$k^{\mathbf{h}}\underline{e}^{^{\mathrm{H}}}$	k ^h ٤ ³³	dā ³³	k ^h ɛi ⁵³
637	reap	γі́ [⊥]	<u> </u>	yi?21	γi ⁵³
638	whittle	t∫hó ^H	tş ^h Q ³³	pu ⁵⁵	6u ⁵³
639	stab (a)	dʒe॒⊾			
640	stab (b)	gu ^r	gē ²¹	gi ³³	
641	stab (c)	t ^h ⊵₋		$t\epsilon^{21}$	
642	pull up (a)	t∫ <u>i</u> ^H	tş2 ³³	tei ⁵⁵	
643	pull up (b)	р <u>і́</u> н			pu ⁵³
644	graze; herd	?loِ⊾	l <u>o</u> ²¹	luɛ̃³³	i ³³
645	raise	hu¹	hə⁵⁵	xu ⁵⁵	su ³³
646	animals lead along	si ³	รๅ ³³	tgi ³³ xe ³³	gu ³³
647	buy	VE ¹	VE ⁵⁵	νε ⁵⁵	VE ³³

648	sell	vu ²	a ²¹	vu ²¹ , vuŋ ²⁵	VY ²¹
649	count (a)	γo³			
650	count (b)	gjaŋ¹	gu ⁵⁵	ku³³t∫a⁵⁵	
651	count (c)	t∫a¹		ku³³t∫a⁵⁵	
652	teach	?ma²	?ma ²¹	m0 ²¹	
653	teach/train	tsaŋ³			γi ⁵⁵ tu ⁵³
654	study	dzaŋ¹	dzu⁵⁵	dza⁵⁵	γi ⁵³
655	cook; boil	tse॒⊾	tsē ²¹	tsɛ²¹	tsai ⁵³
656	fry (stirfry)	?lu1	?lə⁵⁵	lu55	اx ³³
657	steam (a)	S₽ [⊥]			
658	steam (b)	pu²	pu ²¹	pu ²¹	pu ²¹
659	hunt	kaŋ²dzi²de²	ko²¹dzi²¹dɛ²¹	t∫ʰๅ⁵⁵t∫u²¹	ga ⁵³
660	shoot (a	b₽ ^H	ba ³³	bā33	bε ^{,55}
661	gun) hit (a	t ^h u ³	t ^h ə ³³	ja ³³	bɛ⁵⁵ŋa³³
662	target) kill	S₽ [⊥]	S <u></u> ${\bar{E}}^{21}$	6Ē ²¹	sai ⁵³ , xɛ ^{.53}
663	die	xi ¹	Xi ⁵⁵	xi ⁵⁵	Xi ³³
664	sharpen	SE ²	S£ ²¹	SE ²¹	SE ²¹
665	grind	gaŋ³	wu ³³		gu ³³
666	winnow	?va1	?va55	0 ⁵⁵	oaŋ ³³
667	ladle out	k ^h o ^l	k ^h Q ²¹	v <u>i</u> ³³	ke ^{.33}
668	wear	v <u>i</u> ^L	jē ²¹	$V \underline{\epsilon}^{21}$	vai ⁵³
669	wear (hat)	$k^{\mathbf{h}} \bar{\boldsymbol{o}}^{^{\mathrm{H}}}$	k ^h Q ³³	k ^h u ³³	ti ⁵³
670	wear (turban)	SQ ^L		k ^h ū ³³	ti ⁵³
671	wear (upper clothes)	vi	jē ²¹	νε ²¹	vai ⁵³
671	clothe	?v <u>i</u> [⊥] tu³/gu²	jē ²¹ gu ²¹	VĒ ²¹	vai ⁵³ gi ²¹
672	take off	?l <u>i</u> ^r	2212 ²¹]i ²¹	li ⁵³
673	roll up	?ly³	?ly ³³]i ³³	tsue ²¹
675	comb	pji ²	pu ²¹	pi ²¹	pai ²¹
676	dye		zaŋ ²¹	xu ³³	zei ³³
677	sew	gu ^r	gē ²¹	g <u>i</u> ²¹	gx ⁵³
678	mend; patch	?nṟ⊾	?nā ²¹	nā ²¹	n€ ⁵³
679	weave	dzēr	pi ⁵⁵	d3ª21	
680	plait; braid	p ^h e ²	p ^h į ²¹		p ^h ai ²¹

681	make the bed	k ^h aŋ²	k ^h 0 ²¹	kha ²¹	tou ²¹
682	sweep	sį́ ^H	s1 ³³	sl ³³	Տๅ ⁵³
683	open	p ^h u ³	fy ³³	p ^h u ³³	p ^h u ³³
684	close	ts ^h i ²¹	tshj21	ts ^h J ²¹	tshj21
685	shut (a)	$ts^{h}\underline{i}^{H}$	ts ^h l ³³		
686	shut (b)	m <u>i</u> ^H		m <u>i</u> ³³	mi ⁵³
687	put down	ta॒⊾	t <u>a</u> ²¹	to ³³	$p^{h}i^{21}$
688	release	p ^h jy ²	p ^h ų ²¹	$p^{h}i^{21}$	$p^{h}i^{21}$
689	hang	kε¹	kε55	Χε ³³	kε ^{.33}
690	tie into a bundle	$p^{h}\epsilon^{3}$	ZO ²¹	$p^{h}\epsilon^{33}$	$p^{h} \epsilon^{.33}$
691	tie; bind	$p^{h}\epsilon^{3}$	$p^{h}\epsilon^{33}$	t ^h i ²¹	p ^h E ³³
692	tie a belt	SQL			sei ⁵³
693	untie	$p^{h}i^{1}$	p ^h u ⁵⁵	p ^h i ⁵⁵	p ^h u ³³
694	load	kε³	kε ³³	kε ³³	h0 ³³
695	take out	vu¹tʰēַL	$\gamma^{55} t^h \underline{\epsilon}^{21}$	vu ⁵⁵ to ³³	vy ³³ tu ³³ la ²¹
696	press	tsu ¹	tşə ⁵⁵	tã ⁵⁵	h0 ³³
697	bury	ty ²	ty ²¹	tə ²¹	tə ²¹
698	hide (thing)	t∫ε¹	tşղ⁵⁵	tee55	tsɛ ³³
699	hide (self)	vy ²	jy ²¹	Ζ <u>η</u> ²¹	bə ²¹
700	choose	se ¹	si ⁵⁵	6E ⁵⁵	sei ³³
701	pile up	k ^h jo³	k ^h ø ³³	pə ³³	ya ³³
702	nail		t ^h iɛ²¹	t ^h \varepsilon^{21}	tĩ ³³
703	want	li1	ZJ ⁵⁵	ni ⁵⁵	ji ³³
704	obtain (a)	ya³	va ³³	V0 ³³	
705	obtain (b)	mɛ³		me ³³	mai ⁵⁵ ŋa ³³
706	receive	sy1	6y ⁵⁵	\$ə ⁵⁵	\$∂ ³³
707	lose	p ^h <u>i</u> ^L	fɛ²¹	p ^h i ²¹ , p ^h iɛ ²¹	p ^h iɛ ⁵³ , p ^h i ⁵³
708	seek	t∫a³	tşa ³³	$i^{55}t^h\partial^{21}$	tsa ³³
709	use	zy²	zy ²¹	Zə ²¹	Zə ²¹
710	play	ga ³	ha ³³	g0 ³³	gei ²¹ ke ³³
711	win (a)	γā [⊥]			
712	win (b)	ha॒⊾	hāzı	х <u>а</u> ³³	
713	sing	ga ³	68 ⁵⁵	g0 ³³ mu ⁵⁵	ga ³³

714	dance	ga³k ^h e/ε³	ha³³kʰɛ³³	go ³³ tɛ ²¹	bə ³³
715	dance	ga ³ k ^h e/ε ³	ha³³kʰɛ³³	go ³³ tɛ ²¹	bə ³³
715	borrow	t∫ ^h i²	tş ^h ç²1	ts ^h i ²¹	
716	(money) borrow (thing)	?ŋa²	aŋ ²¹	0 ²¹	aŋ²¹
717	give back	si ¹	s1222	tsa⁵⁵	tə ³³ gi ³¹
719	compen-	de1	di55	sa ⁵⁵ mə ⁵⁵ yi ²¹	di ³³
720	sate send	xɛ²xa¹	xi ²¹ a ⁵⁵ gu ²¹	$X\epsilon^{21}X0^{55}\epsilon^{55}$	xa ³³
721	wait	?laŋ³	?lə ³³	la ³³	lu ³³
722	meet	t ^h u³dzi¹	dz1 ⁵⁵ t ^h ə ³³	dzu²¹lɛ⁵⁵	tou55ŋa33
723	meet	t ^h u³dzi¹	dz1 ⁵⁵ t ^h ə ³³		tou55ŋa33
723	marry a husband		gu ²¹	wu ⁵⁵ kɛ ³³	fy³³dza²¹
724	marry a wife	tsi1	ts] ⁵⁵ ,hā ⁵⁵	wu ⁵⁵ ko ²¹ lo ⁵⁵	mai ⁵⁵ tə ³³ la ³³
725	scold	k ^h a²	wā ²¹	Χε ³³	ts ^h ao ³³
727	hit; beat	dɛ²	dɛ಼²¹	de21	dai ²¹
728	rob; loot	ho³	hə ³³	fu ³³	ts ^h iaŋ ²¹
729	steal	k ^h 0 ²	k ^h ä ²¹	k ^h i ²¹	k ^h 2 ²¹
730	cheat	k₽Ľ	ka <u>i</u> ²¹	fu²¹pa²¹	lai ⁵³
731	help	gja³	ga ³³	g0 ³³ ÿi ²¹	pai ³³ gi ²¹
732	cure	gu³	γə ³³	no ⁵⁵ gu ³³	gx ³³ gx ⁵³
733	divide	by1	by ⁵⁵	bi ⁵⁵ lɛ ³³	bi ³³
734	laugh	γε ¹	gə ⁵⁵	jε⁵⁵	χε ^{.33}
735	cry	ŋo¹	ŋə ⁵⁵	ŋi ⁵⁵	ŋx ³³
736	love	SE ²	gə ⁵⁵ ,sɛ಼²¹,fi²¹	goŋ ²⁵	yai ⁵³
737	like		Sə ²¹	i ⁵⁵ di ²¹	kai ³³
738	know	S₽̃	sā ²¹	sā ²¹	SE ^{:53}
739	remember	ха	xa²¹ka³³		tsəŋ44ŋa33
740	forget	ma²xār	ma ²¹ xā ²¹	ma ²¹ xa ²¹ ji ³³	i ³³ p ^h i ³³
741	think (a)	di²	di ²¹	di ²¹	mi ³³
742	think (b)	ga²			ga ²¹
743	be angry		tshj21	də³³mi³³	x0 ²¹ fɛ ^{.53}
744	hate	ts ^h i ²	həŋ³³		
745	fear	gjo ^н	guo ³³	gu ³³	gu ⁵³
746	have	pi²	pu ²¹	pi ²¹	pu ²¹

	courage				
747	can (well)	k ^h ε ¹	k ^h ɛ ⁵⁵	k ^h e ⁵⁵	k ^h ɛ ^{,33}
748	affirmative	ŋa¹	ŋa ⁵⁵	ŋo⁵⁵	ŋa ³³
749	is not	ma²ŋa¹	ma ²¹ ŋa ⁵⁵	ma ²¹ ŋ0 ⁵⁵	^y m ²¹ ŋa ³³
750	have	dʒaŋ¹	dzu⁵⁵	dza ⁵⁵	dzu ³³
751	not have	ma²dʒaŋ¹	ma ²¹ dzu ⁵⁵	ma ²¹ dʒa ⁵⁵	m²¹dzu³³
752	walk	sy ²	s <u>y</u> ²¹	jε ³³	
753	run (a)	gjɛ²	gi ²¹	ge ²¹	ge ²¹
754	run (b)	pi ¹			pε ^{.53}
755	ascend	de ^H	d٤ ³³	de ³³	di ⁵⁵
756	descend	ZĘ ^L	ZĘ ²¹	jε ²¹	zai ⁵⁵
757	come	la¹	la ⁵⁵ ,li ⁵⁵	lε ⁵⁵	la ³³
758	come up	deHla1	dɛ̃³³la⁵⁵	de ³³ le ⁵⁵	di ⁵⁵ la ³³
759	come down	zeŀla¹	$Z \underline{\epsilon}^{21} Z \underline{1}^{33}$	jɛ²¹lɛ⁵⁵	zai ⁵⁵ la ³³
760	go	ze1	ji ⁵⁵	jε ³³	li ³³ , ji ³³
761	go up	de ^H e ¹	d£ ³³ li ³³		di ⁵⁵ li ³³
762	go down	zērze1	zɛ²¹ji ⁵⁵		zai ⁵⁵ ji ³³
763	climb	?mṟ ^ℍ	?ma³³,pɛ³³	tʃʰa²1	m€ ⁵³
764	return	ty1	ty55	tə⁵⁵	tə ³³
765	arrive	k ^h je1	tc ^h i ⁵⁵	k ^h e ⁵⁵	te ^h i ³³
766	cross (over)	kjoʻ	ky ²¹	ki ²¹	t& ⁵⁵ ji ³³ , gi ²¹ ji ³³
767	go through	koʻ	k <u>0</u> ²¹	jɛ³³dʒa³³	k0 ⁵⁵
768	exit	dо́н	do ³³	do ³³	du55
769	enter	dy²	dy.21	gi ³³	də ²¹
770	move back		di ³³	su ³³ mi ⁵⁵	tə ³³
770	flee; escape	k ^h u²gjɛ²	k ^h ə ²¹	$k^{h}i^{21}g\epsilon^{21}$	p€ ⁵⁵ g€ ²¹
771	chase	t∫u²	tşə ²¹	t∫u²1	ga ⁵³
772	step on	k ^h i³	k ^h i ³³	k0 ³³	tε ^{.33}
774	stride		pā ³³	gi ³³	tc ^h a ³³
774	ride	dzɛ²	dzë ²¹	dze ²¹	dze ²¹
775	exist; to be	dʒēੂ ^ℍ	dzę ³³	dza ³³	dzī ⁵⁵
776	dry	?l <u>y</u> ı	l@ ²¹	l <u>a</u> ²¹	lə ⁵⁵
778	(wind) blow	k ^h y ¹	a ⁵⁵ ņ ²¹ ¢y ⁵⁵ k ^h y ⁵⁵	a ⁵⁵ mi ²¹ fi ⁵⁵	mi ²¹ i ³³ k ^h i ³³

779	light (on	1	0 11 4 21	4 21	. 52
	light (on fire)	toַ∟	$n\epsilon^{21},to^{21}$	t0 ²¹	to ⁵³
780	burn (a)	k ^h u ¹	k ^h ə⁵⁵, ba⁵⁵	tei ³³	k ^h 0 ³³ , p ^h ə ²¹ , i ³³
781	burn (b)	ty⊥			
782	burn up	k ^h u ¹	k ^h ə ⁵⁵ ,?nɛ ²¹	tεi ³³ pε ³³	i ³³ jɛ ³³
783	roast (in fire)		k ^h ə ⁵⁵ , ba ⁵⁵	k ^h u ⁵⁵	k ^h 0 ³³
782	roast	kaŋ¹	ka ⁵⁵ , k ^h aŋ ⁵⁵	xõ ⁵⁵ , xu ⁵⁵	ku ³³
783	smoke	<u>∫i</u> ^H / ^L	ŋ²¹kʰə²¹tə⁵⁵	sJ ²¹ do ³³	mi ⁵⁵ k ^h 0 ²¹ du ³³
786	overflow	γу [⊥]	j@ ²¹	jā ³³	
787	float		p ^h iau ³³	la ²¹ lo ³³	p ^h iau ³³
787	crack open	beٍ∟	bε ²¹	bɛ²¹kæ⁵⁵	bai ⁵⁵
788	collapse	by²	by ²¹	bə1y²4	bə ²¹
789	be short of	k ^h £₋	ts ^h a ³³ ,k ^h a ²¹	khā ²¹	$t^{h}\epsilon^{.53}$
791	revolve	t∫aŋ¹	tşu ⁵⁵	t∫a⁵⁵	tsuɛ ⁵³
792	fall; drop	ts ^h e ¹	ts ^h i ⁵⁵ ,ka ⁵⁵	t6ε ⁵⁵ a ²¹	b& ³³
793	snap in two	ts ^h e ^H	ts ^h ɛ̃ ³³	tɕʰε³³a²¹	ts ^h ei ⁵³
794	break		ts ^h ε ²¹	ts ^h ε ²¹	$t^{h}\epsilon^{.53}$
795	leak		\$1 ³³	ts] ³³ mə ³³	dx ³³
796	boil	tsu ¹	tsๅ⁵⁵	tsu ⁵⁵	ts _፝ 33
797	change		piŋ⁵⁵		pĩ ⁵³
797	birth (a)	dza1		dza55	
798	birth (b)	ka²			
799	birth (c)	ts ^h y ²	ts ^h y ²¹		
800	grow	γε²	٧£ ²¹	jε ²¹	γε ^{.21} lĩ ³³
803	fly	bjy1	by ⁵⁵	bə⁵⁵	bi ³³
804	bark	lu³	?lə ³³	lu ³³	ا <u>م</u> ³³
805	crow	bo1	vi ⁵⁵	bi ⁵⁵	bi ³³
806	lay (egg)	fu³	fy ³³	fu ³³	fy ³³
807	brood	?my²	?mu ²¹	mi ²¹	məŋ ⁵³
808	sprout	b <u>i</u> ^H	b <u>u</u> ³³	b <u>i</u> ⁴⁴	du ⁵⁵
809	bud on	ts⊵¹	tsā ²¹		fe ^{.53}
810	trees bloom	?ve [™]	?vɛ²³³	bɛ ⁴⁴	vei ⁵³
811	bear fruit	d3e²	dz <u>e</u> ²¹	με ²¹	dzɛ ²¹

812 rot (fruit) $p^{h_{1}2}$ $p^{h_{1}2}$ $p^{h_{1}2}$ $ts^{h}p^{21}$ $ts^{h}p^{21}$ mai^{33} 813 rot (meat) hag^{2} ha^{55} . . 814 begin tu^{1} . $ko^{55}ma^{55}$ $pai^{55}ta^{33}$ 815 stop na^{2} na^{21} no^{21} na^{21} 816 remain . ta^{21} $ta^{21}j^{133}$ $fai^{21}tai^{53}$ 816 write $7ve^{H}$ $7va^{33}$ bo^{733} ve^{53} 817 wash (self) $ts^{h_{1}^{2}$ $ts^{h_{1}^{21}$ $te^{h_{1}^{21}$ $ts^{h_{1}^{21}$ 818 get up tu^{1} $ta^{55}la^{55}$ $tu^{31}li^{33}$ lo^{33} 820 sink . lo^{33} ga^{33} $gi^{31}ta^{31}le^{33}$ 821 finish . do^{33} ga^{21} xa^{21} xi^{53} 821 destroy $p^{h}e^{H}$ p^{12} xi^{21} xi^{33} 822 skin ts^{h_1} $ts^{h_1^{2}}$ xi^{21}
814begintu1termko**ma*5pai**ta*3815stopna²ng²1no²1na²1816remainta²1ta²1ta²1ji33fai²1tai*3816write $?ve^{H}$ $?va^{33}$ bo?³3ve*3817wash (self)tshi²tshp²1tehi²1tshp²1818get uptu1tə*sla*5tu*sle*5to*31li33820sinkio1³tee³3ka³3pai³te³3le³3821finishudo³3ga³3gai³te³3le³3822givegu²gu²1gi²1gi²1821destroyphe ^H pi5*phe³3na²1to²1pe55imi*3824be standinghy*hg²1xg²1xi*3825skin (animal) clear fieldtshj²sfaj3mo²1mo²1mo²1mo*3827weedmo²ga³3ja³3ja²1828stir (a) bay²ge ^H ga³3ya³3ja²1829stir (b) bay²bay²ite³3fai3ja²1831weightshi1tshf5tchi55tuei³3833drowniti*itiş³3tiş³3tiş5tehi95*s
815stopna²ng²1no²1na²1816remain 12^{21} 10^{21} 10^{21} na^{21} 816write $7ve^{H}$ $7va^{3}$ $bo?^{33}$ ve^{53} 817wash (self) ts^{hj2} $ts^{h}q^{21}$ te^{hj21} $ts^{h}q^{21}$ 818get up tu^1 $ts^{55}a^{55}$ $to^{33}a^{33}$ lo^{33} 820sink u^1 to^{33} ga^{33} $pai^{33}te^{33}te^{33}$ 821finish u^2 gu^{21} gi^{21} gi^{21} 821destroy p^he^H $pi^{55}phe^{33}$ $na^{21}to^{21}pe^{55}$ us^{53} 824be standing hy^{L} hg^{21} xg^{21} xi^{53} 825skin (animal) (animal) ts^hj^L ts^hj^{21} $gi^{55}kh^{121}$ $gi^{33}ts^hj^{53}$ 827weed mo^L $sq^{33}mo^{21}$ $mo^{21}mo^{21}$ mo^{53} 828stir (a) ge^H ga^{33} ya^{33} uei^{33} 829stir (b) baj^2 uei^{33} te^{hj55} $tuei^{33}$ 831weigh ts^{hj1} $ts^{h}j^{55}$ te^{hj55} $tuei^{33}$ 833drwn uhi $ts^{h}aj^{55}se^{21}$ $po^{33}xi^{55}$ $te^{h}ij^{55}sai^{53}$
816remain 12^{11} 12^{21} 12^{21} 12^{21} 12^{21} 816write $7ve^{H}$ $7va^{33}$ bo^{733} ve^{53} 817wash (self) ts^{hj^2} $ts^{h}2^{11}$ $te^{hj}2^{11}$ $ts^{hj}2^{11}$ 818get up tu^1 $ts^{55}la^{55}$ $tu^{55}le^{55}$ $to^{33}li^{33}$ 820sink \cdot lo^{13} $te^{33}ka^{33}$ lo^{33} 821finish \cdot do^{33} ga^{33} $ga^{13}te^{33}le^{33}$ 820givegu²gu²1 gi^{21} gi^{21} 821destroy p^he^H $p^{195}p^he^{33}$ $na^{21}to^{21}pe^{55}$ \cdot 824be standing hy^t hq^{21} xa^{21} xi^{53} 825 $skin$ (animal) ts^{h_1} $ts^{h_1^{21}}$ $gi^{55}h^{i_21}$ $gi^{33}ts^{53}r^{53}$ 827weed mo^L $gr^{33}mo^{21}$ $mo^{21}mo^{21}$ mo^{33} 828stir (a) ge^H ga^{33} ya^{33} $Li^{33}mi^{33}pai^{33}$ 829stir (b) ban^2 \cdot ba^{21} ba^{21} 831weigh ts^{h_11} ts^{h_25} te^{h_155} $tuei^{33}$ 832soak t_1^H tie^{33} t_2^{53} te^{h_1955} te^{h_1955}
816write $7ve^{H}$ $7va^{33}$ bn^{21} bn^{21} ve^{53} 817wash (self) tsh^{12} tsh^{21} $te^{hi^{21}}$ tsh^{21} tsh^{21} 818get up tu^{1} $ta^{55}la^{55}$ $tu^{55}le^{55}$ $to^{33}li^{33}$ 820sink u^{1} do^{33} ga^{33} $pai^{33}te^{33}le^{33}$ 821finish u^{1} do^{33} ga^{33} $ga^{13}te^{33}le^{33}le^{33}$ 820givegu ² gu ²¹ gi^{21} gi^{21} gi^{21} 821destroy ph_{e}^{H} $pi^{55}ph^{23}$ $na^{21}to^{21}pe^{55}$ us^{53} 824be standing hy^{L} hg^{21} xq^{21} xi^{53} 825 $skin$ (animal) tsh_{1}^{h} tsh_{1}^{21} $gi^{55}khi^{21}$ $gi^{33}ts^{h}h^{53}$ 827veed mo^{L} $pt^{13}mo^{21}$ $mo^{21}mo^{21}$ mo^{53} 828stir (a) ge^{H} ga^{33} ya^{33} ue^{33} 829stir (b) $ba\eta^{2}$ tsh^{55} te^{hj55} tue^{i33} 831weigh $tsh^{1}1$ tsh^{55} te^{hj55} tue^{i33} 833drown ti^{H} tie^{33} tie^{53} tie^{53}
NgNgNgOfOfOf817wash (self)tshi2tshq21tehi21tshq21tshq21818get uptu1tə55la55tu55ls55to33li33820sinkIo13te633ka33lo33821finishIodq33ga33pai33te33le33820givegu2gu21gi21gi21821destroypheHpi55phg33na21to21pc55I824be standinghythg21xq21xi53825skin (animal) clear fieldtshj1tshq21gi55khi21gi33tshj53827weedmog133mo21mo21mo21mo53828stir (a) stir (b)geHga33ya33I829stir (b) bag2bag2tshj55tu6i35tu6i33831weightshj1tshj55tchj55tu6i33833drownItshj55g21po3xi55tchi955g353
818get uptu1tə s la stu s la stu s la s820sinklo 1lo 13ta s la sto 33 li 33820sinklo 13ta s la slo 33821finishdo 33ga 33ga 33ga 33 la s820givegu 2gu 21gi 21gi 21821destroyphe Hpi 55 ph c 33na 21 to 21 pc 55824be standinghy Lhq 21xq 21xi 53825skin (animal)ts h Lts h 1 21gi 33 ts h 3 3827weedmo Lg 1 33 m 3 3ph c 21 mo 55, ph 1 y 24ti 33 mi 33 pa j 33828stir (a)g 2 Hg 3 3y 3 3829stir (b)ba y 2ba y 2ba y 2ba y 2831weights h 1ts h 1 55ta h 1 55tu e 1 33833drownty Hti 23ti 55ty 6 3 3
820sinkIIIII821finishI lo^{13} $tee^{3}ka^{33}$ lo^{33} 821finishI do^{33} ga^{33} ga^{33} $pai^{33}te^{33}le^{33}$ 820givegu²gu²1 gi^{21} gi^{21} gi^{21} 821destroy phe^{H} $pi^{55}phe^{33}$ $na^{21}to^{21}pe^{55}$ I824be standing hy^{L} hq^{21} xq^{21} xi^{53} 825skin (animal) clear field $ts^{h}1^{L}$ $ts^{h}2^{11}$ $gi^{55}khi^{21}$ $gi^{33}ts^{h}1^{53}$ 827weed mo^{L} $\xi\eta^{33}mo^{21}$ $mo^{21}mo^{21}$ mo^{53} 828stir (a) stir (b) ge^{H} ga^{33} ya^{33} I829stir (b) baŋ² $ts^{h}1^{15}$ $te^{h}15^{5}$ $tuei^{33}$ 831weigh $ts^{h}1$ $ts^{h}2^{55}$ tie^{5} $ts^{h}0y^{53}$ 833drownI $ts^{h}any^{55}se^{21}$ $po^{33}xi^{55}$ $te^{h}ip^{55}sai^{53}$
821finishIdo33ga33pai34 c 33 c 33820givegu2gu21gi21gi21821destroypheHpi55phc33na ²¹ to ²¹ pc ⁵⁵ I824be standinghyLhg21xq21xi ⁵³ 825skin (animal) clear fieldtshjLtshj21gi5skhi21gi33tshj53827veedmoLg23mo21mo21mo53828stir (a)gg ^H ga33ya33I829stir (b)bag2Iba21ba21831weightshj1tshj55tchj55tuei33833drowntj ^H tig33tig33tig55833drowntyhtshj1tshj55tchj55tchj55
820givegu2gu21gi21gi21821destroy $p^h e^H$ $p^{155} p^h e^{33}$ $na^{21} to^{21} pe^{55}$.824be standing hy^L $h q^{21}$ xq^{21} xi^{53} 825skin (animal) clear field $ts^h 1^L$ $ts^h 1^{21}$ $gi^{55} k^h i^{21}$ $gi^{33} ts^h 1^{53}$ 827clear field mo^L $p^1 t^3 m 0^{21}$ $mo^{21} m o^{55}, p^h i n 2^4$ $ti^{33} mi^{33} pai^{33}$ 827weed mo^L $p^1 t^3 m 0^{21}$ $mo^{21} m 0^{21}$ mo^{53} 828stir (a) ge^H ga^{33} ya^{33} .829stir (b) ban^2 . ban^2 . ba^{21} 831weigh $ts^h i^1$ $ts^h 1^{55}$ $te^h i^{55}$ $tuei^{33}$ 832soak t_1^H tie^{33} t_1^{55} to^{53} 833drown. $ts^h ian^{55} se^{21}$ $po^{33} xi^{55}$ $to^h in^{55} sai^{53}$
821destroy $p^h e^H$ $p^{i5^p} p_{\tilde{s}^{33}}$ $na^{21} to^{21} p \epsilon^{55}$ xi^{53} 824be standing hy^L $h q^{21}$ xq^{21} xi^{53} 825 $skin$ (animal) $ts^h \underline{j}^L$ $ts^h \underline{j}^{21}$ $gi^{j5s} k^h \underline{j}^{21}$ $gi^{j33} ts^h \underline{j}^{53}$ 827clear field $ts^h \underline{j}^L$ $ts^h \underline{j}^{21}$ $p^h \epsilon^{21} m \overline{\rho}^{55}, p^h i p 2^4$ $ti^{33} m i^{33} p a i^{33}$ 827weed $m \underline{o}^L$ $g \underline{j}^{33} m \underline{o}^{21}$ $mo^{21} mo^{21}$ mo^{53} 828stir (a) $g \underline{e}^H$ $g \underline{a}^{33}$ $y a^{33}$ $uei 3^3$ 829stir (b) $ba p^2$ $uei 3^3$ ba^{21} 831weigh $ts^h i^1$ $ts^h 1^{55}$ $te^h i^{55}$ $tuei 3^3$ 832soak $t \underline{i}^H$ $ti \underline{i}^{33}$ $ti \underline{i}^{55}$ $ts^h o 1^{53}$ 833drown $uei a^{15} t \underline{s}^{10} a^{15}$ $te^h i \underline{1}^{55} s a i^{53}$ $te^h i \underline{1}^{55} s a i^{53}$
824be standinghyhghgxqxqxq825skin (animal) clear fieldtshitshjtshjgisigi827clear fieldtshitshjtshjgigigigi827weedmoggsjgimomosi828stir (a)gggggamomomomo829stir (b)bagcbagbabababa831weightshitshjtshjtititisi832soaktititititititi833drowniititipositi833iiitititititi
825skin (animal) clear field $ts^{h}\underline{i}^{L}$ $ts^{h}\underline{i}^{21}$ $gi^{55}k^{h}i^{21}$ $gi^{33}ts^{h}1^{53}$ 827clear field mo^{L} $sl^{33}mo^{21}$ $mo^{21}mo^{21}$ $ti^{33}mi^{33}pai^{33}$ 827weed mo^{L} $sl^{33}mo^{21}$ $mo^{21}mo^{21}$ mo^{53} 828stir (a) gg^{H} ga^{33} ya^{33} uo^{53} 829stir (b) $ba\eta^2$ uo^{55} ba^{21} 831weigh $ts^{h}i^{1}$ $ts^{h}1^{55}$ $tc^{h}i^{55}$ $tuei^{33}$ 832soak $t\underline{i}^{H}$ $ti\underline{e}^{33}$ $t\underline{i}^{55}$ $ts^{h}o\eta^{53}$ 833drown uo $ts^{h}ia\eta^{55}s\underline{e}^{21}$ $po^{33}xi^{55}$ $tc^{h}i\eta^{55}sai^{53}$
827(animal) clear field M_{2}^{L} M_{1}^{L} M_{1}^{L} M_{1}^{L} M_{1}^{L} M_{1}^{L} M_{1}^{21} M_{1}^{21} M_{1}^{21} M_{1}^{23} 827weed MQ^{L} $Sl^{33}mQ^{21}$ $mo^{21}mo^{21}$ mo^{53} 828stir (a) gg^{H} ga^{33} χa^{33} Mo^{53} 829stir (b) $ba\eta^{2}$ Mo^{55} Ma^{21} ba^{21} 831weigh $ts^{h}i^{1}$ $ts^{h}j^{55}$ $tc^{h}i^{55}$ $tuei^{33}$ 832soak $t\underline{i}^{H}$ $ti\underline{\epsilon}^{33}$ $t\underline{i}^{55}$ $ts^{h}op^{53}$ 833drown Mo^{11} $ts^{h}iap^{55}s\underline{\epsilon}^{21}$ $po^{33}xi^{55}$ $tc^{h}ip^{55}sai^{53}$
827clear field u u $p^{h}\epsilon^{21}m\epsilon^{55}$, $p^{h}ip^{24}$ $ti^{33}mi^{3}pai^{33}$ 827weed mq^{L} $\xi \eta^{33}mq^{21}$ $mo^{21}mo^{21}$ mo^{53} 828stir (a) $g\epsilon^{H}$ ga^{33} $\gamma^{33}anq^{21}$ $mo^{21}mo^{21}$ mo^{53} 829stir (b) $g\epsilon^{H}$ bag^{2} u ba^{21} ba^{21} 831weigh $ts^{h}i^{1}$ $ts^{h}\gamma^{55}$ $tc^{h}i^{55}$ $tuei^{33}$ 832soak $t\frac{1}{4}^{H}$ $ti\epsilon^{33}$ $t\frac{1}{2}^{55}$ $ts^{h}op^{53}$ 833drown u $ts^{h}iap^{55}s\epsilon^{21}$ $po^{33}xi^{55}$ $tc^{h}ip^{55}sai^{53}$
828stir (a) $g \varepsilon^{H}$ $g a^{33}$ χa^{33} Inc829stir (b)bay² u^{21} ba^{21} 831weights ^h i ¹ ts ^h j ⁵⁵ tc ^h i ⁵⁵ tuei ³³ 832soakt \underline{t}^{H} ti $\underline{\epsilon}^{33}$ t \underline{t}^{55} ts ^h oj ⁵³ 833drown u ts ^h iaj ⁵⁵ s ε^{21} po ³³ x \overline{t}^{55} tc ^h ij ⁵⁵ sa \overline{t}^{53}
829stir (b) bag^2 bag^2 bag^{21} 831weigh ts^{hi1} $ts^{h}1^{55}$ te^{hi55} $tuei^{33}$ 832soak $t\underline{i}^{H}$ $ti\underline{\epsilon}^{33}$ $t\underline{i}^{55}$ $ts^{h}op^{53}$ 833drown $tshian^{55}s\underline{\epsilon}^{21}$ $po^{33}x\underline{i}^{55}$ $te^{hin}5^{55}sa\underline{i}^{53}$
831weigh $ts^{h}i^{1}$ $ts^{h}\gamma^{55}$ $te^{h}i^{55}$ $tuei^{33}$ 832soak $t\underline{i}^{H}$ $ti\underline{\epsilon}^{33}$ $t\underline{i}^{55}$ $ts^{h}o\eta^{53}$ 833drown $ts^{h}ia\eta^{55}s\underline{\epsilon}^{21}$ $po^{33}x\underline{i}^{55}$ $te^{h}i\eta^{55}sai^{53}$
832soak $t\underline{i}^{H}$ $t\underline{i}\varepsilon^{33}$ $t\underline{i}^{55}$ $ts^{h}on^{53}$ 833drowntshian ⁵⁵ sɛ²1 $po^{33}xi^{55}$ $tc^{h}in^{55}sai^{53}$
833 drown $ts^{h}iay^{55}sz^{21}$ $po^{33}xi^{55}$ $tc^{h}iy^{55}sai^{53}$
834 swim γi ¹ ga ³ γi ⁵⁵ ha ³³ γi ⁵⁵ vε ²¹ ta ⁵⁵ õ ⁵³
835 drill (a $t^{h}u^{1}$ $t^{h}\partial^{55}$ $t^{h}u^{55}$ $t \varepsilon y^{33}$
837 drive out ga^{L} ha^{21} tfu^{21} ga^{53}
838 wither gu^3 g^{33} gu^{55} $b\epsilon^{33}$
839 cough tsi^2 tsj^{21} tsj^{21} tsj^{21}
840 yawn (a) $2li^{1}ku^{3}$ $li^{21}xa^{55}$
841 yawn (b) ha ¹ se ³ /k ^h aŋ ² ha ⁵⁵ ji ³³ k ^h a ²¹ ,hai ⁵³ k ^h a li ²¹ xa ⁵⁵ xu ³³ xa ³³ dai ²¹ 21
842 sneeze ha ¹ $ha^{33}t^{h}io^{21}pi^{55}$ $\epsilon i^{55}tsa^{33}m \partial n^{55}$ $ts^{h}on^{53}$
843 hiccup \underline{i}^{H} $ti^{55}ki^{33}hou^{21}mu^{33}$ $\varepsilon^{33}fu^{33}ki^{33}$ $i^{21}m^{33}$
844 belch \underline{i}^{L} $ti^{55}ki^{33}hou^{21}mu^{33}$ ∂^{21} $i^{21}m^{33}$
845 fart bjo ² ts ^h i ² bjo ² z l ²¹ ts ^h l ²¹ zl ²¹ vi ²¹ tə ²¹ z l ²¹ ts ^h l ²¹ zl ²¹
846 defecate $k^{h}ji^{2}\varepsilon^{2}$ $ts^{h}l^{21}\varepsilon^{21}$ ε^{21} $ts^{h}l^{21}\varepsilon^{21}$

	1	1		1	1
847	urinate	zi²t∫hǥ ^H	zj ²¹ tɕʰɛ̃ ³³	su ²¹	zj²¹tɕʰi⁵³
848	scratch (a)	kje ^н	te ^{z33}	kε ³³	
849	scratch (b)	ku²			
851	live (b)	ka²		k0 ²¹	
852	exchange	pa1	pa⁵⁵	p0 ⁵⁵	pa ³³
853	butt	t ^h u ³	t ^h u ³³	te ²¹	naŋ ⁵⁵ a ³³ , gi ⁵⁵
	H. Adjective	S			
854	white (a)	p ^h u ¹	fy ⁵⁵	p ^h u ⁵⁵	$p^{h}\gamma^{33}$
855	white (b)	?ve ^H	?v£ ³³		
856	black	?ne [॒] [⊬]	?nɛ²³³	nɛ²³³	ni ⁵³
857	red	?ni1	?µi⁵⁵f²¹	ni ⁵⁵	?i ³³
858	yellow	∫ε¹	6E ⁵⁵	6E ⁵⁵	SE ³³
859	blue	?ni1	?µi⁵⁵tşኂ³³	k ^h iu ⁵⁵ , k ^h i ⁵⁵ wu ⁵⁵	tş ^h & ³³
860	green	?ni1	?ni⁵⁵tşı³³	k ^h ɛŋ⁵⁵, k ^h i⁵⁵mu²¹	lo ⁵³
861	grey	$p^{h}\epsilon^{1}$	p ^h ɛ ⁵⁵	p ^h a ⁵⁵	$p^{h} \epsilon^{33}$
862	sharp	ts ^h y ¹	ts ^h y ⁵⁵	pu⁵⁵	tş€ ³³
863	(point) sharp (blade)	$t^{h}\bar{e}^{\rm H}$?na ⁵⁵ ,t ^h iɛ̃ ³³	du⁵⁵	t ^h i ⁵³
864	dull (a)	du²	də ²¹		dx21
865	dull (b)	ly³	ly ³³	lə ³³	
866	round	va ³	a ⁵⁵ li ⁵⁵ va ³³	ta ⁵⁵ lə ³³	bə³³lə³³
867	flat	bε1		ta ²¹ go ³³	bε ^{,33}
868	steep		teo ²¹	tæ ³³	tə ⁵³
869	situated straight		tşį⁵⁵	dʒa²1	b& ³³
870	situated crooked		\mathfrak{Sl}^{21}	dzε⁵⁵	wai ³³
868	straight	dzaŋ²	tşl13		tsj ²⁴
872	hard (a)	k ^ь а́ ^н		kε⁵⁵mi⁵⁵	k ^h a ⁵³
873	hard (b)	$X \mathcal{E}^1$	6E ⁵⁵		
874	soft	nu²	nạ ²¹	nu ²¹	nỹ ²¹
875	bright	ba³	ba ³³	maŋ³³	liaŋ53
876	dim; dark	γi¹	γi ⁵⁵	W0 ⁵⁵ VE ⁵⁵	mi€ ⁵³
877	clear (sky)	teı	a ⁵⁵ m ²¹ pɛ ⁵⁵	t∫1 ⁵⁵ mi ⁵⁵	na ³³ li ³³
878	overcast	ti1	a ⁵⁵ ņ ²¹ ti ⁵⁵	mi ⁵⁵	miɛ ^{.53}
879	full	bi ³	vi ³³	bi ³³	bi ³³

880	beautiful	mε ²	mg ²¹	tei ²¹	i ⁵⁵ gi ³³
881	ugly (a)	he1	hi⁵⁵	ma ²¹ tsi ²¹	i ⁵⁵ ŋ ²¹ gi ³³
882	ugly (b)	?ni¹∫₫r			
883	fat (person)	ts ^h u ¹	zi ⁴⁵	ts ^h u ⁵⁵	ts ^h ێ ³³
884	fat; fatty	ts ^h u ¹	Zi ⁴⁵	ts ^h u ⁵⁵	ts ^h ێ ³³
885	lean	neٍL	xạ²¹nɛ²¹	$xo^{21}n\bar{\epsilon}^{21}$	nai ⁵³
886	thin (a)	gy1		gi ⁵⁵	
887	thin (b)	хę́	hg²1		xai ⁵³
888	clean	xaŋ¹	xu ⁵⁵	xa ⁵⁵	kan³³t¢iŋ²¹
889	dirty		ma ²¹ xu ⁵⁵	ma ²¹ xa ⁵⁵	la ³³ t ^h a ⁵³
890	old	maŋ²	mụ ²¹	ma ²¹	mu ²¹
891	(person) young (a)	t ^h y²ɲa¹			t ^h ə²¹ɲo³³
892	young (b)	lēr	$l \underline{\epsilon}^{21}$		
893	young (c)	t ^h y²nu²/1	t ^h y ²¹ nạ ²¹		
894	good	me ²	da ⁵⁵	na ⁵⁵	kai ³³
895	bad	$p^{\mathbf{h}} \underline{e}^{^{\mathrm{H}}}$	$p^{h} \bar{\epsilon}^{33}$		
896	bad (b)	du1			du ³³
896	fast	?тj <u>v</u> ^н	ts ^h ä ²¹	mɛ²³³	məŋ⁵³
897	slow	gja¹	ga ⁵⁵	na⁵⁵	
898	wet (a)	t∫ ^h i²		ts ^h l ²¹	tshj21
900	wet (c)	dzi²			
901	wet (d)	ha(ŋ)²			
899	dry	fɛ³	fɛ ³³	fɛ³³	fe ^{.33}
903	cooked; ripe	?mi³	?mi ³³	mi ³³	mi ³³
904	early	neٍL	$n \underline{\epsilon}^{21}$	n <u></u> ϵ^{21}	nai ⁵³
905	late	mja³	mi ³³	la³³mɨ⁵⁵	ma ³³
906	easy (a)	sa ¹			
906	easy	lε¹	lε ⁴⁵	lε ⁵⁵	lε ^{.33}
907	difficult	∫₫r	şā ²¹	SQ ²¹	sa? ⁵³
908	hot (temp.)	ts ^h a ¹	ts ^h a ⁵⁵	ts ^h 0 ⁵⁵	ts ^h a ³³
910	cold (body)	gjaŋ¹	gu ⁵⁵		ga ³³
911	warm	ly1	ly ⁵⁵	lə⁵⁵	lue³³mən²¹
912	cool		liāŋ²1	ts ^h i ²¹	lo³³xei³³

012	I		I	I	1
912 913	sour sweet	t∫e¹	tei ⁵⁵	tGi ⁵⁵	tsei ³³
		t∫ ^h i¹	tşhl ⁵⁵	ts ^h l ⁵⁵	ts ^h] ³³
914	bitter	k ^h a ²	k ^h a ²¹	k ^h a ²¹	
916	spicy (b)	dz <u>i</u> ^H			dz1 ⁵³
917	salty		ε ⁵⁵		k ^h a ²¹
917	delicious	me ¹	mi ⁵⁵	mi ⁵⁵	dza²¹mi³³
918	insipid	bj₽ ^H	bā33	bā33	bε ^{.53}
919	fragrant	sy1(by2)ny1	sy ⁵⁵ ny ⁵⁵ ,§Q ²¹	bi ²¹ sa ²¹	su ³³ bə̃ ²¹ nə ³³
921	really stinky	tʃʰi²(by²)ny¹	tş ^h l²¹ny⁵⁵	t¢ ^h i²¹nə ⁵⁵	tshj²¹bə̃²¹nə³³
922	fishy smell	dzi²ny1	dzJ²¹ny⁵⁵	bi²¹nə⁵⁵	xɛ ^{.33} bə̃ ²¹ nə ³³
923	rotten	p ^h i ²	p ^h ^{u²¹}	ts ^h l ²¹ , tc ^h i ²¹	la ⁵⁵ xɛ ⁵⁵ ja ³³
924	full (stomach)	bóн	bo ³³	bo ³³	bu ⁵⁵
925	hungry	m <u>i</u> ¹	mʉ ²¹	m <u>i</u> ²¹	mu ⁵³
926	thirsty	s <u>i</u> ^L	s <u>1</u> ²¹	6 <u>i</u> ²¹	Տ Ղ⁵³
927	tired		va ²¹ mu ³³	ɲa⁵⁵mi⁵⁵	fe ^{.55}
928	blessed	ko⁻sa¹	dzē ³³ dē ²¹	W0 ²¹ SJ ⁵⁵	kai⁵⁵la²¹
929	sad	ko¹∫a¹	dzɛ̃³³ma²¹dɛ̃²¹	tsa ⁵⁵ sa ²¹	k ^h i ⁵³
930	ashamed	∫e₋taŋ¹	εε ²¹ tu ⁵⁵	sē²¹ta⁵⁵	sai ⁵⁵ tu ³³
931	itchy	$dz\underline{i}^{H}$	dz <u>1</u> ³³	dz <u>i</u> ³³	za ²¹
932	sick	na¹	na ⁵⁵	no ⁵⁵	na ³³
933	intelligent	?lu¹	ŋ²¹ŋə²¹?lə³³	la ⁵⁵ mi ⁵⁵	miao53
934	proud			wo ²¹ ta ²¹ sŋ ⁵⁵	a0 ⁵³
935	stupid	mi1	mʉ ⁵⁵	ŋə ²¹ mi ⁵⁵	E ^{.53}
936	crazy	t ^h ɛ³	t ^h ɛ ³³ ,fɛ ²¹	t ^h ɛ ³³	t ^h & ³³
937	diligent	∫a²dṟ⊔	⁵⁵ dε ²¹	kā ²¹	məŋ⁵³
938	busy		tein ²¹	ma ²¹	maŋ ²⁴
939	capable		p ^h ā ²¹	pε⁵⁵kʰε⁵⁵	ta ⁵⁵ la ³³
938	lazy (a)	∫a²ma²dṟ¹	şā ²¹ mā ²¹ dē ²¹		
939	lazy (b)	baŋ1		ba⁵⁵	b& ³³ za ²¹
942	poor	∫₫r	şā ²¹	sq ²¹	sai ⁵⁵ i ³³
943	alive (a)	ka²			
944	alive (b)	zε¹dʒε²	zɛ ⁵⁵ dzɛ ²¹	tsa ⁵⁵ la ²¹	ZE ^{,33}
945	brave		p# ²¹	$m \partial^{33} j \epsilon^{21}$	tan²¹tsj³³yæ²¹

945	drunk	3e₋	jɛ²¹		zai ⁵³
946	backwards		di ³³ xo ³³	vɛ⁵⁵di³³	ŋa³³ni²¹
946	different	ma²sy²	ma ²¹ sy ²¹	ma ²¹ sə ²¹	m ²¹ sə ²¹
948	sticky (a)	pɛ³	pɛ ³³ nā ²¹		
950	slick	maŋ³	mu ³³	ma ³³	hua³³liu³³
951	tight	$k^{\mathbf{h}}\underline{\mathbf{i}}^{\mathrm{H}}$	k ^h i ³³	t ^h a ²¹ , t ^h aŋ ²⁴	tsin ²¹
952	loose	loan	soŋ³³	ga ²¹	soŋ³³
952	expensive	$k^{\mathbf{h}}\underline{a}^{^{\mathrm{H}}}$	k ^h ā ³³	k ^h ā ³³	k ^h a ⁵³
953	cheap		fi²¹da⁵⁵	lε ⁵⁵	lu ³³
954	correct		x0 ⁵⁵	dʒu²1	xi ³³
954	far	vi ²	ji ²¹	Və ²¹	vai ²¹
957	low	?ni1	a <u>i</u> ²¹	ni ⁵⁵	tci ³³
958	long	∫i¹	\$1 ⁵⁵	сі ⁵⁵	s] ³³
959	short	?ny²	?nỵ. ²¹	ni ²¹	nĩ ²¹
960	many	mja²	k ^h ø ⁵⁵	m0 ²¹	ma ²¹
961	few	ne²	?ni ²¹	ne ²¹	ai ²¹
962	wide	fe1		fe ⁵⁵	
963	narrow	?ɲa॒⊾		រា¤ ³³	
964	big	γε²	٧£ ²¹	je ²¹	γε ^{.21}
965	little (a)	na1			ро ³³
966	little (b)	zaŋ¹	u ⁵⁵	ja ⁵⁵	
967	deep	?neٍ⊾	$n \epsilon^{21}$	n <u></u> e ²¹	nai ⁵³
968	shallow	ma²?neٍ [⊥]	mä ²¹ nē ²¹	$ma^{21}n\epsilon^{21}$	
969	light	laŋ¹	lu ⁴⁵	la ⁵⁵	lu ³³
970	heavy	li²	zղ²¹,ki⁵⁵ni⁵⁵	wu ⁵⁵ lu ²¹	ji ²¹
971	thick (2d)	t ^h u ¹	t ^h ə ⁵⁵	t ^h u ⁵⁵	t ^h x្33
972	thin (2d)	ba²	bä ₂₁	b0 ²¹	ba²1
973	thick (3d)	ta ³	ta ³³	kε ⁵⁵	γε ^{.21}
974	thin (3d)	ts ^h i ¹	ts ^h l₂₂2	mu ³³	m0 ⁵³
977	three	sa ¹ / ³	sa ³³	sa ⁵⁵	sa ³³
978	four	?li³	?zl33	li ³³	ji ³³
979	five	ŋa²	ŋạ²1	ŋ0 ²¹	ŋa ²¹
980	six	k ^h ū ^L	k ^h Q ²¹	k ^h ū ²¹	k ^h 0 ⁵³
981	seven	Xi ²	xi ²¹	xi ²¹	xi ²¹

982	eight	heٍ∟	hiɛ²¹	$X \underline{\epsilon}^{21}$	xai ⁵³
983	nine	ko³	kə ³³	ki ³³	k̪୪ ³³
984	ten	ts ^h e ¹	ts ^h i ⁵⁵	tc ^h E ⁵⁵	ts ^h ei ³³
985	eleven	tshe1tiL	ts ^h i ⁵⁵ ti ²¹	ts ^h ɛ ⁵⁵ ts ^h i ²¹	ts ^h ei ³³ tc ^h i ⁵³
986	twelve	ts ^h e ¹ ni ²	ts ^h iŋ⁵²	tshe ⁵⁵ y ²¹	ts ^h ei ³³ ni ²¹
987	twenty	ni²tse1	ņ ²¹ tsi ⁵⁵	ņ²¹tɕʰɛ⁵⁵	ņ²¹tsei³³
988	twenty one	ni²tse¹t <u>i</u> ¹	ņ ²¹ tsi ⁵⁵ t <u>i</u> ²¹	ņ ²¹ t6e ⁵⁵ t6 ^h i ²¹	ņ ²¹ tsei ³³ tɕ ^h i ⁵³
989	hundred	ha¹	ha ⁵⁵	X0 ⁵⁵	ta²¹ha³³
990	thousand	tu1	tə ⁵⁵	xɛn ⁵⁵	tc ^h ĩ ³³
991	half (a)	k ^h y²	k ^h y ²¹	k ^h ə²1	
992	half (b)	bε²			a³³bɛ²¹
993	half (c)	bi1			
993	bowlful	kje²	kε ²¹	6E ²¹	a²¹kai⁵³
994	arm spread	ly1	ly ⁵⁵	lə ⁵⁵	a²1lə³3
995	handspan	t ^h y ¹	t ^h y ⁵⁵	t ^h ə ⁵⁵	a ²¹ tsa ²¹
997	1 S	ŋa¹	ŋa ⁴⁵	ŋa ⁵⁵	ŋa ³³
998	1PL	ŋa¹tsa³	ŋa ³³ tsa ³³		
999	1PL	?ŋa²		ə ⁵⁵ xi ³³	ŋa ⁵³
1000	1PL	a²va²	<u>ä</u> ²¹ va ²¹	ϑ^{21}	
1001	inclusive 2S	ni¹	ŋ ⁵⁵	ni55	ni ³³
1002	2PL	'na²			na ²¹
1003	2PL	ni¹tsa³	ņ ³³ tsa ³³	ni ⁵⁵ xi ³³	
1004	38	(3)aŋ²/3	wu ³³	jε ²¹	ja ³³
1005	3PL	3aŋ³tsa³	wu ³³ tsa ³³		
1006	3PL	(3)aŋ²/3		jɛ ²¹ xɨ ³³	ja ²¹
1007	3SR (another)	su ¹	sJ ⁵⁵ ,tse ⁵⁵ yi ²¹	su ⁵⁵	piɛ³³ni³³su³³
1008	self	$\epsilon^1 m \epsilon^3$	kua³³	dʒəŋ²1	tca ³³ ki ⁵³
1009	another		tse ¹³	su ⁵⁵	wai ⁵⁵ ĩ ³³
1010	(thing) POSS	γi²	yi ²¹	la ³³	yi ²¹
1011	this (1)	t∫u¹	tşı₅₅	ts ^h a ⁵⁵	tsj ⁵³
1012	this kind		t∫a⁵⁵si³³,tşๅ⁵⁵zụ²¹	tsha55jan55	ts1 ⁵⁵ ja ⁵³
1013	here (1)		tşao⁵⁵ko⁵⁵	tsha ⁵⁵ the ²¹	tei ³³ hei ³³
1014	that one		na ⁵⁵ tşๅ ⁵⁵ ma ⁵⁵	k ^h i ⁵⁵ wa ³³	nə³³ja⁵³
				1	

1015	that	na(ŋ)1	nao ⁵⁵	nə ⁵⁵	nə³³ja⁵³
1016	(higher) that (lower)			k ^h i ⁵⁵	nə ³³ ja ⁵³
1017	that (far)		kua³³	nə ⁵⁵ na ³³	nə³³ja⁵³
1018	there		nao⁵⁵kuo⁵⁵,dzio⁵⁵ko⁵ ₅	ta²¹ka⁵⁵	nei ³³ hei ³³
1019	in front (a)	u²si1	?ɲi²¹di²¹	$WO^{21}SE^{55}$	yi²¹hei³³
1020	in front (b)	u²by²	?ɲi²¹di²¹		
1021	on the other side			$na^{55}x\epsilon^{21}$	tai55ku21lai21
1022	behind (a)	i²se1		phe ²¹ te ²¹ ke ⁵⁵	ŋa³³ni²¹
1023	behind (b)	ya¹du³	lε⁴⁵də³³		ŋa³³ni²¹
1024	between	ka॒⊾kaŋ¹	ka²¹kə⁵⁵	ka55dʒ]³³	ka³³la³³
1025	left	?vε²	?vɛ²²¹si⁵⁵	VE ²¹ SJ ⁵⁵	t ^h a²¹pʰiɛּ³³bei³³ lei³³
1026	right	3a1	jɛ ⁵⁵ si ⁵⁵	dʒə⁵⁵sๅ⁵⁵	suən ³³ sou ²¹ bei ³ ³ lei ³³
1027	beside	ba²ta³	ba²¹tai⁵³	jɛ²¹dʒə⁵⁵	dzə ³³ lai ²¹
1028	side	ba²dzi1	be ^{j21}	dʒə⁵⁵	piɛ³³piɛ³³lai²¹
1029	upon	ka॒⊾	kā ²¹ si ⁵⁵	kā²¹xi⁵⁵, kæ²¹ki⁵⁵	õ ³³ lai ²¹
1030	beneath		^{µ²1} si⁵⁵,da⁵⁵k ^h ə³³	ti ²¹ xi ⁵⁵	ta ³³ lai ²¹
1031	inside	k ^h jo²	k ^h @ ²¹ si ⁵⁵	jɛ²¹nā³³	k ^h i ²¹ hei ³³
1032	outside		i ⁵⁵ si ⁵⁵	nə ⁵⁵ sə ⁵⁵	wai ⁵⁵ ĩ ³³
1033	everywhere		a ²¹ di ⁵⁵ li ⁵⁵	t6 ^h i ²¹ di ⁵⁵ sɛ ³³	tao ³³ ts ^h u ³³
1034	who?	a²sa²	ä ²¹ sä ²¹	a ²¹ so ²¹	a ²¹ sa ²¹
1035	what?	a¹tsa¹	a ⁵⁵ tsa ⁵⁵	a ⁵⁵ tsa ⁵⁵	a ³³ tsa ⁵³
1036	where?	a²di1	a ²¹ di ⁵⁵	a ²¹ ta ²¹ ka ⁵⁵ , a ²¹ lɛ ²¹ ka ⁵⁵	a²¹di⁵⁵hei³³
1037	why?	a¹tsa¹pe¹	a ⁵⁵ tsa ⁵⁵ ŋ ²¹ ka ³³ ,a ⁵⁵ tsa ŋ ⁵³ ka ³³	a ⁵⁵ tsa ⁵⁵ pɛ ⁵⁵	a²¹di⁵⁵bə²¹
1038	which?	a²da¹	a ²¹ da⁵⁵	a²¹da⁵⁵ji³³	a²¹di⁵⁵ə³³
1039	how?		a ²¹ da ⁵⁵ si ³³ ,a ²¹ s1 ⁵⁵	a²¹dɛ⁵⁵pɛ⁵⁵	a²¹kʰə²¹lə³³
1040	how much?	a ¹ ma ³	a²¹da⁵⁵ma³³sๅ²¹	a²¹di³³mo³³	k ^h a³³ma³³
1041	now	t∫u¹tʰa¹	tşl⁵5pʉ⁵5	a ²¹ me ³³ se ⁵⁵	a ⁵⁵ tɕʰi³³
1042	just now	a²∫u³	ä ²¹ su ³³	a ²¹ xε ⁵⁵	ņ ⁵⁵ tc ^h i ³³
1043	before		vy ⁵⁵ dzi ⁵⁵	və ⁵⁵ s] ²¹	ka³³₥³³
1044	(sequential) after			vɛ ⁵⁵ di ³³	ŋa ³³ ni ²¹

1045	before (temporal)		?ni ²¹ di ²¹	t¢ ^h i²¹də⁵⁵sɛ³³	nei55ni33k ^h 033
1046	formerly			dza²¹ko³³lɑ⁵⁵	a ²¹ i ⁵⁵ sJ ⁵⁵ i ⁵³
1047	already		xa ⁵⁵	ka ³³ la ³³	ji²¹tɕĩ³³
1048	immediatel v		la ⁴⁵ lou ²¹	tɕʰi³³tʰa³³	a ⁵⁵ tɕʰi³³
1049	frequently	bi1	bum ²¹ bum ²¹	dza³³dza³³	ka⁵⁵mɛ³³
1050	slowly	a²de³de³	a ²¹ di ³³ di ³³	a ²¹ ja ³³	a²¹di³³di³³
1051	quickly	?тј <u>у</u> н	xa ⁵⁵ ts ^h a ²¹ k ^h ɛ ⁵⁵	me ⁵⁵ me ⁵⁵	tiɛ ^{.33} məŋ ⁵³
1052	very		²¹ xi ⁵⁵	teia55	
1053	most		xa ⁵⁵	su ⁵⁵ ka ²¹ k ^h əŋ ⁵⁵	tsi ³³ tsi ³³
1054	all		xa ⁵⁵ dzu ⁵⁵ a ⁵⁵ ka ³³	k0 ³³	ta? ²¹ ai ³³
1055	again		tse ⁴⁵	kε ⁵⁵	da ²¹
1056	really		da⁵⁵mä²¹da⁵⁵	je ²¹ te ²¹	da ⁵⁵ µ²¹da³³
1054	not (NEG)	ma ²	mą ²¹	ma ²¹	m ²¹
	1	1	1	1	1

References

- Abramson, Arthur S, 2004, The plausibility of phonetic explanations of tonogenesis. In Gunnar Fant, Hiroya Fujisaki, Jianfen Cao & Yi Xu, eds. From traditional phonology to modern speech processing: Festschrift for Professor Wu Zongji's 95th birthday, 17-29. Beijing: Foreign Language Teaching and Research Press.
- Abramson, Arthur S., Patrick W. Nye & Theraphan Luangthongkum, 2007, Voice register in Khmu': Experiments in production and perception. Phonetica 64(2-3): 80-104. http://www.karger.com/DOI/10.1159/000107911 (accessed Jun 18, 2009).
- Aikhenvald, Alexandra Y. & R.M.W. Dixon, 2001, Areal diffusion and genetic inheritance: problems in comparative linguistics. Oxford; New York: Oxford University Press.
- Allen, Bryan, 2004, Bai dialect survey (Yunnan Minority Language Commission and SIL International Joint Publication Series). Kunming: Yunnan Minzu Chubanshe.
- Atwill, David G, 2005, The Chinese sultanate: Islam, ethnicity, and the Panthay rebellion in southwest China, 1856-1873. Stanford: Stanford University Press.
- Baart, Joan, 2003, Acoustic Phonetics. Dallas: SIL International.
- Backus, Charles, 1981, The Nan-chao kingdom and T'ang China's southwestern frontier. Cambridge; New York: Cambridge University Press.
- Bai, Xingfa, 2002, Yizu wenhua shi [A cultural history of the Yi nationality]. Kunming: Yunnan Minzu Chubanshe.
- Baxter, William H, 1992, A handbook of Old Chinese phonology. Berlin: Mouton de Gruyter.
- Baxter, William H. & Laurent Sagart, 2008, Baxter-Sagart OC reconstructions, beta version 0.99. http://sitemaker.umich.edu/wbaxter/old_chinese_reconstructions. (accessed Jun 15, 2010).
- Björverud, Susanna, 1998, A grammar of Lalo. Lund: Lund University PhD dissertation.
- Blackburn, P.L., Laura Blackburn & Cha Shufang, 2007, Ma'anshan Lalo wordlist. SIL East Asia Group. Unpublished manuscript.
- Blackburn, P.L., Laura Blackburn & Aju Wa, 2007, Wajiacun wordlist. SIL East Asia Group. Unpublished manuscript.
- Blair, Frank, 1990, Survey on a shoestring (SIL and UTA Publications in Linguistics 96). Dallas: SIL.
- Boersma, Paul & David Weenick, 2009, Praat: doing phonetics by computer. Version 5.1.07. http://www.praat.org/. (accessed 17 Jun, 2009).
- Bradley, David, 1977, Proto-Loloish tones. In David Bradley, ed. Papers in Southeast Asian Linguistics No. 5, 1-22. Canberra: Pacific Linguistics.
- Bradley, David, 1979a, Lahu dialects. Canberra: Australian National University Press.
- Bradley, David, 1979b, Proto-Loloish (Scandinavian Institute of Asian Studies Monograph No. 39). London: Curzon Press.
- Bradley, David, 1980, Phonological convergence between languages in contact: Mon-Khmer structural borrowing in Burmese. Proceedings from the Annual Meeting of the Berkeley Linguistic Society 6. 259-267.
- Bradley, David, 1982, Register in Burmese. In David Bradley, ed. Papers in South-East Asian Linguistics, No. 8. Tonation, 117-132. Canberra: Research School of Pacific Studies, the Australian National University.
- Bradley, David, 1994, A dictionary of the northern dialect of Lisu (China and Southeast Asia) (Pacific Linguistics Series C-126). Canberra: Pacific Linguisites.

- Bradley, David, 1997, Onomastic, orthographic, dialectal, and dialectical borders: The Lisu and the Lahu. Asia Pacific Viewpoint 38.2. 107-117.
- Bradley, David, 2001, Language policy for the Yi. In Stevan Harrell, ed. Perspectives on the Yi of Southwest China, 195-214. Berkeley: University of California Press.
- Bradley, David, 2002a, Language attitudes: the key factor in language maintenance. In David Bradley & Maya Bradley, eds. Language endangerment and language maintenance, 1-10. London: Curzon.
- Bradley, David, 2002b, The subgrouping of Tibeto-Burman. In Christopher Beckwith & Henk Blezer, eds. Medieval Tibeto-Burman languages, vol. 2, 73-112. Leiden: Brill.
- Bradley, David, 2003, Lisu. In Graham Thurgood & Randy J. LaPolla, eds. The Sino-Tibetan languages, 222-235. London; New York: Routledge.
- Bradley, David, 2004, Endangered Central Ngwi languages of northwestern Yunnan. Paper presented at the 37th International Conference on Sino-Tibetan Languages and Linguistics (ICSTLL), Lund.
- Bradley, David, 2005, Sanie and language loss in China. International Journal of the Sociology of Language 2005(173). 159-176.
- Bradley, David, 2006, Southern Lisu dictionary (STEDT Monograph Series, No. 4). Berkeley: Center for Southeast Asia Studies.
- Bradley, David, 2007, Language endangerment in China and mainland Southeast Asia. In Matthias Brenzinger, ed., Language diversity endangered. Berlin: Mouton de Gruyter.
- Bradley, David, 2008, Labiovelars in Adur. Workshop on TIbeto-Burman languages of Sichuan, 1-8. Taipei: Academia Sinica.
- Bradley, David & Maya Bradley, eds, 2002, Language endangerment and language maintenance. London: Curzon.
- Brenzinger, Matthias, ed, 2007, Language diversity endangered. Berlin: Mouton de Gruyter.
- Bryant, David & V. Moulton, 2004, NeighborNet: An agglomerative algorithm for the construction of planar phylogenetic networks. Molecular Biology and Evolution 21. 255-265.
- BSDQZ, 1998, Baoshan diqu zhi [Gazetteer of Baoshan Prefecture]. Beijing: Zhonghua Shuju.
- BSSZ, 1993, Baoshan shi zhi [Gazetteer of Baoshan Municipality]. Kunming: Yunnan Minzu Chubanshe.
- Campbell, Lyle, 1996, On sound change and challenges to regularity. In Mark Durie & Malcolm Ross, eds. The comparative method reviewed: regularity and irregularity in sound change, 72-89. New York: Oxford University Press.
- Campbell, Lyle, 2004, Historical linguistics: An introduction. 2nd edn. Edinburgh: Edinburgh University Press.
- Campbell, Lyle & William J. Poser, 2008, Language classification: History and method. Cambridge: Cambridge University Press.
- Casad, Eugene H, 1974, Dialect intelligibility testing. Dallas: SIL.
- Castro, Andy, Brian Crook & Royce Flaming, 2010, A sociolinguistic survey of Kua-nsi and related Yi varieties in Heqing county, Yunnan. SIL Electronic Survey Reports 2010(001).
- Castro, Andy & Bruce Hansen, 2009, Hongshuihe Zhuang dialect intelligibility survey. SIL East Asia Group. Unpublished manuscript.
- Catford, John, 1964, Phonation types: the classification of some laryngeal components of speech production. In David Abercrombie, D.B. Fry, P.A.D. MacCarthy, N.C. Scott & J.L.M Trim, eds. In honour of Daniel Jones: papers contributed on the occasion of his eightieth birthday, 12 September 1961, 26-37. London: Longmans.
- Chambers, J. K. & Peter Trudgill, 1998, Dialectology. 2nd edn. New York: Cambridge University Press.
- Chan, Catherine Ching Yee, 2008, Map of Lalo datapoints. Dali: SIL East Asia Group.

Chao, Yuanren, 1930, a 'sıstəm əv toun 'letəz. Le Maître Phonétique 30. 24-27.

- Chen, Shilin, Shiming Bian & Xiuqing Li, 1985, Yiyu jianzhi [Outline of the Yi language] (Zhongguo shaoshu minzu yuyan jianzhi congshu). Beijing: Minzu Chubanshe.
- Chuo, Fan, 1961, The Man shu: Book of the southern barbarians. Translated by Gordon H. Luce. Ithaca: Cornell University.
- Connell, Bruce, 2002, Tone languages and the universality of intrinsic F 0: evidence from Africa. Journal of Phonetics 30(1). 101-129.

http://www.sciencedirect.com/science/article/B6WKT-45F4DH1-4/2/b256d873dfeb4047c8c 6176fd5f2a3da (accessed Jan 15, 2010).

- Cox, Trevor F. & Michael A. A. Cox, 2001, Multidimensional scaling. Boca Raton, FL: CRC Press.
- CXMW, 1988, Lisu yu Lipo yu Lolopo yu diaocha bijiao ziliao (cihui) [Materials on the investigation and comparison of Lisu, Lipo and Lolo (vocabulary)]. Chuxiong Zhou Minwei. Unpublished manuscript.
- Davies, H.R, 1909, Yün-nan: the link between India and the Yangtze. Cambridge: University Press.

Dictionary.com. Phenogram. in Dictionary.com Unabridged (v 1.1).

http://dictionary.reference.com/browse/phenogram. (accessed August 25, 2009).

- Duanmu, San, 1994, Against contour tone units. Linguistic Inquiry 25.4. 555-608.
- Durie, Mark & Malcolm Ross, eds, 1996, The comparative method reviewed: regularity and irregularity in sound change. New York: Oxford University Press.
- Edmondson, Jerold & John H. Esling, 2006, The valves of the throat and their functioning in tone, vocal register and stress: Laryngoscopic case studies. Phonology 23. 157-191.
- Edmondson, Jerold, John Esling, Jimmy G. Harris, Shaoni Li & Ziwo Lama. 2001. The aryepiglottic folds and voice quality in the Yi and Bai languages: laryngoscopic case studies. Mon-Khmer Studies 31. 83-100.
- Esling, John H. & Jerold A. Edmondson, 2002, The laryngeal sphincter as an articulator: Tenseness, tongue root and phonation in Yi and Bai. In Angelika Braun & Herbert R. Masthoff, eds. Phonetics and its applications: Festschrift for Jens-Peter Koster on the occasion of his 60th birthday, 38-51. Stuttgart: Franz Steiner Verlag.
- Giersch, Charles Patterson, 2006, Asian borderlands: the transformation of Qing China's Yunnan frontier. Cambridge, Mass.: Harvard University Press.
- GMXZ, 1995, Gengma Dai zu Wa zu zizhixian zhi [Gazetteer of Gengma Dai Wa autonomous county]. Kunming: Yunnan Minzu Chubanshe.
- Goebl, Hans, 1982, Dialektometrie: Prinzipien und methoden des einsatzes der numerischen taxonomie im bereich der dialektgeographie. Wien: Österreichische Akademie der Wissenschaften.
- Goebl, Hans, 1984, Dialektometrische studien: Anhand italoromanischer, ratoromanischer und galloromanischer Sprachmaterialien aus AIS und ALF. Tubingen: Max Niemeyer.
- Goebl, Hans, 2006, Recent advances in Salzburg dialectometry. Literary and Linguistic Computing 21(4). 411-435. http://llc.oxfordjournals.org/cgi/content/abstract/21/4/411 (accessed 24 May 2007).
- Gooskens, Charlotte, 2006, Linguistic and extra-linguistic predictors of inter-Scandinavian intelligibility. In Jeroen van de Weijer & Bettelou Los, eds. Linguistics in the Netherlands 2006, 101-113. Amsterdam: John Benjamins.
- Gooskens, Charlotte & Wilbert Heeringa, 2004, Perceptive evaluation of Levenshtein dialect distance measurements using Norwegian dialect data. Language Variation and Change 16(03). 189-207.

- Gooskens, Charlotte & Wilbert Heeringa, 2006, The relative contribution of pronunciational, lexical, and prosodic differences to the perceived distances between Norwegian dialects. Literary and Linguistic Computing 21(4). 477-492.
 - http://llc.oxfordjournals.org/cgi/content/abstract/21/4/477 (accessed 24 May 2007).
- Gordon, Matthew & Peter Ladefoged, 2001, Phonation types: a cross-linguistic overview. Journal of Phonetics 29. 383-406.
- Gray, Henry, 1918 [2000], Anatomy of the human body. www.bartleby.com/107/. (accessed Jun 18, 2009).
- Grimes, Joseph E, 1995, Language survey reference guide. Dallas: SIL.
- Gussenhoven, Carlos, 2004, The phonology of tone and intonation (Research Surveys in Linguistics). Cambridge: Cambridge University Press.
- Hattaway, Paul, 2003, Operation China: Introducing all the peoples of China. Pasadena, California: William Carey Library Publishing.
- Haudricourt, André-Georges, 1954, De l'origine des tons en vietnamien. Journal Asiatique 242. 69-82.
- He, Shiyuan, 2002, Zhongguo shaoshu minzu fenbu tuji [Chinese nationalities distribution maps]. Beijing: Zhongguo Ditu Chubanshe.
- Heeringa, Wilbert, 2004, Measuring pronunciation differences with Levenshtein distance. Groningen: University of Groningen PhD dissertation.
- Heeringa, Wilbert, Peter Kleiweg, Charlotte Gooskens & John Nerbonne, 2006, Evaluation of string distance algorithms for dialectology. In John Nerbonne & E. Hinrichs, eds. Linguistic Distances Workshop at the joint conference of International Committee on Computational Linguistics and the Association for Computational Linguistics, 51-62. Sydney: Australia Association for Computational Linguistics.
- Heuven, Vincent J. van, 2008, Making sense of strange sounds: (Mutual) intelligibility of related language varieties. A review. International Journal of Humanities and Arts Computing 2(1-2). 39-62. http://www.euppublishing.com/doi/abs/10.3366/E1753854809000305 (accessed 30 Oct 2009).
- Hombert, Jean-Marie, John J. Ohala & William G. Ewan, 1979, Phonetic explanations for the development of tones. Language 55(1). 37-58.
- Honda, Kiyoshi, 2004, Physiological factors causing tonal characteristics of speech: From global to local prosody. Proceedings of Speech Prosody. Nara, Japan: ISCA.
- Honda, Koichi, 2005, Tone correspondences and tonogenesis in Vietnamese. In Paul Sidwell (ed.), SEALSXV: papers from the 15th meeting of the Southeast Asian Linguistics Society, 177-191. Canberra: Pacific Linguistics.
- Hu, Chun & Ling Duan, 2000, Dali Baizu zizhizhou fangyan zhi [A survey of the dialects of Dali Bai Autonomous Prefecture]. In Editorial committee, ed. Dali Baizu Zizhizhou Zhi [Gazetteer of Dali Bai Autonomous Prefecture], vol. 7. Dali: Dali Shifan GaoDeng Zhuankexuexiao.
- Huang, Bufan & Qingxia Dai, eds, 1992, Zangmian yuzu yuyan cihui [A Tibeto-Burman lexicon]. Beijing: Zhongyang Minzu Daxue Chubanshe.
- Huson, Daniel H. & David Bryant, 2006, Application of Phylogenetic Networks in Evolutionary Studies Molecular Biology and Evolution 23(2). 254-267.
- Hyslop, Gwendolyn, 2009, Kurtöp tone: A tonogenetic case study. Lingua 119(6). 827-845. doi:10.1016/j.lingua.2007.11.012 (accessed 24 Apr 2009).
- Jin, Guoku & Yunnan Province Lunan Yizu Autonomous County Literature and History Research Group, 1983, Concise Yi-Chinese dictionary [Sani]. Kunming: Yunnan Institute of Nationalities Press.

- Joseph, Brian D, 2008, Historical linguistics in 2008: The state of the art. International Congress of Linguists 18. http://www.ling.ohio-state.edu/~bjoseph/publications/Article185.pdf (accessed April 30, 2010).
- Kessler, Brett, 2001, The significance of word lists (Dissertations in Linguistics). Stanford: CLSI Publications.
- Kessler, Brett, 1995, Computational dialectology in Irish Gaelic. Proceedings of the Seventh Conference of the European Chapter of the Association for Computational Linguistics (ACL), 60–67. San Francisco, CA: Morgan Kaufmann Publishers Inc.
- Kingston, John, 2005, The phonetics of Athabaskan tonogenesis. In Sharon Hargus & Keren Rice, eds. Athabaskan prosody. Amsterdam: John Benjamins.
- Kleiweg, Peter, 2004, RuG/L04, software for dialectometrics and cartography. http://www.let.rug.nl/~kleiweg/indexs.html. (accessed 24 May, 2008).
- Kluge, Angela, 2007, RTT retelling method: An alternative approach to intelligibility testing. SIL Electronic Working Papers 2007(006). http://www.sil.org/silewp/abstract.asp?ref=2007-006 (accessed 15 Jan 2008).
- Krauss, Michael, 2007, Classification and terminology for degrees of language endangerment. In Matthias Brenzinger, ed. Language diversity endangered, 1-8. Berlin: Mouton de Gruyter.
- Kruskal, Joseph, 1964, Nonmetric multidimensional scaling: A numerical method. Psychometrika 29(2). 115-129.
- Kruskal, Joseph, 1999, An overview of sequence comparison. In David Sankoff & Joseph Kruskal, eds. Time Warps, String Edits and Macromolecules: The Theory and Practice of Sequence Comparison, 1-44. Stanford: CSLI.
- Labov, William, 2001, Principles of linguistic change: Social factors. vol. 2. Oxford: Blackwell.
- Labov, William, 2007, Transmission and diffusion. Language 83(2). 344-387.
- Labov, William, 2010, Principles of linguistic change: Cognitive and cultural factors. vol. 3. Oxford: Blackwell.
- Ladefoged, Peter, 1971, Preliminaries to linguistic phonetics. Chicago: University of Chicago.
- Lam, Edwin & Angel Lam, 2008, A working paper on the phonology of Lalu. SIL East Asia Group. Unpublished manuscript.
- Lam, Edwin, Angel Lam & Qu Huizhen, 2007, Diaocao Lalupu wordlist. SIL East Asia Group. Unpublished manuscript.
- Lam, Edwin & Ching Yee Chan, 2009, A survey report on Eastern Lalo. SIL East Asia Group. Unpublished manuscript.
- LaPolla, Randy J, 2000, Subgrouping in Tibeto-Burman: Can an individual-identifying standard be developed? How do we factor in the history of migrations and language contact? Paper presented at the 33rd International Conference on Sino-Tibetan Languages and Linguistics, Bangkok, October 2-6, 2000.
- Li, Fanggui, 1977, A Handbook of Comparative Tai. Honolulu: University of Hawaii Press.
- Li, Guowen & Rong Shi, 2004, Yizu Limi ren minsu [Ethnography of the Limi Yi]. Kunming: Yunnan Daxue Chubanshe.
- Löfqvist, Anders, Thomas Baer, Nancy S McGarr & Robin Seider Story, 1989, The cricothyroid muscle in voicing control. Journal of Acoustical Society of America 85(3). 1314-1321.
- Long, Daniel & Dennis R. Preston, 2002, Handbook of perceptual dialectology. vol. 2. Amsterdam: John Benjamins.
- Maddieson, Ian & Peter Ladefoged, 1985, "Tense" and "lax" in four minority languages of China. Journal of Phonetics 13. 433-454.
- Matisoff, James A, 1969, Lahu and Proto-Lolo-Burmese. Occasional Papers of the Wolfenden Society on TB Linguistics 1. 117-221.

- Matisoff, James A, 1970, Glottal dissimilation and the Lahu high-rising tone: A tonogenetic case-study. Journal of the American Oriental Society 90(1). 13-44.
- Matisoff, James A, 1972, The Loloish tonal split revisited (Center for South and Southeast Asia Studies, Research Monograph No. 7). Berkeley: University of California.
- Matisoff, James A, 1973, Tonogenesis in southeast Asia. In Larry Hyman, ed. Consonant Type and Tone, 71-95. Los Angeles: University of Southern California.
- Matisoff, James A, 1973 [1982], The grammar of Lahu (2nd ed., University of California Publications in Linguistics, No. 75). Berkeley: University of California Press.
- Matisoff, James A, 1975, Rhinoglottophilia: the mysterious connection between nasality and glottality. In Charles Ferguson, Larry M. Hyman & John J. Ohala, eds. Nasalfest: Papers from a Symposium on Nasals and Nasalization, 265-287. Stanford: Stanford University Language Universals Project.
- Matisoff, James A, 1978, Variational semantics in Tibeto-Burman. vol. 6 (Occasional Papers of the Wolfenden Society on Tibeto-Burman Linguistics). Philadelphia: Institute for the Study of Human Issues.
- Matisoff, James A, 1989, Tone, intonation, and sound symbolism in Lahu: loading the syllable canon. Linguistics of the Tibeto-Burman Area 12(2). 147-163.
- Matisoff, James A, 2001, Genetic versus contact relationship: Prosodic diffusibility in South-East Asian languages. In Alexandra Y. Aikhenvald & R.M.W. Dixon, eds. Areal diffusion and genetic inheritance: problems in comparative linguistics, 291-327. Oxford; New York: Oxford University Press.
- Matisoff, James A, 2002, The present state of PST/PTB reconstruction: Can we even write a fable in Proto-Lolo-Burmese? Linguistics of the Tibeto-Burman Area 25(2). 97-101.
- Matisoff, James A, 2003, Handbook of Proto-Tibeto-Burman: System and philosophy of Sino-Tibetan reconstruction. vol. 135 (UC Publications in Linguistics). Berkeley: University of California Press.
- McMahon, April, Paul Heggarty, Robert McMahon & Warren Maguire, 2007, The sound patterns of Englishes: representing phonetic similarity. English Language and Linguistics 11(1). 113-142.
- McMahon, April & Robert McMahon, 2005, Language classification by numbers. New York: Oxford University Press.
- McMahon, April & Robert McMahon, 2008, Genetics, historical linguistics and language variation. Language and Linguistics Compass 2(2). 264-288.
- Meng, X.L, R Rosenthal & D.B Rubin, 1992, Comparing correlated correlation coefficients. Psychological Bulletin 111(1). 172-175.
- Milliken, Margaret E, 1988, Phonological divergence and intelligibility: A case study of English and Scots. Ithaca: Cornell University PhD dissertation.
- Moberg, Jens, Charlotte Gooskens, John Nerbonne & Nathan Vaillette, 2007, Conditional entropy measures intelligibility among related languages. In Peter Dirix, Ineke Schuurman, Vincent Vandeghinste & Frank Van Eynde, eds. Proceedings of the 17th Meeting of Computational Linguistics in the Netherlands, 51-66. Amsterdam: Rodopi.
- Nahhas, Ramzi W., Juliana Kelsall & Noel Mann, 2005, RAID: Research and Instrument Design Tool. SIL International. Unpublished manuscript.
- Nerbonne, John, 2009, Data-driven dialectology. Language and Linguistics Compass 3(1). 175-198.

http://www.let.rug.nl/nerbonne/teach/ling-tech/literature/Nerbonne-Compass-2008.pdf (accessed 28 Jan 2009).

Nerbonne, John, Rinke Colen, Charlotte Gooskens, Peter Kleiweg & Therese Leinone, 2011, Gabmap — A web application for dialectology. Dialectologia (Special Issue II). 141-162.

- Nichols, Johanna, 1996, The comparative method as heuristic. In Mark Durie & Malcolm Ross, eds. The comparative method reviewed: regularity and irregularity in sound change, 39-71. New York: Oxford University Press.
- Nichols, Johanna & Tandy Warnow, 2008, Tutorial on computational linguistic phylogeny. Language and Linguistics Compass 2(5). 760-820.
- NJXZ, 1993, Nanjian Yizu Zizhixian zhi [Gazetteer of Nanjian Yi autonomous county]. Chengdu: Sichuan Cishu Chubanshe.
- Nolan, Francis, 2003, Intonational equivalence: an experimental evaluation of pitch scales. In Juergen Trouvain & William J. Barry, eds. Proceedings of the 15th International Congress of Phonetic Sciences (ICPhS). 771-774.

http://www.ling.cam.ac.uk/francis/Nolan%20Semitones.pdf (accessed 30 Jun 2009).

- Ohala, John J, 1993a, Sound change as nature's speech perception experiment Speech Communication 13. 155-161.
- Ohala, John J, 1993b, The phonetics of sound change. In Charles Jones, ed. Historical linguistics: Problems and perspectives, 237-278. London: Longman.
- Ohala, John J, 2003, Phonetics and historical phonology. In Brian D. Joseph & Richard D. Janda, eds. The handbook of historical linguistics, 669-686. Malden, MA: Blackwell.
- Pelkey, Jamin R, 1999, Yunnan's myriad Yi: Profiles on the peoples classified as Yi in Yunnan province. Unpublished manuscript.
- Pelkey, Jamin R, 2008, The Phula languages in synchronic and diachronic perspective. Melbourne: La Trobe University PhD dissertation.
- Pelkey, Jamin R, 2011, Dialectology as Dialectic: Interpreting Phula Variation (Trends in Linguistics: Studies and Monographs). Berlin: Mouton de Gruyter.
- Pittayaporn, Pittayawat, 2007a, A chronology-sensitive approach to subgrouping: The case of Southwestern Tai. Paper presented at the The 81st Annual Meeting of the Linguistic Society of America, Anaheim, CA, 4-7 Jan.
- Pittayaporn, Pittayawat, 2007b, Directionality of tone change. In Juergen Trouvain & William J. Barry, eds. Proceedings of the 16th International Congress of Phonetic Sciences (ICPhS XVI). 1421-1424. www.icphs2007.de/conference/Papers/1516/1516.pdf (accessed 15 Apr 2009).
- Preston, Dennis R., ed. 1999, Handbook of perceptual dialectology. Vol. 1. Amsterdam: J. Benjamins.
- Ross, Malcolm & Mark Durie, 1996, Introduction. In Mark Durie & Malcolm Ross, eds. The comparative method reviewed: regularity and irregularity in sound change, 3-39. New York: Oxford University Press.
- Saitou, Naruya & Masatoshi Nei, 1987, The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4). 406-425.
- Séguy, Jean, 1971, La relation entre la distance spatiale et la distance lexicale. Revue de Linguistique Romane 35(138). 335-357.
- Silva, David J, 2006, Acoustic evidence for the emergence of tonal contrast in contemporary Korean. Phonology 23. 287-308.
- Stanford, James N, 2007, Dialect Contact and Identity: A Case Study of Exogamous Sui Clans. Michigan State University PhD dissertation.
- Stanford, James N, 2008, A sociotonetic analysis of Sui dialect contact. Language Variation and Change 20. 409-450.
- Stanford, James N. & Dennis R. Preston, 2009, The lure of a distant horizon: Variation in indigenous minority languages. In James N. Stanford & Dennis R. Preston, eds. Variation in indigenous minority languages, 1-23. Amsterdam: John Benjamins.
- Sun, Hongkai, ed, 1991, Zangmian yuyin he cihui [Tibeto-Burman Sound Systems and Lexicons]. Beijing: Zhongguo Shehui Kexue Chubanshe.

- Svantesson, Jan-Olof & David House, 2006, Tone production, tone perception and Kammu tonogenesis. Phonology 23. 309-333.
- Swadesh, Morris, 1955, Towards greater accuracy in lexicostatistic dating. International Journal of American Linguistics 21(2). 121-137.
- Tang, Chaoju & Vincent J. van Heuven, 2007, Mutual inteligibility and similarity of Chinese dialects: Predicting judgments from objective measures. In B. Los & M. van Koppen, eds. Linguistics in the Netherlands, vol. 24, 223-234. Amsterdam: John Benjamins.
- Tang, Katrina, 2008, The phonology and phonetics of consonant-tone interaction. Los Angeles: University of California Los Angeles PhD dissertation.
- Thurgood, Graham, 2002, Vietnamese and tonogenesis: Revising the model and the analysis. Diachronica 19(2). 333–363.
- Torgerson, W.S, 1952, Multidimensional scaling: I. Theory and method. Psychometrika 17. 401-419.
- Toulmin, Matthew, 2006, Reconstructing linguistic history in a dialect continuum: The Kamta, Rajbanshi, and Northern Deshi Bangla subgroup of Indo-Aryan. Canberra: The Australian National University PhD thesis.
- Toulmin, Matthew, 2009, From linguistic to sociolinguistic reconstruction: The Kamta historical subgroup of Indo-Aryan (Studies in Language Change). Canberra: Pacific Linguistics.
- UNESCO, 2003, Language Vitality and Endangerment.

http://www.unesco.org/culture/ich/doc/src/00120-EN.pdf. (accessed Mar 26, 2009).

UNESCO, 2008, Non-metric multidimensional scaling.

http://www.unesco.org/webworld/idams/advguide/Chapt8_1.htm. (accessed Feb 17, 2010).

- UNESCO, 2009, UNESCO Interactive Atlas of the World's Languages in Danger. http://www.unesco.org/culture/ich/index.php?pg=00139. (accessed Feb 19, 2010).
- Wang, Chengyou, 2003, Yi yu fangyan bijiao [Comparative study of Yi dialects]. Chengdu: Sichuan Minzu Chubanshe.
- Wang, Feng, 2005, On the genetic position of the Bai language. Cahiers de Linguistique Asie Orientale 34. 101-127.
- Wardhaugh, Ronald, 1986, An introduction to sociolinguistics. New York: Blackwell.
- Wayland, Ratree P. & Susan G. Guion, 2005, Sound changes following the loss of /r/ in Khmer: A new tonogenetic mechanism? Mon-Khmer Studies 35. 55-82.
- Wells, John, 2005, Sampa Computer Readable Phonetic Alphabet. http://www.phon.ucl.ac.uk/home/sampa/. (accessed October 3, 2007).
- Whalen, D. H. & Andrea G. Levitt, 1995, The universality of intrinsic F0 of vowels. Journal of Phonetics 23(3). 349-366.

http://www.sciencedirect.com/science/article/B6WKT-4FM0GP0-6/2/ebeb3c8ec27e913d181 4238491a86b9e (accessed Jan 15, 2010).

- WSDC, 1986, Yunnan Weishan Yizu shehui lishi diaocha [Investigation into the society and history of Weishan Yi] (Zhongguo shaoshu minzu shehui lishi diaocha ziliao zongkan). Kunming: Yunnan Renmin Chubanshe.
- Xu, Yi, 2004, Understanding tone from the perspective of production and perception. Language and Linguistics 5(4). 757-797.
- Xu, Yi, 2006, Principles of tone research. International symposium on tonal aspects of languages. 3-13. http://www.phon.ucl.ac.uk/home/yi/yispapers/Xu_TAL2006.pdf (accessed Jun 18, 2009).
- Xu, Yi, 2009, _TimeNormalizeF0.praat. http://www.phon.ucl.ac.uk/home/yi/downloads.html. (accessed 17 Jun, 2009).
- Xu, Yi & Q. Emily Wang, 2001, Pitch targets and their realization: Evidence from Chinese. Speech Communication 33. 319-337.

- Yang, Cathryn, 2009a, Nisu dialect geography. SIL Electronic Survey Reports 2009(007). http://www.sil.org/silesr/abstract.asp?ref=2009-007 (accessed 30 Apr 2009).
- Yang, Cathryn, 2009b, Regional variation in Lalo: Beyond east and west. La Trobe Papers in Linguistics 12.

http://www.latrobe.edu.au/linguistics/LaTrobePapersinLinguistics/Vol%2012/Contents.htm (accessed 20 Dec 2009).

- Yang, Cathryn, 2010, Tone change in Lalo. In Yvonne Treis & Rik De Busser, eds. Selected Papers from the 2009 Conference of the Australian Linguistic Society. http://www.als.asn.au/proceedings/als2009.html (accessed 30 Apr 2010).
- Yang, Cathryn & Andy Castro, 2008, Representing tone in Levenshtein distance. International Journal of Humanities and Computing 2(1-2). 205-219.
 http://www.euppublishing.com/doi/abs/10.3366/E1753854809000391 (accessed 30 Oct 2009).
- Yang, Cathryn & Catherine Ching Yee Chan, 2008, The Eka language: A first look. Paper presented at the 41st International Conference on Sino-Tibetan Languages and Linguistics, London, 18-21 September.
- YBXZ, 2000, Yangbi Yizu zizhixian zhi [Gazetteer of Yangbi Yi autonomous county]. Kunming: Yunnan Renmin Chubanshe.
- Yip, Moira, 1980, The tonal phonology of Chinese. Cambridge, MA: MIT PhD dissertation.
- Yip, Moira, 2001, Tonal features, tonal inventories and phonetic targets. UCL Working Papers in Linguistics 13. 161-188. http://www.phon.ucl.ac.uk/home/PUB/WPL/01papers/yip.pdf (accessed Jun 18, 2009).
- Yip, Moira, 2002, Tone. Cambridge: Cambridge University Press.
- YLXZ, 1992, Yunlong xian zhi [Gazetteer of Yunlong county]. Beijing: Nongye Chubanshe.
- YNSY, 2004, Yunnan Statistical Yearbook. Beijing: Zhongguo Tongji Chubanshe.
- YNYF, 1984, Yunnan Yiyu fangyan ciyu huibian [A lexical compendium of Yi dialects]. Yunnan Minzu Xueyuan. Unpublished manuscript.
- YNYZDC, 1986, Yunnan Yizu shehui lishi diaocha [Investigation into the society and history of Yunnan Yi] (Zhongguo shaoshu minzu shehui lishi diaocha ziliao zongkan). Kunming: Yunnan Renmin Chubanshe.
- You, Zhong, 1994, Yunnan minzu shi [History of Yunnan nationalities]. Kunming: Yunnan University Press.
- YPXZ, 1994, Yongping xian zhi [Gazetteer of Yongping county]. Kunming: Yunnan Renmin Chubanshe.
- Zhao, Chenglong, 1995, Shuangjiang Lahu zu Wa zu Bulang zu Dai zu zizhixian zhi [Gazetteer of Shuangjiang Lahu Wa Bulang Dai Autonomous County]. Kunming: Yunnan Minzu Chubanshe.
- Zhou, Decai, 2004, Taliu Hua Yanjiu [A Study of the Taliu Language]. Kunming: Yunnan Minzu Chubanshe.
- Zhu, Wenxu, 2005, Yiyu fangyan xue [Yi dialect studies]. Beijing: Zhongyang Minzu Daxue Chubanshe.
- Zsiga, Elizabeth & Rattima Nitisaroj, 2007, Tone features, tone perception, and peak alignment in Thai. Language and Speech 50(3). 343-383.