DECLARATION

Except where specific reference is made to other sources, the work presented in this thesis is the work of the author. It has not been submitted, in whole or in part for any other degree.

Amir Mohammadi

14/07/2011
ACKNOWLEDGEMENT

This PhD thesis could have not been completed without the helps and supports I received from my supervisors, friends and family members. First of all I wish to deeply thank Prof. Jennifer A.M. Graves for accepting me into her lab and letting me to be part of the exciting Kangaroo genome project. Jenny you are the best mentor I could have ever imagined and your supports were always bigger than the obstacles I had on my road to this work. I also would like to express my deepest and most honest thanks to my supervisor, Dr. Margaret L. Delbridge for guiding me through this research and providing her endless supervision to me. Margaret, you might not know but every five minutes discussion with you was bringing me out of weeks of darkness and was a big encouragement for me to continue the work. Dr. Paul D. Waters and Dr. Janine E. Deakin have also been very influential and helpful during the course of this research. Not only as my advisors but also as good friends you guys were always there and very fast responsive to my questions or proof readings. Apart from the courage I learned many of my lab techniques from you two.

My family, especially my father and my mother cannot be thanked enough for their patience and supports during my studies. Coming to Australia and doing a PhD introduced a lot of pressure and difficulties to the life of each of you, but your kindness and smile was the only thing I received in return. I’m especially and warmly grateful to my brother and my best friend, Majid, for being a fantastic replacement at home and also for his infinite supports. Buddy! I’m so honored to have you in my life and warmly wishing you all the best in life.

The list of friends and colleagues who helped me in one way or another is just difficult to compile but I’m grateful to former CGG students and personnel including but not limited to Shafagh Al Nadaf, Veronica Murtagh, Vidushi Patel, Hardip Patel, Dennis O’Meally, Ali Livernois, Tariq Ezaz, Barbara Harriss, Ke-Jun Wei, Jason Limnios, and my Canberra friends Hooman Salari, Khashaiaar Kamali, Sean McKibbin and many more whom always will be my friends.

The ARC Centre of Excellence for Kangaroo Genomics and The Australian National University are also thanked for providing the scholarship and research resources.
ABSTRACT

As a representative of Australian marsupials, the recently sequenced genome of a model kangaroo, the tammar wallaby (*Macropus eugenii*) provides unique opportunities to understand the organization and evolution of the genome in marsupials, and in Class Mammalia in general. Comparisons with the fully sequenced genome of the Brazilian short-tailed opossum *Monodelphis domestica* allow me to compare the genomes of American and Australian marsupials, which have been evolving separately in different environments for the last 70 million years. The general aims of this thesis were to examine the extent to which part of the genome has been conserved in marsupials and in therian mammals, as well as to explore the organization and evolution of the largest gene family in mammals, whose members code for olfactory receptors.

As part of the KanGo’s (ARC Centre of Excellence for Kangaroo Genomics) task of establishing a map of the tammar genome, I undertook the comparative mapping of the long arm of chromosome 6 in the tammar wallaby. Firstly I identified segments conserved between opossum and human that I expected from chromosome painting to lie in this region, and isolated large insert clones from a tammar BAC library that contained conserved genes that defined these regions. Then I established their locations and order on the long arm of chromosome 6 in tammar wallaby. I found that there are only few rearrangements between tammar wallaby and the opossum in this part of the genome. However, the genomic parts orthologous to tammar wallaby 6q reside on several chromosomes in human, dog, and chicken, suggesting that the fusion occurred in the marsupial ancestors and remained conserved during marsupial evolution.

I then developed a strategy to explore the olfactory receptor gene (ORG) family in the tammar wallaby. Sequences corresponding to ORGs were extracted from the first assembly of the tammar wallaby genome and sequences classified into families and subfamilies. BACs bearing conserved mammalian ORG clusters were isolated and physically mapped in tammar wallaby. Comparison with the opossum OR repertoire revealed that these two distantly related marsupials share a very similar ORG superfamily. Conserved features include the total numbers of genes, families, and
subfamilies, gene distribution across the families and subfamilies, patterns of expansions and contractions in families and subfamilies and genomic location of major ORG clusters.

I then examined in detail the genomic organization of a highly conserved ORG cluster that lies near the MHC locus in several mammals. I made a BAC contig over the entire chromosome region. I found that this cluster is conserved in tammar wallaby and carries almost the same genes as in the opossum. Preliminary analysis of platypus ORGs dates the origin of this cluster back to the common ancestor of therian and monotreme mammals more than 166 million years ago, and provides examples of both conservation and adaptation of some genes in this cluster.

My general conclusion is that the two distantly related marsupial species have retained very similar genomes since their divergence 70 million years ago. This conservation is reflected both at the level of genome arrangement, and at the organization and evolution of gene families. This conservation is in marked contrast to the variability observed between eutherian groups, both in gross gene arrangement and in the constitution of the ORG family, suggesting that marsupial genomes have been evolving more slowly than other mammals, possibly due to some unique features of their physiology and way of life.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>GABBR1</td>
<td>Gamma-Aminobutyric Acid (GABA) B Receptor, 1</td>
</tr>
<tr>
<td>HEXDC</td>
<td>Hexosaminidase (glycosyl hydrolase family 20, catalytic domain) Containing</td>
</tr>
<tr>
<td>hsp70</td>
<td>Heat Shock Protein 70</td>
</tr>
<tr>
<td>MOG</td>
<td>Myelin Oligodendrocyte Glycoprotein</td>
</tr>
<tr>
<td>NARF</td>
<td>Nuclear Prelamin A Recognition Factor</td>
</tr>
<tr>
<td>P2RX3</td>
<td>Purinergic Receptor P2X, Ligand-Gated Ion Channel, 3</td>
</tr>
<tr>
<td>PRNP</td>
<td>Prion Protein</td>
</tr>
<tr>
<td>PTPRJ</td>
<td>Protein Tyrosine Phosphatase, Receptor Type, J</td>
</tr>
<tr>
<td>RBMX</td>
<td>RNA Binding Motif Protein, X-linked</td>
</tr>
<tr>
<td>RFX</td>
<td>Regulatory Factor X</td>
</tr>
<tr>
<td>SRZ</td>
<td>Seven-Pass Receptor Family Z</td>
</tr>
<tr>
<td>UBD</td>
<td>Ubiquitin D</td>
</tr>
<tr>
<td>WDR45L</td>
<td>WD Repeat Domain 45 Like</td>
</tr>
<tr>
<td>ZFY</td>
<td>Zinc Finger Protein, Y-linked</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

DECLARATION ... ii

ACKNOWLEDGEMENT .. iii

ABSTRACT ... iv

LIST OF ABBREVIATIONS ... vi

TABLE OF CONTENTS .. vii

Chapter 1. Introduction .. 1

Mammals and Animal Evolution .. 2

 Definition of mammals .. 2
 Evolution of mammals .. 2
 Higher order classification of mammals .. 3
 The genome of placental mammals .. 4
 The evolution of mammalian genomes ... 4

Gene Families: One Source of Genome Diversity ... 6

 Definition of gene families .. 6
 Evolution of gene families ... 7
 Duplication in the evolution of gene families .. 9
 Adaptive evolution in the evolution of gene families .. 10
 Olfactory receptors: a dynamic evolution .. 12

Marsupials: The Other Mammals ... 12

 Definition of marsupials ... 12
 Evolution of marsupials ... 13
 Classification of marsupials .. 14
 The marsupial genome .. 14
 The value of marsupials in genomic studies .. 15
 Our model marsupials ... 16

The Thesis ... 18

CHAPTER 2: MATERIALS AND METHODS .. 20

Agarose Gel Electrophoresis ... 20

Ethanol Precipitation ... 20

Culture Media .. 21

 Liquid culture ... 21
 Agar plates .. 21
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>THE PHYSICAL MAP OF TAMMAR WALLABY 6q</td>
<td>33-38</td>
</tr>
<tr>
<td>4</td>
<td>THE OLFACTORY RECEPTOR GENE SUPERFAMILY OF THE KANGAROO MACROPS EUGENII (THE TAMMAR WALLABY)</td>
<td>45-48</td>
</tr>
</tbody>
</table>

CHAPTER 3: THE PHYSICAL MAP OF TAMMAR WALLABY 6q

- **Introduction** ... 34
- **Results and Discussion** 38
- **Conclusion** .. 43

CHAPTER 4: THE OLFACTORY RECEPTOR GENE SUPERFAMILY OF THE KANGAROO MACROPS EUGENII (THE TAMMAR WALLABY) 45-48