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ABSTRACT     Adipose tissue has significant roles in whole body energy homeostasis, 

systemic insulin sensitivity, and lipid metabolism. Increased food intake, physical 

inactivity, and genetic predisposition lead to over-expansion of adipose tissues. Under 

constant energy surplus, adipocytes become hypertrophic and adipose tissues undergo 

hyperplasia. These tissue modifications lead to recruitment of preadipocytes and 

preadipocyte progenitors (mesenchymal stem cells) into adipogenic lineage, thereby 

increases the lipid storage capacity of adipose tissues. This keeps circulating blood 

glucose and fatty acids below toxic levels; however, adipocytes have a saturation point 

where they cannot store more lipids; when adipocytes are completely engorged with 

lipids, they start expressing stress signals to recruit inflammation into the tissue. While 

the mechanisms involved in recruitment of adipose inflammation remain largely 

unknown, some findings point to “extensive adiposity” as the responsible factor. This 

thesis focuses on persistent adipose inflammation and its relationship with metabolic 

comorbidities such as insulin resistance, type 2 diabetes, and particularly, non-alcoholic 

fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). 

     A theme of this research is that adipose tissue is not inert, but as closely linked 

functional “mini endocrine organs” distributed throughout the body. The current 

literature regarding structural and functional differences in different adipose tissues is 

reviewed with a focus on morphometric changes (under energy surplus), and systemic 

effects of adipose inflammation and dysfunction (development of insulin resistance, 

NAFLD, etc.). The contributions of muscle activity in bodily energy homeostasis and 

the close interaction between muscle, adipose, liver and insulin metabolism are 

discussed, and the implications of “adipose failure” for lipid partitioning into the liver, a 

key pathway to pathogenesis of NAFLD/NASH is highlighted. The low yield of cellular 

material and the excessive lipid contamination make it harder to work with adipose 

compared to liver. The candidate developed experimental protocols for this study, 
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which were optimised, including adipose morphometric analysis, that were used to 

describe the development and progression of adipose tissue inflammation and fatty liver 

disease in a mouse model of NASH. We examined the effects of feeding an atherogenic 

diet (23% fat, 45% carbohydrate, 0.19% cholesterol) on adipose morphometry and the 

recruitment of inflammatory cells. We studied Alms1 mutant foz/foz mice, which have a 

profound disturbance of hypothalamic appetite regulation. foz/foz mice fed an 

atherogenic diet developed adipocyte hypertrophy, adipose inflammation, 

hyperglycemia, and evidence of NASH. Wildtype (WT) mice fed the same diet 

developed milder metabolic phenotype compared to foz/foz mice. 

     The phenotypic switch towards a proinflammatory phenotype in enlarged adipocytes, 

this increasing cellular stress causes recruitment of macrophage crown-like structures 

(CLSs) into adipose tissue and a higher rate of adipocyte injury/necrosis. Toll-like 

receptors (TLRs) are innate immune system receptors activated by danger-associated 

molecular patterns (DAMPs). Necrotic cellular debris contains DAMPs which can 

stimulate TLR9 signalling. Activation of TLR9, particularly in macrophages, 

exacerbates adipose inflammation. Other works support a role for TLR4 in adipose 

inflammation, but the roles of other pattern recognizing receptors are less clear. In this 

study, we used Tlr9
-/-

 mouse to investigate the contribution of TLR9 signalling, if any, 

to adipose inflammatory recruitment. Increased calorie intake with atherogenic feeding 

for 24 weeks, led to inflammation in adipose tissue. TLR9 deletion abolished this effect. 

Correspondingly, NASH prevalence was much less in Tlr9
-/-

 mice. 

     The farnesoid X receptor (FXR) agonist obeticholic acid (6-ECDCA) improves 

steatosis in patients with NASH, but protective mechanisms remain unresolved. We 

therefore investigated the effects of 6-ECDCA (1mg/kg/day) on glucose metabolism, 

multiple adipose compartments and liver in atherogenic diet-fed foz/foz and WT mice. 6-

ECDCA reduced body weight, liver mass and hepatic lipid partitioning with striking 
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improvement of glucose tolerance in WT but not foz/foz mice, in which it had no effect 

on liver histology. 6-ECDCA limited expansion of adipose tissues in atherogenic diet-

fed WT but not foz/foz mice. In addition, 6-ECDCA treatment altered macrophage 

polarization towards a more anti-inflammatory phenotype in WT mouse adipose 

compartments but not foz/foz mice. To conclude, 6-ECDCA improves glucose 

metabolism, adiposity and adipose inflammation in animals with a milder metabolic 

phenotype. Conversely, 6-ECDCA fails to improve adipose inflammation or hepatic 

lipid partitioning in profoundly obese mice, and there is no reversal of NASH. These 

results help explain why 6-ECDCA treatment against human NASH improves steatosis 

but fails to reverse NASH pathology. 

     Physical inactivity contributes to adverse effects of overnutrition. We studied the 

effects of an exercise intervention on adipose and liver pathology. From weaning, mice 

were provided with an in-cage exercise wheel, in which they were calculated to run over 

4 km/day. In this study, voluntary exercise protected mice against the metabolic effects 

of high calorie intake and atherogenic dietary feeding by reducing adipose inflammation 

and maintaining systemic insulin sensitivity, the latter principally with its effects on 

muscle. Improvements in fatty liver pathology appear to be one of the benefits conferred 

by exercise. In the final chapter, the most important findings of earlier experiments are 

discussed in relation to and how they extend the knowledge in the field. Dysfunction of 

adipose tissue related to stress and inflammation is of pathologic importance. Limited 

lipid storage capacity and pro-inflammatory factors released from adipose depots can 

disrupt normal functioning of other organs. Circulating lipids increase when adipose is 

inflamed and leading to adverse effects on other tissues, primarily the liver. Meanwhile, 

inflammation in adipose tissue becomes persistent. Obesity-associated NAFLD/NASH, 

type 2 diabetes and metabolic syndrome are closely linked to persistent adipose 

inflammation. 
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INTRODUCTION 

1.1 Obesity: An Overview on Australia as a Reflection of the Epidemic 

   The National Health Performance Agency (NHPA) is an Australian independent 

agency which aims to improve the general health of Australians and the Australian 

health system in cooperation with state governments, non-governmental organizations 

(NGOs), and other agencies. As described on its website, NHPA’s goal is to provide 

nationally consistent, locally relevant, and comparable information about Australia’s 

health system to inform consumers, and to stimulate and inform improvements and 

increase transparency and accountability. Since 2009, NHPA has published an 

important series of reports under the title of “Australia: The Healthiest Country By 

2020” (1). The first technical report was assigned to obesity. 

 

1.1.1 Obesity in Australia: A Need for Urgent Action 

   With the development of industrialization, agrarian cultural norms have switched to a 

more consumption-based sedentary lifestyle in Australia. Industrialized technologies for 

food production and transportation have introduced cheaper but more calorie-dense 

(obesogenic) nutrients to the markets for daily consumption. This has escalated obesity 

to epidemic levels in Australia, like any other industrialized country in the world. 

Australia’s relatively small population, prosperous natural resources, and cultural 

background allowed the country to complete its industrialization in the early 1970s. 

Since then, obesity has been steadily increasing. Today, over 60% of Australian adults 

are obese or overweight; in November 2014, it was reported that more than 30% of 

Queenslanders are obese. Likewise, there is an increasing trend for early-onset 

childhood obesity (2). 
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   In 2012, the Australian population was approximately 22.3 million people, of which 

4.2 million were aged below 15 years (~3 million children between 0-9 years old) (3). 

Thus, the adult population (aged older than 15) was around 18.1 million. In NHPA’s 

obesity report, 10.8 million adults were classified as overweight or obese in 2012 (based 

on body mass index [BMI]) (1). This makes the prevalence of overweight and obesity 

~60% in adults. In all, 4.7 million adults suffered from obesity, which was equal to 26% 

of the adult population in 2012 (Fig. 1.1) (4). According to the World Health 

Organization (WHO), the prevalence of overweight and obese people in Australia was 

67% in 2007 (5). Although values can vary slightly in different reports, it is undeniable 

that Australia today faces a very serious population health issue in that more than 12 

million people are overweight or obese. 

 

 

Figure 1.1: National overweight and obesity trends in Australia. Adjusted from the original 

article (4). 

 

   It has been projected that these rates may progressively worsen; by one estimate, the 

Australian population will be 28 million by 2030, but obesity trends in adults are 

escalating faster than the population growth rate. 
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1.1.2 Obesity is Not Just Fatness: It Affects Wellness 

   As discussed later, obesity is a complex disorder. Decades of research have clearly 

linked it to other severe acute or chronic diseases such as type 2 diabetes (T2D), 

cardiovascular disease (CVD), non-alcoholic fatty liver disease (NAFLD), and more 

than 10 common cancer types (6). The overall burden of obesity treatment and 

prevention to the Australian economy was estimated as ~$58.2 billion in 2008 (1). 

Other research conducted in 2005 showed that obesity contributed to 4 million days of 

work lost in 2001 (7), higher than any specific illness. Another concern for the welfare 

of the Australians is the perception of increasing discrimination against overweight or 

obese people. For instance, job discrimination against obese people has become a topic 

of debate in social media, and several articles have been written about it. Therefore, 

obese individuals may not only suffer physically, but also psychologically, contributing 

to depression and mental illnesses (8). A similar picture can easily be drawn for many 

other countries or the global level. By 2025, 335 million people worldwide are expected 

to have “diabesity”, obesity with the complication of T2D (9). Today, obesity with T2D 

and CVD kills twice as many people as the total deaths caused by inherited disorders 

and infectious diseases. 

 

1.2 Obesity and Adipose Tissue 

   According to PubMed Health Online Platform (A.D.A.M. Medical Encyclopaedia), 

obesity means “having too much body fat”. This description should not be confused 

with weighing too much because for instance, an individual engaged in body building 

can also weigh “too much” (much more than average for height) because of expanded 

lean body mass (muscle); this is one example where BMI fails to properly identify 

obesity. Some researchers have also describes obesity as a state of low-grade 
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inflammation. In addition, some public health authorities might define obesity as a 

global epidemic, whereas other clinicians think of obesity more narrowly is a medical 

disorder. Each of these explanations is only partially true. In this PhD thesis, we will 

address the concept, admittedly a speculative one, that obesity, or more specifically 

metabolic (unhealthy) obesity, is dysfunction or failure of adipose tissue to 

accommodate positive energy imbalance. 

 

1.2.1 “Adipose” Biology 

   Adipose is a highly dynamic, energy (fat) storing tissue that can readily adapt to 

changing environmental circumstances. For example, if there is nutrient abundance in 

the habitat of a vertebrate (human, rodent etc.), there is a net increase in the total 

number and size of adipocytes in the body to store as much fat as possible (10). This 

process appears to have evolved in order to assist survival of animals when it is not 

possible to find nutrients. The first “anatomically modern” human body appeared 

around 200,000 years ago during the second subdivision of the Palaeolithic age. 

Archaeological findings indicate that the first farmers existed in the last quarter of the 

Neolithic age, around 8000 BC. Accordingly, for about 190,000 years, human activity 

was confined to hunters and gatherers. In this context, the unique dynamic capacity of 

adipose tissue to expand and store fat would give the host the ability to survive during 

lack of food, such as when humans could not find animals to hunt or fruit, vegetables or 

nuts to gather. 

   The importance of body weight regulation on human health has been referenced back 

to Hippocrates of Kos, Ancient Greece. The commonly accepted idea since then was 

that a physiological feedback loop regulates energy homeostasis. Modern adipose 

biology, perhaps a new era in medical research, began with the discovery of a peptide 

hormone, leptin. The Jackson Laboratory had developed a severely obese mouse model 
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(ob/ob mice) in 1949 by genetic manipulation (11). In 1966, Doug Coleman and his 

colleagues identified a new mouse colony called db/db mice, with similar severe obesity 

(12). Breeding (parabiosis) of these mice with wild-type counterparts and observation of 

their phenotypes revealed fascinating results. When ob/ob mice were joined with wild-

type mice, there was a significant reduction in their calorie intake. Likewise, wild-type 

mice stopped eating when joined with db/db mice. Accordingly, Coleman asserted that 

the ob gene produces a hormone, and db protein, which they proposed was selectively 

localized in hypothalamus, recognizes this molecule. This endocrine system could be 

adjusted by fat reservoirs to control the satiety/hunger feelings and overall body weight 

gain (13). 

   In the early 1990s, Jeffrey Friedman set out to identify the ob gene product. Instead of 

the widely-used traditional hormone purification technique, he managed to clone the ob 

gene. Friedman’s group published their discovery in 1994 in Nature (14). Friedman 

named the peptide “leptin” and suggested that leptin, exclusively produced by adipose 

tissues, regulates the balance of food intake and energy expenditure of the body. 

Coleman’s and Friedman’s discoveries were important in three ways: 

- The use of advanced molecular biology techniques, such as genetic approaches 

and positional cloning fascinated a new generation of researchers, 

- The newly discovered cross-talk between fat and brain through an endocrine 

system could be valid for other physiological systems, 

- Adipose tissue could no longer be regarded as an inert tissue; it must be a 

functional endocrine organ. 

   From the anatomical or structural view point, adipose tissue is a specialized form of 

loose connective tissue (15). The discovery of leptin as a hormone revealed that the 

functions of adipose tissue are considerably more than just “connecting” tissues. This 

initial discovery in 1994 triggered an avalanche of productive research. Many other 
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hormones, adipose-derived cytokines and chemokines (adipokines) were discovered 

within the next decade. Adipokines are exclusively or selectively produced by adipose 

tissues, and are important for many metabolic pathways. Today, adipose tissue has 

become accepted as the biggest (most extensive) endocrine organ in the body (16). 

   Adipose tissue is essentially formed of fat-containing adipocytes embedded in a 

stroma (this will be discussed later). Over-eating, calorie-overload, genetic 

predisposition, early development, and physical inactivity contribute to energy 

imbalance (input > output) of an individual. In the presence of excess kjoules, already 

mature adipocytes start to enlarge, store more fat and undergo “cellular hypertrophy” 

(17). If the excess calorie imbalance is not reconciled by increased energy dissipation or 

utilization, cellular hypertrophy leads to the development of adipose tissue hyperplasia. 

Accordingly, large adipocytes secrete a set of hormones and cytokines which increase 

recruitment of preadipocytes, as well as promoting their development into mature 

adipocytes. 

   As mentioned above, adipose tissue is comprised of adipocytes and a stromal vascular 

fraction (SVF) (Fig. 1.2). The latter consists of preadipocytes, preadipocyte progenitors 

(mesenchymal stem cells), fibroblasts, endothelial cells, and immune cells (18). These 

cells are surrounded and connected (enmeshed) by a fibrillary structural extracellular 

matrix (ECM) – the components of this material also influence adipose functions (19). 

Adipose tissue is the primary energy storage compartment in the body. In addition, 

adipose located under the skin dampens mechanical impacts from the outer world and 

provides thermal insulation (20). 
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Figure 1.2: Adipose tissue cellular heterogeneity. In addition to mature adipocytes, adipose 

tissue contains a stromal vascular fraction that is composed of tissue-resident mesenchymal 

stem cells, partially-committed preadipocytes, fibroblasts, immune cells such as resident 

macrophages and regulatory T cells, vascular endothelial cells, pericytes (not shown), and 

smooth muscle cells. 

 

1.2.2 The Origins of Adipose Tissue 

   The increasing prevalence of obesity and obesity-related metabolic morbidities has 

aroused enormous interest in the developmental origins of adipose tissue. One critical 

finding has been the “heterogeneity” of body fat (21). The locations of adipose tissues 

can be divided into two types: visceral and subcutaneous adipose tissue (abbreviated as 

WAT for white adipose tissue). Subcutaneous WAT is located under the skin or in 

external “pads”, like fingers and the heel, whereas visceral WAT is located around the 

internal organs, such as the kidney, gonads, and intestines. These two adipose types 

originate from different sources during development, and they exhibit different 

structural integrity as well as different functions in adulthood (22). The predominant 

location of the fat deposition impacts on the severity of obesity and its complications, 
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and these are particularly linked to expansion of visceral WAT (visceral adiposity or 

central obesity). 

   Using transcriptomic analyses, it has been shown that the gene panels activated in 

adipocyte progenitors during development can vary between different fat depots (23). 

Mesoderm is a germ layer formed in the gastrulation stage of embryonic development. 

The Wilms’ tumor 1 (Wt1) gene product is a transcription factor responsible for the 

development of the gonads and kidneys from their mesodermal origins (24). WT1 

expression is limited to the layer between paraxial mesoderm and the lateral plate (Fig. 

1.3). Visceral fat depots arise from the layer responsible for the development of kidney, 

gonads, omentum, and spleen. In 2014, Nick Hastie and his colleagues reported that 

WT1 expression is restricted to visceral adipose pads; they could not find WT1 

expression in either subcutaneous or brown adipose tissue (BAT) (25). Further analyses 

have revealed that only SVF cells express WT1 in visceral fat, not mature adipocytes. In 

addition to this finding, heterogeneous progenitors have been found for each individual 

visceral adipose pad according to their physical attachment to the various visceral 

organs, but all of these progenitors develop from WT1-expressing mesothelium during 

embryonic development. 
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Figure 1.3: Mesodermal layers forming adipose tissues during development. Adjusted from 

the original article (25). WT1 is primarily expressed in the intermediate and lateral plate 

mesoderm layers. These mesenchymal stem cells (MSCs) form internal organs such as ovary, 

testis, adrenal glands, kidney, and gut (mesothelial layers in all of internal organs). In addition 

to that, visceral adipose tissues include (1) omentum, (2) perirenal, (3) mesenteric, (4) 

epididymal, (5) abdominal cavity, and (6) thoracic cavity. Unlike visceral pads, (7) 

subcutaneous and (8) brown adipose tissues develop from the paraxial mesoderm and the neural 

crest (shown blue between paraxial layers). 

 

   Subcutaneous WAT and BAT are not formed by WT1-expressing cells. Unlike 

visceral pads, subcutaneous adipose tissue arises from the paraxial mesoderm as well as 

the neural crest (25). These germ layers are relatively closer to the ectoderm which 

forms the skin during development (Fig. 1.3). Thus, there are ontogenetic differences 

between subcutaneous and visceral fat pads and these developmental differences may 

partly explain functional variations between fat pads. 
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1.2.3 Adipose Development 

   “Genesis” derives from Greek word “Gignesthai”, which means “coming into being”. 

Accordingly, genesis refers to creation or generation in biological sciences. 

Adipogenesis includes two main events: proliferation (or migration) of progenitor cells, 

and adipogenic differentiation. As mentioned earlier (section 1.2.2), different adipose 

depots arise from mesodermal origin (25). BAT develops roughly at the second half of 

the gestation period, whereas WAT formation follows later. The amount of BAT 

reaches its apogee 3 months after birth, and some of it vanishes (or is replaced with 

WAT) after another 3 months (26). 

   The ultimate source for adipocyte development is MSCs (27). These are multipotent, 

self-renewable clonogenic cells derived from the mesoderm. Stem cell biology has 

expanded greatly following the discovery of bone marrow (BM)-residing hematopoietic 

stem cells (HSCs), the main source for blood components. Soon after that (1960s), the 

potential of BM stroma to generate important other tissues such as bone, cartilage, and 

adipose was discovered (28). The recognition of another subset of BM cells which 

could differentiate into these tissues stimulated interest in their nature. Early studies 

defined them as fibroblast-like cells (colony-forming unit fibroblasts), but their ability 

to proliferate in vitro and transform into multilineage daughter cells eventually led to 

the term “mesenchymal stem cells”. Some studies have shown adipocyte development 

is possible from HSCs, but this seems to be a rare event (29). 

   MSCs are largely uncommitted multipotent stem cells (30). They possess a great 

capacity to differentiate into other cells. MSCs are thin and elongated (fibroblast-like 

morphology) with a small cell body. They tend to reside in the stroma of yellow BM, so 

called because of the presence of fat (31). Some cell types which can be constituted 

from MSCs residing in yellow BM are adipocytes, osteoblasts, pancreatic islet β cells, 

hepatocytes, and some immune cells, including macrophages. The common origin of 
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adipocytes and immune cells is another possible link between excess adiposity, adipose 

inflammation (discussed in Section 1.5), and development of metabolic obesity. 

   Although MSCs are primary progenitor cells for adipocyte development, recent 

studies have demonstrated that adipose tissue itself is another rich source of MSCs (32, 

33). In 2006, Karen Bieback and her colleagues compared MSCs from 3 different 

sources; BM, umbilical cord blood, and adipose tissue (34). Although MSCs from the 

three different sources exhibited minor differences, those researchers found that MSCs 

from each source possessed considerable differentiation potential. They also concluded 

that adipose tissue is an attractive source of MSCs for potential therapeutic/clinical use. 

These data suggest a direct link between BM stroma and adipose tissue; as a result, 

adipose tissue is packed with multipotent stem cells. 

 

1.2.4 Adipose Differentiation 

   Adipogenesis is the biological process by which mature adipocytes are formed (35). 

Adipose development is highly complex because mature adipocytes do not possess 

proliferative capability (36); fresh adipocytes (or preadipocytes) must arise from 

progenitor cells. Considering the fact that adipocytes are highly dynamic cells that can 

turnover rapidly (37), the supply of adipocyte progenitors is a tightly-regulated 

advanced system. 

   Enlargement of adipose tissue involves both increasing the volume of adipocytes and 

increasing their number by generation of new adipocytes. In 2010, Erik Arner and his 

colleagues reported that the relative death rate of adipocytes is ~10% and the mean 

adipocyte age is up to ~10 years in adult humans, regardless of gender (38). During 

nutrient overload (energy surplus), this balance is impaired, and this has negative 

impacts on the body (adipocyte degeneration, discussed later). On the other hand, 

cholesterol and lipid molecules are not just structural components of adipocytes, they 
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have functional significance as discussed later (Section 1.4). Thus, regulation of 

cholesterol and lipid metabolism is also closely related to “adipocyte turnover”. 

 

1.2.4.1 Commitment of Stem Cells into Adipogenic Lineage 

   Fat tissue is highly heterogeneous. When considering the differing ontogenetic, 

morphogenetic and functional properties of various depots, it is relevant to 

conceptualize different adipose pads as separate “mini-organs” (39). These mini-organs 

appear to arise from distinct progenitor cells. Further the distinctive structural, 

developmental, and functional characteristics of preadipocytes and adipocytes in 

subcutaneous and visceral adipose depots involve hundreds of genes (40). These genes 

are engaged in adipogenic determination and development, and also in cellular 

cholesterol and lipid metabolisms. Accordingly, depot-specific gene expression patterns 

designate the regional heterogeneity of fat, and link this regional heterogeneity to 

differences in functional characteristics between different adipose tissues (41). These 

distinctive (depot-specific) gene expression patterns assist (pre)-adipocytes to attain the 

individual cellular instruments for different cellular tasks, such as lipid synthesis, 

intracellular transport, thermogenesis, insulin signalling and secretion of adipokines. 

However, “the core” of adipogenesis is identical for all adipocyte types and proceeds 

through activation of the CCAAT/enhancer binding protein (C/EBP) and peroxisome 

proliferator-activated receptor γ (PPARγ) signalling pathways (42). 

   Adipose tissues are packed with stem cells committed at different levels into the 

adipogenic lineage (43, 44). Vascular stem cells are multipotent. They can therefore 

give rise to a variety of cell types, including preadipocytes or fibroblasts. Some studies 

have also reported that adipose stem cells can differentiate into macrophages (45). 

Nevertheless, adipose multipotent stem cells possess the same considerable potential to 

differentiate as their close relatives, BM-derived MSCs. 
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   The first step in adipogenesis is commitment of multipotent stem cells into 

preadipocytes. This requires modification of the gene expression profile of the cell, but 

at this stage there is no morphological change. Thus, preadipocyte progenitors and 

preadipocytes show similar morphology (46). Determination of multipotent stem cells 

into adipogenic lineage is a very complex process; many researchers have focused on 

the second (mitotic clonal expansion) or third (terminal differentiation) steps of 

adipogenesis, leaving this initial, critical transition unresolved. 

   MSCs adopt a different phenotype depending on both intrinsic and extracellular 

factors. Examples of extrinsic factors include tissue fluid flow, pressure, compression, 

tension, matrix stiffness, and cellular shapes (47). These considerations are because 

adipose tissue is highly dynamic, and adipocytes rendered hypertrophic by nutrient 

overload can easily cause mechanical changes in the tissue which may recruit (further 

occupy) more stem cells into the adipogenic lineage. Other changes that are the 

consequences of adipocyte hypertrophy, such as an increase in pericellular matrix, 

surface cadherin molecules, and changing cytoskeleton can provide signals that 

augment predisposition of stem cell commitment into adipogenic lineage. 

   Another important determinant of stem cell fate is cross-regulation by differentiation 

factors (35). Multipotent stem cells express low levels of factors specific to several 

different lineages. Factors characteristic of one lineage can suppress differentiation into 

another type. For example, adipogenic factor PPARγ suppresses runt-related 

transcription factor 2 (RUNX2) expression, which belongs to the osteogenic lineage 

(48). Likewise, Rho-associated kinase (Rho-kinase/ROCK) is an anti-adipogenic agent 

which promotes myogenesis in stem cells. The balance between these factors is delicate 

and, depending on the stimuli, easily changes the stem cell fate. 
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1.2.4.2 An Exceptional Phenomenon - Mitotic Clonal Expansion 

   Preadipocytes are recruited from a pool of multipotent or pluripotent (49) stem cells 

which reside in the SVF of adipose tissue. They are unipotent and exhibit self-renewal 

properties similar to multipotent stem cells, but they can only differentiate into one cell 

type, adipocytes (50). 

   The cell cycle is a term used to encompass all the events culminating in cellular 

division (51). During interphase, a cell grows in size, perhaps undergoes morphological 

changes, replicates its deoxyribonucleic acid (DNA) and assembles its cellular 

machinery (division proteins etc.) to prepare for mitosis. Mitosis happens after passing a 

checkpoint control (G2), when the cell employs its energy and structural sources solely 

for cell division (Fig. 1.4). There are several checkpoints in the cycle, and these are 

responsive to the cell sensing the relevance of the conditions for its division, as well as 

the integrity of its DNA and cellular machinery, as to whether it is ready for division or 

not (52). There is a restriction point in the cell cycle (leading to growth arrest) where the 

cell makes a determination to become quiescent (G0). As such this restriction point 

suppresses the preparations for cellular proliferation, and allows continuation of cell 

growth and phenotypic transformation/differentiation (53). Accordingly, cell division 

and differentiation do not happen synchronously; however, mitotic clonal expansion of 

preadipocytes poses a possible exception to this rule (54). 

   As mentioned, the fundamental instruments for adipogenic differentiation are the 

PPARγ and C/EBP protein families of transcription factors (42). Their activity confers 

the cellular equipment required for acquisition of the adipocyte phenotype. PPARγ is 

the master regulator (orchestra conductor) of adipogenic differentiation. It is obligatory 

for adipocyte differentiation, as, in its absence, no other factor has been identified which 

can orchestrate adipogenesis (55, 56). PPARγ is also important to maintain the 

differentiated state of adipocytes. C/EBPβ and C/EBPδ are pro-adipogenic transcription 
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factors which stimulate the expression of C/EBPα and PPARγ by binding the C/EBP 

regulatory elements in the promoters of related genes. However, C/EBPβ molecules 

expressed upon hormonal stimuli lack the ability to bind DNA. Initially, therefore, 

C/EBPβ cannot function to accelerate the adipogenic cascade (40). Upon hormonal 

induction (shown in vitro), the DNA-binding ability and activity of C/EBPβ occur after 

approximately 14 hours, and it reaches its full capacity at 24 hours. In this 24 hours, 

although preadipocytes commit to differentiate, they can only divide one or two more 

times until C/EBPβ acquires its DNA binding activity and activates transcription of 

C/EBPα and PPARγ genes. C/EBPα and PPARγ have anti-mitotic properties, thereby 

ensuring that preadipocytes escape from the cell cycle and focus entirely on terminal 

differentiation. 

 

 

Figure 1.4: Overview of the cell cycle. In mammalian systems, tissues grow by the division 

and differentiation of various cell types. There is a delicate balance between these two indices, 

and cells do not differentiate when they have entered the cell cycle. 
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   This “post-confluence mitosis” is a very rare phenomenon in eukaryotic organisms 

and the reason for it is still not clear. Unresolved issues are whether it is an essential 

part of the terminal adipogenic differentiation, or whether it is a delay caused by the 

slow maturation period of C/EBPβ molecules. 

 

1.2.4.3 Terminal Differentiation of Preadipocytes 

   After their clonal expansion, late-stage preadipocytes commit to terminal adipogenic 

differentiation. This process is mainly orchestrated by PPARγ activity. Although 

brown-, beige- and white-adipocytes do not share the same ontogenetic and functional 

characteristics, both types of adipocytes share similar transcriptional machinery that 

leads to the terminal differentiation into adipocytes. As stated earlier, the transcript 

profile of adipogenesis is regulated by combination of C/EBPα and PPARγ. 

Brown/beige adipocytes (more details in Section 1.2.6) express all genes which are 

expressed in white adipocytes, but in addition they express distinctive genes that give 

them the brown characteristics (Fig. 1.5) (57, 58). Forkhead box protein C2 (FOXC2) is 

a key browning transcription factor. It stimulates the response to adrenergic stimuli, and 

initiates browning of the adipocyte phenotype. The factors leading to the white-to-

brown adipocyte switch are co-activators, such as steroid receptor coactivator 1 (SRC1), 

PPARγ coactivator 1α (PGC1α), and PR domain containing 16 (PRDM16). Pro- and 

anti-adipogenic factors regulate overall adipogenic differentiation. Some of these factors 

are Kruppel-like factors (KLFs), ancient signalling pathways such as WNT-, hedgehog- 

or notch-signalling, the mitogen-activated protein kinases (MAPK) pathway, and insulin 

and insulin-like growth factor 1 (IGF1) signalling. 

   Studies on gene knock-out mice have revealed important details about adipogenic 

differentiation, for instance liver X receptor (LXR). LXR is a transcription factor family 

that interacts with several nuclear receptor molecules, such as the PPARs, farnesoid X 
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receptor (FXR), and sterol regulatory element binding protein 1 (SREBP1). Together 

with these factors, LXRs play a pivotal role in the regulation of cholesterol, fatty acid 

(FA), and glucose homeostasis (59). In 2005, Isabelle Gerin and her colleagues reported 

that Lxrα and Lxrβ double knock-out (KO) mice develop normal adipose tissue, but 

show impaired capacity to increase adipocyte size and tissue mass with nutrient 

overload or during aging. A similar study has been conducted with Srebp2 KO mice 

(60). SREBP2 is a key transcription factor for regulation of cholesterol metabolism, and 

plays regulatory roles in terminal adipogenic differentiation. Regulation of adipogenesis 

is also subjected to with different molecular mechanisms, such as miRNAs, epigenetic 

regulations (matrix interactions, angiogenesis etc.), and transcription factor/co-activator 

interactions. 

 

Figure 1.5: The differing characteristics of white and brown adipocytes. The core 

mechanism of adipogenesis is similar for both adipocyte types, but the assisting co-activators, 

microRNAs, and other transcription factors determine the cell fate. White adipocytes have 

evolved essentially to store lipids, whereas brown adipocytes use lipids for thermogenesis. 
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1.2.5 Adipose Structural Characteristics and Functional Differences 

   Mammalian adipose is traditionally sub-grouped into two physiological classes: WAT 

and BAT (61). According to this classification, both visceral and subcutaneous pads are 

considered WATs. WATs can be found in different parts of the body. Surrounding the 

heart, heels, hips, periorbital region, kidney and omentum are a few locations where fat 

is deposited. A considerable number of adipose pads serve only as a structural scaffold 

in the body, as a cushion against mechanical impact. 

   The most characteristic histological feature of WAT is the presence of unilocular 

adipocytes (62). A single large lipid droplet (LD) occupies most of the cell, and other 

cellular contents, including the nucleus, are squeezed into an outcropping at the 

periphery. These cells have minimum numbers of mitochondria. White adipocytes are 

highly dynamic; they can readily enlarge and shrink depending on the metabolic state, 

via lipogenesis vs. lipolysis (63). Among important extracellular and intracellular 

receptors which are located on these adipocytes, insulin and growth hormone receptors 

have special importance for sustaining systemic energy homeostasis. In addition, 

adipocytes can secrete and recognize diverse hormones which regulate a wide range of 

physiologic process, from immune responses to haemostasis, from sex determination to 

blood pressure control (64). 

   Compared to WAT, BAT gains its brown colour from mitochondria-rich multilocular 

adipocytes as well as from its rich vascularization (65). BAT is highly abundant during 

the neonatal period and in hibernating animals; it provides enough heat for survival 

(66). In adults however, BAT distribution in the body is quite limited. 

   Uncoupling protein 1 (UCP1) is transmembrane protein located between the 

mitochondrial matrix and intermembrane space (IMS) (67, 68). Energy stored in 

molecular bonds is termed “chemical energy”. By UCP1 activity, brown adipocytes can 

transform chemical energy into thermal energy, in other words, produce heat. The exact 
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function of UCP1 remains largely unknown; however, long-chain fatty acid (LCFA) 

anions activate UCP1 to transport protons-(H
+
) from the IMS to the mitochondrial 

matrix. Such proton leak causes mitochondria (therefore the cell) to produce heat 

instead of generating high-chemical energy molecules in the form of adenosine 

triphosphate (ATP). 

   Adaptive thermogenesis is a well-documented phenomenon, especially in rodents, and 

it contributes to energy homeostasis by consuming energy. Adaptive thermogenesis 

helps maintain the optimal body temperature at a tightly regulated level; cold is the 

main inducer of adaptive thermogenesis (69). In addition, some studies have reported 

that adaptive thermogenesis can also be induced by certain nutrients/diets (70); 

however, this phenomenon has not yet been fully elucidated. 

   Beta (β)-oxidation is the chemical reaction where FA molecules are catabolized to 

smaller compounds (71). β-oxidation in BAT is abundant and contributes substantially 

to the body’s total energy expenditure. Acetyl-CoA, an end product of β-oxidation, 

enters the Kreb’s cycle (citric acid cycle) in mitochondria. The Kreb’s cycle is a series 

of enzyme-catalyzed chemical reactions that eventually create a proton gradient that can 

be used by other protein complexes to produce ATP molecules (72). As stated above, 

UCP1 provides an alternative route for these protons in brown adipocytes (67). β-

oxidation is a common form of mitochondrial oxidative phosphorylation (OXPHOS) 

(73). BAT needs a liberal supply of oxygen; this is why BAT has a greater blood supply 

(larger number of capillaries) than WAT. The blood circulation of BAT also serves to 

transfer heat from where it is generated to other areas where it is needed. 

   Aggregation of mitochondria confers the brown colour to BAT cells under light 

microscopy, but having high numbers of mitochondria has other consequences for cell 

fate. Thus, mitochondria are an important source of reactive oxygen species (ROS) 

leakage (74). ROS are highly toxic molecules. For this reason, there are some tightly-



CHAPTER 1: Introduction 

21 
 

regulated protective mechanisms against ROS in eukaryotic systems, such as superoxide 

dismutase enzymes, that serve as an anti-oxidant defence (75). Nevertheless, ROS still 

contribute to many “defects” in the body, such as cell senescence (aging) or DNA 

damage in cancer initiation. In 2010, Rebecca Oelkrug and her colleagues reported that 

UCP1 reduces superoxide production in brown adipocyte mitochondria (68). 

Considering the above aspect, BAT is clearly a beneficial tissue that has great potential 

to contribute to energy homeostasis and to general health by reducing the burden of 

oxygen metabolites. 

 

1.2.6 Beige Tones in White Adipose 

   While the relationship between visceral adiposity (visceral obesity) and metabolic 

comorbidities, such as insulin resistance and T2D, has been mentioned, subcutaneous 

adipose tissue has been accepted as a “metabolic sink”. Thus subcutaneous adiposity 

appears to be relatively less harmful, and potentially beneficial to the body (76). 

Considering the fact that adipose in both sites is white, the question arises on to why 

visceral adiposity should be hazardous whereas subcutaneous adiposity is relatively 

benign. The essential problem is the narrow breadth of the question, because 

subcutaneous adipose tissue is actually not a “pure” white tissue; it can reveal different 

shades of “beige” depending of adjustment to whole body energy homeostasis. 

   Temperature control is tightly regulated in the human body. Different times of the day 

or different parts of the body can exhibit slight changes, but core body temperature is 

fixed around 37
0
C. Humans can survive in a wide range of climates, indicating that 

there are thermoregulatory mechanisms which provide easy adaptation for humans (and 

rodents) to a variety of different climatic states. Depending on the temperature, these 

mechanisms can be shivering, sweating, vasoconstriction, and uplifting hair follicles 

(pilo-erection). In cold weather, human skin-subcutaneous adipose tissue forms an 
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important barrier for heat insulation; recently, researchers have started to understand 

that this complex tissue is not only responsible for heat insulation, but is also 

responsible for heat production (similar to BAT). This phenomenon is a good example 

of beneficial effects of subcutaneous adipose tissue because during the human 

evolution, the existence of beige adipocytes under the skin has conferred the great 

advantage of a heat-producing thermo-regulative capability. By this capability, the 

human body could adapt to colder climates and protect itself from the dangerous 

consequences of hypothermia. 

   Beige adipose in subcutaneous sites owes its colour to a third kind of adipocyte that 

has been recently identified, in addition to unilocular white and multilocular brown 

adipocytes. An alternative term is “brite” adipocytes (77). Beige adipocytes are highly 

abundant in subcutaneous adipose tissue. They show a distinct gene expression pattern, 

and their origins are different from white adipocytes (78). Beige adipocytes express 

characteristics of both white and brown adipocytes. For instance, like brown adipocytes, 

they are thermogenic cells. On the other hand, although they are often not unilocular 

like white adipocytes, they can contain quite large LDs (79). Beige adipocytes are anti-

obesogenic cells; as in brown adipocytes, they express UCP1 although at a 

comparatively lower basal level. However, stimulation by cold or other factors can 

strikingly increase UCP1 levels in beige adipocytes, conferring to these cells 

thermogenic capability (80). 

   Increasing the number of beige adipocytes in subcutaneous adipose tissue is called 

“browning”. A cold stimulus, activation of β-adrenergic pathways, and some hormone 

stimuli can induce browning of subcutaneous fat (79). The process of browning 

involves mitochondrial aggregation and cellular proliferation/differentiation of beige 

adipocytes. Subcutaneous adipose tissue is prone to browning, whereas browning is rare 
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in visceral WAT. Why browning is less at this site has aroused curiosity on the origins 

and development of beige adipocytes. 

 

1.2.6.1 Brown vs. Beige Adipocytes 

   Brown fat is located in the interscapular region of human newborns. There are data 

supporting the existence of brown adipose in the perirenal area in adults (81). In 

rodents, brown fat is widely dispersed throughout the body (82). Nonetheless, 

determining the localization of brown fat has not yet been fully resolved. 

   Non-shivering adaptive thermogenesis is driven by a set of genes that are regulated by 

a β-adrenergic receptor/cyclic adenosine monophosphate (cAMP) dependant pathway in 

both brown and beige adipocytes (83). Despite the similar properties, brown and beige 

adipocytes show a different gene expression pattern in cell culture (79). In addition, the 

response of beige adipocytes to genetic manipulations and hormonal stimuli differs 

from that of brown adipocytes. 

   Several studies have demonstrated that brown adipocytes arise from a skeletal muscle 

origin (84, 85). Myogenic factor 5 (MYF5) is a regulator of myogenesis (muscle cell 

differentiation) that is essential for skeletal muscle development. Brown adipocytes and 

myocytes both express MYF5, whereas white and beige adipocytes do not (Fig. 1.6). 

This observation suggests different developmental origins for brown and beige 

adipocytes. In 2014, Bruce Spiegelman and his colleagues suggested a smooth muscle-

like origin for beige adipocytes (78). 
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Figure 1.6: Transcriptional regulation of brown and beige adipocyte development. 
Pax7

+
/Myf5

+
 preadipocytes give rise to brown adipocytes, whereas white adipocyte progenitors 

do not express these genes. In addition to the machinery central to adipogenesis, PRDM16 

orchestrates promotion of the brown phenotype in Pax7
+
/Myf5

+
 preadipocytes. Induction of 

PGC1α by external stimuli, such as cold exposure and β-agonists, activates brown adipocytes to 

produce more mitochondria and generate heat. Abbreviations: Myf5, myogenic factor 5; Pax7, 

paired box protein 7; PGC1α, PPARγ-co-activator 1 alpha; PPARγ, peroxisome proliferator-

activated receptor gamma; PRDM16, PR domain containing 16. 
 

   As previously mentioned, adipose tissue contribution to metabolic comorbidity 

depends on its localization (visceral vs. subcutaneous). For example, visceral adipose 

tissue has been accepted to be more prone to inflammatory recruitment than 

subcutaneous fat. The present limited knowledge cannot explain the main reasons 

behind these functional and physical differences between visceral vs. subcutaneous 

compartments; however, browning in subcutaneous adipose tissue provides a strong 

clue for the functional differences. 

 

1.2.6.2 A “Browning” Transcription Co-Regulator: PRDM16 

   There is an important factor for adipose browning: PRDM16. PRDM16 is a 

transcription co-regulator that controls the muscle/brown differentiation switch in early 

embryologic development (84). In adults, PRDM16 is expressed in some WATs, and so 

too is UCP1 expressed under certain stimuli. These data suggest the involvement of 

PRDM16 in beige adipocyte development. 
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   Prdm16
-/-

 mice are prone to develop profound visceral obesity (86). This could reflect 

the important role that PRDM16-driven beige adipocytes plays in whole body energy 

expenditure, since these are “mitochondria-rich” cells. A striking discovery was that 

PRDM16 and WT1 are reciprocally regulated. WT1 expression is exclusively specific 

to visceral adipose, and reciprocal regulation of these factors determines the visceral vs. 

subcutaneous gene expression program. PRDM16 regulates UCP1 accumulation (23). 

Bruce Spiegelman and his colleagues have shown that absence of PRDM16 results in 

ablation of beige cells, triggers more subcutaneous adiposity, and switches on 

“visceralization” of adipose characteristics, even cells located in subcutaneous sites 

(86). In this way, Prdm16 gene is effectively a “switch button” between visceral and 

subcutaneous adipose phenotype. However, the mechanisms by which PRDM16 

production and activity are regulated remain largely unknown. Cold is a main stimulus. 

In addition, β-adrenergic agonists induce PRDM16 activity. Given the fact that β-

adrenergic receptor stimulation expands the lung (bronchodilation) and prepares the 

body for exercise (increased blood flow) (87), increased physical activity may also 

influence PRDM16 expression and the number of the beige adipocytes. This possibility 

was a focus for the experiments described in Chapter 6. The important metabo-

protective effects of PRDM16 expression in beige adipocytes also provide a target for 

drug development, holding great potential as a new class of therapeutics to combat 

obesity-related disorders. 

 

1.2.7 Subcutaneous vs. Visceral Adiposity: An Ergonomic Issue 

   The central theme of this research in that adipose function is a key factor in metabolic 

health, but due to several reasons (discussed later), adipose tissue can fail to function 

optimally. In terms of comprising an efficient reservoir of stored energy, such 

dysfunction or failure is responsible for metabolic obesity. 
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   A sustained disequilibrium in energy balance (energy intake vs. expenditure) can 

initiate adipose tissue expansion. However, adipose tissue has a limited capacity to 

expand. Particularly visceral fat, which is packed inside the body cavities and links 

internal organs, and therefore it has a more restricted potential for enlargement. Within 

body compartments, visceral adipose depots are usually connected and surround other 

tissues and organs. The abdomen, formed by the abdominal muscles, pelvis, and the 

ribcage, is a firm structure and relatively inflexible to accommodate anatomical changes 

effectively. Therefore, over-expansion of visceral adipose pads in the abdomen is 

potentially harmful to other organs; it needs to be kept under control. 

   Compared to the semi-rigid constrains of body compartments, the skin is a soft tissue 

organ which covers ligaments, muscles, and bones (88, 89). The epidermis is an outer 

layer of the skin, forming the major barrier which protects the body from mechanical 

and other physical external impacts (90). Dermis is the middle layer of the skin. It 

contains functional units such as sensory receptors or sweat glands. It is also rich in 

ECM components, and this ECM framework provides mechanical strength to the dermis 

(and therefore the skin), as well as an almost unlimited flexibility to this soft tissue (91). 

The dermis also contains a significant number of stem cells to sustain the high rate of 

skin turnover required for its renewal (92). Hypodermis is not really a part of the skin, 

but it lies immediately beneath the dermis. It is in this layer where subcutaneous 

adipocytes reside (Fig. 1.7) (93). Considering these details, it can be appreciated that 

subcutaneous adipose tissue beneath the skin has more space to enlarge than do visceral 

fat depots. 
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Figure 1.7: Human skin layers and adipocytes in the subcutaneous layer (hypodermis). 

Illustration taken from 
©
iStockphoto.com/James_Steidl. 

 

   At this stage, the question arises: what factors determine the particular adipose tissue 

for storage of excess energy? Unfortunately, the mechanisms guiding/directing excess 

energy into adipose pads remain largely unknown. Distinct gene networks regulate the 

development of adipose tissues. These transcriptional programs can be reprogrammed 

over an individual’s life, for example during the menopause in women (94). Particular 

programs could be inherited within families, as noted by anecdotal observations of body 

shape within families, but this requires more formal study. The topology of regional fat 

deposition is yet to be understood, but it could provide an important tool to understand 

the nature of obesity. For example, numerous clinical studies have reported that some 

individuals with severe adipose expansion seem to exhibit normal physiology or 

hormonal profiles. Such healthy but highly overweight people are classified as 
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“metabolically healthy obese” (MHO). They exhibit increased subcutaneous adiposity 

(95), and show limited expansion of visceral fat (less abdominal obesity). It is still 

debated whether calling metabolically healthy people “obese” or “overweight” is 

appropriate. In this thesis, obesity is discussed as an unhealthy state. 

 

1.3 Regulation of Energy Homeostasis and Insulin Sensitivity 

   Adipose tissue contributes importantly to whole body energy homeostasis (96). It can 

take up, store, and release such nutrients as glucose (converted to FA in lipogenesis) 

and FAs, as well as structural molecules like cholesterol. Adipose also releases lipids 

for use as an energy molecule for other tissues. By releasing certain hormones, adipose 

tissue(s) also programs the hypothalamus to organize “appetite” regulation (97). As 

with other organs in the body, adipose tissue has a unique developmental, structural, 

and functional pattern and physiological limits as outlined in section 1.2. Different 

mechanisms and genes regulate expansion of the adipose storage capacity; however, 

details about these gene cassettes and their regulation remain largely unknown. What is 

known that adipose tissue of some individuals exhibit higher capacity to expand than 

other individuals, and in such “protected” individuals, some depots appear able to store 

fat without showing any abnormal signals. Such overweight/obese individuals may be 

said to be “metabolically obese healthy” (MHO) (section 1.2.7). 

 

1.3.1 Energy Homeostasis 

   There is no universality in the capacity of human organ systems. Mutations, 

polymorphisms, and epigenetic alterations such as genomic imprinting or histone 

modification predicate the capacity and limits of organ functions. Accordingly, some 

individuals can have a “better quality” adipose tissue which retains its normal 

functioning despite the physiologically unusual circumstances of consistent nutrient 
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overload and minimal energy expenditure. Conversely, others, even under 

circumstances of relatively minimal energy surplus, have adipose tissue that readily 

emits stress signals (or “S.O.S.”) (restricted lipogenesis, increased lipolysis, stress and 

inflammation etc.). These stress signals are discussed in later sections of this chapter, 

and are the subject of research throughout this thesis. In sum, the phenomenon of 

adipose stress (or dysfunction) indicates the potential harmfulness of obesity. 

   In humans and the mammals (such as rodents), food intake is regulated by specific 

appetite hormones (98). The appetite traffic control centre resides, principally in the 

hypothalamus (99). Brain signals (such as neuropeptides), the gastrointestinal endocrine 

tissue, and the systemic circulation converge on the hypothalamus to regulate energy 

homeostasis (food intake vs. energy expenditure). The amount and pattern of release of 

appetite-regulating hormones differs between normal weight and obese individuals. 

 

1.3.1.1 “Eating”  

   Hunger is a subjective motivational state. In the physiological sense, hunger (feeling) 

increases when the body needs fuel. As mentioned above, this feeling is orchestrated via 

appetite hormones, such as leptin, adiponectin, insulin, and ghrelin. Hunger signals are 

initiated from the gastrointestinal system and increase as the circulating blood glucose 

concentration falls. Moreover, blood levels of other molecules such as amino acids, 

peptides, and FAs can also provide direct and/or indirect information or feedback to the 

brain, which coordinates feeling of hunger and food intake in response to this feeling. 

The brainstem, adjacent to the hypothalamus, is another important part of the central 

nervous system responsible for controlling ingestion behaviours (100). Eating is an 

ingestion process that is directly related to the energy balance in the body. Hunger, 

eating, and satiety are regulated by a neuronal circuit between the endocrine system 

(located in the gastrointestinal tract, pancreatic β cells and adipose tissue), 
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hypothalamus, and brainstem. Mutations and polymorphisms in this circuit alter 

behaviours in ways that lead to the development of obesity (101, 102). 

   Regulation of feeding behaviours is complex; for instance, there is emerging evidence 

that circadian rhythm is an important determinant in the development of obesity and 

insulin resistance; the circadian rhythm of an individual can assign or establish specific 

times for eating events during the 24h day (103). Prior to these certain time periods, the 

body initiates insulin secretion, so causing a decrease in blood glucose levels and a 

resultant “pre-meal hunger” feeling. For instance, irregular shift-workers or long-flight 

pilots may be inclined to gain weight more easily than regular shift workers because of 

the disruption of their circadian rhythm-adjusted insulin secretion pattern. 

 

1.3.2 Insulin 

   Insulin is a peptide exclusively produced by pancreatic β cells (104).  It controls 

energy homeostasis by promoting glucose uptake by cells (adipocytes, myocytes, 

neurons etc.) from the circulation, and by suppressing hepatic glucose production. 

Accordingly, the amount of insulin produced and secreted by β cells is proportional to 

the blood glucose levels, teleologically because very high glucose levels are toxic for 

the body and insulin helps to keep blood glucose levels in a “nontoxic” range. Besides 

its circulating glucose lowering effect, insulin has diverse anabolic and catabolic effects 

on other metabolic pathways and in several cell types (105, 106, 107). In light of all 

these functions, insulin is an important regulator of whole body energy homeostasis. 

   At the postprandial stage, glucose is taken up by β cells of the pancreatic islets (108). 

Within these β cells, glycolysis generates ATP which further triggers a chemical 

cascade resulting in the release of insulin (Fig. 1.8). While other factors contribute to 

insulin secretion or its inhibition, increasing blood glucose is a constant stimulus for 

insulin release. Insulin release is episodic (109). Several compounds and neuronal 
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signals provide a feedback network to the pancreas and, depending on the individual’s 

metabolic rate, the quantity of insulin released, and the periodicity of oscillations in the 

pattern of insulin release can change. 

 

 

Figure 1.8: Insulin secretion from pancreatic β cells. Increased ATP levels close ATP-

sensitive K
+
 channels and open voltage-gated Ca

2+
 channels via membrane depolarization. 

Increasing cellular Ca
2+

 levels regulate movement and fusion of insulin-containing vesicles to 

the plasma membrane for the exocytosis of insulin molecules. 

 

   Healthy adipose tissue responds promptly to low concentrations of insulin. The first 

response is rapid clearance of glucose from the circulation. Conversely, an obese 

individual with a sedentary lifestyle can have stressed adipose tissue (discussed later) 

that resists responding to the insulin stimulus, and thereby, shows impaired or delayed 

glucose clearance from the circulation. Accordingly, the insulin responsiveness of 
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tissues such as adipose and muscle determines overall whole body insulin sensitivity 

(110); the contribution of muscle is higher than adipose depots (111). 

 

1.3.2.1 Bodily Response to Insulin 

   Bodily (systemic) “insulin sensitivity” is defined by the duration of the clearance 

profile of postprandial blood sugar from the circulation (110). Insulin-sensitive 

individuals show a rapid increase in blood insulin levels upon feeding until the blood 

glucose is restored to certain lower levels.  

   Insulin resistance starts, at least initially, in response to lifestyle imbalance, and this is 

compounded by aging. Thus, it occurs when individuals take unhealthy habits, such as 

over-eating, irregular sleeping habits (altered circadian rhythm), and sedentary lifestyle. 

The severity ranges from mild insulin resistance to pre-diabetes (with increased fasting 

blood glucose [FBG]) and type 2 diabetes (112). Insulin resistance results in glucose 

intolerance which has potentially harmful consequences on the body. In humans, blood 

glucose concentrations between 7.8 – 11.0 mmol/L at 2 hours after a meal or glucose 

challenge (oral glucose tolerance test) indicate glucose intolerance, which is attributed 

to insulin resistance. In a recent study in mice, FBG levels between 10 – 15 mmol/L 

were defined as pre-diabetic, whereas levels higher than 15 mmol/L were accepted as 

the diabetic phenotype (113). 

   In mild insulin resistance, pancreatic β cells release more insulin molecules into the 

circulation in an attempt to overcome the relative lack of responsiveness of tissues to 

insulin (114). Herein lies a key issue: insulin resistance, as defined, pertains uniquely to 

carbohydrate metabolism, not to other of the biological effects of insulin. Specifically, 

insulin is an important anabolic/catabolic agent, and a prolonged increase in blood 

insulin level itself has important metabolic consequences, particularly on lipid turnover, 

as will be discussed later. In addition, the sustained effort of β cells to produce, store, 
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and release more insulin may cause cellular stress to those β cells, thereby impairing 

their function and eventually causing their deletion by apoptosis (the interesting cell 

biology behind this is beyond the scope of the present review) (115, 116). At this stage, 

blood insulin levels will be less increased because the stressed and damaged β cells 

become dysfunctional and the β cell mass decreases. β cell dysfunction, together with 

the severity of systemic insulin resistance, determines the incidence and severity of T2D 

(117). Unlike type 1 diabetes (autoimmune destruction of β cells), T2D is established on 

the severity of the insulin resistance; therefore T2D is associated with obesity and can 

be prevented or glucose tolerance improved by a more active daily life and healthier-

eating (118, 119). 

 

1.3.3 From Tissue to Whole Body Insulin Resistance 

   Different tissues contribute differently to systemic (overall) insulin resistance. 

Myocytes (muscle cells) are one important regulator of body energy homeostasis and an 

important target for insulin. Cardiac and smooth muscle (in intestines, blood vessels 

etc.) contract unconsciously whereas skeletal muscle works voluntarily (120). By the 

contraction of myofibrils, muscle provides motion to the organism, and this requires 

work; therefore, muscle cells utilize large amounts of ATP molecules as their energy 

source. 

 

1.3.3.1 Muscle and Exercise 

   Oxidation of carbohydrates is the main energy source in myocytes. In muscle, glucose 

is stored as glycogen molecules. An 80 kg young male (normal BMI) has an average of 

total 0.6-1.2 kg glycogen mass (average over a day), nearly all of it is stored in skeletal 

muscle cells (a small quantity is in liver) (121). Nevertheless, muscle cells use far more 
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glucose than they store. Muscle is a leading tissue for energy consumption. As a result, 

myocytes gain a special importance in the regulation of total body insulin sensitivity. 

   Physical activities such as running, pulling, pushing or jumping result from the 

contraction of muscles. There are different types of muscle contractions depending on 

several parameters (muscle shortening vs. muscle lengthening etc.) but the common 

factor is that every muscle requires energy for contraction (122). The source of energy 

for contraction is ATP molecules, but the molecules that are used to generate ATP vary 

in myocytes, as discussed next. 

 

1.3.3.2 Energy Expenditure in Muscle and Insulin 

   According to the sliding filament theory, ATP hydrolysis to form adenosine 

diphosphate (ADP) molecule reorients myosin heads and binds them to neighbouring 

actin filaments; this event forms myosin cross-bridges (123). With the removal of ADP, 

myosin cross-bridges rotate, and when myosin heads bind new ATP molecules, the 

cross-bridges release the actin filaments and cause one unit motion along the filament. 

When secondary ATP molecules are hydrolyzed to ADP, myosin heads become 

reoriented to the initial position (124). The repetition of this event requires large 

amounts of ATP. In addition, the reduction of ATP during physical activity 

(contractions) activates other cellular pathways in myocytes, in order to generate more 

ATP molecules. 

   A higher AMP/ATP ratio in myocytes increases the phosphorylation of AMP-

activated protein kinase α (AMPKα) (125). In turn, phospho-(P)-AMPK reorganizes 

cellular metabolism. It modulates increases in mitochondrial biogenesis, FA oxidation, 

and glucose transport (uptake). In myocytes, GLUT4 is the main glucose transporter 

and P-AMPK controls its effective function (126). It does this by phosphorylating AKT 

substrate of 160 kDa (AS160) proteins that facilitate the localization of GLUT4 vesicles 
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into the plasma membrane. This event increases cellular glucose uptake into the 

cytoplasm, offering a direct link between muscle activity and glucose clearance from 

the circulation (127). 

   Insulin has multi-dimensional effects on muscle tissue. The anabolic effects of insulin 

on muscle have been long debated in both medical and sports circles. Some scientists 

suggest that insulin increased the protein synthesis of myocytes, whereas others claim 

the opposite (128). Nonetheless, recent studies have shown that insulin can increase or 

decrease the metabolic rate of myocytes in a dose-dependent manner (129, 130). It 

seems likely, therefore, that insulin is an important regulator of myogenesis (131). 

   Insulin initiates signal transduction in myocytes by binding to insulin receptors. 

Insulin-stimulated phosphorylation of its receptors induces signal transduction through 

the insulin receptor substrates (IRS)-1,2 and phosphatidylinositol 3-kinase (PI3K) 

proteins (132, 133). The effects of regular muscle activity on all these molecules can 

vary. Different studies have reported upregulation or downregulation of insulin 

receptors, as well as on the adapter molecules (IRSs and PI3K), depending on the 

duration and intensity of the exercise (134, 135). Effectively, insulin signalling travels 

through a cluster of molecules resident on the intracellular surface of the cell membrane 

until it results in the activation of protein kinase B (AKT) by its phosphorylation. 

Phospho-(P)-AKT is a serine/threonine-specific kinase that regulates such key 

metabolic mechanisms as cell survival (inhibition of apoptosis), cell division (escape 

from G1 cell cycle arrest), glycogen synthesis (increased), and upregulation of GLUT4 

production and localization on the cellular surface (136, 137). 

While muscle insulin sensitivity correlates positively with the extent of physical 

activity, there are other effects of exercise training on myocytes that need to be 

considered. For instance, it is apparent that exercise enhances myocyte insulin 

sensitivity by improving intracellular insulin signalling, while activation of AKT and 
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AMPK results in increased glucose uptake from the circulation into myocytes (138, 

139). Moreover, factors improved by insulin signalling, such as enhanced cell survival, 

stimulated cell proliferation, and increased mitochondrial biogenesis favour muscle 

development (140, 141). A characteristic feature of T2D is skeletal muscle with 

impaired insulin signal transduction (142). Exercise improves muscle (and therefore 

systemic) insulin sensitivity, with the obvious implication that exercise is a possible 

intervention to prevent development of T2D, as well as to improve glycemic control. 

 

1.3.3.3 Aerobic vs. Anaerobic Respiration in Myocytes 

   A sedentary lifestyle substantially decreases the energy consumption rates of an 

individual. As previously mentioned, easy access to food and over-eating cause high 

calorie intake. One of the best ways to balance the excess energy intake is to increase 

energy expenditure with an active lifestyle. However, increased physical activity is not 

the ultimate solution for the prevention of obesity and T2D development because 

myocytes have a finite capacity for contraction. This is partly because they require a 

maintenance period/break between sessions of physical activity. 

   Myocytes harvest ATP molecules by glycolytic activity; glycolysis can happen either 

in the presence or absence of oxygen molecules (143). Aerobic (oxidative) respiration is 

an efficient way of producing ATP from glucose, and the end product, pyruvic acid, can 

be used in other reactions. The problem with oxidative respiration is that it is slow, and 

it is not able to provide sufficient energy to myocytes during short-burst or long-lasting 

exercise (144). When myocytes require higher amounts of energy than is contained 

within the ATP reserves (demand > supply), they undergo anaerobic respiration. Even 

though this is a faster way of producing ATP molecules, it is less efficient (145). 

Further, the end (waste) product of anaerobic respiration is lactic acid (lactate), the 

accumulation of which is toxic to myocytes (146, 147). 
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1.3.4 Effects of Energy Surplus on Muscle 

   When energy intake overwhelms the amount of energy that an individual can spend 

by physical activity (which depends on the muscle/exercise capacity), weight gain 

becomes inevitable. Despite this, an individual may prefer a sedentary lifestyle. As a 

result of such a lifestyle, myocytes could be inactive, not oxidize energy molecules, and 

become engorged with glycogen (later fat) molecules. If this is the case, they do not 

have further capacity to take up or process glucose from the circulation (148). This 

triggers down-regulation of the insulin response in myocytes, so as, teleologically, to 

protect themselves from the energy surplus. As a consequence, systemic insulin 

resistance increases (149). 

 

1.3.4.1 Molecular Modifications in Myocytes 

   In order to tolerate energy surplus, muscle cells undergo substantive metabolic 

modifications. As mentioned in section 1.3.2, nutrient response is mainly regulated by 

insulin (and IGF1). Insulin orchestrates cellular metabolism mainly by activation of 

AKT; the phosphorylation status of AKT predicts its activity. AKT can be 

phosphorylated on either threonine (T)308 or serine (S)473, and these phosphoproteins 

may have antagonistic effects on each other (150, 151). Phosphatase enzymes, such as 

the phosphatase and tensin homolog protein (PTEN) also regulate AKT kinase activity 

(152, 153). Recent studies indicate that ATP-binding stabilizes the phosphorylated sites 

of AKT molecules by preventing phosphatase access (154, 155). Using AMPK-

activating drugs, it has been shown that P-AMPK, which can be also produced by a high 

AMP/ATP ratio, can regulate dephosphorylation and inactivation of AKT enzymes 

(156). These findings suggest that energy dynamics (AMP/ATP or ADP/ATP ratios) are 
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important regulators of AKT activity, and, hence, of the insulin responses in myocytes 

(Fig. 1.9). 

 

 

Figure 1.9: Changes in the ATP/ADP/AMP gradient in myocytes effect glucose and fatty 

acid uptake. Energy consumption increases AMP levels, which activate AMPK. AMPK 

phosphorylates AS160, which facilitates fusion of GLUT4 and CD36 vesicles into the plasma 

membrane so as to increase glucose and LCFA transport into the cell. In addition, active AMPK 

increases mitochondrial biogenesis and FA oxidation to produce more ATP. Abbreviations: 

AMPK, AMP-activated protein kinase; AS160, AKT substrate of 160 kDA; CD36, cluster of 

differentiation 36; LCFA, long chain fatty acid. 

 

   Insulin-dependent AKT activation inhibits forkhead box O (FOXO) transcription 

factors. This downregulates expression of IRSs and enzymes that catalyze 

gluconeogenesis (157). Energy surplus also activates mammalian target of rapamycin 

complex 1 (mTORC1), a sensor of cellular nutrient/energy levels. In turn, activation of 

mTORC1 prevents assembly of the mTORC2 complex (152). mTORC2 is the molecule 

which mediates S473-phosphorylation of AKT molecules; inactivation of mTORC2 

prevents further transduction of the insulin response and prevents AS160 
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phosphorylation. As previously mentioned (Section 1.3.3.2), P-AS160 activity is 

required for the localization of GLUT4 on the cell surface; therefore, energy surplus 

eventually renders GLUT4 molecules dysfunctional as they are not targeted to plasma 

membrane even though they may be present in the cell. Under conditions of calorie 

restriction, cellular ATP/AMP levels remain lower; this inhibits mTORC1, assembly of 

mTORC2 and maintenance of insulin sensitivity in myocytes. 

   As stated, muscle tissue is the greatest site of energy expenditure in the body. 

Inadequate activity levels impair muscle efficiency for energy expenditure. Physical 

inactivity causes a “deceleration” in muscle activity. In this context, adipose tissue (and 

a lesser extent the liver) becomes an important site to process the energy surplus evident 

in circulating metabolites (especially glucose and FAs). 

   In summary, food means energy and survival. For this reason, human bodies have 

evolved to store as much energy as possible when food is present. In fact, most animals, 

not only mammals, have evolved to store energy (fat) in their bodies (10). Adipose 

tissue is the main storage organ for such energy. An increase in muscle insulin 

resistance results from impairment of muscle metabolism, and this targets adipose tissue 

to process the circulating glucose and balance glucose intolerance. Muscle inefficacy, 

together with over-eating, creates a considerable burden on the adipose. Adipose tissue 

responds to this imbalanced energy homeostasis by increasing the size and the number 

of adipocytes. However, due to its limited capacity to expand further to accommodate 

continuing energy surplus, adipose stress occurs which results in inflammation and 

dysfunction of the tissue, as discussed later (Section 1.4.4.5) in this review. 

 

1.4 Relationship between Adipocyte Size and Function 

   Systeomics is a multidisciplinary approach to biology and medical sciences, which 

incorporates several sub-disciplines, such as genomics, computational and mathematical 
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biology, and molecular experimental approaches. Using this systematic approach 

investigates conditions holistically instead by reductionism. Systeomics is gaining 

special importance in obesity research. This is because development of obesity and its 

relationship to metabolic comorbidities involves composite investigations of cell 

signalling, metabolic networks and environmental interactions. “Obesity” offers an 

excellent example to study the relationship between phenotype and genotype, as well as 

interactions between environmental factors and genotype in determining disease 

phenotype. Finally, it is important for investigators and clinicians to keep in mind that 

metabolic obesity is not the result of dysfunction of a single tissue, it is a failure of a 

multifactorial, interactive system that involves several tissues. 

 

1.4.1 The Pathway to Adipocyte Hypertrophy 

   The genetic program that determines bodily energy storage is tightly regulated. 

Accordingly, some individuals find it difficult to lose weight whereas others find it 

extremely hard to “gain” weight (158). The human body tends to maintain consistent 

body weight and energy homeostasis; to a certain extent, it resists the tendency to gain 

or lose weight. Certain factors such as early development in life, genetic predisposition, 

over-eating, and physical inactivity impair this balance, thereby initiating a series of 

processes that lead to weight gain and development of obesity. As stated previously 

(section 1.3), the first tissues to react to circulating excess nutrients (energy) are 

(arguably) pancreatic β cells and muscle; however, muscle energy storage capability is 

quite small and restricted. Moreover, if the individual prefers a sedentary lifestyle with 

minimum use of muscles, adipose tissue is the next “in line” to undergo modifications. 

With adipose tissue, reaction to the presence of excess energy starts from the most 

identical structural units, mature adipocytes. 
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   The word “hypertrophy” is derived from the two Greek words, “hyper”, which means 

exceeding, beyond (excess) and “trophia” as in feeding, nourishment. This explanation 

for the origin of the word is particularly appropriate to describe how adipocytes become 

over-expanded as the result of excess “circulating” energy (nutrients). In medical 

terminology, hypertrophy is used to describe the increasing volume of a cell type or 

tissue (159). In the presence of circulating excess energy, existing adipocytes take up 

glucose from the circulation and convert it into neutral lipids, essentially, this involves 

synthesis of LCFAs and their package into triglycerides (TAGs) – this process is termed 

lipogenesis. TAGs, and to a lesser extend other lipids, are stored in LDs, a specialized 

lipid storage organelle, which are abundant in adipocytes. 

 

1.4.2 Adipocyte Lipogenesis 

   Lipogenesis is important in adipocytes for two reasons: Firstly, adipocytes help 

regulate glucose tolerance, orchestrated by insulin. Secondly, adipocytes store lipid 

molecules for use during a later state of nutrient deprivation. 

   Glucose is the starting molecule in respiration to produce ATP. The molar mass of 

glucose molecule is 180.16 g/mol, and one gram contains 16 kJ energy. The most 

common glucose polymer in the mammalian body is glycogen (160). Except in the 

brain, where glucose is the only energy source, glucose (and glycogen) provides short-

burst energy to the system. Although glucose molecules contain relatively less energy 

than other energy sources (lipids, protein etc.), its metabolization is considerably faster. 

Presumably this is why muscle cells store energy as glycogen. Adipose tissue does not 

need a “short-burst” source of energy. It is comprised of adipocytes that sustain their 

life cycle with a minimum number of mitochondria, except for the beige and brown 

adipocytes, which are metabolically more active, as discussed earlier. In all, the 

response of adipocytes to stimuli and bodily needs is slower but longer-lasting. 
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   The main function of adipocytes is to store energy. Such storage is useful for other 

tissues when needed in times of energy demand (increased physical activity) or nutrient 

deprivation (starvation). Adipocytes store energy in lipid molecules (mostly as in TAG). 

Mass per mass, the same amount of lipid contains double the energy of glucose (or 

amino acids); one gram lipid contains approximately 38 kJ (161). Moreover, TAGs are 

hydrophobic, virtually insoluble in water. This is because the polar hydroxyls of 

glycerol and the polar carboxylates of the FAs form ester linkage, with eversion of the 

non-polar acyl chain. The hydrophobic character of TAGs allows cells to store lipids in 

greater amounts. 

   Lipogenesis, thereby, involves two main events: LCFA synthesis (de novo 

lipogenesis) and formation of TAGs. TAGs are comprised of one glycerol molecule 

with 3 fatty acyl side chains (161). In adipocytes, monosaccharides, such as glucose, 

can also be used as starting molecule for lipogenesis. Depending on the type of FAs, 

TAGs can be saturated or unsaturated. Unsaturated lipids have lower melting points and 

are more likely to be in liquid form at room temperature. Recent studies have 

demonstrated that the type of the LCFA (saturated vs. unsaturated) can influence the 

development of tissue insulin resistance and inflammation, in particular effecting on 

PPARγ function (more details in Section 1.5) (162, 163). 

 

1.4.3 Digestion and Absorption of Energy Molecules 

   After eating, the digestion of carbohydrates requires the hydrolysis of complex 

(starch) or simple (maltose) carbohydrates into their component monomers 

(monosaccharides). Intestinal villi absorb monosaccharides by active transport across 

the cellular membrane (164, 165). Carbohydrate digestion takes place from the saliva 

(minimal) to the upper small intestine (maximal), and large intestines (metabolism by 

bacterial flora). 
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   Lipids cannot be absorbed from the intestines in form of TAGs (166). The digestion 

and absorption of lipids is promoted by bile (167); a metastable, alkaline solution 

produced and secreted by hepatocytes into bile duct. Bile is stored in the gallbladder, 

where it goes under secondary modifications by bile duct epithelial cells. It consists of 

bile salts, pigments (bilirubin etc.), neutral lipids, phospholipids, cholesterol, and 

electrolytes. Bile salts are produced by the oxidation of cholesterol molecules (168). 

The oxidation of cholesterol molecules to produce bile acids is a multistep process that 

occurs only in hepatocytes (169, 170). Bile acids can “self-limit” their own production 

by signalling in a feed forward process; accordingly, bile acids can act as a steroid 

hormone through the activation of FXR (171). FXR is a nuclear receptor which binds to 

DNA upon activation, where it regulates the hepatic expression of many other 

transcription factors, such as short heterodimeric partner (SHP), SREBP2, and PPARα 

in liver (172). FXR activation can indirectly reduce hepatic lipogenesis, suppress 

cholesterol de novo synthesis of cholesterol and increase the β-oxidation of LCFAs 

(173, 174). FXR is not only expressed in hepatocytes but also in adipose and some other 

tissues, such as the intestine. It seems likely that FXR activation has different effects on 

different tissue types (discussed later for adipose tissue) (175, 176). 

   Within enterocytes, FAs are reassembled onto glycerol molecules to form TAGs, 

which in turn are packed into chylomicrons in the endoplasmic reticulum (177). 

Chylomicrons are the largest lipoproteins, being composed of proteins, TAGs, and 

cholesterol esters (Fig. 1.10) (178). Chylomicrons are synthesized by the mucosal cells 

of intestinal villi, and are secreted into the lymphatic system, eventually reaching the 

systemic circulation. From there, they target other tissues such as cardiac and skeletal 

muscle, adipose tissue and liver. When its lipid load has been delivered, the 

chylomicron remnant (with residual traces of lipids) is directed to liver for catabolism 

(179). 
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Figure 1.10: Formation of chylomicrons. Chylomicrons are the largest lipoproteins. They 

contain triglycerides, phospholipids, unesterified cholesterols, cholesteryl esters, and proteins. 

Chylomicrons are assembled in intestinal epithelial cells by dietary lipids absorbed from 

intestines, and deliver their cargo to adipose tissue via blood circulation. 

 

1.4.4 Insulin and Adipocytes 

   Adipocytes can take up both sugars and lipids from the circulation. As pointed out 

earlier (section 1.3.2), insulin regulates glucose entry to adipocytes. In this respect, 

adipocyte insulin signalling has a distinctive pattern compared to other cell types, and 

insulin is critical for the control of adipocyte metabolic reactions (discussed later). 
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1.4.4.1 Glucose Uptake 

   In adipocytes, as in myocytes, GLUT4 is the main glucose transporter (180, 181). 

Recent studies have shown that hippocampal neurons can also produce GLUT4, and 

lack of GLUT4 activity in these cells causes memory impairment and behavioural 

changes, with a tendency towards depression (182, 183). When circulating insulin levels 

are low, GLUT4 molecules are retained as vesicles in the interior of cells (184). At this 

stage, GLUT4 molecules remain inactive. Insulin binding to its receptors activates a 

signal cascade which results in the relocation of GLUT4 into the cellular membrane. 

Accordingly, insulin dictates the rate of the movement of GLUT4 molecules in 

adipocytes, but there are also data which indicate possible insulin-independent 

mechanisms for translocation of GLUT4, for instance, in conditions of acute, extensive 

exercise. 

 

1.4.4.2 Lipid Uptake 

   Cluster of differentiation 36 (CD36) is a class B scavenger receptor present in many 

cell types (185). Besides its several other functions, it is an important FA translocator in 

adipocytes and skeletal muscle cells. CD36 can bind LCFAs. Thus, it is required for 

lipid utilization in myocytes and energy storage in adipocytes (Fig. 1.11). Similar to 

GLUT4 relocation into the cellular surface, vesicles carrying CD36 molecules can be 

translocated to the cell membrane upon insulin stimulation (186). In muscle cells, 

muscle activity (contraction) can also promote CD36 translocation to increase LCFA 

uptake from the circulation (187). The mechanism of insulin-induced CD36 

translocation resembles that of insulin-induced GLUT4 translocation (186). Besides 

CD36, other FA translocators have been identified in adipocytes which mediate FA-

uptake from the circulation, such as members of FA transport protein (FATP) family. 
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Figure 1.11: Cross-regulation of GLUT4 and CD36 vesicles. Increasing AMP levels activate 

AMPK, whereas insulin signalling activates AKT molecules. Both these pathways regulate 

GLUT4 and CD36 vesicles, orchestrating their movement and fusion to the cellular plasma 

membrane. Abbreviations: AMPK, AMP-activated protein kinase; AKT, protein kinase B; 

CD36, cluster of differentiation 36; FABP, fatty acid binding protein; IRS, insulin receptor 

substrate; LCFA, long chain fatty acid; PI3K, phosphoinositide 3-kinase. 

 

1.4.4.3 “Caveola” and Insulin Signalling in Adipocytes 

   Lipid rafts are structural units of plasma membrane which consists of 

glycosphingolipids, proteins and cholesterol molecules (188). Lipid rafts provide the 

perfect “docking sites” for receptor signalling and membrane transport proteins. 

Caveolae are non-planar lipid rafts composed of caveolin proteins. They are abundant in 
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adipocytes, where they are formed by caveolin 1 (CAV1) and CAV2 (189). CAV1 is 

also present in some other cell types, such as fibroblasts, but its highest expression is 

observed in adipocytes. 

   CAV1 and CAV2 form high-molecular-mass complexes. Expression of CAV2 

depends on CAV1, because without CAV1, CAV2 is trapped within the Golgi (190). 

Cholesterol deprivation in adipocytes causes disassociation of CAV1 proteins and 

disassembly of the caveola structure. As the result of these interactions, abundant 

cholesterol content is vital for adipocyte metabolism, particularly for adipocyte insulin 

signalling (191). 

   Insulin receptors have tyrosine kinase activity. Insulin binding causes their auto-

phosphorylation so as to initiate the insulin signalling cascade (140). On adipocytes, 

insulin receptors reside on caveolae, which function as specialized signalling 

compartments. Recent studies have shown that CAV1 proteins not only provide anchors 

or scaffolding for these receptors, but also enhance insulin signal transduction via 

protein interactions (189, 190). In recent studies, insulin has been found to cause 

phosphorylation of CAV1 proteins. 

 

1.4.4.4 Caveola and Glucose Uptake 

   Caveolae units are also thought to be important for GLUT4 translocation into plasma 

membrane, although the mechanisms are not yet fully understood. Konstantin Kandror 

and his colleagues have demonstrated that caveolae and GLUT4 vesicle membranes 

have distinctive structures (192). Further, cholesterol deprivation from caveolae 

(achieved using agents such as β-methyl-cyclodextrin [β-MCD]) downregulates GLUT4 

internalization (193). In other words, without functional caveolae, GLUT4 proteins 

remain locked into the plasma membrane and their endocytosis is impaired. In addition, 

Alex Cohen and his colleagues have shown that CAV1-null mice express three- to four-
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fold higher levels of GLUT4 protein in adipocytes to compensate for the impairment of 

GLUT4 translocation (190). Moreover, some data suggest that insulin induces tyrosine 

phosphorylation of casitas B-lineage protein (c-CBL). In turn, phospho-c-CBL interacts 

with CBL-associated protein (CAP) and flotillin, to bring GLUT4 vesicles to the 

cellular surface and attach them into the plasma membrane. Accordingly, CAV1 is 

needed for stabilization of the CAP/Flotillin/P-CBL complex. A 21 kDa small GTPase 

molecule, TC10, is also involved in this mechanism (194). 

 

1.4.4.5 Effects of Insulin on Adipocyte Metabolism 

   As described in the preceding two sections, post-prandial insulin stimulation causes 

relocation of glucose and lipid translocators to the adipocyte plasma membrane to 

initiate uptake of these molecules. Meanwhile, insulin-stimulated AKT phosphorylation 

has other consequences in adipocytes, additional to the significant increase in glucose 

and LCFA uptake. In this sense, insulin is remarkable: most anabolic reactions are 

activated by only insulin in adipocytes. 

   Insulin stimulates adipogenic activity via increasing PPARγ expression (195). FOXO1 

negatively regulates adipogenesis by binding PPARγ transcription sites. Insulin-

stimulated P-AKT phosphorylates FOXO1. Phosphorylation of FOXO1 results in the 

release of this protein from DNA, as well as an increase in cellular expression of PPARγ 

(Fig. 1.12) (196, 197). 
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Figure 1.12: Phosphorylation of FOXO1 via insulin signalling activates adipogenesis by 

increased expression of PPARγ. Abbreviations: AKT, protein kinase B, FOXO1, forkhead box 

protein; IR, insulin receptor; IRS, insulin receptor substrate; PDK1, phosphoinositide-dependant 

kinase 1; PI3K, phosphoinositide 3-kinase; PPARγ, peroxisome proliferator-activated receptor 

gamma. 

 

   In lean adipocytes in the fed state, active P-AKT causes a decrease in cellular cAMP 

levels (198). In contrast, during fasting, activation of adrenoreceptors activates adenyl 

cyclase, thereby increases cellular cAMP levels. In turn, increased cellular cAMP 

activates protein kinase A (PKA) by its phosphorylation. PKA is an enzyme that 

phosphorylates perilipin (PLIN) proteins as well as hormone-sensitive lipase (HSL), and 

at the same time inhibits lipogenesis and stimulates lipolysis, thereby suppressing 

adipogenesis (199). HSL is a key enzyme that catalFyzes adipocyte lipolysis; it 

becomes activated when other compartments in the body need to mobilize energy. 

Insulin inhibits lipolysis in adipocytes by suppressing HSL activity. It does this 

indirectly, both by inhibiting phosphorylation of PLIN (lipid droplet) molecules, and by 

inhibiting PKA. Insulin can also inhibit de novo FA synthesis by suppressing ATP-

citrate lyase (ACLY) by inhibiting glycogen synthase kinase 3 (GSK3) activity (200, 

201). 
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   In the presence of excess food, surplus carbohydrates are primarily oxidized instead of 

being converted into LCFAs (202). Nevertheless, when sedentary lifestyle minimizes 

the use of energy by muscles, conversion of carbohydrates into FAs can increase in 

adipocytes. On the other hand, de novo synthesis of certain LCFAs is continuous in 

adipocytes. This is, at least partly, because some bioactive LCFAs used by adipocytes 

are distinct from those taken from nutrients or “recycled” from other tissues. These 

specialized LCFAs (particularly poly-unsaturates) often serve as structural or messenger 

molecules (203). 

 

1.4.5 Lipid Storage in Adipocytes 

   The sn-glycerol-3-phosphate pathway is the dominant biosynthetic pathway for 

producing TAGs in adipocytes and hepatocytes (204). The reaction is catalyzed in the 

endoplasmic reticulum. The pre-cursor molecule, sn-glycerol-3-phosphate, is used to 

produce mono-, di-, and triglycerides (respectively abbreviated in this thesis as MAGs, 

DAGs, and TAGs) by esterification of FAs. The glycerol backbone is traditionally 

assumed to be derived from glucose catabolism. However, there are increasing data to 

suggest that de novo glyceroneogenesis in adipocytes can occur from pyruvate (205). 

TAGs produced by this machinery are stored in LDs. 

 

1.4.5.1 A Controversial Organelle: Lipid Droplets 

   LDs are cellular organelles which regulate the storage and hydrolysis of neutral lipids; 

they are formed in every cell of the body and in all eukaryotic organisms, indicated very 

basic and “primitive” functions (206). Lipid droplet is the accepted nomenclature, but 

these organelles are far from an inert cellular storage vehicle. In fact, the function of 

such LDs is better viewed as a protective mechanism by which cells such as adipocytes 

and hepatocytes protect themselves from lipotoxicity. LDs do play a special role in 
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some secretory epithelia, such as mammary gland, and in monocyte-macrophage, but 

these are beyond the scope of the present review. 

 

1.4.5.2 Lipid Droplet Proteins 

   Several specialized protein families are important for LD structure, function 

(lipolysis), and regulation (Table 1). One important family is comprised of the PLIN 

proteins (207). Their expression is regulated by the key adipogenic transcription factor, 

PPARγ. Dynamic interactions between PLIN molecules and PPARγ determine the size 

of the LD, as well as its rate of lipolysis (208, 209). For instance, phosphorylation of 

PLIN1 allows 1-acylglycerol-3-phosphate O-acyltransferase (CGI-58) to interact with 

adipose triglyceride lipase (ATGL [Desnutrin]). CGI-58 enhances ATGL activity 20-

fold, which initiates the breakdown of TAGs stored in LD (210). Lipolysis is more 

critical for BAT. It is not surprising, therefore that the protein composition and 

regulation of LDs differs in brown and white adipocytes (211). Another important 

protein is tail-interacting protein of 47 kDa (TIP47); this functions in the maturation of 

LDs (212). Early data suggested a role of TIP47 in the biogenesis of LDs, but recent 

findings have shown that suppression of TIP47 blocks maturation of LDs, not their 

production. PLINs and TIP47 are usually co-located on the surface of LDs with adipose 

differentiation-related protein (ADRP) (213). In preadipocytes, an increase in Plin and 

Adrp mRNA levels is a good indicator of adipocyte differentiation. Protein 

crystallography studies have shown that PLINs-ADRP-TIP47 (PAT) proteins might 

function in analogous fashion with apolipoproteins; they consist of helical repeats that 

interact with lipids, as well as C-terminal subunit interacting proteins (214). 
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1.4.5.3 Cholesterol in Adipocytes 

   LDs are surrounded by a phospholipid (mono)-layer (206). Unlike its presence in 

other tissues, most of the cholesterol in adipocytes is in the non-esterified (free) form 

and located within the LD membrane (215). Free cholesterol (FC) also exists in the core 

of LDs, but this comprises a lesser quantity; the core of LDs is mainly comprised of 

TAGs and cholesterol esters. Recent studies have suggested that the structure of LDs 

resembles the inner structure of an onion bulb rather than that of an orange (216). This 

analogy reflects the multiple “scale membranes” inside of a LD rather than existence of 

a single surface membrane (Fig. 1.13). Considering the fact that FC is packed in the 

membrane of LDs, such an “onion bulb” phenomenon would explain why adipocytes 

are very rich in FC without undergoing lipotoxicity; FC is bioactive and toxic to 

hepatocytes (217). 

 

 



CHAPTER 1: Introduction 

53 
 



CHAPTER 1: Introduction 

54 
 

   During the expansion of LDs, caveolin molecules from the plasma membrane are 

directed to their surface (218). Thus, LD expansion requires large amounts of 

cholesterol and caveolin proteins. Cholesterol is an essential structural unit of caveolae, 

and similar to the plasma membrane, caveolae have important structural and functional 

(lipolysis) duties within LD membrane (Fig. 1.14). It has been shown that CAV1 assists 

PKA-mediated phosphorylation of PLIN proteins (219). Phosphorylation dissembles 

PLINs from the LD surface and provides “open-spots” for ATGL activity. 

 

 

Figure 1.13: Onion bulb-like structure of lipid droplets. Adjusted from the original article 

(216). Unlike plasma membrane, lipid droplet membrane is composed of a single layer of 

phospholipids and unesterified cholesterols. As shown in the section, lipid droplets (encircled) 

contain multiple membrane layers amalgamated, which make them perfect cholesterol storages. 

Bar: 0.5 µm. Abbreviations: LD, lipid droplet; PL, plasma membrane. 
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Figure 1.14: Distribution of caveolin-1 and perilipin in adipocytes. Adjusted from the 

original article (218). (A) Caveolae appear on the surface of adipocytes (PL, plasma membrane). 

Gold particles show caveolin-1 in the caveolae. (B) Apart from PL, caveolin-1 is abundant both 

on the surface and in the core of lipid droplets. The droplet on the left side shows co-

localization of perilipin (12 nm gold particles) and caveolin-1 (18 nm gold particles) on the lipid 

droplet surface. The core of lipid droplet on the right side contains only caveolin-1 labels. Bar: 

0.2 µm. P face – outer surface. 

 

1.4.5.4 Cholesterol as a Messenger Molecule in Adipocytes 

   Recent studies indicate that cholesterol plays a messenger role in adipocytes. As 

described already (section 1.2.1), continued disequilibrium in energy homeostasis 

results in large hypertrophic adipocytes, and this results in cholesterol accumulation in 

adipocytes. While intracellular cholesterol transport is not yet completely understood, it 
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has been shown that expansion of LDs increases adipocyte size and redistributes 

cholesterol from the plasma membrane to LD membranes (215). This process decreases 

the cholesterol content of the adipocyte plasma membrane. As a consequence, the 

fluidity of the plasma membrane increases. At the same time, the enlargement in LD 

surface area causes an increase in auto-lipolysis of the droplet TAGs resulting from the 

increased CAV proteins on the LD surface. 

   In adipocytes, 30% of FAs produced by lipolysis are re-esterified with glycerol. In 

other words, the FA efflux pathway works with 70% efficiency in adipocytes. This 

increases the cellular concentration of FAs (220). The combination of increased cellular 

FAs and cholesterol deprivation selectively induces SREBP2 as a transcription factor in 

hypertrophic adipocytes (221). In other words, a peculiar “unhelpful” consequence of 

overnutrition in adipose tissue is that, although, the system is loaded by dietary 

cholesterol as a result of over-eating, adipocyte hypertrophy evokes a fake “cholesterol 

depletion” signal. This induces cholesterol biosynthesis in adipocytes through induction 

of SREBP2 and its target genes, e.g. 3–hydroxy-3-methyl-glutaryl-CoA reductase 

(HMG-CoR). This sequence of maladjustment opens the gate to a series of metabolic 

changes in adipose tissue and the whole system. This is because hypertrophy in 

adipocytes is related to recruitment of hyperplasia in adipose tissue. However, the link 

between enlarged adipocytes and the increase in preadipocyte proliferation/adipogenic 

differentiation remains largely unknown (discussed later). 

 

1.4.5.5 Adipocyte Hypertrophy and Critical Cell Size 

   To recapitulate, the perception of cholesterol depletion in enlarging adipocytes is 

detected by SREBP2. The moment when SREBP2 stimulation is switched on might be 

critical for fat cell size, the time when cellular machinery is activated to induce 

neighbour and surrounding preadipocytes to proceed to adipogenesis. Such adipocytes 
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also express paracrine factors (discussed later) which result in recruitment and 

proliferation of adipocyte progenitors. According to this concept, cholesterol molecules 

may not only be structural units in adipocytes, but also take on important functional 

tasks in cellular metabolism. Finally, when adipocytes reach their critical cell size, the 

formation of hyperplastic adipose tissue is initiated as a “system” adjustment to over-

nutrient/energy imbalance. 

   As stated previously, FXR can inhibit SREBP activity in hepatocytes (222). FXR is 

also expressed in adipocytes, and FXR activation can exhibit positive effects on 

adipogenesis and adipose insulin sensitivity (223); however, full mechanism in adipose 

tissue has not yet been clarified. In this context, FXR activation can delay or reorganize 

the metabolic modifications in adipocytes via their effects on SREBP2 when lipid 

loading leads to adipocytes reaching the critical size. This interesting concept requires 

further investigation for its clarification. The possible anti-inflammatory role for FXR 

activation in adipose tissue as well as the metabolic improvements could be related to 

improved adipose functions (discussed in Chapter 5). This concept allows for a pivotal 

role of FXR activity for treatment of metabolic disorders, not only fatty liver disease. 

 

1.4.6 Hyperplasticity of Adipose Tissue 

   Fat cell size is directly related to the development of hyperplasticity in adipose tissue. 

Thus, adipocyte expansion results in increased adiposity. Enlargement also changes the 

hormone and peptide expression and secretion profiles of adipocytes (224). Two types 

of effects flow from the changes in adipose-derived hormones, cytokines and 

chemokines that result from the adipocyte phenotypic switch due to enlargement. The 

first effects on adipose tissue are the re-organization, and the second are effects on 

energy homeostasis. As one example, a decrease in adiponectin production resulting 

from adipocyte hypertrophy results in hyperplasia of adipose tissue, but it is also 
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associated with decreased systemic insulin sensitivity because adiponectin is an 

important insulin-sensitizing agent, particularly in the liver (225). 

 

1.4.6.1 Preadipocyte Proliferation 

   Paracrine growth factors are important for the development of adipose tissue 

hyperplasticity. Paracrine signalling is a form of communication between adjacent cells 

that results either from their direct interaction or is affected by local mediators. 

Hypertrophic adipocytes produce paracrine growth factors which stimulate an increase 

in preadipocyte number (226, 227). In 2013, Valerie Chaves and her colleagues reported 

patients with isolated growth hormone (GH) deficiency regarding adipose tissue 

changes (228). These patients were found to have enlarged adipocytes, but the average 

fat cell number was actually less compared to matched (GH producing) controls. 

Treatment of GH-deficient patients with growth hormone had two interesting 

consequences: it increased the number of adipocytes, but it decreased adipocyte volume. 

Interestingly, there was a particular reduction in abdominal (visceral) fat mass because 

of growth hormone-stimulated lipolysis. Another interesting finding was the small 

amounts of growth hormone produced in obese individuals without GH deficiency from 

hypothalamic or pituitary disease. 

 

1.4.7 Relationship of Adipocyte Size to Function 

   Adipocyte phenotype is directly related to its size. For example, the proliferative 

capacity of adipocytes, their β oxidation capacity and hormone/cytokine expression 

rates all differ in subpopulations of small, medium and large adipocytes. Accordingly, 

small (lean) adipocytes exhibit a more insulin-sensitive phenotype with a lipogenesis / 

lipolysis ratio that is correspondingly higher (229). Conversely, large adipocytes are 

insulin-resistant cells with an increased basal rate of lipolysis. 
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   Recent findings have shown even greater complexity, as there are different 

populations of small adipocytes (230). Accordingly, some of these small subpopulations 

are healthy and anti-inflammatory, whereas others can be highly cytotoxic, and 

contribute thereby to recruitment of inflammation into the tissue, particularly into 

visceral adipose. 

   Besides the changes in hormone and cytokine secretion, subcutaneous adipocyte 

hypertrophy paradoxically reduces TAG storage, which in turn increases FA and 

cholesterol over-flow to the muscles, visceral adipose depots, and liver (231, 232). This 

“spill-over” from large adipocytes into ectopic sites (tissues like muscle and liver that 

are not designed primarily for lipid storage) triggers systemic insulin resistance. The 

contribution of different adipose depots to the free FA (FFA) and cholesterol leakage 

varies between different pads. For example, although visceral adipocytes are generally 

smaller than subcutaneous adipocytes, their transmembrane FFA efflux is higher. 

Considering the fact that only adipocytes can release FFA to the circulation, visceral 

adipocytes assume special importance in systemic and portal FA flux, a process that 

increases systemic insulin resistance. In a recent study, the size distribution of omental 

adipocytes was found to be more closely correlated to measures of adiposity and 

metabolic parameters in Asian Indians than subcutaneous adipocyte size (233). In 

another study, Laura Gathercole and her colleagues found depot-specific differences in 

lipogenesis enzymes; subcutaneous adipocytes exhibited enhanced lipid storage 

capacity (234). However, it remains unclear whether visceral and subcutaneous 

adipocytes share the critical fat cell size (mentioned earlier) or not, and it is also unclear 

what causes the difference in the capacity of these adipose tissues to expand. 

   In the fasting state, plasma non-esterified FAs (NEFAs [same with FFAs]) are 

produced by adipocytes via TAG hydrolysis. In the obese state, such fat mobilization 

from adipocytes is impaired (204). Insulin-resistant hypertrophic adipocytes accumulate 
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increased amounts of cellular cAMP. This higher cellular cAMP concentration 

stimulates PKA, resulting in phosphorylation of PLIN and HSL. In turn, this increases 

lipolysis. In other words, swollen adipocytes in obesity exhibit increased lipolysis and 

NEFA efflux. A paradoxical finding in obesity is that the increase in basal lipolysis 

rates of hypertrophic adipocytes is largely unrelated to the increased plasma NEFA 

levels. As yet, the reason is not clear (uptake of NEFA by hepatocytes via CD36 may 

play a role) but hypertrophic adipocytes develop resistance to lipolysis and do not 

respond appropriately to such stimulants as catecholamines (235). 

   Longer periods of energy surplus and impaired energy homeostasis prolong the 

extension of hypertrophy and hyperplasia in adipocytes, causing an irreversible 

phenotypic switch in their cellular phenotype. These large adipocytes develop severe 

insulin resistance and produce pro-inflammatory factors such as chemokines (e.g., 

monocyte chemoattractant protein 1 [MCP1], chemerin) or tumor necrosis factor α 

(TNFα) and interleukin 6 (IL6), with resultant inflammatory recruitment into the tissue. 

The pro-inflammatory cytokines themselves stimulate ongoing lipolysis in these 

adipocytes, and also impair cellular anabolic pathways. 

 

1.5 Adipose Tissue Inflammation 

   If reaching to the critical cell size is the “first hit” leading to adipocyte dysfunction, 

the second hit could be the presence of ultrastructural abnormalities in hypertrophic 

adipocytes; but the second “hit” is a spectrum of events rather than one isolated 

incident. In this section, energy surplus-related abnormalities on adipocytes (and SVF 

cells) and their consequences on local and systemic levels are explained. Identification 

and regulation of these abnormalities remains a great challenge in adipose biology, but 

has the potential to explain the pathogenesis of adipose inflammation and dysregulation. 
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1.5.1 Vascularization in Expanding Adipose Tissues 

   Adipose readily undergo tissue reformation. It can easily shrink or expand, and adapt 

to the changing environmental and physiological conditions. Vascularization (macro or 

micro), therefore, is one important factor in adipose biology. In theory, vascularization 

should be well-regulated in parallel to adipose formational changes; however, in 

practice, it does not reflect the expansion rates of adipose tissue. Cardiac output does 

not increase sufficiently to provide enough oxygen and other components to growing 

adipose. As a result, a dysregulated adipose tissue blood flow occurs in metabolic 

obesity (236). 

   As stated previously (section 1.2.1), adipose tissue functions as an endocrine organ. It 

requires a well-established “delivery” system to receive resources and deliver factors to 

realize its regulatory (and endocrine) duties. A capillary network, therefore, is an 

important part of adipose tissue. Reduction in the density of this network resulting from 

adipose over-expansion can cause “vascular insufficiency” and contribute to the events 

that eventually lead to development of adipose inflammation and dysregulation. 

   Adipose expansion depends on angiogenesis, the process of forming new vessels from 

pre-existing vessels (237). Adipose tissue orchestrates its own neo-vascularization 

(angiogenesis) by expressing angiogenic factors such as leptin, apelin, and vascular 

endothelial growth factor (VEGF). This orchestration also includes anti-angiogenic 

factors that are produced by adipocytes and SVF cells such as endostatin, angiostatin 

and thrombospondin. 

   Obesity results in hypoperfusion of blood constituents, especially oxygen, into 

adipose tissue (236). As mentioned above, capillary density in various adipose depots 

can dramatically decrease during obesity development. Lower capillary density is 

usually accompanied by larger vessels in mesenteric fat formation (Fig. 1.15). In 
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addition, the diffusion distance between hypertrophic adipocytes and capillaries increase 

compared to that for lean adipocytes.  

 

 

Figure 1.15: Mesenteric fat and large blood vessels. Obtained from diabetic obese mice 

following the standard tissue harvest protocol in the host lab. 

 

   A lower capillary density and increased diffusion distance reduce the oxygen partial 

pressure (pO2) around adipocytes to cause tissue/cellular hypoxia. Some scientists 

believe that such reduced pO2 predicates the inflammatory response in adipose tissue 

(Fig. 1.16). In this context, experiments with cultured adipose explants have shown that 

expression of over 1000 genes changes in hypoxic conditions (236). Most of these 

changes cause hypoxic stress on adipocytes. 
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Figure 1.16: Changes in gene expression of adipocytes under different oxygen 

concentrations. Over-expansion of adipocytes leads to development of hypoxia in the tissue 

micro-environment. This results in significant changes in gene expression. Abbreviations: aP2, 

adipocyte protein 2; IL6, interleukin 6; MIF, macrophage migration inhibitory factor; PGC1α, 

PPARγ-co-activator 1 alpha; PPARγ, peroxisome proliferator-activated receptor gamma; UCP2, 

uncoupling protein 2. 
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1.5.1.1 Depot-Specific Differences in Adipose Vascularization 

   Angiogenic potential of different adipose depots is unclear. Nevertheless, it has been 

shown that actively-expanding adipose tissues contain more blood vessels than 

relatively stable ones. This is important because there are physiological and 

ergonomical limitations on visceral adipose growth whereas subcutaneous WAT can 

expand further without causing any metabolic problems (MHO individuals). 

Accordingly, a higher angiogenesis potential and denser capillary network is more 

likely in subcutaneous WAT (especially in humans) compared to visceral 

compartments. Visceral (intraabdominal) fat depots drain directly into the portal vein. 

Production of hypoxic stress-derived factors from adipocytes may therefore have direct 

and potentially harmful effects on other parts of the body, particularly liver. 

 

1.5.1.2 Other Factors Effecting on Adipose Vascular Capacity 

   The increase in postprandial (glucose-induced) adipose tissue blood flow is impaired 

for any level of glucose intolerance (238). This is a result of increased leptin levels in 

obese individuals. Leptin inhibits nitrite oxide (NO) production (239). The presumed 

reason is to oppose apoptosis (e.g., NO induces β cell apoptosis), but, decreased NO 

production results in dysregulation of endothelial cells, the inner-lining of blood vessels. 

Dysregulated endothelial cells negatively effects vascularity. 

   There are other factors influencing adipose vascularization, such as insulin, the 

sympathetic and parasympathetic nervous systems, gastrointestinal peptides, and 

vasodilators. For example, moderate exercise has been shown to improve vascular cell 

functions (240). As discussed in chapter 6, voluntary exercise improves adipose 

function in obese mice; improvements in vascularization through exercise may partly 

explain this improvement. 
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   Vascularization effects adipose function not only by preventing hypoxia, but also via 

functions of endothelial cells. Thus endothelial cells and adipose tissue control the 

permeability of adhesion and chemotactic factors and this effects infiltration of 

preadipocytes and immune cells into the tissue (241, 242). In this way, vascular 

insufficiency can act as the source and accelerator of adipose inflammation. The 

property of visceral adipose to be more prone to vascular insufficiency could also 

explain why visceral adipose depots are more likely to develop inflammation compared 

to subcutaneous WATs. 

 

1.5.2 Extracellular Matrix, Adipose Tissue, and Hypoxia 

   ECM is a protein layer in the connective tissues (243). ECM proteins such as 

collagen, laminin, and fibronectin are secreted from matrix forming cells by exocytosis. 

In adipose, there are two different forms of ECM: first form is known as “basement 

membrane” (244). This large fibrillary structure lies under the epidermis layer of 

subcutaneous WAT. The outer layers of several organs and blood vessels share similar 

structured feature with basement membrane (advanced fibrillary protein pool). 

   Secondly, the “interstitial matrix” is a filling material that provides a physical working 

environment for cells to conduct chemical reactions. Production of a flexible interstitial 

matrix is crucial for healthy adipose function because it enables cell-to-cell 

communications (autocrine and paracrine). The interstitial matrix is composed of two 

components: ECM proteins and interstitial fluid. Water is the important solvent in all 

living systems on earth and most chemical reactions take place in water-based 

interstitial fluid. The aquatic solvent contains ions and solutes such as glucose, FAs, 

cellular metabolites, hormones, cytokines and chemokines. A significant proportion of 

studies about “hypoxia and adipose tissue” have focused on changes in gene expression 

levels of adipokines rather than investigating the actual production and secretion of 
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adipose-derived peptides. Interstitial fluid offers sample of ever greater relevance to 

study the effects of hypoxic stress on adipose-derived factors. 

   Maintenance of the interstitial matrix bears a complex relationship to adipose 

function. Rapid expansion of adipose tissue impairs the composition and flexibility of 

interstitial matrix, possibly because of hypoxic stress on adipose cells, and especially on 

hypertrophic adipocytes. A defective interstitial matrix can itself distort the structure of 

adipose tissue and thereby contribute to adipose dysfunction (19). 

 

1.5.2.1 Activation of Hypoxia-Inducible Factors 

   Hypoxia-inducible factors (HIFs) are members of a transcription factor family that is 

responsive to changing oxygen levels (O2 homeostasis) (245). Oxygen deprivation in 

the adipose cellular microenvironment stimulates an increase in HIF expression. HIF1-α 

is an important member of the family both in humans and rodents (246). Its stimulation 

by hypoxia promotes tissue vascularization by increasing expression of endothelial 

nitric oxide synthase (eNOS) (247). However, activated HIF1-α in adipose tissue, unlike 

its action in tumour tissues, may fail to initiate a proper angiogenesis response 

(discussed later). 

   Other HIFs, such as HIF2-α or HIF3-α, are not as well-studied as HIF1-α. 

Nevertheless, limited data show that other HIFs are more like tissue-specific factors. 

HIF2-α appears to have anti-inflammatory properties, such as inducing an anti-

inflammatory phenotype in macrophages by increasing arginase 1 (AG1) expression 

(248). There are also other master regulators of the hypoxia response. Some of these are 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and cAMP 

response element-binding protein (CREB) (249, 250). Activation of these factors during 

hypoxia has been shown. However, it is not clear whether they are a part of the hypoxia 

response in adipocytes, and whether they enhance hypoxic stress-related inflammation. 
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1.5.2.2 Hypoxia-Related Oxidative Stress 

   Oxygen is a highly reactive element. It is the third most abundant atom in the universe 

(by mass) and most organic molecules include oxygen as a constituent. As mentioned 

earlier (section 1.2.5), oxygen is central to ROS generation. ROS can arise from 

different are both important sources of ROS. Reduction of molecular oxygen (O2) to 

H2O requires 4 electrons (e
-
) in the Electron Transport Chain (ETC). During these redox 

reactions (transportation of e
-
 from donors to recipients), electron leakage can generate 

ROS, thereby causing irreversible damage to biomolecules, especially macromolecules 

(251, 252). These macromolecules include amino acids (peptides, proteins), nucleic 

acids, and lipids. For example, lipid peroxidation is a well-studied form of ROS damage 

to unsaturated LCFAs, from which cellular and organelle membranes are damaged with 

serious consequences (253, 254). In hypertrophic adipocytes, chronic lipolysis (section 

1.4.7), driven by inflammation, is an important source of ROS in hypertrophic 

adipocytes. 

   A seemingly paradoxical finding is that ROS have been found in hypoxic lesions 

(255). Hypoxia-dependent increase in HIF1-α activates anaerobic metabolism and 

glycolysis in adipocytes, but this does not stop is from activating the Kreb’s cycle and 

ETC in adipocytes, which occurs by using the residual oxygen in the tissue. On the 

other hand, eNOS can also generate ROS by its reductase function (256, 257). A 

delicate balance can shift from NO to ROS production. Peroxynitrite (ONOO
-
) is a 

strong oxidant that occurs with the interaction of O2- and NO. Growth factors and 

cytokines can also result in ROS production, for example, TNFα can stimulate 

nicotinamide adenine dinucleaotide phosphate (NAD(P)H) oxidases that can result in 

ROS production. These factor-dependant pathways of ROS production are well-

documented for vascular smooth muscle cells, but there are increasing data for other cell 

types and tissues. 
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   In light of the above considerations, it is apparent that oxygen is both vital and deadly 

for adipocytes; hypoxia and oxidative stress can cause serious cellular injury or death. 

There are several anti-oxidant molecules (e.g., superoxide dismutases [section 1.2.5]) 

that confer cyto-protective effects against ROS (258). Nuclear factor-erythroid 2 p45-

related factor 2 (NRF2) is an important transcription factor in the regulation of such 

anti-oxidants. NRF2 binds both anti-oxidant and electrophile responsive elements 

(A/EpRE) in the nucleus after stimulation by ROS exposure (259). This 

initiates/accelerates expression of downstream anti-oxidant molecules such as 

glutathione S-transferase and glutathione peroxidase 2 (260). Mitochondrial (SOD2) or 

extracellular (SOD3) superoxide dismutases catalyze the transformation of ROS into 

less harmful derivatives, such as hydrogen peroxide (H2O2) and O2 (261). The cellular 

levels of SOD2 and SOD3 differ depending on whether oxidative stress is acute 

(increases expression) or chronic (decreases expression). 

 

1.5.2.3 Hypoxia-Related Lactate Accumulation in Adipocytes 

   Hypoxia-induced changes in cellular metabolism have some other deleterious 

consequences on hypertrophic adipocytes. As stated previously (section 1.3.3), 

anaerobic respiration causes cellular lactate accumulation that is toxic to the cell (238). 

A direct correlation between adipocyte size and cellular lactate production has been 

shown (262). Up to 70% of cellular glucose is metabolized to lactate in hypertrophic 

adipocytes (263). Moreover, recent studies have shown that lactate is an important 

extracellular messenger that can stimulate inflammatory responses in macrophages, as 

well as promote tissue insulin resistance (264, 265). This may indicate an indirect link 

between hypoxia and insulin resistance in obesity. 

1.5.2.4 Hypoxia-Related Dysregulation of Adipose ECM 
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   Increasing HIF1-α levels dictate an alternative transcriptional program on adipocytes 

that involve over-expression of some ECM proteins (Fig. 1.17) (266). Expression of 

such genes associated with ECM production as type 1 collagen alpha 1 (COL1A1) and 

type 3 collagen alpha 1 (COL3A1) increase in hypoxic conditions (10% pO2). More 

than 50 genes are upregulated by HIF1-α (236). Expression of matrix 

metalloproteinases, MMP2 and MMP9, changes in hypoxia; these enzymes are 

important for tissue remodelling and ECM turnover. 

   Changes in interstitial matrix protein composition, caused by hypertrophic adipocytes, 

impair cellular communication and redox reactions (enzyme functions) in adipose 

tissue. Some studies also indicate an “early-phase fibrosis” in adipose tissue. This 

fibrosis induces adipose derangements, thereby linking adipose over-expansion to 

inflammatory recruitment and tissue insulin resistance (267). 

 

 

Figure 1.17: ECM of a hypertrophic vs. lean adipocyte. Adjusted from the original article 

(266). (A) Large hypertrophic adipocytes display abnormal enlarged ECM which appears 

expanded, whereas (B) small adipocytes express less ECM proteins. Scale bar: 30 µm. 

Abbreviations: LD, lipid droplet; Mt, mitochondrion. 
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1.5.3 Adipose Stress 

   Hypertrophic adipocytes and hyperplastic adipose tissues face serious problems 

because of the factors given below: 

- Vascular insufficiency-related hypoxic stress 

- Lactate accumulation 

- Distorted ECM formation 

- Fibrosis 

- Development of cellular and tissue insulin-resistance 

- Restricted lipogenesis, 

- Increased chronic lipolysis, 

- Excessive cholesterol production (activation of SREBP2) 

- Abnormal release of FAs and cellular lipotoxicity 

- Production of ROS and oxidative stress 

   Hypertrophic adipocytes exhibit substantial cellular stress or trauma and the 

consequences can be fatal. As evidence of this, several adipocyte ultrastructural 

abnormalities have been reported. Most of these abnormalities have been found to be 

more abundant in visceral depot adipocytes compared to subcutaneous depots. 

Hypertrophic adipocytes displaying ultrastructural abnormalities have been referred to 

as “degenerating” adipocytes (266). 

 

1.5.3.1 Adipocyte Ultrastructural Abnormalities 

   One of the first consequences of adipocyte stress is the appearance of organelle 

abnormalities. As reported by Gokhan Hotamisligil and his colleagues, endoplasmic 

reticulum (ER) stress is an important defect for the intersection of adipose inflammation 

and metabolic disease (Fig. 1.18) (268). ER is the major cellular component for the 

folding required during protein maturation and for intracellular trafficking. ER 
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dysfunction results in an unfolded protein response (UPR) that is critical for continued 

function of cellular metabolism. Exposure to ROS can promote UPR and ER stress in 

adipocytes, and/or alternatively conflicting data that ER provides a highly relevant 

environment for the generation of ROS. Nevertheless, continuous oxidative stress and 

accumulation of misfolded/unfolded proteins (and dilation of the ER lumen) has toxic 

effects on hypertrophic adipocytes. Increased activity of anti-ROS enzymes can also 

instigate ER stress (269). Hypertrophy of mitochondria and the Golgi complex are 

among other organelle abnormalities in hypertrophic adipocytes (Fig. 1.18) (270, 271). 

 

 

Figure 1.18: A hypertrophic adipocyte displaying ultrastructural abnormalities. As 

described in section 1.4.5, adipocytes stimulate SREBP2 activity after reaching to a 

critical cell size, to produce cholesterol, although hypertrophy initiates a “mistaken 

signal” of cholesterol deprivation in adipocytes (221). Excess amounts of cholesterol 

results in the formation of cholesterol crystals in hypertrophic adipocytes (Fig. 1.18) 

(266, 272). These cholesterol crystals are thought to activate NOD-like receptor family, 

pyrin domain containing 3 (NLRP3) inflammasome in adipocytes and force them to die 

by “pyroptosis” (discussed later in the section). 
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   Lysosomal permeabilization (LMP) appears to occur in the late stages of adipocyte 

degeneration. It is mainly driven by chronic oxidative stress (Fig. 1.18). LMP is highly 

lethal as the release of lysosomal enzyme content results in digestion of intracellular 

proteins (273). This triggers a series of events that result in cellular degeneration and 

death. On the other hand, other changes noted in hypertrophic degenerating adipocytes 

include unusual glycogen deposition, increased cAMP and Ca
++

 accumulation, a 

flattened nucleus and a thinner cytoplasmic rim (266). 

 

1.5.4 Adipokines 

   Adipose tissue is an active participant of bodily (energy) processes. As a secretory 

organ, it responds to stimulants by producing adipokines. Leptin, adiponectin, resistin, 

visfatin, and adipsin are the adipokines specifically/exclusively produced by adipocytes. 

There are publications reporting the production of some of these factors by other cell 

types, however, these observations were made after non-physiological manipulations. 

Other factors are produced by both adipocytes and SVF cells, such as IL molecules 

(e.g., IL6, IL10), TNFα, and MCP1. Lipid-engorgement of adipocytes and presence of 

ultrastructural abnormalities have adverse effects on adipose adipokine production 

(expression and secretion). These changes intensify stress on adipose cells and 

eventually recruit inflammation into the adipose tissue. 

 

1.5.4.1 Leptin 

   As described in section 1.2.1, leptin was the first adipose-derived hormone to be 

discovered (274). It is produced by mature adipocytes, mostly in subcutaneous WAT. 

Leptin has a central regulatory role on appetite control by binding its receptors that are 

highly expressed in the hypothalamus (275). Leptin levels increase after feeding, 

especially when the amount of nutrients (fat) stored in adipocytes reach as a certain 
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level. In addition, lower circulating leptin levels associate with suppression in insulin 

release from β cells; this also increases feeling of hunger. Obese individuals are prone to 

develop resistance to leptin stimulation in their brain (276). The relationship between 

hyperleptinemia and leptin resistance is similar to the “chicken and egg” phenomenon; 

therefore, the mechanism of leptin resistance is yet not clear but leptin resistance leads 

to a constant feeling of hunger in individuals that results in increased food intake and 

possibly obesity. 

   Hyperleptinemia is an important cause of immune cell dysmodulation, adipose 

dysregulation, and hyperinsulinemia in obese individuals (277). Hypertrophic 

adipocytes increase their leptin production. Leptin can inhibit apoptosis of β cells 

indirectly by decreasing systemic NO levels (278). The decreased NO levels and 

upregulation of adhesion molecules in adipose endothelial cells that result from 

increased leptin levels increase oxidative stress in these cells and cause their 

dysfunction. Moreover, leptin has direct effects on thymus function; it induces T 

lymphocyte proliferation and activation (279, 280). Some studies have reported that 

leptin-deficient ob/ob mice showed reduced inflammation but increased susceptibility to 

infections and to endotoxin (281). 

 

1.5.4.2 Adiponectin 

   Adiponectin is a 30 kDa adipokine. Low- (LMW [trimer]), middle- (MMW 

[hexamer]), or high- (HMW [dodecamer]) molecular weight forms are found in the 

circulation and the HMW form is accepted to be the main and biologically most 

effective form (282, 283). Adiponectin is found in microgram levels in a millilitre of 

blood whereas leptin is in nanogram amounts by mass; adiponectin is the most abundant 

hormone in the human circulation. 
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   Adiponectin levels are increased in MHO individuals. A recent study reported a direct 

correlation (association) between hyperadiponectemia and a MHO phenotype in obese 

African Americans (284). These subjects also showed lower circulating insulin levels, 

smaller waist circumference and higher circulating high-density (HDL) cholesterol. 

Obese subjects with hypoadiponectemia were diagnosed with metabolic syndrome. On 

the other hand, hypoadiponectemia triggers neovascularization which is necessary for 

the expansion of adipose mass. However, as stated previously (section 1.5.2), 

vascularization usually is not sufficient to accommodate the oxygen needs of expanding 

adipose tissues. 

   As mentioned earlier (section 1.3.2), eating causes activation and insulin secretion of 

β cells. The post-prandial insulin response results in increased lipid and glucose uptake 

in adipocytes. This stimulates PPARγ to produce more LD proteins. Meantime, PPARγ 

also upregulates adiponectin production from adipocytes as an insulin-sensitizing 

hormone (285, 286). PPARγ agonists (and its endogenous activation) induce 

adiponectin production in adipocytes. However, this is not the ultimate response in the 

regulation of adiponectin. Accordingly, increasing adiposity has been shown to reduce 

tissue and circulating adiponectin levels. For example, increased ROS levels cause a 

reduction in adiponectin expression during excessive adiposity (287, 288). Lipid-

engorgement in hypertrophic degenerating adipocytes also results in decreased 

adiponectin production (225, 289). 

   Adiponectin actions are exerted through two different receptors, AdipoR1 and 

AdipoR2. These are expressed differently in different tissues, resulting in different 

cellular and metabolic effects (290). Activation of DCC-interacting protein 13-α 

(APPL1) and the ratio of AdipoR1/2 determine the fate of human macrophages in 

adipose tissue, and is an important regulator of lipid metabolism, inflammation and 
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foam-cell formation from macrophages. Moreover, APPL1 is also involved in 

adiponectin/insulin-signalling cross-talk. 

   Another key function of adiponectin is that it is an important anti-inflammatory 

adipokine (291). Its globular domain structurally, but not sequentially, resembles that of 

TNFα. Adiponectin and TNFα have reciprocal inhibitory effects on each other. Thus, 

cellular indices leading to adiponectin downregulation stimulate TNFα expression in 

adipocytes. Conversely, adiponectin inhibits the pro-inflammatory NF-κB signalling 

(292, 293). Absence of adiponectin, therefore, has a permissive effect on inflammatory 

recruitment in adipose tissue. 

   As stated in Section 1.5.4, there are other important adipose-derived factors such as 

resistin, visfatin, and adipsin. Some of these have positive some of these have 

(relatively) negative effects on adipose and whole body homeostasis. For example, 

adipsin is an adipokine that connects healthy adipose function to sustaining pancreatic β 

cell function (294). Development of obesity suppresses expression of this adipokine 

(295). 

 

1.5.5 Adipose-Derived Inflammatory Factors 

   Caloric overload perturbs adipokine secretion in adipocytes. Constant lipid load 

switches healthy adipocytes (in those exhibiting increased adiponectin and IL10 

expression) to an “aggressive” (inflammatory) phenotype. Insulin is another player that 

contributes to promotion of an inflammatory response in adipocytes. Eventually, several 

inflammatory kinases become activated, such as c-Jun N-terminal kinase (JNK) and 

inhibitor κB kinase (IKK) in hypertrophic adipocytes and initiate secretion of such pro-

inflammatory factors as TNFα and MCP1 (296). The main “rationale” for these cellular 

reactions would seem to be to protect the cell from lipid-engorgement and lipotoxicity 
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(dyslipidemia); however, local protective mechanisms cause problems in systemic 

levels. 

 

1.5.5.1 TNFα 

   TNFα has attracted significant attention from scientists over the last two decades. It 

was first found in patients with cachexia. Cachexia is a disorder characterized by 

irreversible adipose and muscle waste in the body (297). Inflammatory responses in 

cachexia led scientists to discover TNFα, and it was no surprise to them that TNFα is 

also involved in the pathogenesis of obesity (298, 299). Accordingly, TNFα arises from 

tissue inflammatory responses, and further promotes tissue degradation. 

   An important reason for TNFα expression in enlarging adipocytes appears to be 

downregulation of cellular lipid and glucose uptake, thereby attempting to inhibit the 

constant stream of nutrients into nutrient-overloaded cells. How does this happen? 

TNFα inhibits intracellular insulin signalling by phosphorylation of IRS1 serine residue 

(300). IRS1 is unable to function as a signalling kinase when phosphorylated at serine 

instead of tyrosine residues. Meanwhile, TNFα also stimulates pro-inflammatory IL6 

and MCP1 production in adipocytes through activation of NF-κB (301, 302). Although 

adipocytes initiate the TNFα production in adipose tissue, pro-inflammatory (M1) 

macrophages augment TNFα production to a higher level. This results in chronic 

lipolysis of hypertrophic adipocytes. Accordingly, TNFα produced by macrophages 

(paracrine) and adipocytes themselves (autocrine) increases intracellular cAMP levels 

via activation of mitogen-activated protein kinase kinase (MEK) and extracellular 

signal-related kinase (ERK) pathway (303). As stated in section 1.4.4, increased 

intracellular cAMP stimulates PKA that results in hyperphosphorylation of lipid droplet 

perilipins and subsequently infiltration of HSL into LD and increase lipolysis. To 

summarize, TNFα abrogates lipid and glucose uptake in hypertrophic adipocytes, and 
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meantime, reverses lipid overload by activating lipolysis. These indices confer 

protective effects on adipocyte metabolism, but also promote peripheral (ectopic) lipid 

accumulation and systemic insulin resistance, linking obesity to metabolic syndrome. 

Conversely, individuals with MHO exhibit lower levels of TNFα and a reduced 

inflammatory profile (304). 

 

1.5.5.2 MCP1 

   MCP1 (also called CCL2) participates in adipose inflammation by chemo-attraction of 

immune cells, primarily monocytes and/or macrophages (305). MCP1 is mainly 

produced by mature adipocytes; there is a positive correlation between MCP1 and leptin 

expression. It is also thought that MCP1 expression starts with the expression of growth 

factors in hypertrophic adipocytes (section 1.4.6) (306). Monocytes are the macrophage 

progenitor cells, originated from BM. They can also differentiate into dendritic cells 

(DCs). MCP1 mediates chemotactic recruitment of monocytes into adipose tissue after 

binding to its receptor, CCR2, on these cells. Moreover, there are some studies showing 

that MCP1 triggers a pro-inflammatory phenotype transformation in monocytes (307, 

308). However, it is still not clear whether monocytes migrate to adipose tissue before 

their differentiation into macrophages or they start their transformation towards a pro-

inflammatory phenotype even in the circulation (pro-inflammatory monocytes). 

   Overall, elevated plasma level of MCP1 results in a systemic inflammatory response 

that is sufficient to initiate inflammation and insulin resistance, not only in adipose 

tissue, but also in liver and muscle (309). Researchers have shown that adipocyte-

specific over-expression of MCP1 is capable of causing systemic insulin resistance and 

hepatic lipid accumulation (310). In contrast, experiments on Ccr2
-/-

 mice have showed 

that absence of MCP1 results in reduced numbers of macrophages despite excessive fat 

accumulation; these mice exhibit a MHO-like phenotype (311). In conclusion, the 
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MCP1 – CCR2 axis is an important module in the initiation and acceleration of adipose 

inflammation. 

   Many other adipose-derived factors are important in the genesis of adipose 

inflammation and its relationship to systemic dysregulation, such as insulin resistance 

and atherosclerosis. Chemerin is a recently reported chemotactic adipokine; serum 

circulation of this novel adipokine was demonstrated to associate with metabolic 

syndrome (312). Some others are IL6, resistin, visfatin, and adipsin. Phenotype 

comparison of unhealthy (metabolic) obese individuals to MHO subjects has great 

potential to understand the pathophysiology these factors. An improved understanding 

of adipose-derived factors has therapeutic potential to combat obesity-related metabolic 

comorbidities. 

 

1.5.6 Adipose Tissue Macrophages and Inflammation 

   The origin of adipose tissue macrophages has been a major question until recently. 

Some studies reported important similarities between adipocytes and macrophages 

(313), and indeed other work has shown that preadipocytes, under certain stimuli, can 

differentiate into macrophages (314). Nevertheless, adipose tissue macrophages have 

generally been found to derive from the BM in vivo (315). In Chapter 4, we will discuss 

the origins of adipose tissue macrophages through the experiments performed with BM 

chimeric Tlr9
-/-

 and WT mice. 

 

1.5.6.1 Macrophage Crown-Like Structures 

   Although the exact reason is not clear, there are resident macrophages in adipose 

tissue. These macrophages exhibit an anti-inflammatory (M2) phenotype (316). 

Adipocyte hypertrophy and degeneration cause a phenotypic switch in these 

macrophages towards a pro-inflammatory (M1) profile (317). Although research in the 
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last few years has revealed much greater diversity of “flexibility” in macrophage 

subtypes, M1 and M2 phenotypes are used here for clarity. M1 macrophages start to 

express pro-inflammatory markers such as cluster of differentiation molecule 11b and 

11c (CD11b, CD11c), EGF-like module-containing mucin-like hormone receptor-like 1 

(F4/80), and etc (318, 319). Intercellular adhesion molecule (ICAM) is a pro-

inflammatory adhesion molecule that is produced upon stimulation by TNFα. Pro-

inflammatory M1 macrophages are the main source of ICAM production in inflamed 

WATs (320). Nevertheless, macrophage phenotypic switch is not sufficient to initiate an 

inflammatory response in adipose tissue. In this respect, installation of adipose tissue 

inflammation happens by the formation of “macrophage crown-like structures” (CLS) 

(230). Classically-activated (pro-inflammatory) M1 macrophages form CLSs by 

congregating around small adipocytes (Fig. 1.19). The close proximity of these 

macrophages intensifies their pro-inflammatory response by effecting on each other, via 

intercellular communication, paracrine signalling, etc. At times, these processes 

culminate in cellular fusion to form a giant multinucleate cell (referred as foam cells). 
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Figure 1.19: Adipose crown-like structures (CLSs) form around small injured or dead 

adipocyte. Classically-activated (M1 – F4/80 positive) pro-inflammatory macrophages 

recognize degenerating/dead adipocytes and coalesce around them to form CLSs, presumably so 

as to minimize the toxic effects of the cellular debris to the adipose tissue. 

 

1.5.6.2 Small Dead Adipocytes in the Centre of CLSs 

   In inflamed adipose tissues, 90% of macrophages are found in CLSs (321). At this 

stage, the vital question is that what induces/triggers macrophage accumulation to 

coalesce around small adipocytes.  Scientists have suggested this is “adipocyte death”. 

However, it is still not clear by which mechanisms macrophages can sense and migrate 

to degenerating or dead adipocytes. In this PhD thesis, we discuss the activation of 

damage/danger-associated molecular pattern (DAMP)-recognizing toll-like receptor 9 

(TLR9) in adipose tissue macrophages as one potential mechanism regarding the 

formation of CLSs (Chapter 4). Upon activation by signalling from one or more pattern 

recognition receptors (e.g., TLRs 4 and 9, NLRP3), M1 macrophages localize to dead 

adipocytes in order to clear (phagocytosis) toxic cellular debris and remnant LDs. 

Thereby, lipid-laden macrophages form “foam cells” during adipose inflammation 
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(321). In addition, M1 macrophages can also sense hypertrophic degenerating (injured) 

adipocytes and cause their death by extracellular signalling, such as by producing high 

concentration of TNFα after surrounding the cells (321, 322). These processes are 

presumably performed in the first instance, to maintain adipose structure and function. 

In other words, macrophages protect the whole tissue from degeneration and death by 

sacrificing individual adipocytes. In constant energy surplus, macrophage-mediated 

tissue remodelling becomes permanent and adipose tissue inflammation becomes 

“persistent”. 

   Until recently, small adipocyte subpopulations have been referred as healthy 

modulators in adipose tissue. Accordingly, large adipocytes were hypertrophic, pro-

inflammatory, and degenerating, whereas small-to-medium adipocytes were healthy and 

anti-inflammatory. This belief has been changing with the discovery of the remnants of 

adipocyte deaths in inflamed adipose tissues. A significant number of adipocytes die via 

pyroptosis and these cells are similarly small in size as are the new, healthy adipocytes. 

For this reason, detailed adipose morphometry analyses should also discriminate the 

types or “locale” of adipocytes (e.g., in relation to surrounding macrophages), not just 

their size. 

 

1.5.6.3 The Mechanisms of Adipocyte Death 

   Small adipocytes that are surrounded by CLSs exhibit characteristics of necrotic cell 

death (230). Some studies, however, reported apoptotic cell death after stimulation with 

high fat diet (HFD) (323). Both of these proposals are true but there is no single 

mechanism for adipocyte death. Hypertrophic degenerating adipocytes are sometimes 

forced to death by macrophages by a mechanism called “necroptosis”. Necroptosis is 

forced (inflammatory) cell death, primarily induced by TNFα (324, 325). Induction of 

TNF receptor activates the receptor-interacting protein kinase 3 / mixed lineage kinase 
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domain-like protein (RIP3/MLKL)-dependent necrosome and results in regulated 

(forced) necrosis (326). Nevertheless, most of these degenerating adipocytes die through 

pyroptosis and trigger the formation of CLS around them. 

   Progress in electron microscopic techniques has unravelled many subcellular 

abnormalities in hypertrophic adipocytes. As mentioned previously (section 1.5.3), 

these abnormalities are directly linked to adipocyte stress and they cause degeneration 

of the cells (266). These abnormal features and increased cellular stress can result in 

activation of NLRP3 inflammasome, which assembles with apoptosis-associated speck-

like protein containing a carboxyl-terminal CARD (ASC) to cause a pro-inflammatory 

dimerization of pro-caspase 1. This activates caspase 1 catalytic cleavage of these 

molecules to their active form (327). There is likely a direct association between 

generation of ROS derivatives and activation of NLRP3 (Fig. 1.20) (328). 
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Figure 1.20: Lipid-engorged adipocytes die of pyroptosis. Stress-related ultrastructural 

abnormalities activate the inflammasome complex in hypertrophic adipocytes. This leads to 

cleavage of pro-caspase 1 and induction of the pyroptotic cascade in the cell. Induction of TLR4 

and/or TLR9 by external stimuli and oxidative stress contribute to this process. Abbreviations: 

ASC, apoptosis-associated speck-like protein containing a carboxyl-terminal CARD; DAMPs, 

damage/danger -associated molecular patterns; IRFs, interferon regulatory factors; NF-κB, 

nuclear factor kappa B; NLRP3, NOD-like receptor family, pyrin domain containing3; PAMPs, 

pathogen-associated molecular patterns; ROS, reactive oxygen species; TLR, toll-like receptor.  

 

   Caspases have protease activity; these enzymes are regulated by inflammasome and 

they can lead to cell death. Accordingly, caspase 1 is a highly pro-inflammatory cellular 

agent and it can kill the cell by an inflammatory form cell death, pyroptosis (327, 329). 

There are several characteristics of pyroptosis, such as water influx, osmotic lysis, 
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plasma membrane degradation, and release of pro-inflammatory cellular content (330). 

Like apoptosis, pyroptosis is also associated with DNA laddering, caused by DNase 

cleavage into ~200 bp oligonucleotides. Release of adipocyte cytokines and chemokines 

attracts other macrophages to locate around the cell. 

   There are similarities and differences between apoptosis, necrosis and pyroptosis, but 

they occur by different mechanisms. Pyroptosis requires formation of inflammasome 

(also called pyroptosome) and resulting caspase 1 activity, unlike apoptosis which 

requires cellular energy and caspase 3/7 activity (326, 329). Some characteristics of 

necrosis (and necroptosis) occur in pyroptosis, such as cellular swelling and pore 

formation in the plasma membrane. On the other hand, necrosis is generally not a 

programmed mechanism and does not require either caspase 1 or caspase 3/7 activity. 

   There are also other mechanisms identified with adipocyte death. For example, LMP 

in degenerating adipocytes results in activation of cathepsins (331, 332). Cathepsin B 

(CTSB) induces mitochondrial dysfunction whereas cathepsin D (CTSD) can induce 

pro-apoptotic protein activation. This results in cytochrome C release and activation of 

caspases in the cell. However, LMP can lead to cell death earlier than caspase activation 

in cells displaying characteristics of necrosis (333). 

 

1.5.7 Recruitment of Adipose Inflammation 

   Pyroptosis or pro-inflammatory forced death (necroptosis) causes cell lysis. This 

includes liberation of cellular lipid content. If lipid release is not controlled in the tissue, 

it causes lipotoxicity even to surrounding healthy adipocytes (266). For this reason, 

macrophages phagocytos the lipid extracts. This results in formation of the “foam cell-

like macrophage syncytia” in adipose tissue. 
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   Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an important 

glycoprotein that functions as a cytokine and modulates immune responses (334). It is 

produced by a variety of cell types, including immune cells, fibroblasts, and endothelial 

cells. Although it is produced locally, it has paracrine and endocrine effects on the 

maturation and migration of macrophages. In 2011, Daorong Feng and her colleagues 

performed an experiment on Gm-Csf-null mice to show whether adipocyte death was 

linked to macrophage infiltration (335). The results were striking. Gm-Csf-null mice fed 

a HFD displayed similar numbers of adipocyte deaths compared to HFD-fed controls. 

However, macrophage infiltration into adipose tissue was markedly reduced. Likewise, 

disabling of macrophages by using liposome-clodronate did not display much effect on 

adipocyte death although there was a significant decrease in adipose inflammatory 

recruitment. These findings imply that the death of hypertrophic degenerating 

adipocytes is independent of macrophage recruitment. 

   Perhaps the most interesting finding in this study was the improvement in systemic 

insulin resistance in HFD-fed Gm-Csf-null and liposome-clodronate macrophage-

ablated mice (335). This finding needs to be supported by future investigations. 

Nevertheless, it points to adipose inflammation being more hazardous than adipocyte 

dysregulation in terms of effecting on whole body energy metabolism. 

 

1.5.8 “Persistency” in Adipose Inflammation and Adipose Restriction 

   Constant energy surplus, continuous adipocyte death and adipose inflammatory 

recruitment cause permanent changes in adipose tissues (336). Inflammation becomes 

persistent and chronic inflammation results in chronic metabolic changes. Persistent 

adipose inflammation is a local reaction comparable to infection or trauma-induced 

immune responses. This is why obesity is called a low grade (sterile) inflammatory 

disease. 
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   In one study, C57 male mice fed a HFD lost 40% of their epididymal WAT mass 

between 12 and 16 weeks of age. From 16 to 20 weeks, epididymal WAT weight 

become fixed and did not change (337). During 12 – 20 weeks, whole body insulin 

resistance increase at a constant rate and hepatomegaly occurred. Macro-steatosis 

became evident after 12 weeks. On the other hand, there was a reduction in circulation 

MCP1 levels after 12 weeks. The reason for the latter change may be that a balance 

between macrophage saturation and relatively healthier adipocytes eventually is 

established in persistently inflamed adipose tissues. 

   Similar to the above findings, most adipose depots become dysregulated in unhealthy 

obese individuals. Macrophages in persistent adipose inflammation behave like 

“guardians” and regulate adipocyte metabolism. Most hypertrophic degenerating 

adipocytes die, but they are not fully replenished by new adipocytes. In addition, other 

already-existing adipocytes become insulin-resistant so that their glucose and lipid 

uptake is limited. Overall, these mechanisms protect adipose tissues (and the system) 

from adipocyte mass destructions, toxic effects of cellular lysis and further tissue 

atrophy; however, adipose tissues decrease in size and develop effectively a “growth 

restriction”. 

   Adipose restriction is a chronic problem. Perhaps, the most important physiological 

process of adipose tissue is buffering the acute lipid fluxes in the circulation during the 

post prandial phase. When the lipid/energy storage capacity is impaired in adipose 

tissues, ectopic deposition of lipids happens, primarily in the liver and skeletal muscle. 

The details of the ectopic lipid accumulation and the progression of non-alcoholic fatty 

liver disease will be discussed in Chapter 3, which the effects of adipose dysregulation 

and inflammation on myocyte insulin sensitivity and activity are the subject of further 

consideration in Chapter 6. 
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1.6 Overall Hypothesis and Aims of This Reseach 

Systemic insulin resistance, NAFLD and NASH is the outcome of complex interactions 

between nutrient supply, blood glucose, and adipose lipid storage capacity reflected by 

adipose morphology and inflammation. We therefore investigated the effects of 

alterations in adipose function on glucose metabolism and liver, as well as mechanisms 

of adipose inflammatory recruitment and adipose dysfunction in murine models of 

dietary obesity and/or metabolic obesity with NASH. Specifically, 

a) Examine the effects of adipose expansion and morphometry as well as adipose 

inflammation in relation to NASH pathogenesis (Chapter 3). 

b) Elaborate adipose morphometry in terms of adipocyte size changes and 

distribution in metabolic obesity with adipose inflammation; test whether TLR9 

signaling plays a role in adipose inflammatory recruitment and investigate 

whether adipose inflammation is related to liver inflammatory recruitment in 

NASH (Chapter 4). 

c) Test whether 6-ECDCA confers metabolic improvements in diabetic obese mice 

as well as in mice with diet-induced obesity; compare adiposity, inflammation 

and macrophage phenotypic polarization in different adipose compartments from 

obese, 6-ECDCA-treated vs. untreated mice (Chapter 5). 

d) Test whether provision of an exercise wheel prevents adipose inflammation and 

dysfunction as well as insulin resistance, diabetes, hepatic steatosis and NASH 

(Chapter 6). 
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CHAPTER 2: MATERIALS AND METHODS 

 

   The laboratory equipment used in this study is listed in Appendix A. The compounds 

and commercial kits used are also listed in Appendix A. Detailed protocols for 

biochemical and molecular techniques are provided in Appendix B. 

 

2.1 Animal care 

2.1.1 Mice 

2.1.1.1 Ethics and Animal Housing 

   Experimental procedures were approved by the Animal Ethics Committee (AEC) of 

The Australian National University (ANU) under the animal ethics protocol number 

A2012/22. Experimental mice were bred, maintained and housed at the animal facility 

in Hugh Ennor Building of The ANU or The Canberra Hospital. Unless stated 

otherwise, mice were grouped 2-5 per cage, with ad-libitum access to water and food, 

under 12-hour day/night cycle and constant temperature of 22
0
C. Cages were filled with 

bedding material as well as an igloo, wooden sticks, and other enrichment materials. 

 

2.1.1.2 Mice Strains and Backgrounds 

   Several lines of mutant or gene-deleted mice and different background strains have 

been used during this PhD project; specific information is provided regarding the choice 

of animal model in each Chapter. The mouse strains are NOD.B10, Balb/c, and C57B6. 

As a genetic model of obesity and non-alcoholic steatohepatitis (NASH), we used 

foz/foz mice (338). These mice have profoundly disordered appetite regulation due to a 

mutation of the Alms1 gene (susceptible to murine equivalent of Alström syndrome). 

They develop early-onset hyperphagic obesity with later development of insulin 
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resistance, diabetes, and dyslipidaemia associated with low serum adiponectin (339). In 

addition, Tlr9, Tlr4, MyD88 gene-deleted mice on C57B6 strain were used for specific 

experiments outlined in this thesis. 

 

2.1.2 Diets 

2.1.2.1 Atherogenic Diet 

   After weaning, mice were fed standard rodent chow diet (Gordon’s Speciality 

Stockfeed, Sydney, Australia) unless otherwise stated. As a dietary model of obesity, 

we used an atherogenic diet which contains 23% fat, 45% simple carbohydrate, and 

0.19% cholesterol (4.78 kcal/g digestible energy; Speciality Feeds, Glen Forrest, 

Australia). Food intake was assessed by weighing added and residual food on a weekly 

or fortnightly basis. 

 

2.1.2.2 Obeticholic (6-ethylchenodeoxycholic) Acid “Cupcakes” 

   To understand whether cholesterol overloading is relevant to adipose inflammation, 

we used an FXR agonist, obeticholic acid (OCA), administered orally (the rationale is 

presented in Chapter 6). 10 mg OCA was dissolved in 0.5 ml 50% ethyl alcohol (EtOH) 

and further in 50 ml distilled H2O. Drug solution was sprayed on 1 kg atherogenic diet 

(equally distributed) and the food was allowed to dry at 37
0
C for 2 hours and kept in a 

commercial cupcake tray at 4
0
C until complete evaporation. Final EtOH concentration 

in the diet was < 0.05%. The firm cupcakes were stored at 4
0
C until used. 

 

2.1.3 Anaesthesia and Tissue Collection 

   At the end of experimental procedures, mice were fasted for a standard 4 hour unless 

otherwise stated. Prior to the harvest, all mice were weighed and anaesthetized using 

100 mg/kg ketamine and 16 mg/kg xylazine, administered intra-peritoneally. Blood was 
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collected by intra-cardiac puncture, and serum separated by centrifugation of the blood 

sample at 10 min, 3500 rpm. Depending on the study, liver, visceral 

(epididymal/periovarian and/or mesenteric) WATs, subcutaneous WATs (lumbar and/or 

dorsal), BAT, pancreas, colon, and gastrocnemius muscle were removed by 

standardized procedures to ensure reproducibility. Tissue segments were fixed in 10% 

neutral buffered formalin and in cryofixative compound (frozen) for staining/histology 

purposes. The remainder of the tissues was snap-frozen in liquid nitrogen and stored at -

80
0
C until used for analyses. 

 

2.1.4 Exercise Protocol 

   From weaning (4 weeks age), half the cages were fitted with mice in pairs and an 

exercise wheel for ad libitum physical activity, which was monitored by recording 

wheel rotations with a cycle computer every week. Body weight was assessed weekly. 

Basic read-outs from the cycle computer were maximum speed (km/h), average speed 

(km/h), distance (km), and running time (h-min). Measurements were divided into two 

for each cage and read out (body weights were checked firstly to ensure that both mice 

had used the wheel evenly or close in the cage). 

 

2.1.5 In vivo Determination of Insulin Sensitivity 

   At the predetermined age, mice were fasted 14 hours, anesthetized and administered 

insulin (1 U/kg body weight), by intra-aortic injection. Liver, visceral and subcutaneous 

WAT and gastrocnemius muscle samples were collected by a standard protocol both 

before (from right side) and 3 minutes after (from left side). To prevent excess bleeding 

during the 3 minutes period, the pedicle of the resected liver segment was ligated. 
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2.1.6 Mouse Irradiation and Bone Marrow Transplantation 

   8 week old mice were used for BM transplantation experiments. The irradiation 

process was conducted in John Curtin School of Medical Research (JCSMR) building at 

the ANU Acton campus, using a Standard Operation Procedure (SOP). Mice were 

exposed to a total dose of 900 cGy in 2 sessions (one in the morning, one in the 

afternoon). For BM reconstitution, we used histocompatible wildtype or mice of the 

designated mutation or gene-deletion of interest. All processes were conducted under 

sterile conditions. Irradiated mice were administered 10
6
 BM cells (in normal saline) via 

lateral tail vein injection. After irradiation and BM transplantation, BM chimeric mice 

were transferred to AEC-approved specific pathogen free (SPF) animal facility at 

JCSMR. For 6 weeks after irradiation, mice were administered antibiotics (8.5x10
5
 U/L 

polymyxin-B-sulphate, 1.1 g/L neomycin sulphate). Thereafter, they were fed 

atherogenic diet for 14 weeks. At the end of experiments, mice were harvested under the 

standard harvest procedure (section 2.1.3). 

 

2.2 Biochemical Methods 

2.2.1 Blood Analyses 

2.2.1.1 Serum Analyses 

   Serum samples were sent to Australian Capital Territory (ACT) pathology department 

for analysis (by multichannel autoanalyzer) of alanine aminotransferase (ALT), 

aspartate aminotransferase (AST), total cholesterol, total triglyceride, and ultra-high-

density lipoproteins (ultra HDL). 

 

2.2.1.2 Enzyme-Linked Immunosorbent Assay 

   Commercially available enzyme-linked immunosorbent assay (ELISA) kits were used 

to determine the circulating concentrations of specific proteins such as adiponectin, 
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insulin, and MCP1. For individual assays, serum samples were diluted in a range of 1:1 

to 1:1000, as needed. Sample absorbance values (at 450 – 570 nm wavelengths) were 

assessed by a spectrophotometer. When r
2
 was 0.98 and higher (optimally 1), the value 

of absorbance (Y axis) was used to calculate the sample concentration (X axis) by a 

formula. 

 

2.2.1.3 Fasting Blood Glucose and Intraperitoneal Glucose Tolerance Test 

(IpGTT) 

   One week before the end of experiments, mice were fasted for 4 hours, then glucose 

tolerance determined after intraperitoneal injection of glucose (2 g/kg lean body mass; 

in saline). Blood glucose measurements were determined at 0, 15, 30, 60, 120, and 180 

minutes post-injection using a glucometer. This glucometer indicates as “HI” any 

glucose level higher than 33.4 mmol/L. To accommodate this restriction on accuracy, 

we introduced negative bias by using the lower value of 33.4 mmol/L in such instances 

to calculate group data. 

 

2.2.2 Tissue lipid Content 

2.2.2.1 Oil-red-O Staining 

   Tissue lipid content was assessed using oil-red-O (ORO) staining. Frozen tissue 

samples were gently homogenized using a plastic disposable homogenizer, stained with 

ORO solution. Incorporated ORO content was assessed by measuring the absorbance by 

a spectrophotometer. The detailed protocol is provided in Appendix D. 
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2.2.2.2 Lipid Analyses by Gas (GC) and High-Performance Liquid (HPLC) 

Chromatography 

   Tissue TAG, DAG, FC, cholesteryl ester (CE), total and free FAs were measured by a 

collaborator, Dr Geoff Haigh from University of Washington, Seattle USA, using 

chromatographic techniques (340). 

 

2.2.3 Histological Analyses 

2.2.3.1 Immunohistochemistry 

   Liver and adipose tissue samples were fixed in formalin and embedded in paraffin 

blocks. Sections cut from these samples (4-8 µm thick) were analyzed by 

immunohistochemistry (IHC) for specific antibodies. Antibodies are provided in 

Appendix A, and detailed protocols for immunohistochemical staining are given in 

Appendix B. 

 

2.2.3.2 Liver Histology and Assessment of Liver Fibrosis 

   Hematoxylin and eosin (H&E)-stained liver sections were scored blind by an 

experienced liver pathologist (MMY) according to the system devised for human NASH 

(scoring based on NAFLD activity score [NAS]; 0 – 3 = not NASH, 4 = borderline, 5 – 

7 = definite NASH) (341). A different rotation based on pathologist’s global assessment 

was also used (0 = normal, 1 = definite NASH, 2 = simple steatosis, 3 = borderline for 

NASH). To quantify liver fibrosis, we performed densitometry of liver sections stained 

for collagen with Masson’s trichrome, using ImageJ software. 

 

2.2.3.3 Adipose Morphometry Analysis 

   Formalin-fixed adipose tissue samples were embedded in paraffin and 4 µm thick 

sections cut. Morphometry was performed on H&E-stained adipose sections using Leica 



CHAPTER 2: Materials and Methods 

96 
 

Application Suite software. Morphometric analyses were done on a minimum of 10 

fields (1 mm
2
 area). The number of CLSs was calculated by analyzing 10 fields of 

H&E-stained adipose sections for each mouse, with results normalized to 100 

adipocytes. 

 

2.3 Molecular Methods 

2.3.1 Gene Expression via mRNA Levels 

2.3.1.1 Combined Method for Total RNA Isolation 

   Isolation of total RNA from frozen samples was performed with a combined protocol 

of TRI Reagent and commercial SV Total RNA Isolation System. This strategy 

increased the yield and the quality of RNA, as assessed using a NanoDrop 

Spectrophotometer. The detailed protocol is provided in Appendix B. 

 

2.3.1.2 cDNA Synthesis 

   cDNA was synthesized from 0.5 to 1 µg total RNA using High-Capacity cDNA 

Reverse Transcription Kit (Life Sciences, Carlsbad, CA). The detailed protocol is given 

in Appendix B. 

 

2.3.1.3 Primer Design for SYBR
®
-Green Based Quantitative Polymerase Chain 

Reaction 

   Commercially available primers from Sigma-Aldrich have been used for experiments 

described in this PhD. For rare genes, primers were designed considering the right gene, 

product length, the exon-exon boundaries, no mis-match, GC content (50-60 %), 

secondary structure and Tm 65
0
C. To achieve this, a diversity of online tools, such as 

National Center for Biotechnology Information (NCBI) website, PerlPrimer, Primer 3, 

and uMelt HETS was used. Primer working solutions (10 µM) were diluted from primer 
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stock solutions, measuring the precise concentration by NanoDrop using single strand 

DNA analysis. The detailed protocol for primer design is provided in Appendix B. 

 

2.3.1.4 SBYR
®
-Green and Reaction Mix 

   Real-time polymerase chain reaction analyses were performed to detect tissue-specific 

mRNA levels using iQ
TM

 SYBR
®
 Green Supermix, conducting reactions in an iQ

TM
5 

real-time thermal cycler. Data normalization was performed using geometric mean of 3 

house-keeping genes, specifically ribosomal protein L13a (RPL13A), beta-actin 

(ACTB), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (342). The detailed 

protocol for SBYR
®
-Green qPCR is provided in Appendix B. 

 

2.3.2 Determination of Protein Levels 

2.3.2.1 Tissue Protein Extraction  

2.3.2.1.1 Liver Protein 

   Frozen liver samples were homogenized in 9X ERK buffer, using the protocol 

detailed in Appendix B. 

 

2.3.2.1.2 Muscle Protein 

   Frozen muscle samples were homogenized in muscle lysis buffer (at Appendix B). 

 

2.3.2.1.3 Adipose Protein 

   Frozen adipose samples were homogenized in a detergent-free lysis buffer unless 

otherwise stated (343). In some parts of the PhD project, the muscle protein extraction 

protocol was applied to adipose. The detailed protocol is provided in Appendix B. 
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2.3.2.1.4 Protein Estimation 

   Total protein concentrations were estimated by the Bradford assay (344), using bovine 

serum albumin (BSA) as standard. The detailed protocol is provided in Appendix B. 

 

2.3.2.2 Western Blotting 

   Proteins were resolved with SDS-PAGE, and immunoreactivity visualized by 

chemiluminescence detection. Heat shock protein 90 (HSP90) was used as the protein 

loading control unless otherwise specified. Protein bands were quantified by 

densitometric analysis. Phosphorylation was expressed as phospho- to total protein 

ratio. A list of target proteins and primary antibodies is provided in Appendix C, and the 

details of western blot protocols are given in Appendix B. 

 

2.3.3 Adipose Flow Cytometry 

2.3.3.1 Isolation of Mature Adipocytes 

   Adipose tissue is a connective tissue composed of terminally differentiated adipocytes 

and SVF cells. Mature adipocytes are very fragile cells, largely as a consequence of 

their distension by lipid. Therefore, isolation of live adipocytes is a delicate process. 

Cell strainers with 150/200 µm pore size were used to isolate adipocytes, by the detailed 

protocol detailed in Appendix B. 

 

2.3.3.2 Isolation of Adipose Stromal Vascular Fraction 

   Adipose tissue SVF contains preadipocytes, preadipocytes progenitors, fibroblasts, 

vascular endothelial cells and a variety of immune cells. SVF cells are smaller and less 

fragile compared to mature adipocytes. We, therefore, used 70/100 µm cell strainers for 

SVF isolation. The detailed protocol is provided in Appendix B. 
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2.3.3.3 Cell Counting and Flow Cytometer 

   Cells were prepared as single cell suspensions at a concentration of 10
6
 cells/ml. Cell 

counting was performed by using a hemocytometer. In addition to the routine flow 

cytometry protocol for cell surface proteins, we used a Tween-20-based protocol for 

intracellular staining. Antibody combinations for flow cytometry are provided in 

Appendix A, and the adipose flow cytometry protocol is detailed in Appendix B. 

 

2.4 Statistical Analyses 

   Data are presented as means ± SEM. All group sizes were between 6 to 20 mice, and 

techniques were performed on 6 or more mice, per condition. Estimations by western 

blots and qRT-PCRs were conducted in duplicate. Significance of data was assessed by 

Prism 6 and SPSS Statistics 22 software, using the Student’s t-test for single 

comparisons and one-way or two-way analysis of variance (ANOVA) (interaction 

absent vs. interaction present), followed by Bonferroni’s post hoc analysis for multiple 

comparisons. Group differences were considered significant when P < 0.05. 
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CHAPTER 3: Adipose Over-Expansion and Inflammation Appear Linked to 

Hepatic Lipid Partitioning in Diabetic Obese Mice 

 

3.1 Introduction 

   There is an association between adipose inflammation and obesity complications such 

as T2D and NAFLD, but why adipose inflammation occurs and how it influences 

pathogenesis of these disorders is less clear. Obesity and diabetes are associated with 

hepatic steatosis in at least 80% of cases (345). Diabetes and metabolic syndrome are 

particularly associated with severer forms of NAFLD, such as the necro-inflammatory 

disorder of NASH with resultant liver fibrosis (346). This is clinically important 

because cirrhosis and hepatocellular carcinoma (HCC) do not occur with simple 

steatosis (345, 346). Interest therefore surrounds the mechanism for transition of simple 

steatosis to NASH and liver fibrosis, and how this could be related to the severity and 

other complications of metabolic obesity (discussed in Section 1.2.7). 

 

3.1.1 Adipose Tissue Function and Fatty Liver Disease 

   It is now better understood that functional adipose tissue is a sine qua non for 

mammalian health. Conversely, dysfunctional adipose tissue causes several significant 

health problems in humans. There are two main aspects: First, there is a relationship 

between persistent adipose inflammation and obesity-related disorders such as insulin 

resistance and NAFLD. Cytokine and chemokine production and secretion from 

inflamed adipose tissue not only perpetuate adipose inflammation, but can affect other 

tissues and cell types in the body (347). This triggers modifications in these tissues that 

influence their normal function and/or provoke “alarm” signals (for detailed review, see 

Section 1.5). Second, insufficient energy storage capacity of adipose tissue has 
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pathologic significance (348). Accordingly, if adipose tissue is not able to channel all 

pre-cursors (glucose, FAs, etc.) into TAG lipogenesis, this leads to an increase in 

circulating FFAs. The consequences include insulin resistance and fatty liver. In turn, a 

consequence of insulin resistance is failure to suppress HSL; this allows continuous 

lipolysis with further release of FFAs from TAG. 

   NAFLD is the term used to describe a wide range of liver pathology related to hepatic 

lipid accumulation (storage of >5% triglyceride by weight, or >5% of hepatocytes stain 

positive for triglyceride). It has been proposed that when the liver is exposed constantly 

to high circulating levels of NEFA, uptake of FAs combined with lipogenesis (driven by 

insulin via SREBP1) and glucose (carbohydrate-responsive element-binding protein 

[ChREBP]) to cause hepatomegaly by a process that starts with simple steatosis. This 

can advance until hepatocyte injury and liver inflammation occur with NASH. NASH is 

a pro-fibrotic condition that can lead to hepatic cirrhosis and liver cancer (HCC) (Fig. 

3.1). In developed countries, 9-26 % of NAFLD cases progress to NASH (349, 350). 

   The earlier (“two hit”) concept that metabolic predisposition to steatosis and NASH 

transition are unrelated processes has been replaced by the idea that lipid molecules 

themselves can induce hepatocyte injury (“lipotoxicity”) (Fig. 3.1) (351). Such injury is 

observed histologically as ballooned hepatocytes and circulation of liver enzymes (e.g. 

ALT) and markers of both necrosis and apoptosis (346). Suggestion of the term “liver 

lipotoxicity” for NASH, cements the centrality of hepatic lipid partitioning in NASH 

pathogenesis (352). The capacity of adipose sites for lipid storage might therefore be 

expected to play an indirect role in NASH pathogenesis, as we and others suggested 

earlier (232, 353). Whether adipose inflammation is also relevant to NASH 

pathogenesis remains unresolved. 
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Figure 3.1: The transition from simple steatosis results in NASH. During energy surplus, 

lipid partitioning into liver leads to development of simple steatosis. Consistent overeating and 

underactivity, together with insulin resistance and genetic predisposition, increase the lipid 

burden on the liver. This results in liver lipotoxicity with oxidative stress and a pro-

inflammatory response that lead to development of NASH. 

 

   Over 60% of patients with NAFLD and virtually all those with NASH exhibit insulin 

resistance (354, 355). Further, a study in which pioglitazone improved NASH pathology 

demonstrated enhancement of insulin-mediated suppression of lipolysis, that was 

consistent with improved adipose insulin sensitivity (356). Development of insulin 

resistance with steatosis involves muscle and liver as well as adipose (357, 358). 

Experimentally, macrophage accumulation in liver has been associated with 
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development of insulin resistance, while macrophages in adipose were associated with 

its persistence (359). 

   As reviewed in Section 1.5, in “metabolic obesity”, adipose inflammation is 

characterized by clusters of macrophages around smaller, dying or dead adipocytes in 

so-called crown-like structures (CLS) (230); identical CLS focussed on lipid-laden 

hepatocytes are also prominent in NASH (272). However, as reviewed elsewhere (360, 

361), the mechanism(s) by which inflammatory cells are recruited to adipose in 

obesity/diabetes remains contentious (this will be discussed in Chapter 4). One idea is 

that rapid-onset of over-nutrition results in adipocyte hypertrophy (as well as 

hyperplasia) in which some adipocytes are stressed and die (degenerate) because of lipid 

engorgement (337). In what can be regarded as adipose lipotoxicity is that these stressed 

adipocytes, secrete chemokines that attract mast cells, lymphocytes and particularly 

macrophages. The latter become activated and coalesced to form CLS, with secretion of 

macrophage chemokines, more cell recruitment and expansion of adipose inflammation 

(361). 

 

3.1.2 Studies in “Fat Aussie (foz/foz) Mice” and its Relevance to Human NASH 

   Alström syndrome is a rare autosomal recessive cause of childhood obesity (362). 

Hyperinsulinemia, chronic hyperglycemia, neurosensory defects and obesity associated 

with metabolic syndrome/T2D and severe liver diseases are among the usual features. In 

2002, Collin and colleagues reported that mutations in ALMS1 gene are responsible for 

Alström syndrome in humans (363). During that time, it was shown that ALMS1 

localizes on centrosomes and basal bodies of cell cilia; however, little was known about 

its function. Based on other clinical findings, it became apparent that disturbance of 

ALMS1 leads to ciliary dysfunction that result in pathogenic outcomes of Alström 
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syndrome that include male infertility (loss of cilia on sperm), deafness (loss of cilia on 

cochlear cells), retinopathy (loss of retinal cell cilia), and metabolic syndrome. 

   Collin and colleagues also investigated a novel gene in mice, called Alms1, which has 

high structural homology to human ALMS1. In 2006, Arsov and colleagues developed 

an animal model of Alström syndrome (named Fat Aussie (foz/foz) mouse) following 

the seminal observation of an obese mouse in a non-obese diabetic (NOD) strain (Fig. 

3.2). The mutation was mapped to a loss-of-function mutation which is an 11-base pair 

deletion in exon 8 of the Alms1 gene (338). Like children with Alström syndrome, 

foz/foz mice develop early-onset obesity, insulin resistance, T2D and 

hypercholesterolemia, changes that are accelerated by feeding them an “atherogenic” 

diet containing high fat (23%), high sugar (%45), and cholesterol (0.19%). 

 

 

Figure 3.2: Fat Aussie (foz/foz) mouse compared to a wild-type (WT) counterpart. Appetite-

dysregulated foz/foz mice develop hyperphagic obesity. Atherogenic diet-fed foz/foz mice have a 

very high body weight (86.1 g in this example vs. ~35-40 g in atherogenic diet-fed WT mice). 

 

   Many humans with obesity have polymorphisms of appetite-regulating proteins 

expressed in the hypothalamus, such as melanocortin 4 receptor, a protein expressed on 

the primary cilium of neurons (for more details, see Section 1.3). In 2012, a PhD student 
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from the host lab explored the mechanism for why a truncating mutation on Alms1 leads 

to obesity development in mice (364). It was already known that ALMS1 is located at 

the base of cilia on hypothalamus neurons; these cilia are thought to serve as sensory 

antennae. Accordingly, foz/foz mice lose primary cilia at the time of weaning, most 

likely because the Alms1 mutation affects the stability of cilial anchorage (364). 

Presumably because negative appetite regulators are suppressed on these cilia, this 

confers a powerful drive to eat in foz/foz mice, and consequently early development of 

obesity.  In this way, Alms1 mutation affects the metabolic state of liver disease 

“indirectly”, via the drive to eat and resultant over-nutrition. Hepatocytes do not express 

a primary cilium so the mutation does not affect lipid handling by the liver directly (this 

has been confirmed by the host lab in vitro). 

   Although there are species differences in physiological indices between humans and 

mice, animal models can be useful to study aspects, such as liver and adipose tissue 

sampling that are often not possible in humans. For example, foz/foz mouse model is 

considered to address questions about the pathophysiology of adipose in relation to 

causation of NASH, as opposed to simple steatosis. Humans with NASH usually have 

more severe metabolic abnormalities (e.g., diabetes, metabolic syndrome) than those 

with simple steatosis. The course of metabolic changes in foz/foz mice over time and 

with diet offers the possibility to explore the relationship of these changes to 

development of NASH. 

 

3.2 Aims 

   Using dietary manipulation in appetite-dysregulated or WT mice, we sought to 

characterize changes in different adipose tissues during development of obesity. The 

underlying hypothesis was that adipose over-expansion leads to inflammation in each 
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WAT, but particularly visceral, causing development of “unhealthy obesity” that is 

mechanistically linked to the pathogenesis of NASH.  

Accordingly, the specific aims were to: 

1 Compare adiposity rates of different adipose sites during obesity development as 

well as parallel weight gain in other tissues, such as BAT, muscle and liver. 

2 Assess detailed adipose morphometry in atherogenic diet-fed vs. chow-fed 

foz/foz and WT mice in visceral WAT. 

3 Establish the recruitment of CLSs as an indicator of adipose tissue inflammation 

in visceral WAT. 

4 Test whether adipose dysfunction and inflammation are pre-conditions for 

development of NASH. 

 

3.3 Experimental Details 

   The ANU Animal Ethics Committee approved experimental procedures in this study. 

Female foz/foz or WT mice on NOD.B10 strain were fed atherogenic diet (Ath in figure 

axis) (20% protein, 23% fat, 45% carbohydrate, 0.2% cholesterol) or normal rodent 

chow (NC in figure axes) from weaning to 6, 8, 10, and 12 weeks of age. All mice were 

kept on a 12-hour light/dark cycle in the ANU Medical School animal facility at the 

Canberra Hospital. 

   Following the methodology described in Section 2.1.3, samples of blood, liver, 

gastrocnemius muscle, periovarian (Pov) and mesenteric (Mes) fat (as visceral WATs), 

lumbar and dorsal fat (as subcutaneous WATs), and brown adipose tissue (BAT) were 

removed. BAT is embedded in the interscapular (dorsal) fat pad in mice. Hence, BAT 

samples were carefully excised from the surrounding WATs during the harvest. Blood 

samples were taken using intra-cardiac puncture technique at 9 am of harvest days; mice 
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were not fasted before taking blood samples. Blood glucose was assayed by a 

glucometer. 

   Adipose morphometry was performed on H&E-stained adipose sections by Leica 

Application Suite (LAS) software, which allows determination of mean adipocyte 

volume, cell density and size distribution (for more details, see Section 2.2.3). The 

number of macrophages in Pov WAT samples was determined by normalizing the 

number of H&E-stained cell clusters to 100 adipocytes. Liver macro-steatosis score was 

assessed blind by an expert pathologist (MMY). Liver lipid content was compared 

between foz/foz and WT mice using ORO staining, explained in Section 2.2.2. 

   Data are presented as mean ± SEM (n=8-18). For the analysis of data significance, 

Prism 6 (GraphPad, La Jolla, CA) and SPSS Statistics 22 (IBM, New York, NY) 

software was used, applying one-way or two-way analysis of variance (ANOVA) 

followed by Bonferroni’s post hoc analysis. 

 

3.3.1 Author Contributions 

   This is a collaborative study conducted together with Professor Christopher J. Nolan’s 

group at the Canberra Hospital. Accordingly, we contributed to this study by 

establishing key adipose techniques, such as the removal of different adipose sites and 

other tissues (e.g., liver, gastrocnemius muscle), detailed adipose morphometric 

analyses and liver indices (e.g., histology, hepatic lipid assessment). Members of Prof 

Nolan’s lab studied molecular elements of adipose inflammation, and pancreatic β cell 

structure and function. Mice of two different genotypes (foz/foz and WT), two different 

diets (atherogenic diet and chow), and four different age groups (6, 8, 10, and 12 week 

old) were studied. In light of the considerable work involved, a group of colleagues 

from both host labs assisted the animal harvests throughout this project, including 
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Tenzin Dagpo, whose study of central inflammatory cytokines formed the basis of an 

MPhil degree (ANU 2014). 

   Fahrettin Haczeyni conducted the experiments, performed data analysis, and wrote 

this Chapter. Viviane Delghingaro-Augusto supervised the animal work and assisted 

experiments. Tenzin Dagpo and Ainy Khan assisted the experiments. Matthew M. Yeh 

provided blind analysis of liver histology. Narcissus C.-H. Teoh contributed intellectual 

input and reviewed the results. Bruce Shadbolt provided invaluable advice on statistical 

analyses. Geoffrey C. Farrell and Christopher J. Nolan directed the study, reviewed and 

edited the Chapter. The authors thank the Canberra Hospital research office and animal 

house technicians for their highly skilled technical assistance. 

 

3.4 Results 

   As stated in Chapter 1, the mechanisms determining the deposition of lipid into 

different adipose sites remain largely unknown. This Chapter provides an insight about 

adiposity rates of different adipose tissue during development of obesity, which was 

clearly “unhealthy obesity” in foz/foz mice that developed diabetes, metabolic syndrome 

and NASH. Moreover, adipose indices such as adipose morphometry and inflammation 

are analyzed in the third Results Section. In the last Results Section (3.4.3), the 

progression of liver weight gain and hepatic steatosis is presented together with results 

indicating the histological phenotype of NAFLD in these livers. 

 

3.4.1 Adiposity in Different Adipose Sites During Obesity Development 

   All mice were of similar weight of weaning at 4 weeks of age (~17 g). In chow-fed 

WT mice, weight gain was slow but constant; these mice gained an average of 0.8 g 

every week until 12 weeks of age (Fig. 3.3). A similar but slightly faster pattern of 

weight gain was observed for atherogenic diet-fed WT mice. At 8 weeks, chow-fed 
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foz/foz mice gained significantly more body weight than WT counterparts (Fig. 3.3). The 

combination of atherogenic dietary feeding and increased appetite (foz/foz background) 

exerted the most profound effect on body weight, even at 6 weeks of age (2 weeks on 

diet). By 12 weeks of age (8 weeks on diet), atherogenic diet-fed foz/foz mice had 

developed obesity (body weight > 45 g; Fig. 3.3). 

 

Figure 3.3: Body weight in foz/foz and WT mice fed NC or Ath from 6, 8, 10, and 12 weeks 

of age. Weight gain was significantly increased already in 6 week old atherogenic diet-fed 

foz/foz mice compared to diet- or genotype-matched counterparts. At 8 weeks of age, weight 

gain in chow-fed foz/foz mice was also significant (vs. chow-fed WT). At 10 weeks time point, 

body weight increase was higher in foz/foz mice fed either diet than corresponding WT, and by 

12 weeks of age, body weight was nearly 2-fold greater in atherogenic diet-fed foz/foz mice then 

in similarly fed WT. 

Data are mean ± SEM (n=8-18/gp). 

† P<0.05 vs. diet-matched control (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect); e.g., atherogenic diet-fed vs. chow-fed WT 

λ P<0.05 vs. 6 and 8 weeks age groups 

θ P<0.05 vs. 10 weeks age group 
 

   The atherogenic diet exerted a strong influence on both visceral (Pov and Mes) WAT 

mass in 6 week old mice (Fig. 3.4A,B). This increase was more pronounced when 

atherogenic dietary feeding interacted with foz/foz genotype. After 8 weeks of age, 

genotype became more influential on visceral adiposity. Thereafter, expansion of both 
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Pov and Mes WATs remained relatively limited in atherogenic diet-fed WT mice (Fig. 

3.4A,B). In contrast, atherogenic diet-fed foz/foz mice showed greater visceral adiposity 

by 12 weeks of age, when compared to their diet- and genotype-matched counterparts 

(Fig. 3.4A,B). As a proportion of body weight, these visceral compartments increased 

with atherogenic diet and foz/foz background. Thus, by 12 weeks of age (8 weeks on 

diet), relative Pov WAT weighed 2-fold more than Mes WAT in foz/foz mice fed either 

diet (Fig. 3.4C,D). 

 

Figure 3.4: The time-dependent effect of atherogenic dietary intake and foz/foz genotype 

on visceral adiposity. (A,C) Atherogenic diet caused enlargement of Pov WAT mass in both 

lines (both as absolute and relative weight), with a powerful independent effect of foz/foz 

genotype at 6 weeks of age. After this time point, foz/foz mice showed greater adiposity than 

WT mice. At 12 weeks of age, atherogenic diet-fed foz/foz mice had ~3.5 g Pov WAT mass 

whereas chow-fed foz/foz mice had ~1.8 g. (B,D) Mes WAT adiposity displayed a similar 

pattern of increase in different experimental groups, however, there was only half as much Mes 

WAT as Pov WAT. 

Data are mean ± SEM (n=8-18/gp). 

† P<0.05 vs. diet-matched control (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect); e.g., atherogenic diet-fed vs. chow-fed WT 

λ P<0.05 vs. 6 and 8 weeks age groups 

θ P<0.05 vs. 10 weeks age group 
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   As reviewed in Section 1.2, among different adipose sites, visceral WATs appear 

primarily responsible for the changes that define metabolic obesity, whereas 

subcutaneous WATs, by acting like a “metabolic sink”, may be beneficial for general 

health. In the present experiment, lumbar adiposity increased with atherogenic dietary 

intake at an early age in both genotypes, but more so in foz/foz than WT mice (Fig. 

3.5A). After 8 weeks of age, genotype effect was more prominent on lumbar adiposity. 

An interesting finding was that between 6 and 12 weeks of age, interaction of 

atherogenic dietary feeding and foz/foz background had a similar (parallel) expansion 

effect on absolute and relative Pov and lumbar WAT weights. In atherogenic diet-fed 

foz/foz mice, up to ~7% of total body weight was comprised of lumbar fat by 12 weeks 

of age (8 weeks on diet) (Fig. 3.5C). 

   Dorsal WAT is another subcutaneous depot situated behind the shoulders and neck in 

mice. In WT mice, atherogenic diet did not cause significant adiposity in dorsal WAT 

during development (Fig. 3.5B). In contrast, foz/foz mice showed a time-dependent 

increase in dorsal WAT mass irrespective of diet, although this increase was more 

pronounced in atherogenic diet-fed animals (Fig. 3.5B). Considered as a proportion of 

total body weight, dorsal WAT mass appeared to be more limited than lumbar WAT 

mass (Fig. 3.5D). 

 



CHAPTER 3: Adiposity and its Relation to Hepatic Lipid Partitioning 

114 
 

 

Figure 3.5: The time-dependent effect of atherogenic dietary intake and foz/foz genotype 

on subcutaneous adiposity. (A,B) Atherogenic dietary intake increased lumbar and dorsal 

WAT mass in both genotypes at 6 weeks of age; the combination of atherogenic diet with 

foz/foz genotype strengthened this effect. (A) After 8 weeks of age, foz/foz mice fed either diet 

showed greater adiposity in lumbar WAT than WT animals. (B) Likewise, dorsal adiposity was 

more pronounced with foz/foz genotype at 8 weeks of age. (C) Up to 7% of total body weight 

was formed of lumbar WAT in atherogenic diet-fed foz/foz mice by 12 weeks of age; 5% in 

chow-fed foz/foz and 3% in atherogenic diet-fed WT mice and less than 1% in chow-fed WT. (D) 

Unlike lumbar WAT, dorsal WAT weight as a proportion of total body weight did not increase 

during development in any group, except chow-fed foz/foz mice. 

Data are mean ± SEM (n=8-18/gp). 

† P<0.05 vs. diet-matched control (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect); e.g., atherogenic diet-fed vs. chow-fed WT 

λ P<0.05 vs. 6 and 8 weeks age groups 

θ P<0.05 vs. 10 weeks age group 

 

   As reviewed in Section 1.2.5., brown adipocytes are rich in mitochondria and 

therefore metabolically more active than white adipocytes (65, 66). In obesity, BAT 

loses its distinctive colour and becomes “whitish” due to infiltration of lipid-laden white 

adipocytes. As a result, it is technically challenging to dissect pure BAT in obese mice. 

In WT mice, BAT remained quite compact and small, with minimal increase (not 

significant) (Fig. 3.6A,B). In foz/foz mice, BAT mass increased from 6 to 12 weeks of 
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age, and this increase was higher in atherogenic diet-fed mice (Fig. 3.6A). However, 

BAT, as a proportion of total body weight, remained similar in foz/foz mice, irrespective 

of diet (Fig. 3.6B). 

 

 

Figure 3.6: The time-dependent effect of atherogenic dietary intake and foz/foz genotype 

on expansion of BAT. (A) From 6 to 12 weeks of age, BAT mass did not change in WT, 

irrespective of diet. In chow-fed foz/foz mice, there was a time-dependent increase in BAT 

weight, and this increase was more pronounced when atherogenic dietary intake interacted with 

foz/foz genotype. (B) Nevertheless, the proportion of BAT in total body weight followed a 

similar pattern during development of foz/foz mice fed either diet. 

Data are mean ± SEM (n=8-18/gp). 

† P<0.05 vs. diet-matched control (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect); e.g., atherogenic diet-fed vs. chow-fed WT 

λ P<0.05 vs. 6 and 8 weeks age groups 

 

   In the present study, gastrocnemius muscle mass did not change during development 

in WT mice fed either diet (Fig. 3.7A). There was a mild trend of increased muscle mass 

in atherogenic diet-fed foz/foz mice from 6 to 12 weeks of age, but this increase was not 

significant. Muscle mass as a proportion of total body weight was less in foz/foz mice at 

12 weeks of age, compared to their diet-matched counterparts (Fig. 3.7B). 
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Figure 3.7: The time-dependent effect of atherogenic dietary intake and foz/foz genotype 

on gastrocnemius muscle weight. (A) Although there was a general trend of muscle mass 

increase in atherogenic diet-fed foz/foz mice, this trend was not significant and muscle weight 

did not change in any group from 6 to 12 weeks of age. (B) As a percentage of total body 

weight, muscle mass was less in 12 week old foz/foz mice compared to their diet-matched WT 

counterparts. 

Data are mean ± SEM (n=8-18/gp). 

† P<0.05 vs. diet-matched control (genotype effect); e.g., chow-fed foz/foz vs. WT 

 

3.4.2 Effects of Atherogenic Dietary Intake and foz/foz Genotype on Adipose 

Morphometry and Inflammation in Periovarian Adipose Tissue  

   As explained in Section 1.4, there is a strong relationship between adipocyte size and 

function. Lipid-engorged hypertrophic adipocytes display a pro-inflammatory 

phenotype and assist inflammatory recruitment into adipose tissue. In the present study, 

we measured detailed adipose morphometry in Pov WAT from 12 week old mice. 

   The type of dietary intake and genotype each influenced mean adipocyte volume, with 

corresponding changes in adipocyte number per 1 mm
2
 fixed surface area (Fig. 3.8A,B). 

Accordingly, both atherogenic diet and foz/foz background resulted in an increase in 

mean adipocyte volume (Fig. 3.8A). The interaction of these two factors exhibited the 

most powerful effect of increasing adipocyte volume in this visceral adipose 

compartment. As a result of this increase in cell volume, atherogenic diet and foz/foz 

genotype both reduced the average number of adipocytes observed across a fixed 

surface area (Fig. 3.8B). Although the combination of these two factors appeared to 
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further decrease adipocyte number in comparison to diet- or genotype-matched 

counterparts, this decrease did not reach significance (Fig. 3.8B). 

   Although there is no strict standardization for adipocyte size (diameter/circumference) 

differences, adipocytes between 500 and 4000 μm
2
 are often considered to be small 

sized, whereas those between 5000 to 7000 μm
2
 are moderate, and those larger than 

8000 μm
2
 are considered to be large adipocytes (results shown next). 

 

 

 

Figure 3.8: Mean adipocyte volume and density of adipocytes in Pov WAT from 12 week 

old foz/foz and WT mice. (A) Atherogenic diet and foz/foz background both increased the mean 

adipocyte volume in Pov WAT; the combination of these two factors exhibited the greatest 

influence. (B) A similar (but reverse) profile was found for mean adipocyte number. 

Atherogenic dietary intake and foz/foz genotype resulted in fewer adipocytes in a 1 mm
2
 fixed 

area. This trend of decrease appeared more pronounced (although not significant) in Pov WAT 

of atherogenic diet-fed foz/foz mice. 

Data are mean ± SEM (n=8/gp). 

† P<0.05 vs. diet-matched control (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect); e.g., atherogenic diet-fed vs. chow-fed WT 

 

   In chow-fed WT mice, the majority of adipocytes were between 500 and 3000 μm
2
 

(Fig. 3.9A). Atherogenic dietary intake increased the proportion of moderate-sized 

adipocytes in WT mice (Fig. 3.9B), and as shown in the adipose section, the majority of 

adipocytes were small-to-medium. In addition, some large adipocytes (~5%) were 

occasionally dispersed in the Pov WAT. When fed chow, appetite-dysregulated foz/foz 

mice had an “even” distribution of different sized adipocyte populations (Fig. 3.9C). 

Atherogenic dietary feeding of foz/foz genotype led to lipid-engorgement of Pov WAT 
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adipocytes (Fig. 3.9D). As a result, the proportion of adipocytes larger than 8000 μm
2
 

(hypertrophic adipocytes) was ~30% of total adipocytes. 
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Figure 3.9: Size distribution of adipocytes in Pov WAT of foz/foz and WT mice fed NC or 

Ath diet for 12 weeks. H&E-stained representative adipose sections were analysed for detailed 

adipocyte size distribution. (A) ~90% of adipocytes were smaller than 4000 μm
2
 in chow-fed 

WT mice. (B) As reflected in the adipose section, atherogenic dietary intake increased the 

proportion of small-to-medium adipocytes in WT mice. (C) In chow-fed foz/foz mice, Pov WAT 

showed an “even” distribution of adipocyte populations by size, whereas (D) in atherogenic 

diet-fed foz/foz mice, ~40% of adipocytes were larger than 8000 μm
2
. The interaction of 

atherogenic dietary intake and appetite dysregulation (foz/foz genotype) resulted in markedly 

increased proportion of large hypertrophic adipocytes. (n=8/gp [10 sections per mouse]; 160x 

magnification) 
 

   Activated pro-inflammatory macrophages recognize degenerating adipocytes and 

congregate around them to form CLSs, as described in Section 1.5.6. This indicates 

operation of a pro-inflammatory response (230). CLSs are shown in a representative 

adipose section from atherogenic diet-fed foz/foz in Figure 3.10. As is evident by 

medium power light microscopy (160x) (Fig. 3.9) and compiled from F4/80 IHC 

staining (not shown), CLSs were virtually absent in chow-fed WT mice Pov WAT. 

There appeared to be a slight increase (not significant) in the number of CLSs in 

atherogenic diet-fed vs. chow-fed WT mice and chow-fed foz/foz vs. chow-fed WT mice, 

but in atherogenic diet-fed foz/foz mice, there was a major increase which was highly 

significant vs. chow-fed foz/foz mice and atherogenic diet-fed WT mice (Fig. 3.10). The 

very abundant CLS recruitment in Pov WAT in atherogenic diet-fed foz/foz mice is 

illustrated in representative adipose section (Fig. 3.10). 

   As another aspect of this collaborative project, analyses of pro-inflammatory 

molecular markers were conducted by Prof Nolan’s lab (e.g., TNFα, IL6), and present 

CLS levels are entirely consistent with the molecular inflammatory marker levels 

generated by Tenzin Diagpo (unpublished data). Changes in adipocyte differentiation 

and cell death markers are also of great interest in this thesis. They are addressed in 

separate studies in Chapter 4 
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Figure 3.10: Number of CLSs in Pov WAT in 12 week old foz/foz and WT mice fed NC or 

Ath diet. In chow-fed WT mice, no CLSs were noted. There appeared to be some CLSs in 

atherogenic diet-fed WT and chow-fed foz/foz mice, but the apparent increase was not 

significant. The interaction of atherogenic dietary intake and foz/foz genotype resulted in 

marked abundance of CLSs in Pov WAT. 

Data are mean ± SEM (n=8/gp [10 sections per mouse]; 160x magnification). 

† P<0.05 vs. diet-matched control (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect); e.g., atherogenic diet-fed vs. chow-fed WT 

 

3.4.3 Time-Dependant Effects of Atherogenic Diet and foz/foz Genotype on Blood 

Glucose, Liver Weight and Liver Steatosis 

   A detailed review about circulating glucose and insulin metabolism is given in Section 

1.3. Because the focus of the endocrinology lab was on pancreatic islet cell histology, 

with whom these experiments were conducted in collaboration, blood glucose was 

determined on non-fasting morning samples. Surprisingly, at the time points studied 

here, neither atherogenic dietary intake nor foz/foz mutation alone significantly 

increased circulating blood glucose levels (Fig. 3.11). However, the combination of 

these 2 factors resulted in a significant increase in blood glucose as early as 8 weeks of 

age. By 12 weeks, atherogenic diet-fed foz/foz mice developed glucose intolerance (~12 

mmol/L blood glucose) (Fig. 3.11). 
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Figure 3.11: The time-dependent effect of atherogenic dietary intake and foz/foz genotype 

on circulating blood glucose. Atherogenic dietary feeding and foz/foz mutation did not increase 

morning blood glucose solely, but the combination of these 2 factors resulted in a significant 

increase starting from 8 weeks of age. At 12 weeks of age, atherogenic diet-fed foz/foz mice 

developed glucose intolerance (~12 mmol/L). 

Data are mean ± SEM (n=8-18/gp). 

† P<0.05 vs. diet-matched control (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect); e.g., atherogenic diet-fed vs. chow-fed WT 

λ P<0.05 vs. 6 and 8 weeks age groups 

 

   In WT mice, absolute liver weight did not change from 6 to 12 weeks of age (Fig. 

3.12A). Likewise, liver as a proportion of total body weight remained the same during 

development of WT mice (Fig. 3.12B). Although there seemed to be a slight increase in 

chow-fed foz/foz mice liver weight compared to chow-fed WT mice, this increase was 

significant only at 8 weeks of age (Fig. 3.12A). In contrast, changes in liver size with 

development were proportional to body weight gain in atherogenic diet-fed foz/foz mice. 

Hepatomegaly was present at 8 weeks of age, and liver size increased further by 12 

weeks (Fig. 3.12A), so that relative liver weight was nearly ~8% of body weight vs. 

~4% in all other groups (Fig. 3.12B). 
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Figure 3.12: The time-dependent effects of atherogenic dietary intake and foz/foz genotype 

on liver weight. (A) Atherogenic dietary feeding and foz/foz mutation alone did not influence 

liver weight of WT mice during development. Chow-fed foz/foz mice had slightly increased liver 

mass, but this increase was significant only at 8 weeks of age compared to chow-fed WT mice. 

(B) As a consequence, relative liver weight (% body weight) remained unchanged in these 

groups. In contrast, atherogenic diet-fed foz/foz mice developed hepatomegaly as early as 8 

weeks of age, and this was well-established by 12 weeks of age. 

Data are mean ± SEM (n=8-18/gp). 

† P<0.05 vs. diet-matched control (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect); e.g., atherogenic diet-fed vs. chow-fed WT 

λ P<0.05 vs. 6 and 8 weeks age groups 

θ P<0.05 vs. 10 weeks age group 

 

   Hepatic lipid content was measured only in the atherogenic diet-fed groups. Two 

different methods were used: total steatosis (micro + macro) by ORO staining (for 

methodology, see Section 2.2.2), and macro-steatosis assessed blind on H&E-stained 

liver sections by an expert liver pathologist (see Section 2.2.3). In atherogenic diet-fed 

WT mice, there was no evidence of hepatic steatosis at any age studied here (3.13A,B). 

In foz/foz counterparts, there was a trend of increase as early as 8 weeks of age in total 

steatosis (3. 13A). This increase became significant at 10 weeks, but macro-steatosis did 

not become apparent until 12 weeks of age (Fig. 3.13B). There are some potential 

technical reasons for this apparent discrepancy, as discussed later (Section 3.5). 
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Figure 3.13: The time-dependent effects of atherogenic dietary intake and foz/foz genotype 

on hepatic steatosis. (A) By ORO staining, WT mice fed atherogenic diet had similar levels of 

liver lipids from 6 to 12 weeks of age. In foz/foz counterparts, liver lipids progressively 

increased after 6 weeks of age, to be significant at 10 weeks compared to their WT counterparts. 

(B) Atherogenic diet-fed WT mice did not display macro-steatosis at any age, whereas 

macrovesicular steatosis became apparent in livers of 12 week old foz/foz mice. 

Data are mean ± SEM (n=8-18/gp). 

† P<0.05 vs. diet-matched control (genotype effect); e.g., chow-fed foz/foz vs. WT 

λ P<0.05 vs. 6 and 8 weeks age groups 

θ P<0.05 vs. 10 weeks age group 

 

3.5 Discussion 

   Constant energy imbalance favouring greater calorie intake than energy expenditure 

leads to energy surplus in the body, and this results in over-expansion of adipose 

compartments. As reviewed in Section 1.5, adipose over-expansion may result in 

adipose stress and inflammation, and these factors pose a serious threat to other tissues 

and organs. In particular, it has been shown that visceral adiposity is closely linked to 

adipose stress and inflammation (unhealthy obesity), whereas expansion of 

subcutaneous adipose compartments can be associated with metabolically healthy 

obesity. Despite this, relatively few studies have compared the rate of changes in 

adiposity in different adipose sites in a time-dependent manner and chartered how 

adipose stress and inflammation evolve with tissue. In the present work, we studied two 

visceral (periovarian and mesenteric), two subcutaneous (lumbar and dorsal) and brown 

adipose compartments in an experimental mouse model of obesity and diabetes. In order 

to be able to follow the pattern of energy storage with time, we measured changes in 

adiposity rate in these adipose tissues in 6, 8, 10, and 12 week old mice. 
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   The first finding of the study is that genetic background, in this case foz/foz mice, 

exerts an important influence on adiposity of fat compartments in relation to weight 

gain, but the interaction of atherogenic dietary intake with genotype exhibited even 

greater influence on these indices. On its own, the atherogenic diet did not exert a strong 

influence on body weight or adipose stores compared to chow-fed WT mice. Although it 

is not statistically relevant to compare chow-fed foz/foz and atherogenic diet-fed WT 

mice, their body weights differed markedly at 12 weeks of age (~36 g vs. ~27 g), 

reflecting the more powerful obesogenic effect of this appetite defect. As shown in 

Chapter 6, 16 week old female WT NOD.B10 mice were found to weigh ~30 g whereas 

their chow-fed counterparts remained at 25 g. In another study, female WT NOD.B10 

mice developed obesity (~45 g) when fed an atherogenic diet for 24 weeks (28 weeks of 

age). This demonstrates that aging is another important factor when combined with 

dietary habits in development of obesity. Atherogenic diet-fed foz/foz mice, on the other 

hand, were already obese as early as 10 weeks of age and weight gain further increased 

by 12 weeks of age (~ 48 g). In other studies, atherogenic diet-fed female foz/foz mice 

regularly weigh > 65 g at 24 weeks of dietary intake (232). 

   The main hypothesis of this Chapter was that adipose inflammatory recruitment 

resulting from over-expansion of adipose tissue is central to development of “unhealthy 

obesity”. A detailed review about the developmental, structural and functional 

differences of visceral and subcutaneous adipose tissues was given in Section 1.2. 

While onset of obesity is characterized by enlargement of adipose tissues, it is not clear 

whether the same factors determine adipose compartment size for storage of excess 

energy. Unfortunately, the transcriptional mechanisms determining orientation of excess 

energy into adipose tissues have yet to be fully characterized. It does seem most likely, 

however, that topological and ontogenetic differences determine the enlargement of 

different adipose tissues. Accordingly, we measured adiposity in different adipose 
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compartments to clarify which adipose sites are targeted first to store energy surplus 

resulted from sustained caloric disequilibrium, and how such storage capacity changes 

with time and “demand”. 

   As expected, adiposity rates differed among adipose sites during development of mice 

(from 6 to 12 weeks of age). At an early stage (6 weeks of age), atherogenic diet was 

quite influential on all adipose sites. Accordingly, atherogenic diet-fed WT mice showed 

increased adipose weights compared to chow-fed WT mice. This increase was more 

prominent with atherogenic dietary intake in foz/foz mice. Interestingly, appetite defect 

(foz/foz background) became more powerful on adiposity after 8 weeks of age. After 

this time point in chow-fed foz/foz mice, there was a significant enlargement of adipose 

compartments compared to chow-fed WT mice. Nevertheless, these increases remained 

limited when compared to those of atherogenic diet-fed foz/foz mice adipose sites. 

   The expansion of Pov and lumbar WAT was faster than Mes and dorsal WATs during 

mouse development. First of all, atherogenic diet-fed foz/foz mice showed a parallel 

increase in Pov and lumbar WAT mass although it was less in chow-fed counterparts. 

By 12 weeks of age, ~14% of atherogenic diet-fed foz/foz (7% + 7%) and ~10% of 

chow-fed foz/foz (5% + 5%) body weight was comprised of Pov and lumbar WAT, 

whereas the relative weight of Mes WAT (% body weight) was 3% in atherogenic diet-

fed foz/foz mice and only 2% in chow-fed WT counterparts. The change in dorsal 

adipose compartment was even less in foz/foz mice. Atherogenic dietary feeding 

expanded adipose mass in all four adipose compartments in WT mice compared to their 

chow-fed counterparts, but adiposity of these tissues did not significantly increase 

during development. BAT mass increased marginally (but significantly) in foz/foz mice, 

but relative BAT weight remained the same after 8 weeks of age. 

   As discussed in details in Chapter 1, hypertrophic adipocytes are likely to develop 

pro-inflammatory response that leads to macrophage infiltration and formation of CLSs. 
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We therefore thought that it is important to study morphological changes in adipose 

tissue during evolution of obesity in these mice. As stated in Results Section, there is a 

general consensus that adipocytes between 500 and 4000 μm
2
 are small sized, between 

5000 to 7000 μm
2
 are moderate sized, and those exceed 8000 μm

2
 are large, 

hypertrophic adipocytes. In the present project, we studied Pov WAT in 12 week old 

mice to characterize any differences in adipose morphometry and number of CLSs in 

the tissue. Mean adipocyte volume remained very small (less than 1000 μm
3
) in chow-

fed WT mice. Both atherogenic dietary intake and foz/foz genotype increased mean 

adipocyte volume, while the interaction between these two factors markedly increased 

mean adipocyte volume in Pov WAT. This increase in adipocyte size correspondingly 

decreased the average number of adipocytes visualized a fixed surface area in 

atherogenic diet-fed foz/foz mice Pov WAT. As shown in Section 3.4.2, the even size 

distribution of adipocytes in chow-fed foz/foz mice differed strikingly for the 

accumulation of cells ≥ 8000 μm
2
 to 40% of total adipocytes in atherogenic diet-fed 

foz/foz mice. Atherogenic dietary intake clearly caused lipid-engorgement of adipocytes 

in foz/foz mice. 

   The number of CLS increased proportional to the increase in adipocyte volume in 

these animals. Although traces of adipose inflammation were found for other groups, it 

was substantial only in atherogenic diet-fed foz/foz mice. Hypertrophic adipocytes 

become the dominant subpopulation in atherogenic diet-fed foz/foz mice with high 

number of CLSs indicating an association between adipose morphology and 

inflammatory status. To summarize, adipocyte size is a good indicator about the 

metabolic status of adipose tissues (small is good at early stages of age), and existence 

of large hypertrophic adipocytes can assist inflammatory recruitment into adipose 

tissue. In the present Chapter which addresses developmental changes, morphometry 

was not performed in subcutaneous WAT. In a later Chapter (Chapter 6), both sites 
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were studied and it became evident that there are differences between visceral and 

subcutaneous WATs. 

   As stated in Section 3.1, NASH comprises three indices: liver steatosis, inflammatory 

recruitment into liver, and hepatocyte degeneration (ballooning). The S.O.S. signal for 

the development of NASH starts with ectopic lipid partitioning, particularly into liver. 

In other words, excess energy that escapes from (or is not stored in) adipose tissues 

targets liver. Hepatocyte lipid uptake, storage and lipid trafficking within hepatocytes 

are not yet fully characterized. However, increasing data indicate that lipid-induced 

hepatocyte stress (liver lipotoxicity) and injury is central to transition of simple steatosis 

to NASH during histological progression. 

   The important liver finding in this study was that not only the amount but the 

intracellular pattern (type/structure) of lipid accumulation in the liver changes with the 

combination of atherogenic diet and foz/foz genotype. At 8 weeks, there were early 

indications of liver enlargement and hepatic steatosis (determined by liver ORO) in 

atherogenic diet-fed foz/foz mice. At 10 weeks of age, hepatomegaly was established 

and liver total steatosis was significantly increased compared to their WT counterparts. 

However, liver macro-steatosis was virtually absent until 10 weeks of age in liver of 

these mice. Absolute and relative liver weight continued to increase in 12 week old 

atherogenic diet-fed foz/foz mice. Correspondingly, liver total steatosis (micro + macro 

[vesicular] steatosis) also increased by ORO quantification. The finding that a 

significant increase in stainable liver macro-steatosis could not be observed until 12 

weeks of age in atherogenic diet-fed foz/foz mice. This could be an important fact of 

lipid storage in hepatocytes during onset of NAFLD. In these initial stages, lipids 

(particularly TAGs) appear to be packaged in lipid droplets which form microvesicles as 

the “demand” for lipid storage increases, the protein composition of lipid droplets 

change (in favour of adipophilin over perilipin). Light microscopy of H&E-stained liver 
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sections is not a satisfactory method for determining minor degrees of steatosis when 

microvesicles predominate (365). However, once microvesicles form macrovesicles, fat 

(steatosis) is readily appreciated. This technical reason likely explains why the apparent 

pattern of hepatic lipid accumulation is gradual (between 6 to 12 weeks) when detected 

by ORO, but seems apparent only at 12 weeks by examination of H&E-stained liver 

sections. 

   In conclusion, interaction between “Western dietary intake” (atherogenic diet) and 

appetite defect-mediated over-eating (foz/foz genotype) results in early-onset of obesity 

in mice. The response of different adipose compartments to this energy imbalance 

differs and some tissues (Pov and lumbar WATs) have higher capacity of lipid storage 

than others (Mes and dorsal WATs). Atherogenic dietary intake increased mean 

adipocyte volume in Pov WAT during development of foz/foz mice and this was 

associated with an increase in the number of CLSs in adipose tissue. Meanwhile, the 

mice that showed higher number of hypertrophic adipocytes and infiltration of 

macrophages into adipose tissue also developed hepatomegaly and hepatic steatosis, 

which indicates that adipose hypertrophy and inflammation are associated with and may 

be a precondition for development of NASH. Next chapter provides an insight into the 

mechanism and significance of adipose inflammatory recruitment (role of TLR9 

signaling) and adipose dysfunction. 
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CHAPTER 4: Macrophages Recognise Degenerating Adipocytes via TLR9 

Signalling 

 

4.1 Introduction 

   In unhealthy obese individuals, fat cells die because their capacity to store lipid in the 

face of continuous energy imbalance is ultimately limited. During 2.5 million years of 

human evolution, adipocytes have developed in ways to store and provide energy to the 

system during periods of fasting, as in the case of nutrient deprivation in the 

environment. In no time in history until the last 2-3 decades, has calorie-dense food 

been so easy to access, and life has never been this sedentary. Evolution has not 

prepared human biology to adjust to these altered circumstances. 

  

4.1.1 Adipose Dysfunction and Natural Selection 

   Researchers have different opinions/interpretations about the behaviour of fat cells. 

Some authorities think of adipocytes as being altruistic cells. For the sustainability of 

the system, they try their best to store as much energy as they can. Others think 

adipocytes are unselfish but naïve cells. They are devoted to accomplish their job under 

any circumstance. In addition, yet other scientists think adipocytes are simply dumb. 

They do not have a well-developed self-control system; they corrode themselves as a 

result of their “dedication”, and consequently damage the whole system. Possibly all 

these statements are true, but they may be missing the point that vertebrate evolution 

continues. We take the view that adipocytes are “smart” cells; they push their limits to 

store energy because they are aware of the fact that constant energy imbalance is 

harmful for the body. 
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   In most parts of the world, adipocytes of the 21
st
 century are more hypertrophic and 

adipose tissues are more hyperplastic. Individuals who are able to control their appetite 

and who exercise more remain, from a relative point of view, healthier. Individuals who 

have “better quality” adipose (i.e., that with higher storage capacity) remain 

metabolically healthy obese despite conditions of energy surplus. Lastly, individuals 

who cannot change their lifestyle (of over-eating with sedentary behaviour) and who 

have adipose with a limited capacity for expansion, and/or whose adipocytes are fragile, 

develop serious health problems. Increased age- and gender-standardized mortality 

resulting from diabetes and cardiovascular problems, insulin resistance related cancers 

and fatty liver disease (NASH, cirrhosis, HCC) are seen mostly in the last group, who 

have unhealthy obesity. 

   Although mortality does increase with obesity and its related metabolic, vascular, 

neoplastic and liver complications do not usually prevent individuals from breeding 

(366, 367). This is because most mortality occurs after age of 40 years. For this reason, 

unhealthy obese individuals pass on their obesity development-related polymorphisms, 

perhaps mutations, as well as their cultural norms to their children. This is where 

Darwinist Natural Selection fails in obesity, because these alleles are not eliminated; 

they are inherited by the descendants. The behavioural aspects so central to over-

nutrition may also be learnt during early development and passed on to subsequent 

generations. Unlike rarer mono-genetic disorders, obesity is highly prevalent 

worldwide; an exception currently being sub-Saharan Africa (368). Over the last 30 

years, obesity has become the biggest challenge in medical sciences after cancer; both 

problems are partly lifestyle-related, partly genetically determined. These health 

priorities are likely to continue until biomedical science provides new drug therapy to 

interfere artificially with the consequences of metabolic obesity. 
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4.1.2 Recognition of Dead Adipocytes 

   As highlighted in Section 1.5, hypertrophy and ultrastructural abnormalities force 

adipocytes to die (266). Increasing numbers of dead adipocytes cause tissue 

dysfunction. The body attempts to protect adipose tissues by recruitment and activation 

of inflammation. In particular, there is infiltration of immune recognition and effector 

cells, such as DCs and macrophages, respectively. As stated earlier, 90% of 

macrophages in inflamed adipose tissues are found in CLSs (321). These occur around 

small dying/dead adipocytes. Despite the implications of such localisation, surprisingly 

little is known about the mechanism for inflammatory recruitment into adipose. A key 

question is how do macrophages recognize degenerating or dead adipocytes in order to 

accumulate around them. Alternatively stated: what are the recognition signals created 

by stressed adipose that attract inflammatory cells to the tissue? 

   In this Chapter, we examine the possibility that TLR9 signalling may contribute to 

macrophage recognition of degenerating adipocytes, with localization and formation of 

CLSs to initiate adipose inflammation. In order to place TLR9 in context with other 

pattern recognition receptors and their signalling molecules, a brief overview of TLRs 

will be given here. 

 

4.1.3 The TLR Family 

   TLRs are one type of pattern-recognition receptors (PRRs) that form a central 

recognition function in the innate immune system (IIS) (369). The molecular patterns 

can be intrinsic (DAMPs) or from microorganisms (PAMPs). The “modern” concept for 

IIS research followed the discovery that B cell NF-κB is activated by the gram-negative 

bacterium cell wall component, lipopolysaccharide (LPS) (369, 370). NF-κB was not 

initially identified as a pro-inflammatory transcription factor, but was known to regulate 

a remarkable number of genes in inflammation. Interestingly, interleukin 1-R type 1 
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(IL-1R1) was found to activate NF-κB (371). Considering the fact that Toll and IL-1R1 

share the same signalling domain, it was evident that these proteins may have 

pleiotropic NF-κB-dependant roles. This increased interest in TLR research. 

   The first TLR to be identified (in 1997) was called hToll (now known as TLR4) (372). 

One year later, five more Toll homologues were reported (373). Meanwhile, LPS was 

reported to signal via TLR4 through an intracellular adapter protein called myeloid 

differentiation primary-response protein 88 (MyD88) to upregulated NF-κB, thereby 

inducing expression of pro-inflammatory genes (374, 375). TIR-domain-containing 

adapter-inducing interferon β (TRIF) is another intracellular adapter protein, necessary 

for TLR4 and TLR3 signal transduction (376). These discoveries further stimulated 

research into the relationship of innate immunity to inflammation and tissue 

regeneration. For the insights gained, Bruce Beutler and Jules Hoffman were eventually 

awarded the Nobel Prize for Physiology or Medicine in 2011 (377). 

   Today, 10 human and 13 mouse TLR subtypes have been reported (378). TLR2 

recognizes lipopeptides (379). TLR3 is important for viral protein recognition (380), 

and unlike TLR4 and TLR2, it is an endosomal (intracellular) receptor. From 2002, 

TLR7, TLR8 and TLR9 were also reported to recognize intracellular danger signals 

which are important for tissue damage-mediated inflammatory recruitment (381). The 

recent discovery of TLR13, which recognizes bacterial ribosomal RNA, indicates that 

knowledge about TLRs and IIS continues to grow. General information about TLRs is 

summarized in Table 4. 
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4.1.4 “Turning on” TLR9 

   TLR9 signalling was first reported in 2000 as an anti-bacterial response (382). It was 

then shown that TLR9 could recognize CpG-rich (hypomethylated) single strand DNA 

(ssDNA) motifs (382, 383). TLR9 is located intracellularly in endosomes (Fig. 4.1) 

(384). Although there are some clinical indications that TLR9 may play a role in auto-

inflammatory (-immunity) response, in general, the mechanism by which TLR9 

responds to foreign DNA is under strict control (385). Such a response requires 

proteolytic processing of the TLR9 ectodomain in the endolysosome, a mechanism that 

prevents TLR9 responding to extracellular self DNA. 

 

Figure 4.1: An overview of TLR9-mediated signalling pathway. Upon activation by its 

ligand, the cytosolic domain of TLR9 recruits MyD88. MyD88-mediated signalling cascade in 

turn activates interferon regulatory factor 7 (IRF7) or NF-κB to induce expression of type I 

IFNS (IFNα and IFNβ) or pro-inflammatory cytokines (e.g., TNFα, IL6). 
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4.1.5 Adipocytes and Innate Immunity 

   Adipose tissue is a “roundabout” that connects metabolism to the immune system. As 

explained in Section 1.5, adipose tissues secrete classical cytokines (TNFα, IL6, etc.), 

chemokines (MCP1, MIF, chemokine (C-C motif) ligand 5 [CCL5], etc.), immune-

modulators, complement (adipsin, ASP, etc.), and growth factors (64). Changes in 

adipose morphometry, adipose macrophage infiltration, and macrophage-like 

differentiation of preadipocytes may affect the production of these factors. These 

changes are bidirectional; adipose tissues have regulatory roles in both the metabolic 

and immune responses. In this context, TLR9 signalling may have a special role in 

adipose innate immunity. 

   The level of TLR9 expression on adipocytes depends on the commitment level of the 

cell; its expression differs between preadipocytes and mature adipocytes (386). For 

example, the murine preadipocyte cell line 3T3-L1 does not express TLR9 under basal 

conditions (387). In adipocytes, there are different patterns of TLR9 expression, but 

there is no consensus on which cell type actually activates TLR9 signalling during 

adipose inflammation: is it adipocytes or is it macrophages themselves? 

   Interferon γ (IFNγ) plays an important role in the initiation of an adipose 

inflammatory response (388). The main source for IFNγ production in adipose is T cells 

(389). CCL5 (RANTES) is a chemokine that induces migration of leukocytes, 

particularly T cells, to the tissues (390, 391). Chemokine (C-X-C motif) 10 (CXCL10 

[IP10]) is another small chemokine that is also described as IFNγ-induced protein 10 

(392). It is produced in response to IFNγ and it can induce migration and activation of 

several immune cells, including monocytes/macrophages and DCs (393). 

   Mononuclear phagocyte leukocytes originate from BM-derived cells, circulate as 

monocytes and differentiate into macrophages or DCs (394, 395). While monocytes are 

known as circulating pre-cursors, they carry effective immune-modulatory machinery 
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that includes chemokine and adhesion receptors. Different subsets of monocytes can 

participate in immunization, conducting different tasks, such as taking up toxic 

molecules and producing inflammatory cytokines. Despite this appreciation, monocyte 

migration to sites of inflammation and their differentiation into macrophages is poorly 

understood. 

   Monocytes enter the blood from the BM and circulate until they are recruited. 

However, tissues also contain resident immune cells that do not originate from the BM 

(308). Understanding the origins of monocytes and macrophages carries potential to 

reveal the factors that determine adipose inflammatory recruitment. In order to 

understand the migration pattern of immune cells and their infiltration into tissues, BM 

chimeric mice are a useful model (396) and this was employed in the present research. 

However, it needs to be recognized that total body irradiation and BM reconstruction 

may present their own challenges in conducting the studies and interpretation of 

experimental data. Robust macrophage infiltration is the main event in persistent 

adipose inflammation, but it is not clear yet whether monocytes commit to a pro-

inflammatory phenotype while in the circulation (before diapedesis) attributable to the 

presence of circulating adipose-derived chemokines, or whether they trans-differentiate 

after migration into the tissue. There are also few details about exactly how 

monocyte/macrophage infiltration into adipose occurs, except that some factors such as 

GM-CSF and macrophage inflammatory protein 1α (MIP1α) are present in inflamed 

adipose (334). This chemokine gradient is likely to favour “monocytic infiltration” into 

adipose tissue. If this is the case, the main source of macrophages in inflamed adipose 

must be the BM. 
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4.2 Aims 

   In this Chapter, we hypothesized that extensive adiposity and resultant adipocyte cell 

death activate TLR9 signalling in adipose tissue. Such TLR9 activation contributes to 

macrophage recognition of degenerating adipocytes, causing their accumulation and 

activation as M1 macrophages so as to form CLSs. An axiom is that the number of 

CLSs reflects the intensity and persistence of adipose inflammation. Accordingly, the 

specific aims were to: 

1. Examine adipose morphometry, oxidative stress and cell death pathways in 

relation to adipose inflammation in our diabetic obese mouse model of 

metabolic syndrome and NASH; there is a particular focus on CLSs, around 

small degenerating or dead adipocytes. 

2. Test whether TLR9 plays a role in adipose inflammation by using gene-deleted 

mice and diet-induced models of obesity. 

3. By the combination of flow cytometry and BM chimera strategies, clarify 

whether adipocytes and/or macrophages are primarily responsible for TLR9 

signalling. 

4. Investigate the relationship of adipose dysfunction and TLR9 to the 

developmental origins of NASH (see Section 3.1.1 for introduction). 

 

4.3 Experimental Details 

   All animal experiments were performed under appropriate ethics approval and strict 

adherence to these protocols (see Section 2.1.1). Unless stated otherwise, mice were 

grouped 2-5 per cage, with ad-libitum access to water and food, under a 12-hour 

day/night cycle and constant temperature of 22
0
C. From weaning, groups (n=6-14) of 

female Alms1
-/-

 mutant (foz/foz) C57BL/6J (B6) mice, Tlr9
-/-

, and WT mice (also B6 

strain) were fed either rodent chow or atherogenic (Ath) (SF03-020; Glen Forrest) diet 
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until 28 week old. Control mice (WT littermates) were established for both foz/foz and 

Tlr9
-/-

 mice, and for the sake of clarity, these control groups were combined in data 

analysis. Detailed methodology about tissue harvest is given in Section 2.1.3. In the 

present study, fasting blood, fat pads, and liver were removed under anaesthesia for 

further analyses. 

   In this PhD project, a diverse and extensive range of molecular biology techniques 

was used, including serum ELISA (Section 2.2.1), mRNA quantification by qPCR 

(Section 2.3.1), and protein analysis by western blotting (Section 2.3.2), as detailed in 

the relevant sections of Chapter 2. mRNA expression levels of target genes were 

normalized to the mean of three “house-keeping genes”: β-2 microglobulin (B2M), 

RPL13A, and GAPDH mRNA. Likewise, targeted protein levels in western blotting 

were normalized to levels of HSP90. Adipose morphometry and liver histology analyses 

were other techniques used in this study and have been described in Section 2.2.3. In 

addition to the detailed adipose morphometric analysis, the number of degenerating 

small adipocytes (in the centre of CLSs) was counted by analyzing 10 fields of H&E-

stained adipose sections (1 mm
2
 area) for each mouse. Lastly, TLR9 expression patterns 

of different adipose tissue cell types were analyzed by flow cytometry, as described in 

Section 2.3.3. 

   For the creation of BM chimeras, WT and Tlr9
-/-

 B6 mice were irradiated (double dose 

450 cGy) and received (by tail vein injection) either WT or Tlr9
-/-

 BM cells, as detailed 

in Section 2.1.6. After 6 weeks of antibiotic treatment (8.5x10
5
 U/L polymyxin-B-

sulphate, 1.1 g/L neomycin sulphate in drinking water) to prevent systemic infections 

after total body irradiation, mice were fed atherogenic diet for 14 weeks. Harvest was 

performed following the standard procedure (Section 2.1.3). 

   Data are presented as mean ± SEM (n=8-18). For the analysis of data significance, 

Prism 6 (GraphPad, La Jolla, CA) and SPSS Statistics 22 (IBM, New York, NY) 



CHAPTER 5: Effects of OCA on Macrophage Polarization in Metabolic Obesity 

142 
 

softwares were used applying one-way or two-way analysis of variance (ANOVA), 

followed by Bonferroni’s post hoc analysis. 

 

4.3.1 Author Contributions 

   Fahrettin Haczeyni designed and conducted the experiments, performed all the read-

out analysis, and wrote the Chapter. Auvro Robin Mridha also provided intellectual 

input into experimental design and assisted with the conduct of experiments. Vanessa 

Barn supervised the breeding and maintenance of animals. Matthew M. Yeh assessed 

liver histology. Narci Teoh contributed intellectual input and reviewed the experimental 

results. Bruce Shadbolt provided invaluable advice on statistical analyses. Geoff Farrell 

conceptualized and directed the study, reviewed and edited the Chapter. The Canberra 

Hospital research office and animal house technicians also provided highly skilled 

technical assistance.  

 

4.4 Results 

   In order to understand the mechanism of macrophage recruitment during persistent 

adipose inflammation, cohorts of appetite-dysregulated foz/foz mice and WT controls 

were established on either the atherogenic diet (which accelerates onset of obesity, 

diabetes and NASH) or chow. Activation of TLR9 is the main focus of this Chapter. To 

study its role in adipose inflammation, a cohort of Tlr9
-/-

 mice (with WT controls) was 

also studied to determine how absence of this immune receptor influenced physiological 

and pathological changes in the adipose and liver. 

 

4.4.1 Effects of Diet and Genotype on Weight Gain and Metabolism 

   With atherogenic dietary feeding, WT mice gained more weight than chow-fed 

counterparts, to be ~40 g (obese) at the end of experiments (Fig. 4.2A). Chow-fed 
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foz/foz mice gained more weight than either chow-fed or atherogenic diet-fed WT mice, 

reflecting the powerful effect of appetite dysregulation described in Chapter 3. foz/foz 

mice developed obesity (> 50 g) on either diet. Conversely, atherogenic diet-fed Tlr9
-/-

 

mice were protected from excessive weight gain.  

   Atherogenic dietary feeding had only a minor (if any) effect on FBG levels in these 

B6 mice (Fig. 4.2B). Although there was an apparent increasing trend of FBG in foz/foz 

mice (fed either diet), these increases were not significant compared to WT counterparts. 

However, the increase in serum insulin levels was significant in chow-fed foz/foz mice 

compared to WT control (Fig. 4.2C). A similar increase was found in atherogenic diet-

fed foz/foz mice vs. diet-matched counterparts, but this was not significant because of 

the considerable variance in this group (10 mice; range 0.3 – 18.9 ng/ml). 

   In chow-fed foz/foz mice, serum total cholesterol was ~3 times higher than chow-fed 

WT mice (Fig. 4.2D). In atherogenic diet-fed foz/foz mice, more profound 

hypercholesterolemia developed; there was 2-fold increase in serum total cholesterol 

compared to atherogenic diet-fed WT mice. On the other hand, Tlr9 deletion did not 

affect serum cholesterol in chow-fed animals, and, although it was higher than in chow-

fed Tlr9
-/-

 mice, serum cholesterol levels in atherogenic diet-fed Tlr9
-/-

 mice were still 

lower than for diet-matched WT controls. 



CHAPTER 5: Effects of OCA on Macrophage Polarization in Metabolic Obesity 

144 
 

 

Figure 4.2: Effects of atherogenic diet on body weight, FBG, serum insulin and cholesterol 

in WT, foz/foz, and Tlr9
-/-

 mice. (A) Atherogenic diet-fed WT and foz/foz mice weighed more 

than 40 g, whereas Tlr9
-/-

 mice gained weight compared with chow-fed counterparts, but were 

protected from excessive weight gain. (B) Dietary intake and genotype did not have significant 

effect on fasting blood glucose. (C) However, foz/foz mice developed hyperinsulinemia, 

irrespective of diet when compared with their WT counterparts. There was no increase in serum 

insulin levels of WT or Tlr9
-/-

 mice fed atherogenic diet vs. chow. (D) Atherogenic dietary 

intake increased serum cholesterol levels in all mice compared to their chow-fed counterparts, 

and foz/foz mice developed severe hypercholesterolemia after 24 weeks of atherogenic dietary 

feeding. In Tlr9
-/-

 mice, atherogenic dietary intake increased serum cholesterol levels vs. chow-

fed Tlr9
-/-

 mice 

Data are mean ± SEM (n=6-14/gp). 

† P<0.05 vs. diet-matched WT (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect); e.g., atherogenic diet-fed vs. chow-fed WT 

 

4.4.2 Effects of Diet and Genotype on Adipose Tissue Size and Function 

   Although multiple adipose pads contribute differently to bodily pathophysiology (see 

Section 1.2.7), in this part of the study we measured only periovarian adipose tissue 

(referred to as visceral WAT) due to the demanding (of time) morphometric analyses 

required. Among chow-fed mice, visceral WAT weighed more in foz/foz and less in 

Tlr9
-/-

 mice than WT (Fig. 4.3A). Atherogenic dietary feeding increased visceral WAT 

weight (~2-fold) in WT mice; a similar but limited trend was found in atherogenic diet-

fed Tlr9
-/-

 mice. In atherogenic diet-fed foz/foz mice, adiposity was the highest among 
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genotypes. However, as previously reported (232), visceral WAT as a percentage of 

body weight was less than in chow-fed WT mice (Fig. 4.3B). 

 

 

Figure 4.3: Absolute and relative visceral WAT weight in WT, foz/foz and Tlr9
-/-

 mice. 
(A) foz/foz mice had increased and Tlr9

-/-
 decreased adiposity compared with WT, irrespective of 

diet. (B) However, adipose expansion as a proportion of body weight was limited in atherogenic 

diet-fed foz/foz compared to chow-fed foz/foz or atherogenic diet-fed WT mice. Tlr9
-/-

 mice also 

showed limited visceral adiposity when fed an atherogenic diet compared to WT counterparts. 

Data are mean ± SEM (n=6-14/gp). 

† P<0.05 vs. diet-matched WT (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect); e.g., atherogenic diet-fed vs. chow-fed WT 

 

   There was insufficient adipose in some groups (e.g., chow-fed Tlr9
-/-

) to perform both 

morphometry and the full range of molecular techniques. Priority was therefore given to 

use tissues for morphometric and mRNA expression assays. As a result, protein 

analyses in this Chapter are limited by logistics. In Figure 4.4, mRNA expression levels 

are shown for genes concerned with adipose function. Some of them are involved in 

adipogenesis (and adipocyte metabolism), whereas others contribute to whole body lipid 

metabolism. 

   As described in Section 1.5.4, adipsin is an adipokine with positive effects on 

metabolic regulation, such as improving pancreatic β cell function (294). In atherogenic 

diet-fed foz/foz mice, levels of visceral WAT adipsin mRNA were high than in 

atherogenic diet-fed WT mice, while adipsin mRNA was lower than WT in Tlr9
-/-

 mice 

(Fig. 4.4A). Patatin-like phospholipase domain containing 2 (PNPLA2) (ATGL) 
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catalyzes the first step of triglyceride hydrolysis in adipocytes (397, 398). The 

expression profile for Pnpla2 mRNA was similar to adipsin (Fig. 4.4B). Perilipin 2, as 

explained in Section 1.4, is an important lipid droplet protein. Perilipin 2 mRNA levels 

were upregulated in atherogenic diet-fed foz/foz mice, and decreased in Tlr9
-/-

 mice vs. 

WT counterparts (Fig. 4.4C). Caveolin 1 is a subunit in caveolae structures where 

insulin signalling molecules locate (see Section 1.4.4). Cav1 mRNA levels were 

significantly lower in atherogenic diet-fed foz/foz mice visceral WAT than WT mice, but 

there was no change in Tlr9
-/-

 mice (Fig. 4.4D). 

   SCD1 forms double bonds in C16 and C18 units of LCFAs that transfers saturated 

FAs into unsaturated ones of the same chain length (399). There was no effect of 

genotype on mRNA expression of this gene (Fig. 4.4E). Peroxisomal acyl-coenzyme A 

oxidase 1 (ACOX1) initiates FA β oxidation (400, 401). While there was a decrease in 

Acox1 mRNA expression in atherogenic diet-fed foz/foz mice visceral WAT compared 

to WT (Fig. 4.4F), there was no change in Tlr9
-/-

 mice. A similar trend was found for 

fatty acid synthase (Fas) mRNA levels (Fig. 4.4G). As reviewed in Section 1.3, FOXO1 

is a protein regulated by insulin action (196, 197). Foxo1 mRNA levels of visceral 

WAT were decreased in foz/foz vs. WT mice. In contrast, Tlr9 deletion was associated 

with an increase in Foxo1 visceral WAT mRNA levels compared to WT mice (Fig. 

4.4H). 
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Figure 4.4: Visceral WAT mRNA expression levels for the genes indicated, which are 

related to adipose function, in atherogenic diet-fed mice. Note: chow-fed mice not studied 

here, as explained in the text. Data are mean ± SEM (n=8/gp). Values are expressed relative to 

WT, which is set at 1.0. 

† P<0.05 vs. WT control (genotype effect); e.g., atherogenic diet-fed foz/foz vs. WT 

 

   A detailed overview of adiponectin as an insulin-sensitizing, anti-inflammatory 

hormone produced by adipocytes was provided in Section 1.5. In atherogenic diet-fed 

WT mice, circulating adiponectin levels vs. chow-fed WT tended to fall, but this was not 

significant (Fig. 4.5A). Hypoadiponectemia was found in foz/foz mice irrespective of 

diet, but this decrease was more pronounced in atherogenic diet-fed animals. 

Atherogenic dietary intake did not alter circulating serum adiponectin levels in Tlr9
-/-

 

mice. 

   Visceral (periovarian) adipose tissue is an important source of adiponectin production 

(see Section 1.5.4). Comparison of WAT from atherogenic diet-fed foz/foz or Tlr9
-/-

 

with WT mice showed that tissue adiponectin mRNA levels were significantly less with 

foz/foz genotype, whereas Tlr9 deletion tended to increase (P = 0.07) adipose 
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adiponectin mRNA, compared to WT (Fig. 4.5B). Consequently, WAT adiponectin 

protein levels were less in foz/foz mice and higher in Tlr9
-/-

 mice on atherogenic diet 

compared to WT mice (Fig. 4.5C). 

 

  

Figure 4.5: foz/foz mice developed hypoadiponectemia, whereas Tlr9
-/-

 mice expressed 

higher tissue adiponectin compared to WT counterparts. (A) Serum adiponectin levels 

([HMW) fell markedly in foz/foz mice, particularly with atherogenic diet, but values were not 

affected by atherogenic dietary feeding in Tlr9
-/-

 and WT mice. (B) WAT adiponectin mRNA, 

and (C) protein expression (LMW) largely reflected serum adiponectin levels on atherogenic 

diet, although an effect of atherogenic diet was also evident in WT mice. There was insufficient 

tissue to assay adiponectin protein in WAT of chow-fed Tlr9
-/-

 mice. 

Data are mean ± SEM (n=8/gp). 

† P<0.05 vs. diet-matched WT (genotype effect); e.g., atherogenic diet-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect); e.g., atherogenic diet-fed vs. chow-fed WT 

 

4.4.3 Effects of Diet and Genotype on Adipose Morphometry, Including 

Adipocyte Degeneration 

   A detailed review about adipocyte size is provided in Section 1.4. Adipose 

dysfunction and metabolic complications of obesity are associated with excess lipid 

partitioning into adipocytes. This lipid engorgement causes their degeneration, and 

degenerating adipocytes shrink due to lipid “spillage” from adipocytes. As a result of 

these changes, the small size of adipocytes is ambigious under different circumstances; 

it can reflect a healthy phenotype (as with exercise, see Chapter 6), or unhealthy (in 

terms of shrinking during cellular injury and death). 
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   The mean adipocyte volume in chow-fed foz/foz was larger than in chow-fed WT (Fig. 

4.6A). Atherogenic dietary intake increased adipocyte volume in WT, but failed to 

increase this parameter in foz/foz mice compared to  their chow-fed counterparts. On the 

other hand, atherogenic dietary feeding (vs. chow) increased mean adipocyte volume in 

the visceral WAT of Tlr9
-/-

 mice (Fig. 4.6A). Atherogenic dietary intake lowered the 

number of adipocytes in a fixed surface area in WT (not significant) and Tlr9
-/-

 mice (vs. 

chow), but consistent with the lack of change in cell volume, had no effect in foz/foz 

mice (Fig. 4.6B). 

 

 

Figure 4.6: Mean adipocyte volume and number in WT, foz/foz and Tlr9
-/-

 mice.  (A) foz/foz 

mice showed increased mean adipocyte volume in visceral WAT, although this increase 

appeared to be more limited in atherogenic diet-fed mice compared to WT counterparts. 

Atherogenic dietary intake increased adipocyte volume ~3-fold in Tlr9
-/-

 mice (vs. chow),  but 

cell volume remained less than in atherogenic diet-fed WT mice (B) Reflecting their smaller 

volume, mean adipocyte numbers were lower in foz/foz mice than WT irrespective of diet, and 

larger in chow-fed Tlr9
-/-

 mice compared with WT. 

Data are mean ± SEM (n=8/gp). 

† P<0.05 vs. diet-matched WT (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect); e.g., atherogenic diet-fed vs. chow-fed WT 
 

   A detailed explanation for adipocyte size classification is provided in Section 3.4.2. 

The majority of adipocytes in chow-fed WT mice were between 500 and 4000 μm
2
 in 

size (small adipocytes) and the numbers of medium and large adipocytes were very low 

(Fig. 4.7A). In chow-fed foz/foz mice, the distribution of adipocyte size was greater, 

with the most abundant cell population between 3000 to 5000 μm
2
, or 9000 μm

2 
and
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above (Fig. 4.7B). In chow-fed Tlr9
-/-

 mice, the most significant proportion of 

adipocytes was small cells, especially between 0 and 3000 μm
2 
(Fig. 4.7C). 

 

 

Figure 4.7: Adipocyte size distribution in chow-fed WT, foz/foz, and Tlr9
-/-

 mice. (A) 

Distribution of median adipocyte size was accumulated around small to moderate adipocytes in 

chow-fed WT, (B) with no dominant size group in chow-fed foz/foz (> 10% cells were above 

9000 µm
2
), and (C) predominantly small adipocytes in chow-fed Tlr9

-/-
 mice visceral WAT. 

(n=8/gp [10 sections per mouse]; H&E-staining, 160x magnification) 

 

   In atherogenic diet-fed WT visceral WAT, the majority of adipocytes were medium-

to-large and ~20% were 9000 μm
2
 and above in size (Fig. 4.8A). In atherogenic diet-fed 

foz/foz mice, the proportion of large adipocytes was less than WT counterparts (Fig, 

4.8B). Atherogenic diet-fed Tlr9
-/-

 mice exhibited less than 10% large adipocytes, and 

the majority of cells were small-to-moderate adipocytes (Fig. 4.8C). Interestingly, both 

atherogenic diet-fed foz/foz and Tlr9
-/-

 mice showed an important proportion of small 

adipocytes. The possibility that the phenotype of these “small adipocytes” is different 

between the two genotypes is addressed by data in the next Section. 
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Figure 4.8: Adipocyte size distribution in atherogenic diet-fed WT, foz/foz, and Tlr9
-/-

 mice. 
(A) Atherogenic diet-fed WT mice showed a relatively higher proportion of large adipocytes 

(≥8000 µm
2
; ~30%) in visceral WAT compared to chow-fed WT (Fig. 4.7A). (B) In atherogenic 

diet-fed foz/foz mice, large adipocytes were less than WT mice, and there was an important 

proportion of cells between 1000 and 5000 μm
2
. (C) In atherogenic diet-fed Tlr9

-/-
 mice, the 

proportion of large adipocytes were less than ~20%, and the majority of cells were between 

1000 and 6000 μm
2
 with an even distribution. (n=8/gp [10 sections per mouse]; H&E-staining, 

160x magnification) 

 

   As reviewed in Section 1.5, hypoxia, oxidative stress and lipid engorgement are 

associated with ultrastructural abnormalities in large adipocytes. These cells later shrink 

by release of FA and cholesterol, and degenerate by activation of programmed cell 

death pathways (necro-apoptotic or pyroptotic mechanisms; see Section 1.5.6). In this 

Section, data exploring the possible pathways for “degeneration” of adipocytes and their 

role in adipose inflammatory recruitment will be presented. 

   Hif1α mRNA expression did not change by genotype (foz/foz or Tlr9
-/-

 vs. WT) in 

visceral WAT (Fig. 4.9A). However, vascular cell adhesion protein 1 (Vcam1) mRNA 

was increased in atherogenic diet-fed foz/foz visceral WAT compared to WT mice; Tlr9 

deletion did not alter Vcam1 mRNA expression compared to WT mice (Fig. 4.9B). 

Compared to atherogenic diet-fed WT mice, catalase, mitochondrial Sod2 and 

extracellular Sod3 WAT mRNA levels were decreased in atherogenic diet-fed foz/foz, 

indicating the likely occurrence of chronic oxidative stress in these animals (Fig. 4.9C-

E). Moreover, nuclear factor [erythroid-derived] 2-like 2 (Nfe2l2) mRNA levels 
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increased in atherogenic diet-fed foz/foz vs. WT mice, further supporting the operation 

of chronic oxidative stress (Fig. 4.9F). Unlike foz/foz mice, Tlr9
-/-

 mice showed little 

evidence of WAT oxidative stress; only Sod2 mRNA levels were significantly less than 

WT, and Nfe2l2 mRNA was clearly not increased. 

 

 

Figure 4.9: Visceral WAT mRNA expression levels for genes related to oxidative stress in 

atherogenic diet-fed mice. Data are mean ± SEM (n=8/gp). Values are expressed relative to 

WT, which is set at 1.0. 

† P<0.05 vs. WT control (genotype effect); e.g., atherogenic diet-fed foz/foz vs. WT 

 

   C/EBP homologous protein (Chop) is a transcription factor that induces programmed 

(apoptotic) cell death in response to ER stress. There was no difference in Chop mRNA 

levels between groups (Fig. 4.10A). mRNA expression of the necroptosis (see Section 

1.5.6) marker Mklk was decreased in foz/foz mice vs. WT (Fig. 4.10B). Compared to WT 

mice, programmed necrosis marker Rip1 showed a decreasing trend (not significant), 

and Rip3 was significantly increased in visceral WAT of foz/foz mice (Fig. 4.10B-D). 

Tlr9
 
deletion did not affect WAT mRNA expression in any of these markers compared 

to WT (Fig. 4.10A-D). 
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Figure 4.10: Visceral WAT mRNA expression levels for genes related to apoptosis, 

necroptosis, and necrosis in atherogenic diet-fed mice. Data are mean ± SEM (n=8). Values 

are expressed relative to WT, which is set at 1.0. 

† P<0.05 vs. WT control (genotype effect); e.g., atherogenic diet-fed foz/foz vs. WT 

 

   As mentioned in the Introduction, interpreting the distribution of adipocytes by size 

can be misleading because adipocytes with the similar size can display different 

phenotypes. The percentage of small degenerating adipocytes in the centre of a CLS 

(see Fig. 4.15A for such small adipocytes) was 5% in atherogenic diet-fed WT mice 

visceral WAT (Fig. 4.11A). There was a major increase in this ratio, to 29%, in foz/foz 

mice (Fig. 4.11B), whereas it was only 1% in Tlr9
-/-

 visceral WAT (Fig. 4.11C). 
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Figure 4.11: Quantification of small degenerating adipocytes in atherogenic diet-fed WT, 

foz/foz and Tlr9
-/-

 visceral WATs. (A) Degenerating small adipocytes, located in the centre of a 

CLS (illustrated in Fig. 4.15A), were 5% of total small adipocytes (≤ 4000 μm
2
) in atherogenic 

diet-fed WT, (B) 29% in foz/foz, and (C) only 1% in Tlr9
-/-

 mouse visceral WAT (C). (n=8/gp 

[10 sections per mouse]; H&E-staining, 160x magnification) 

 

4.4.4 TLR9 Expression and Inflammatory Recruitment in Adipose Tissue 

   Almost all cell types can express TLRs, but their response to TLR activation may 

vary. As reviewed in Section 4.1, different adipose tissue components can express 

TLR9. Thus some large adipocytes can display a pro-inflammatory phenotype, but the 

role of TLRs in this phenotypic switch has not been fully characterized. In the present 

study, transcript expression of TLR9 and some other TLRs and signalling molecules 

were measured in visceral adipose tissue and its cellular components. 

   As described in Section 4.1, TLR9 recognizes oligonucleotides (ssDNA fragments) 

from necrotic cellular debris, whereas TLR3 recognizes dsRNA and TLR4 recognizes 

LPS. There were increased amounts of Tlr9 mRNA in the visceral WAT of atherogenic 

diet-fed foz/foz mice vs. WT (Fig. 4.12A). As expected (by definition), Tlr9 mRNA 

expression was virtually absent in visceral WAT of atherogenic diet-fed Tlr9
-/-

 mice. On 

the other hand, Tlr3 mRNA expression was higher in visceral WAT of atherogenic diet-
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fed Tlr9
-/-

 compared to WT mice (Fig. 4.12B). There were no significant changes in Tlr4 

mRNA between any of the groups (Fig. 4.12C). There was a possible increase in Trif 

mRNA in atherogenic diet-fed foz/foz mice visceral WAT (not significant) (Fig. 4.12D), 

but MyD88 mRNA levels were clearly similar in all genotypes (Fig. 4.12E). 

 

 

Figure 4.12: Visceral WAT mRNA expression of Tlr9, Tlr3, and Tlr4 as well as their 

adapter proteins, Trif and MyD88, in atherogenic diet-fed mice. Data are mean ± SEM 

(n=8/gp). Values are expressed relative to WT, which is set at 1.0. 

† P<0.05 vs. WT control (genotype effect); e.g., atherogenic diet-fed foz/foz vs. WT 

 

   The increase in Tlr9 mRNA expression would be consistent with increased TLR9 

protein levels in inflamed adipose tissue. To establish whether this is the case and to 

identify the cell type(s) responsible, we performed flow cytometry of mature adipocytes 

(Nile Red dye) and macrophages (fluorescence-labelled F4/80 antibody). As described 

in Section 2.3.3, cell solutions were prepared from a cohort of atherogenic diet-fed 

foz/foz mice (identical to the cohort of foz/foz mice studies for other read-outs). These 

preliminary data show that the number of TLR9-expressing adipocytes was low (~5%) 

in these three independent adipocyte samples (Fig. 4.13). 
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Figure 4.13: TLR9 expression in mature adipocytes from visceral WAT of atherogenic 

diet-fed foz/foz mice. Flow cytometry analysis showed that lipid-filled, mature adipocytes from 

visceral WAT (stained with Nile red) showed little, if any, bona fide expression of TLR9 

protein. (SSC [side-scattered light] for single cell stream) 

 

   The same adipose tissues and a fourth sample were analysed for macrophage 

expression of TLR9 using a similar flow cytometry protocol. In this experiment, SVF 

cells were separated from adipocytes by the method outlined in Section 2.3.3. As 

mentioned in Section 1.5.6, pro-inflammatory (M1) macrophages express F4/80 protein 

on their extracellular surface. We therefore consider F4/80 to be a relevant marker to 
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identify macrophages in inflamed adipose tissue. Preliminary analyses of visceral WAT 

SVFs showed high levels of TLR9 expression on F4/80 positive cells. Accordingly, ~21 

- 38% of SVF cells displayed both F4/80 and TLR9 expression (Fig. 4.14). In all, TLR9 

expression levels were 4-8-fold greater in F4/80 positive macrophages than in Nile Red-

stained adipocytes from visceral WAT of atherogenic diet-fed foz/foz mice. 

 

 

Figure 4.14: F4/80 and TLR9 co-expression in stromal vascular cells from visceral WAT 

of atherogenic diet-fed foz/foz mice. Visceral WAT stromal vascular cells expressing pro-

inflammatory marker, F4/80, also often expressed TLR9 protein (~21 – 38% of all cells). 

 

   One of main hypotheses of this PhD study is that degenerating adipocytes (which are 

small) attract inflammation into adipose tissue. As mentioned in Section 1.5, 90% of 

pro-inflammatory macrophages localize around such small adipocytes (Fig. 4.15A). 
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Accordingly, we measured the number of visceral WAT CLSs. The number of CLSs in 

visceral WAT increased slightly with atherogenic dietary feeding in WT mice (Fig. 

4.15B,C), but Tlr9
-/-

 mice were protected from the formation of CLS, even during intake 

of an atherogenic diet. In foz/foz mice, CLS recruitment already seemed evident on 

chow diet (not significant vs. WT), and the number of sites of inflammation (such as 

shown in Fig. 4.13A) was significantly higher in atherogenic diet-fed foz/foz mice 

visceral WAT compared to diet- or genotype-matched counterparts (Fig. 4.15B,C). 
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Figure 4.15: Number of CLSs in visceral WAT from WT, foz/foz and Tlr9
-/-

 mice fed NC or 

Ath. (A) Numerous mononuclear inflammatory cells, abutting degenerating adipocytes to form 

CLSs, are illustrated. (B,C) Such CLSs were abundant in foz/foz mice, especially with 

atherogenic diet (n=8/gp [10 sections per mouse]; H&E-staining, 160x magnification). The 

number of CLSs was small in atherogenic diet-fed WT mice, and they were virtually absent in 

atherogenic diet-fed Tlr9
-/-

 visceral WAT.  

Data are mean ± SEM (n=8/gp). 

† P<0.05 vs. diet-matched WT (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect); e.g., atherogenic diet-fed vs. chow-fed WT 

 

   As stated in Section 4.1, IFNγ and RANTES contribute to adipose inflammatory 

recruitment. In the present study, Ifnγ and Rantes mRNA expression were both high in 

visceral WAT of atherogenic diet-fed foz/foz (not significant for Ifnγ) compared to WT 

mice (Fig. 4.16A,B), with no changes in Tlr9
-/-

 mice. Ip10 mRNA expression appeared 

to be higher (not significant) in atherogenic diet-fed foz/foz mouse visceral WAT 



CHAPTER 5: Effects of OCA on Macrophage Polarization in Metabolic Obesity 

160 
 

compared to WT (Fig. 4.16C), with no difference for WT and Tlr9
-/-

 mice. Compared to 

WT, there was no significant increase of Mcp1 mRNA in visceral WAT of atherogenic 

diet-fed foz/foz mice, but Tlr9
-/-

 mice exhibited less Mcp1 mRNA than WT (Fig. 4.16D). 

There were no genotype differences in visceral WAT Chemerin mRNA expression (Fig. 

4.16E). 

 

 

Figure 4.16: Visceral WAT mRNA expression levels for genes related to macrophage 

chemotaxis in atherogenic diet-fed mice. Data are mean ± SEM (n=8/gp). Values are 

expressed relative to WT, which is set at 1.0. 

† P<0.05 vs. WT control (genotype effect); e.g., atherogenic diet-fed foz/foz vs. WT 

 

   As mentioned in Section 1.5.6, CD11b is an important pro-inflammatory (M1) 

macrophage marker (318). In the present study, Cd11b mRNA levels were significantly 

higher in atherogenic diet-fed foz/foz visceral WAT than WT mice (Fig. 4.17A). Tlr9 

deletion did not alter Cd11b mRNA expression levels. Cd11c, a marker of both 

macrophages and DCs (319), was increased in foz/foz mouse visceral WAT (Fig. 

4.17B). Consistent with the vanishingly small number of recruited CLSs, Cd11c mRNA 

levels were very low in Tlr9
-/-

 mice visceral WAT compared to WT. There seemed to be 

an increase in Icam mRNA in atherogenic diet-fed foz/foz mice visceral WAT, but this 
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was not significant compared to WT mice (Fig. 4.17C). In contrast, Tlr9
-/-

 mice had 

significantly less Icam mRNA in visceral WAT in comparison to WT. 

 

 

Figure 4.17: Visceral WAT mRNA expression levels for genes related to pro-inflammatory 

macrophage infiltration into adipose in atherogenic diet-fed mice. Data are mean ± SEM 

(n=8/gp). Values are expressed relative to WT, which is set at 1.0. 

† P<0.05 vs. WT control (genotype effect); e.g., atherogenic diet-fed foz/foz vs. WT 

 

4.4.5 Are Bone Marrow-Derived Cells Bearing TLR9 Essential for Adipose 

Inflammation? 

   As explained in Section 1.2, adipose tissue cells derive from BM. Bearing this in 

mind, manipulation of BM could provide insights into the function of TLR9 signalling 

for inflammatory recruitment into adipose tissue. Accordingly, we established cohorts 

of irradiated Tlr9
-/-

 and WT mice with BM isolated from WT or Tlr9
-/-

 mice to create 

chimeric mice. The detailed protocol for these experiments is given in Section 2.1.6. We 

anticipated that over 90% of the host BM cells would come from injected cells after 

total body irradiation (this has been verified in other work from the host lab). 

   WT mice with WT BM cells had the highest expression of Tlr9 mRNA in visceral 

WAT (Fig. 4.18A). In Tlr9
-/-

 mice with WT BM cells, Tlr9 mRNA expression appeared 

somewhat less, but this was not a significant difference. Strikingly, both Tlr9
-/-

 and WT 

mice transplanted with Tlr9
-/-

 BM cells expressed almost no Tlr9 mRNA in visceral 

WAT. To establish the specifity of this decrease in TLR9, we also measured visceral 

WAT Tlr4 mRNA levels. As expected, there was no significant difference in visceral 

WAT Tlr4 mRNA level between groups (Fig. 4.18B). 
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Figure 4.18: Expression levels for Tlr9 and Tlr4 mRNA in visceral WAT of BM chimeric 

mice. (A) Visceral WAT Tlr9 mRNA expression was the highest in WT mice with WT BM 

cells, whereas mice with Tlr9
-/-

 BM cells showed almost no Tlr9 mRNA expression. (B) Tlr4 

mRNA expression was similar in all groups.  

Data are mean ± SEM (n=8-9/gp). 

*P<0.05 vs. WT mice transplanted with WT BM cells. 

 

   Presumably because of the challenging effects of total body irradiation (and the 

subsequent antibiotic treatment), none of the mouse groups gained weight during 14 

weeks of atherogenic dietary feeding (Fig. 4.19A). Likewise, there were non-significant 

reduction in visceral and subcutaneous WAT weights of Tlr9
-/-

 mice compared with WT 

BM cells, and no changes in FBG between groups (Fig. 4.19B-D). Gastrocnemius 

muscle weight (though significantly more in atherogenic diet-fed Tlr9
-/-

 mice with WT 

BM cells), serum cholesterol and serum alanine aminotransferase (ALT) levels did not 

vary importantly between groups (Fig. 4.19E-G). Interestingly, Tlr9
-/-

 mice with Tlr9
-/-

 

BM cells showed increased levels of serum adiponectin compared to WT mice 

transplanted with WT BM cells (Fig. 4.19H). 
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Figure 4.19: Physiological changes in BM chimeric mice transplanted with Tlr9
-/-

 or WT 

BM cells. (A) No mice gained weight after 14 weeks of atherogenic dietary intake, while (B) 

fasting blood glucose, and (C,D) visceral and subcutaneous WAT weights did not vary between 

groups. (E) Gastrocnemius muscle mass was greater in atherogenic diet-fed Tlr9
-/-

 mice with WT 

BM cells than other groups, (F,G) but there were no differences in serum cholesterol and ALT 

levels between groups. (H) Serum adiponectin was increased in Tlr9
-/-

 mice transplanted with 

Tlr9
-/-

 BM cells compared to WT mice with WT BM cells. 

Data are mean ± SEM (n=8-9/gp). 

*P<0.05 vs. WT mice transplanted with WT BM cells. 
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   Analysis of mRNA expression related to adipose function and inflammation did not 

suggest much change between groups. In a similar trend to serum adiponectin 

concentrations, Tlr9
-/-

 mice with Tlr9
-/-

 BM cells seemed to express increased levels of 

visceral WAT adiponectin mRNA, although this was not a significant increase 

compared to WT mice with WT BM (Fig. 4.20A). There was no difference between 

different groups in adipsin mRNA expression (Fig. 4.20B). Likewise, there was little 

variation in Mcp1, Chemerin, Cd68 and Cd11c mRNA between groups (Fig. 4.20C-F). 

 

 

Figure 4.20: Visceral WAT mRNA expression levels of genes related to adipose function 

and inflammation in BM chimeric mice. (A,B) Adiponectin and adipsin mRNA levels were 

similar in all groups (the apparent increase in Tlr9
-/-

 mice with Tlr9
-/-

 BM was not significant). 

(C,D) There were no differences in Mcp1 and Chemerin levels between groups. (E,F) Recipient 

Tlr9
-/-

 mice, irrespective of the transplanted BM cells, appeared to express less Cd68 and Cd11c 

mRNA in visceral WAT than WT mice with WT BM, but this trend was not significant. 

Data are mean ± SEM (n=8-9/gp). 

*P<0.05 vs. WT mice transplanted with WT BM cells. 
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   Serum MCP1 levels were decreased in Tlr9
-/-

 mice with Tlr9
-/-

 BM cells compared to 

WT mice with WT BM cells (Fig. 4.21A). Circulating serum TNFα was virtually absent 

in mice with Tlr9
-/-

 BM cells irrespective of the host genotype (Fig. 4.21B). On the 

other hand, serum IL6 levels dependant on host genotype, so that only in Tlr9
-/-

 mice 

with Tlr9
-/-

 BM cells showed significantly lower serum IL6 than WT mice with WT BM 

(Fig. 4.21C). 

 

 

 

Figure 4.21: Circulating chemokine and cytokines pertinent to metabolic inflammatory 

responses in BM chimeric mice. (A) MCP1, (B) TNFα, and (C) IL6 levels were all reduced in 

Tlr9
-/-

 mice transplanted with Tlr9
-/-

 BM cells in comparison with WT mice with WT BM cells, 

whereas only TNFα levels were lower in Tlr9
-/-

 mice with WT BM. 

Data are mean ± SEM (n=8-9/gp). 

*P<0.05 vs. WT mice transplanted with WT BM cells. 
 

4.4.6 Effects of Diet and Genotype on Fatty Liver Disease 

   All foz/foz mice developed hepatomegaly, and as shown earlier in the Chapter, 

atherogenic diet-fed foz/foz mouse livers weighed significantly more than chow-fed 

counterparts (Fig. 4.22A,B). By contrast, atherogenic dietary feeding did not cause a 

significant increase in liver weight of WT or   Tlr9
-/-

 mice. 
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Figure 4.22: Effects of atherogenic dietary intake on liver weight in WT, foz/foz and Tlr9
-/-

 

mice. (A,B) foz/foz mice fed either diet developed hepatomegaly, whereas liver weights 

(absolute or relative) did not change in WT and Tlr9
-/-

 mice after atherogenic dietary feeding. 

Data are mean ± SEM (n=6-14/gp). 

† P<0.05 vs. diet-matched WT (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect); e.g., atherogenic diet-fed vs. chow-fed WT 

 

   Atherogenic dietary intake increased serum ALT levels in foz/foz mice compared to 

their chow-fed counterparts (Fig. 4.23A). A similar effect was found in WT and Tlr9
-/-

 

mice, but surprisingly, atherogenic diet-fed Tlr9
-/-

 mice showed higher serum ALT than 

WT mice. Because TLR9 signalling seems to be important for sustaining gastrointestinal 

mucosal integrity, we also measured circulating endotoxin levels to search for an 

explanation for increased serum ALT in atherogenic diet-fed Tlr9
-/-

 mice. Accordingly, 

atherogenic diet-fed Tlr9
-/-

 mice had significantly higher circulating concentrations of 

endotoxin compared to chow-fed Tlr9
-/-

 or atherogenic diet-fed WT mice (Fig. 4.23B). 

 

 

 



CHAPTER 5: Effects of OCA on Macrophage Polarization in Metabolic Obesity 

167 
 

 

Figure 4.23: Serum ALT and circulating endotoxin levels in WT, foz/foz, and Tlr9
-/-

 mice. 
(A) Atherogenic dietary intake significantly increased serum ALT levels in all mice. 

Surprisingly, atherogenic diet-fed Tlr9
-/-

 mice showed higher serum ALT than their WT 

counterparts. (B) This increase was associated with an increased concentration of circulating 

endotoxin in atherogenic diet-fed Tlr9
-/-

 mice in comparison with atherogenic diet-fed WT or 

chow-fed Tlr9
-/-

 mice. 

Data are mean ± SEM (n=6-14/gp). 

† P<0.05 vs. diet-matched WT (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect); e.g., atherogenic diet-fed vs. chow-fed WT 
 

 

   Liver histology was assessed by the method outlined in Section 2.2.3. Among chow-

fed mice, macro-steatosis was evident only in appetite dysregulated foz/foz mice. All 

mice fed an atherogenic diet developed moderate to severe macro-steatosis (Fig. 4.24A), 

but Tlr9
-/-

 mice had less liver macro-steatosis than WT. Liver inflammation was highest 

in foz/foz mice, especially in those fed an atherogenic diet. It was strikingly less in Tlr9
-

/-
 mice compared to WT counterparts (Fig. 4.24B). foz/foz mice showed ballooned 

hepatocytes on either diet, but with atherogenic dietary intake, the number of ballooned 

hepatocytes was similar between genotypes (Fig. 4.24C). NAS showed that all foz/foz 

mice and atherogenic diet-fed WT mice developed definite or borderline NASH. 

Conversely, most Tlr9
-/-

 mice exhibited mild NAFLD, indicating that they were 

protected from progression of steatosis to NASH (Fig. 4.24D). 
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Figure 4.24: Effects of atherogenic dietary feeding on liver histology in WT, foz/foz and 

Tlr9
-/-

 mice. H&E-stained liver sections were assessed blind by an expert liver pathologist 

(MMY) for: (A) macro-steatosis (0-3), (B) inflammatory score (0-3), and (C) ballooning score 

(0-2). (D) Data were compiled as the NAFLD activity score (NAS) (0-8). In chow-fed mice, all 

indices were significantly increased only in foz/foz mice. With atherogenic dietary intake, NAS 

increased more in foz/foz mice than in WT counterparts, whereas Tlr9
-/-

 mice were protected 

from liver inflammation and NASH. 

Data are mean ± SEM (n=6-14/gp). 

† P<0.05 vs. diet-matched WT (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect); e.g., atherogenic diet-fed vs. chow-fed WT 

 

4.5 Discussion 

   Until recently, the innate immune system was regarded as “non-specific” immunity, a 

rather unsophisticated part of the immune system. The discovery of TLRs changed this 

commonly-held belief. As stated in Section 4.1.3, a diverse range of TLR sub-types is 

expressed at varying levels on multiple cell types. These receptors can recognize a wide 

spectrum of DAMPs and PAMPs, and so activate an effective immune response via an 

overlapping range of different pro-inflammatory cascades. With this in mind, activation 

of TLRs on different cell types and tissues can result in different (relatively specific) 

tissue responses. 
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   Despite there being 13 mouse TLR sub-types reported by researchers during the last 

20 years, only TLR4 has been studied extensively for a putative role in adipose tissue 

inflammation. In the present study, we demonstrated by a range of complementary 

experimental approaches that TLR9 is a modulator of inflammatory recruitment into 

adipose tissue. In all, we believe that the data support the concept that adipose 

macrophages (and possibly some other immune cell types) recognize degenerating 

adipocytes via TLR9 signalling. The present studies also provide important details of 

adipose morphometry in relation to adipose inflammatory recruitment, particularly 

clarifying our entirely novel, important observation that small adipocytes may display 

different phenotypes (“good” or “bad”) under varying circumstances of nutrient load. 

   The first new finding of the present study is that Tlr9 mRNA was upregulated in 

inflamed visceral WAT sampled from mice under conditions of constant energy surplus. 

As shown in Figure 4.16, atherogenic diet-fed foz/foz mice exhibited over 1.5-fold 

increase of Tlr9 mRNA in visceral WAT compared to their WT counterparts. An 

unexpected finding was that although almost virtually absent, there was detectable Tlr9 

mRNA in Tlr9
-/-

 mice. As reviewed in Section 4.1.3, all TLRs are type I transmembrane 

proteins including a N-terminal leucine rich repeat (LRR) domain (where most of the 

structural variation occurs), a cysteine rich domain, a transmembrane domain, and an 

intracellular TIR domain. Although qPCR primers were designed carefully for mRNA 

detection experiments, some non-specific amplification may have occurred due to 

sequential similarities among TLRs. Accordingly, it seems likely that the minor 

appearance of Tlr9 mRNA expression in Tlr9
-/-

 mice reflected the margin of error in the 

assay, rather than any failure of complete genetic deletion of Tlr9. 

   The observed upregulation of Tlr9 mRNA in inflamed WAT raises another issue: is it 

adipocytes or macrophages that express TLR9? In order to answer this question, we 

conducted flow cytometry so as to discriminate mature adipocytes vs. cells in the 
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adipose tissue SVF. For detection of mature adipocytes, we used Nile Red dye which 

stains intracellular neutral lipids (e.g., TAGs, CEs). According to the Immunological 

Genome Project website (immune cell database), perhaps the most relevant read-out for 

pro-inflammatory macrophage detection is F4/80, with very low chance of cross-

reactivity with DCs or other cell types (402). We therefore used fluorescence-labelled 

F4/80 antibody to allow us to discriminate pro-inflammatory macrophages. 

   Several technical challenges for the conduct of this experiment included: formation of 

a foam-like solution of mature adipocytes, few cells from hyperplastic tissues, high lipid 

contamination, and high cell death. These difficulties mandated tight time limits for 

conduct of the experiments, which in turn were lengthy. For these reasons, we could not 

establish a full set of data from each mouse cohort. Nonetheless, our preliminary data 

indicate that in mice with constant energy surplus (atherogenic diet-fed foz/foz mice), 

visceral WAT contains a considerable number (~20%) of TLR9-expressing F4/80
+
 

macrophages. On the other hand, a much smaller proportion of Nile Red-positive 

mature adipocytes showed expression of TLR9 (only ~5%). As discussed in Section 

1.5.5, there is strong evidence that preadipocytes and monocytes may also express 

TLR9, and future investigations are required to establish if these cell types also 

contribute to adipose tissue TLR9 expression. 

   As shown in Section 4.4.5, irradiated WT mice transplanted with Tlr9
-/-

 BM cells did 

not express Tlr9 mRNA in visceral WAT. In other words, BM macrophages are vital for 

adipose inflammatory recruitment. This unambiguous finding identifies BM cells as the 

main source of adipose tissue macrophages. However, since total body irradiation 

(presumably) kills all SVF cells in adipose tissue, it is hard to clarify the likely 

contribution of adipose tissue-resident cells (e.g., preadipocytes, regulatory 

macrophages) to TLR9 expression as opposed to the dynamic role of inflammatory 

recruitment into adipose tissue. 
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   While we favour the interpretation that the present data support a concept whereby 

macrophages enter adipose tissue to initiate and sustain the WAT inflammatory 

response, it remains unclear which factors drive such macrophage infiltration. The 

relatively high expression of TLR9 in these macrophages could reflect occurrence of 

DAMPs in over-expanded adipose tissues. As opposed to this idea, traditional view 

focuses on the role of hypertrophic large adipocytes which display a pro-inflammatory 

phenotype (289), thereby contributing to adipose inflammatory recruitment. However, 

the existence of hypertrophic adipocytes may not be enough to establish adipose tissue 

inflammation, and the following lines of argument support this concept. 

   As shown in Fig. 4.3A, atherogenic diet-fed WT and foz/foz mice showed relatively 

similar visceral WAT mass (~2.3 vs ~2.5 g). On the other hand, Fig. 4.8 shows that in 

visceral WAT of atherogenic diet-fed WT mice, ~40% proportion of adipocytes are 

larger than 8000 µm
2
, whereas this proportion was only ~25% for diet-matched foz/foz. 

In light of these data, WT mice fed an atherogenic diet bear ~1.5 time higher number of 

hypertrophic large adipocytes in visceral WAT than foz/foz mice. Further, as shown in 

Fig. 4.4, adipogenic markers indicate that adipose tissue is better functioning in 

atherogenic diet-fed WT mice than in foz/foz. Moreover, the data in Fig. 4.8 imply 

increased chronic oxidative stress in foz/foz vs. WT mice. If atherogenic diet-fed WT 

mice carry greater number of hypertrophic large adipocytes in visceral WAT, how can 

foz/foz WAT be less healthy? We believe that the answer to this question is revealed by 

the cell death results shown in Fig. 4.10; nevertheless, this question will be subjected to 

further investigation as a future direction. 

   As discussed in Section 1.5.6.3, RIP3 expression is directly related to necroptosis, a 

form of programmed cell death that incorporates features of apoptosis and necrosis. In 

the present study, the visceral WAT of foz/foz mice exhibited significantly increased 

expression of Rip3 mRNA compared to WT (Fig. 4.10D). In concordance with this 
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finding, the number of small adipocytes in the centre of a CLS was markedly higher in 

foz/foz mice. Presumably, these small (and possibly degenerating) adipocytes are in 

process of dying of necroptosis or pyroptosis (see Section 1.5.6). Thus, we believe that 

these small degenerating adipocytes are likely the source of DAMPs in inflamed 

adipose tissues. Consistent with this proposition of the existence of increased stress 

signals in visceral WAT of atherogenic diet-fed foz/foz mice. Unfortunately, to date we 

have not yet shown expression of these increased cellular stress and death markers in 

CLS-centred small adipocytes, and this will be a major new direction for these studies. 

   In addition to the increased number of small adipocytes in the centre of a CLS, foz/foz 

mouse visceral WATs exhibited strikingly less adiponectin expression compared to WT 

(Fig. 4.5A,B). As overviewed in Section 1.5.4, adiponectin is an important anti-

inflammatory protein expressed specifically by adipocytes (282, 283). This adipose-

derived hormone counters the activity of inflammatory factors, such as TNFα. It also 

has paracrine insulin-sensitizing and adipogenic effects in adipose tissues. Accordingly, 

adiponectin is mostly expressed by healthy, small and medium-sized adipocytes, and 

assists the maintenance of this this healthy phenotype (282). In the present study, 

adiponectin mRNA and protein expression were considerably less in WAT of foz/foz 

mice than WT. This reduction in tissue adiponectin levels could be mechanistically 

associated with the increase in stress signals and inflammatory recruitment in 

atherogenic diet-fed foz/foz mice, and this requires further study. 

   The possible interactions between different cell types in adipose inflammatory 

recruitment and the role of TLR9 are summarized in Fig. 4.26. 
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Figure 4.25: An overview on adipose inflammatory recruitment. 

 

   As mentioned in the Introduction, TLR4 was the first TLR discovered; therefore, it is 

the most investigated member of this immune receptor family. As overviewed in 

Section 1.5.3, abnormal release of FAs and cellular lipotoxicity may activate pro-

inflammatory response via TLR4. In 2006, Hang Shi and her colleagues reported a 

possible link between TLR4 activity and adipose inflammatory recruitment (403). 

Accordingly, Tlr4
-/-

 mice were partially protected from high fat diet-induced insulin 

resistance because there was reduced inflammatory gene expression in adipose tissue. In 

2012, Rasheed Ahmad and his colleagues showed upregulation of TLR4 in WAT of 

obese individuals (404). As discussed in Section 1.5.3, persistent adipose stress and 

inflammation leads to fibrosis in WATs. In 2014, Isabelle Vila and her colleagues 

reported a possible association between increased TLR4 activation in adipose tissue, 

adipose inflammatory recruitment, and adipose tissue fibrosis (405). 
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   Distortion of lipid droplets occurs in stressed degenerating adipocytes and as a result, 

these cells abnormally release FAs into the tissue microenvironment and circulation. 

Therefore, activation of TLR4 signalling is likely to be expected in inflamed adipose 

tissues. As listed in Section 1.5, chronic lipolysis in degenerating adipocytes is one 

example of many ultrastructural abnormalities in over-expanded WATs. Indeed, these 

findings support our concept that necrotic debris-derived DAMPs are primarily 

responsible for adipose inflammatory recruitment, and it would be incomplete to 

attribute the modulation of adipose tissue inflammation only on TLR4. In the present 

study, there was a slight increase of Tlr4 mRNA (not significant) in visceral WAT of 

atherogenic diet-fed foz/foz mice (vs. WT). However, as shown in Fig. 4.12, the same 

foz/foz mice displayed significantly higher Tlr9 mRNA expression compared to WT 

counterparts (Fig. 4.12). In summary, we believe TLR4 is unlikely to be the sole player 

for innate immune activation in metabolic obesity and TLR9 signalling is deserving of 

greater attention for its role in adipose inflammatory recruitment. 

   As shown before, all atherogenic diet-fed foz/foz mice develop NASH, as defined by 

NAS ≥ 5 (or 8) points (341). When fed the atherogenic diet, WT mice developed 

borderline (NAS 4,5) or established NASH (NAS > 5) whereas Tlr9
-/-

 mice developed 

only simple steatosis (NAS < 4). The present data indicate that Tlr9 deletion provides a 

hepato-protective effect against transition of simple steatosis to NASH. In particular, 

liver inflammation was markedly reduced in atherogenic diet-fed Tlr9
-/-

 than in WT (or 

foz/foz) mice. However, it is less clear whether the hepato-protective effects of Tlr9 

deletion is attributable to improved adipose function or less WAT inflammation in these 

mice (i.e., a secondary effect), or whether it is a direct result of TLR9 absence in liver 

cells, such as Kupffer cells, other macrophages and hepatocytes (i.e., a direct effect). In 

balance, it seems likely that the less severe hepatic changes in Tlr9
-/-

 mice than in WT 

are partly attributable to reduced weight gain and improved adipose function (and, in 
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turn, to less WAT inflammation), but we cannot exclude a direct effect of Tlr9 deletion 

in liver cells of these mice. To resolve this issue, Tlr9
-/-

.foz/foz mice have been created 

in the host lab by Vanessa Barn under supervision of Geoff Farrell, to overcome the 

challenge of providing a drive to eat in Tlr9
-/-

 mice. In addition, future studies could 

employ an adipose-specific CRE recombinant strategy to create mice that show Tlr9 

deletion only in adipose tissues. 

   In summary, Tlr9 mRNA is upregulated in inflamed visceral adipose tissue. 

Macrophages are the cell type most likely to explain this increase, although a few 

mature adipocytes seem to express TLR9. Atherogenic diet-fed foz//foz mice showed 

increased expression of cellular stress and programmed cell death markers in visceral 

WAT, and this increase is likely to be casually associated with the higher number of 

small degenerating or dead adipocytes in the centre of CLSs. Data from BM chimera 

mice support the conclusion that TLR9 on myeloid cells is required for inflammatory 

recruitment into adipose tissue. Presumably, these macrophages recognize and/or 

respond to unhealthy small adipocytes by TLR9 signalling. Investigation of cellular 

stress and death signals, particularly in small unhealthy adipocytes, poses a major target 

for future investigations, in addition to exploring TLR9 activity in the immune cells that 

form CLSs. Finally, inflamed dysfunctional adipose tissue and resultant 

hypoadiponectemia are associated with the worsening liver histology (transition of 

simple steatosis to NASH) in atherogenic diet-fed foz/foz mice. TLR9 provides a 

hepato-protective effect against transition of simple steatosis to NASH. Further research 

is required to establish whether this is an indirect result of improved adipose function or 

a direct result of Tlr9 deletion in liver cells. 
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CHAPTER 5: Effects of Obeticholic Acid on Macrophage Polarization in 

Metabolic Obesity 

 

5.1 Introduction 

   A brief introduction about adipose tissue macrophages and their phenotypic 

polarization is given in Section 1.5. These phagocytic cells were discovered nearly 100 

years ago, by Ilya Ilyich Mechnikov (406). His discovery started a new era (the innate 

immunity) in immunological sciences. Since then, macrophages have become 

appreciated as one of the most important “immune effector” cells. Even so, this 

appreciation should not allow the vital homeostatic roles of macrophages to be 

overlooked. During the last decade, macrophages have studied in a broader spectrum. In 

particular, it has been shown that tissue-resident, anti-inflammatory macrophages are as 

important as inflammatory macrophages. Finally, although metabolic obesity is often 

described as a low-grade inflammatory disorder, the factors that determine macrophage 

polarization in adipose tissue are still largely unknown. 

 

5.1.1 Macrophages Display Great “Plasticity” 

   In the traditional view, macrophage phenotypes were established along a linear scale, 

with endpoints being M1 pro-inflammatory and M2 anti-inflammatory phenotypes 

(407). This classification was established in the years when T cell research was very 

popular, and immunologists tried to apply a similar classification system (cytotoxic T 

cells vs. helper T cells) to macrophages. M1 phenotype was somewhat convenient for 

macrophage classification (such cells secrete a Th1 profile of cytokines), but M2 

macrophages showed greater structural and functional variety. Today, the classical 

linear phenotype scale has given way to a triangular system which includes 3 general 
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types of macrophages (Fig. 5.1): pro-inflammatory (classically-activated macrophages 

[C-AMs]), wound-healing, and regulatory (the latter two are both alternatively-activated 

macrophages [A-AMs]) (408, 409). 

 

Figure 5.1: Macrophage polarization. (A) In the classical linear scale, macrophages exhibit 

either M1 pro-inflammatory or M2 anti-inflammatory phenotypes. (B) In the modern 

classification system, there are three dominant macrophage phenotypes, but there is great 

plasticity between phenotypes. Classical activation (pro-inflammatory [C-AM]) of wound-

healing (alternatively-activated [A-AM]) macrophages is characteristic of obesity 

 

   Tissue specifity of macrophage subtypes allows a greater diversity of responses to 

environmental cues (410). In other words, macrophages can display different 

phenotypes depending on the tissue of residence. Accordingly, adipose tissue 

macrophages are different than Kupffer cells (liver macrophages) or microglia (central 

nervous system macrophages). These phenotypic variations confer optimization for 

recognition and degradation of pathogens or danger signals within those tissues. The 

findings indicate considerable “plasticity” of macrophages, by which they can exhibit 
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different functional and physiological/morphological properties in various environments 

and under varying circumstances. 

 

5.1.2 Macrophage Phenotypes in Obesity: The Good, The Bad, and The Ugly 

   C-AMs are immune effector cells (408). They have higher phagocytosis capacity 

(microbicidal, tumoricidal, etc.) and can produce pro-inflammatory chemokines and 

cytokines (411). As discussed in Chapter 4, adipose macrophages can respond to 

endogenous danger signals. This can be related to cellular and tissue injury, as for 

TLR9, and the response to the signals causes physiological changes in macrophages. 

Moreover, macrophages can influence on their own physiology and phenotype in an 

autocrine fashion by producing several factors, such as TNFα (412, 413). 

   Two factors are essential to initiate an inflammatory response in macrophages: 

DAMP/PAMP induction and IFNγ production. IFNγ levels increase during tissue 

inflammation, but the exact mechanism is not clear (388). It has been reported that 

increasing leptin levels recruit natural killer T cells or CD8+ effector T cells (and 

possibly granulocytes) to adipose tissues; in turn, these cell types contribute to 

substantial IFNγ production (301, 414). Increasing IFNγ levels could possibly account 

for monocytic infiltration into adipose and also for macrophage polarization. 

   Adipose tissue resident macrophages exhibit an alternatively-activated anti-

inflammatory phenotype (308, 415). Shiho Fujisaka and her colleagues showed that 

telmisartan, a PPARγ agonist, can selectively reduce C-AM marker expression in 

epididymal adipose tissue (416). However, it is not clear whether this effect was via 

PPARγ activation in adipocytes or a direct effect of telmisartan on macrophages, since 

the overall adipocyte size was also decreased in the treated group. In another study, 

researchers found a switch in polarization towards C-AMs in diet-induced obesity 

models (317). These C-AMs were found clustered in CLSs. They identified this 
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macrophage phenotypic alteration with the lipid spillage in adipose tissue which occurs 

during adipocyte degeneration. Accordingly, phagocytosis of lipids and lipotoxicity 

appear to transform macrophages into the classically-activated phenotype. This 

statement is true but incomplete, because lipid spillage and its clearance by 

macrophages is only one of many events that occur during extensive adiposity. There 

are likely to be other factors which facilitate pro-inflammatory transformation of 

macrophages during adipose inflammatory recruitment. As stated in Chapter 4, necrotic 

debris is a perfect example of DAMPs (fragmented DNA, other nucleotides, histones, 

mitochondrial products, etc.). Activation of TLR9 by these danger signals results in 

alterations of macrophage surface proteins. 

   Resident macrophages in adipose are not as “aggressive” as C-AMs. Adaptive signals 

can cause their “alternative” activation, and these changes/transformations allow 

macrophages to participate in homeostatic processes (415). For example, arginase 1 

(AG1) producing macrophages contribute to ECM formation in order that macrophages 

promote wound-healing or tissue remodelling activity (417). However, as stated in 

Section 1.5.2.4, tissue remodelling occurs in adipose when ECM losses its integrity 

under hypoxic and pro-inflammatory circumstances (266, 267). With this in mind, 

identification of macrophages using only one single cell marker can be misleading. The 

expression of some markers can be persistent in macrophages; thus, these cells can 

display “hybrid” phenotypes. To overcome this challenge, macrophage phenotype 

profiling should be based on analysis of several factors. Antigen resistin-like molecule α 

(FIZZ1) and cluster of differentiation 163 (CD163) are other important A-AM markers 

(418, 419). 

   In obesity, the complexity of macrophage-mediated immunity in adipose tissues is 

considerable. In healthy adipose tissue, tissue resident macrophages exhibit a wound-

healing phenotype. These cells express arginase, while pro-inflammatory markers such 
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as CD11b and TNFα are suppressed. PPARγ is important for regulation of these 

macrophages (420, 421). In obese individuals, these macrophages are classically-

activated by DAMPs that arise from degenerating (necrotic) adipocytes, and peripheral 

blood mononuclear cells (monocytes/macrophages) migrate into adipose tissue in 

response to the pro-inflammatory signals. 

   As discussed in Section 4.5, adipose tissues develop fibrosis when there is persistent 

inflammatory recruitment. An interesting paradox is that adipose tissue fibrosis is 

mediated by macrophages that display wound-healing (ECM constructing) properties, 

but these macrophages actually show the A-AM phenotype. In all, the mechanisms for 

macrophage recruitment into adipose tissue that change healthy to unhealthy obesity 

remain largely unclear. Clarifying these provides potential to combat complications of 

obesity. 

 

5.1.3 Activation of Farnesoid X Receptor in Adipose Tissue 

   Cholesterol is a steroid derivative lipid molecule that serves as a pre-cursor molecule 

in several biochemical pathways, such as formation of bile acids and steroid hormones 

(422). A detailed review about cholesterol and its relation to adipose tissue is given in 

Section 1.4.5. Accordingly, cholesterol may play a functional role in adipocyte 

metabolism in addition to its structural roles. Especially in free form, cholesterol is an 

active molecule for bodily regulation, but it is also toxic, as recently shown by our 

group in hepatocytes (217). 

   Cholesterol over-loading contributes to hypertrophy in adipocytes by construction of 

firmer cell and LD membrane. At some stage during development of hypertrophy, 

cholesterol acts like a messenger molecule to alarm the cell about passing a critical size. 

This seems to activate a pro-inflammatory phenotype in adipocytes. In this context, 
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cholesterol overloading is likely to be relevant to inflammatory recruitment into adipose 

tissue. 

   Bile is important for the digestion and absorption of lipids from intestines. As stated 

in Section 1.4.3, oxidation of cholesterol molecules is a necessary step in bile acid 

production. When produced in excess, bile acids inhibit their own production by 

activating FXR, thereby acting as a steroid hormone. FXR is a nuclear receptor that can 

activate several signalling pathways that are important for cellular metabolic regulation. 

These include reduction of (hepatic) lipogenesis, suppression of de novo cholesterol, 

and increased β-oxidation of LCFAs (173, 174). A brief discussion of FXR activation in 

adipose tissue is provided in Section 1.4.5. 

 

5.1.4 Obeticholic Acid as an FXR agonist 

   Several FXR agonists have been subjected to clinical trials to improve hepatic and 

metabolic indices (423). Recent by, these include obeticholic acid (OCA [6-ethyl-

chenodeoxycholic acid]), which has very high binding affinity to FXR (424). 

Researchers have shown that OCA treatment can attenuate body weight gain in mice 

and humans (176). In addition, OCA can improve whole body insulin sensitivity and 

NAFLD pathology (223). 

   The discovery of FXR expression in adipose tissue led scientists to study FXR 

agonists in different animal models of obesity and adipocyte cell cultures. According to 

these studies, FXR activation confers beneficial effects on adipocyte differentiation and 

function (223, 425). Giovanni Rizzo and his colleagues demonstrated that FXR is 

expressed in mature white adipocytes, not in undifferentiated preadipocytes (425). In 

cell culture, cells treated with OCA displayed larger LDs. In the same study, OCA 

increased aP2, C/ebpα, and Pparγ mRNA expression in conjunction with improved 

adipogenesis. Regulation of adipogenic genes was impaired in Fxr
-/-

 mice. OCA 
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strikingly increased insulin-induced phosphorylation of AKT in WT adipocytes 

compared to Fxr
-/-

 counterparts (425). 

   In a rabbit model of metabolic syndrome, OCA ameliorated diet-induced metabolic 

alterations and visceral adipose dysfunction (426). It was also shown that OCA 

improved liver steatosis in these rabbits. Yanqiao Zhang and his colleagues reported 

that double knock out Ob
-/-

Fxr
-/-

 mice were protected from excessive adipose weight 

gain. However, they were also susceptible to fatty liver disease and hepatic 

carcinogenesis (427). Skeletal muscle cells possibly do not express FXR (428). It is 

therefore possible to attribute these changes to FXR activation in liver and adipose 

tissue cells. 

   In all, there is growing evidence showing that FXR activation promotes adipose 

differentiation and improves adipose tissue function. However, we were unable to 

identify previous research into the effects of FXR induction on adipose inflammation. 

With interventions such as exercise (Chapter 6), improved adipose inflammation is 

usually associated with a decrease in adipose tissue weight, so the positive changes in 

adipose tissues could be partly attributable to reduced lipid burden on adipocytes 

secondary to the effects of exercise on muscle and adipose. In the present study, use of 

OCA offered an unusual opportunity to improve adipose function in a direct molecular 

way without necessarily decreasing the lipid burden on adipocytes. 

 

5.2 Aims 

   Although the exact mechanism remains largely unknown, FXR agonist OCA has been 

shown to improve NAS in patients (429). As discussed above, it also confers beneficial 

effects on adipose function in animal and cell culture studies. However, it is not clear 

how much of the ameliorations of metabolic and hepatic changes in OCA-treated 

individuals is attributable to improvement in adipose tissue function, as opposed to how 
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much could reflect direct effects of FXR agonist on macrophage transformation. In this 

Chapter, we studied adipose inflammation and phenotypic switch of adipose 

macrophages in OCA-treated mice. The underlying hypotheses were that cholesterol 

overloading may be relevant for adipose inflammatory recruitment; therefore, 

cholesterol-lowering effects of OCA should ameliorate adipose inflammation. 

Secondly, improved adipose function should increase the proportion of A-AMs in 

adipose tissue rather than promote migration and accumulation of C-AMs. 

The specific aims were to: 

1. Test whether OCA treatment confers metabolic improvements in diabetic obese 

mice. 

2. Document associated improvements (if any) in fatty liver pathology. 

3. Compare macrophage polarization in different adipose sites from obese mice 

treated with OCA vs. non-treated. 

 

5.3 Experimental Details 

   All experimental procedures were approved by the ANU Animal Ethics Committee. 

After weaning at 4 weeks of age, groups (n=10) of female foz/foz NOD.B10 mice and 

WT littermates were fed either an atherogenic diet (4.78 kcal/g digestible energy;  23% 

fat, 45% carbohydrate, 0.19% cholesterol; Speciality Feeds, Glen Forrest, Australia) or 

“OCA cupcakes” ad-libitum. As described in Section 2.1.2.2, 25 g standard OCA 

cupcakes (10 mg/kg diet) were prepared fresh every second week, and provided to mice 

for consumption (as food) in the same way as regular atherogenic diet. All mice were 

kept on a 12-hour light/dark cycle in the ANU Medical School animal facility at the 

Canberra Hospital. 

   As explained in Section 2.2.1, mice were fasted 4 hours one week before sacrifice (27 

weeks), and a glucose tolerance was determined after intraperitoneal glucose injection 
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(2 g/kg body weight), using a glucometer to measure blood glucose (Accu-Chek 

Advantage; Roche Diagnostics, Mannheim, Germany). At 28 weeks of age, mice were 

fasted 4 hours, anesthetized (100 mg/kg ketamine, 16 mg/kg xylazine) and tissue 

harvest performed following the standard procedure (see Section 2.1.3). Liver, two 

visceral sites (periovarian and mesenteric) and one subcutaneous (lumbar) WAT 

samples were collected. Liver steatosis was measured in 3 different ways: total neutral 

lipids by gas chromatography (see Section 2.2.2.2) and liver ORO staining (see Section 

2.2.2.1), and macro-steatosis by histology analysis of H&E-stained liver sections (see 

Section 2.2.3.2). Serum TAG, cholesterol, and UHDL levels were measured by a 

multichannel autoanalyzer at The Canberra Hospital, pathology department (see Section 

2.2.1.1). 

   In the present study, adipose SVFs were isolated from each compartment as described 

in Section 2.3.3. Total RNA was extracted from periovarian, subcutaneous, and 

mesenteric adipose SVFs, and mRNA levels of specific macrophage markers were 

analyzed by qPCR (in duplicate). Data are presented as mean ± SEM. For the analysis 

of data significance, Prism 6 (GraphPad, La Jolla, CA) and SPSS Statistics 22 (IBM, 

New York, NY) softwares were used for one-way analysis of variance (ANOVA), 

followed by Bonferroni’s post hoc analysis (significant when P < 0.05). 

 

5.3.1 Author Contributions 

   Fahrettin Haczeyni designed and conducted the experiments, performed all the read-

outs and data analysis, and wrote the Chapter. Vanessa Barn supervised breeding and 

maintenance of animals. Laurence Poekes assisted with the conduct of mRNA analyses. 

Matthew M. Yeh assessed liver histology. W. Geoffrey Haigh assisted with the 

lipidomic analysis by gas chromatography. Narci Teoh contributed intellectual input 

and reviewed the experimental results. Bruce Shadbolt provided invaluable advice on 
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statistical analyses. Geoff Farrell directed the study, reviewed and edited the Chapter. 

The authors thank Canberra Hospital research office and animal house technicians for 

their highly skilled technical assistance. 

 

5.4 Results 

   We studied the effects of OCA on multiple adipose depots in mouse models of 

metabolic obesity and NAFLD. Accordingly, this chapter presents an outline of 

phenotypes of infiltrated macrophages in different adipose tissues from diabetic obese 

mice, and the effects of OCA on modification of these macrophage phenotypes. 

 

5.4.1 OCA Treatment Improved Metabolic Indices in Atherogenic Diet-Fed WT 

but not foz/foz Mice 

   ~10 weeks after atherogenic dietary feeding (at around 14 weeks of age), there was a 

“set point” after which rapid weight gain slowed in foz/foz mice, whereas at this time 

point, weight gain accelerated in atherogenic diet-fed WT mice. As observed in humans 

(429), OCA slowed body weight gain in WT, but there was no such effect in the 

appetite-dysregulated foz/foz mice (Fig. 5.2.A). At the end of 28 weeks, atherogenic 

diet-fed WT mice developed obesity (>40 g); OCA reduced body weight in these mice 

(Fig. 5.2B). On the other hand, foz/foz mice were significantly heavier than WT, and 

OCA had no effect on body weight. 
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Figure 5.2: Effects of OCA on body weight gain in atherogenic diet-fed foz/foz and WT 

mice. (A) foz/foz genotype was associated with increased weight gain compared to WT. After 14 

weeks of age, OCA significantly slowed weight gain in WT, but not foz/foz mice. (B) By 28 

weeks of age, atherogenic diet-fed foz/foz and WT mice weighed more than 40 g, whereas OCA-

treated atherogenic diet-fed WT weighed less than 35 g. 

Data are mean ± SEM (n=9-10/gp). 

† P<0.05 vs. treatment-matched control (genotype effect); e.g., OCA-treated foz/foz vs. WT. 

* P<0.05 vs. genotype-matched control (treatment effect); e.g., OCA-treated vs. non-treated WT 

 

   FBG was higher with atherogenic dietary feeding and foz/foz mutation; OCA did not 

improve FBG levels (Fig. 5.3A). A similar pattern was observed for serum insulin and 

HOMA-IR (insulin resistance) (Fig. 5.3B,C). IpGTT was performed using the protocol 

described in Section 2.2.1.3. Following glucose injection, blood glucose levels reached 

~28 mmol in atherogenic diet-fed WT mice at 60 minutes, whereas it was ~15 mmol in 

OCA-treated counterparts (Fig. 5.3D). The area under the blood glucose disappearance 

curve (AUC) was correspondingly less in OCA-treated WT mice (Fig. 5.4E). In 

atherogenic diet-fed foz/foz mice, blood glucose levels remained high (~20 mmol) at 3 

hours after glucose injection, and OCA treatment had no effect. 

 



CHAPTER 5: Effects of OCA on Macrophage Polarization in Metabolic Obesity 

189 
 

 

Figure 5.3: OCA significantly improved intraperitoneal glucose tolerance in WT mice, but 

failed to prevent development of diabetes in foz/foz. Atherogenic diet-fed foz/foz mice 

developed significant (A) hyperglycemia, (B) hyperinsulinemia, and (C) insulin resistance 

(HOMA-IR) compared to WT. OCA did not improve these indices in any genotype. (D,E) OCA 

improved intraperitoneal glucose tolerance in WT mice vs. non-treated, but failed to improve in 

foz/foz mice (remained diabetic). 

Data are mean ± SEM (n=9-10/gp). 

† P<0.05 vs. treatment-matched control (genotype effect); e.g., OCA-treated foz/foz vs. WT. 

* P<0.05 vs. genotype-matched control (treatment effect); e.g., OCA-treated vs. non-treated WT 

 

   OCA tended to lower serum TAG levels in both atherogenic diet-fed WT and foz/foz 

mice, but this possible improvement was not significant (Fig. 5.4A). Serum cholesterol 

levels were increased with foz/foz background, and OCA did not alter serum cholesterol 

(Fig. 5.4B). Serum UHDL levels tended to increase in WT mice after OCA 

administration, but this trend was not significant (Fig. 5.4C). foz/foz mice displayed 

higher UHDL levels compared to WT, and OCA failed to make any difference. 
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Figure 5.4: Effects of OCA on circulating serum triglyceride, cholesterol and UHDL in 

atherogenic diet-fed foz/foz and WT mice. (A) There was a decreasing trend (not significant) 

in serum triglyceride levels of OCA-treated foz/foz and WT mice vs. untreated control. (B) 

foz/foz genotype was associated with increased serum cholesterol and UHDL levels compared to 

WT; OCA did not reverse this effect. 

Data are mean ± SEM (n=9-10/gp). 

† P<0.05 vs. treatment-matched control (genotype effect); e.g., OCA-treated foz/foz vs. WT 

 

   As outlined in Section 1.5.4.2., adiponectin is an important regulatory hormone 

contributing to insulin sensitivity and suppression of pro-inflammatory response. 

Atherogenic diet-fed foz/foz mice developed severe hypoadiponectemia compared to 

WT (Fig. 5.5A); OCA did not ameliorate this effect. As expected, serum leptin levels 

were greater with foz/foz mutation but similarly, OCA did not cause a significant change 

(Fig. 5.5B). Circulating serum MCP1 levels strikingly increased in atherogenic diet-fed 

foz/foz mice (vs. WT). OCA treatment significantly reduced serum MCP1 in WT, but not 

in foz/foz mice (Fig. 5.5C). 

 

 

Figure 5.5: Effects of OCA on circulating serum adiponectin, leptin and MCP1 in 

atherogenic diet-fed foz/foz and WT mice.  (A) Serum adiponectin levels were strikingly less 

in foz/foz mice compared to treatment-matched WT controls. OCA did not reverse this effect. 

(B) Serum leptin was greater in foz/foz mice (vs. WT) and OCA displayed no effect on serum 

leptin levels. (C) foz/foz genotype markedly increased serum MCP1 levels vs. WT. OCA 

treatment showed significant reduction in WT mice, but not in foz/foz. 

Data are mean ± SEM (n=9-10/gp). 

† P<0.05 vs. treatment-matched control (genotype effect); e.g., OCA-treated foz/foz vs. WT. 

* P<0.05 vs. genotype-matched control (treatment effect); e.g., OCA-treated vs. non-treated WT 
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   Liver mass was significantly less in OCA-treated (vs. non-treated) WT mice (Fig. 

5.6A). Atherogenic diet-fed foz/foz mice developed hepatomegaly, and OCA did not 

reverse this effect. OCA appeared to cause a subtle increase in serum ALT levels of WT 

mice, but this was not significant (Fig. 5.6B). It did not significantly affect serum ALT 

in foz/foz mice. Likewise, serum AST levels were not altered by genotype or OCA 

treatment (Fig. 5.6C). 

 

 

Figure 5.6: Effects of OCA on liver weight, serum ALT and AST levels in atherogenic diet-

fed foz/foz and WT mice.  (A) foz/foz mice developed hepatomegaly irrespective of OCA 

treatment. There was a small but significant reduction in OCA-treated WT mouse liver weight 

(vs. non-treated WT). (B) Serum ALT levels tended to increase by foz/foz genotype (not 

significant), and OCA did not affect on that in any group. (C) Serum AST levels were similar in 

all groups. 

Data are mean ± SEM (n=9-10/gp). 

† P<0.05 vs. treatment-matched control (genotype effect); e.g., OCA-treated foz/foz vs. WT. 

* P<0.05 vs. genotype-matched control (treatment effect); e.g., OCA-treated vs. non-treated WT 
 

   As shown by gas chromatography, the amount of total neutral lipids was greater in 

liver with atherogenic dietary intake and foz/foz mutation; OCA reversed this effect in 

WT, but not in foz/foz mice (Fig. 5.7A). The same pattern was found for total steatosis 

by ORO staining (Fig. 5.7B). On the other hand, WT mice displayed vanishingly small 

macro-steatosis, whereas this was clearly present (and considerable) in foz/foz mice; 

OCA did not confer any improvement on macro-steatosis, irrespective of genotype (Fig. 

5.7C). Lipidomic analysis by gas chromatography showed that liver free cholesterol 

levels were very high in atherogenic diet-fed foz/foz mice compared to WT, and 

treatment with OCA did not show any significant effect (Fig. 5.7D). Cholesteryl esters 

(CE) are formed by esterification of cholesterol with a FA (430, 431). In the present 
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study, hepatic CE levels showed a strong decreasing trend in OCA-treated (vs. control) 

WT mouse liver (P = 0.05) (Fig. 5.7E). foz/foz mice showed higher levels of CE in liver, 

and OCA did not reverse this effect. 

 

 

Figure 5.7: Effects of OCA on liver steatosis, free cholesterol and cholesteryl esters in 

atherogenic diet-fed foz/foz and WT mice. (A) OCA decreased the amount of hepatic 

triglyceride in atherogenic diet-fed WT mice. In foz/foz mice, OCA did not show any effect. (B) 

The amount of ORO-stained liver lipids showed a similar pattern. (C) Liver macro-steatosis 

score was very low in WT mice, irrespective of OCA treatment. In foz/foz mice, this score was 

strikingly higher (vs. WT) (3 is the maximum score), and OCA was without effect. (D) Liver FC 

increased in foz/foz vs. WT mice, and OCA did not reduce liver FC in either genotype. (E) Liver 

CE levels showed a decreasing trend in OCA-treated WT mice (vs. non-treated), but this did not 

reach significance (P = 0.05). 

Data are mean ± SEM (n=9-10/gp). 

† P<0.05 vs. treatment-matched control (genotype effect); e.g., OCA-treated foz/foz vs. WT 

* P<0.05 vs. genotype-matched control (treatment effect); e.g., OCA-treated vs. non-treated WT 

 

5.4.2 Effects of OCA Treatment on Liver Pathology in foz/foz and WT Mice Fed 

an Atherogenic Diet 

   In atherogenic diet-fed WT mice, liver inflammation was slightly less (but not 

significant) in OCA-treated counterparts (Fig. 5.8A). Atherogenic diet-fed foz/foz 

displayed more liver inflammation than did WT mice. OCA had minimal effect on liver 

inflammation in foz/foz mice. WT mice displayed very few ballooned hepatocytes 

whereas atherogenic diet-fed foz/foz mice showed conspicuous ballooning (2 is the 

maximum score) regardless of OCA treatment (Fig. 5.8B). Liver NAS score (the 
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composite of macro-steatosis, inflammation and ballooning score) showed that all 

foz/foz mice developed NASH (Fig. 5.8C). Unlike foz/foz counterparts, WT mice did not 

develop NASH. Constant with its lack of effect on macro-steatosis, inflammation and 

ballooning score, OCA treatment did not influence NAS in either group. 

 

Figure 5.8: OCA treatment failed to improve liver histology in atherogenic diet-fed foz/foz 

or WT mice. H&E-stained liver sections were assessed blind by an expert (MMY) for (A) liver 

inflammation and (B) ballooning, and these scores were compiled with liver macro-steatosis 

(Fig. 5.7C) as (C) NAS. In atherogenic diet-fed foz/foz mice, NAS increased significantly 

compared to WT controls, but OCA treatment failed to improve NASH (and the overall liver 

histology assessed independently as absolute NASH, borderline NASH or not NASH) in any 

genotype. 

Data are mean ± SEM (n=9-10/gp). 

† P<0.05 vs. treatment-matched control (genotype effect); e.g., OCA-treated foz/foz vs. WT 

 

5.4.3 OCA Treatment Limited Adipose Expansion in WT, but not foz/foz Mice 

   Consistent with changes in body weight gain, OCA treatment significantly reduced 

Pov WAT weight in atherogenic diet-fed WT mice (Fig. 5.9A). Surprisingly, 

atherogenic diet-fed foz/foz mice showed less Pov WAT mass compared to WT, and did 

not show a significant effect of OCA treatment. On the other hand, foz/foz genotype was 

associated with increased Sub WAT mass compared to WT; OCA did not affect 

significantly Sub WAT weight in foz/foz mice (Fig. 5.9B). Conversely, OCA reduced 

Sub WAT weight in atherogenic diet-fed WT mice. Compared to Pov and Sub WAT 

mass, Mes WAT weighed less in all mice (Fig. 5.9C). OCA treatment significantly 

reduced Mes WAT mass in WT mice, but not foz/foz mice. 
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Figure 5.9: Effects of OCA on adipose weights in atherogenic diet-fed foz/foz and WT mice. 

(A) Atherogenic diet-fed foz/foz mice showed limited expansion of Pov WAT compared to WT. 

OCA reduced Pov WAT mass in WT, but not foz/foz mice. (B) Sub WAT weighed more in 

atherogenic diet-fed foz/foz than WT mice; OCA caused a reduction in Sub WAT mass only in 

WT mice. (C) Mes WAT adiposity was limited compared to the other compartments. OCA-

treated WT mice showed less Mes WAT mass than non-treated animals; OCA failed to alter 

Mess WAT in foz/foz mice. 

Data are mean ± SEM (n=9-10/gp). 

† P<0.05 vs. treatment-matched control (genotype effect); e.g., OCA-treated foz/foz vs. WT 

* P<0.05 vs. genotype-matched control (treatment effect); e.g., OCA-treated vs. non-treated WT 

 

5.4.4 Effects of OCA Treatment on Macrophage Phenotype in WATs of foz/foz 

and WT Mice Fed an Atherogenic Diet 

   As discussed in Section 5.1.2, the presence of different cell types (e.g., adipocytes, 

pericytes) in adipose tissue could confound analyses of macrophage polarization. For 

this reason, macrophage mRNA detection analysis was conducted on SVF samples, 

following the protocol given in Section 2.3.3, to prevent any bias caused by adipocyte 

mRNA. In all adipose depots (SVFs), macrophage marker Cd68 mRNA levels were 

greater in atherogenic diet-fed foz/foz mice compared to WT (Fig. 5.10). OCA did not 

affect on Cd68 mRNA in foz/foz mice, but it significantly reduced this marker of 

macrophages in Pov WAT SVF of atherogenic diet-fed WT mice. Similar trends in 

subcutaneous and mesenteric adipose tissues (SVFs) were not significant (Fig. 5.10). 
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Figure 5.10: Effects of OCA on Cd68 mRNA expression in adipose SVF samples of 

atherogenic diet-fed foz/foz and WT mice. In atherogenic diet-fed WT mice, OCA appeared to 

reduce Cd68 mRNA expression in all adipose compartments, and this effect was significant in 

Pov WAT SVF (P < 0.05). Atherogenic diet-fed foz/foz mice showed greater Cd68 mRNA 

levels in all adipose compartments compared to WT; OCA failed to reverse this effect. 

Data are mean ± SEM (n=9-10/gp). Values are expressed relative to Pov WAT SVF of 

atherogenic diet-fed WT, which is set at 1.0. 

† P<0.05 vs. treatment-matched control (genotype effect); e.g., OCA-treated foz/foz vs. WT 

* P<0.05 vs. genotype-matched control (treatment effect); e.g., OCA-treated vs. non-treated WT 

 

   foz/foz mice exhibited increased Tnfα mRNA levels than WT in all adipose tissue SVF 

samples; OCA significantly reversed this effect only in Mes WAT SVF of foz/foz mice 

(Fig. 5.11A). OCA did not affect Tnfα mRNA in any adipose compartment of 

atherogenic diet-fed WT mice. In all sites, adipose SVF expression of the MCP1 

receptor gene, Ccr2, was less in foz/foz mice than in WT. OCA had no effect on Ccr2 

mRNA expression in atherogenic diet-fed foz/foz mice (Fig. 5.11B). In contrast, OCA 

treatment consistently reduced expression of Ccr2 mRNA in all adipose tissue SVFs in 

atherogenic diet-fed WT mice. Atherogenic diet-fed foz/foz mice showed greater Cd11b 

and Cd11c mRNA expression in SVFs from three adipose compartments compared to 

WT control (Fig. 5.11C,D). OCA reduced Cd11b mRNA in Mes WAT SVF of foz/foz 

mice (vs. non-treated). In Pov WAT SVF of WT mice, Cd11c mRNA levels were less in 

OCA-treated vs. non-treated animals. 
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Figure 5.11: Effects of OCA on pro-inflammatory gene expression in adipose SVF samples 

of atherogenic diet-fed foz/foz and WT mice. (A) Tnfα mRNA expression was greater in Sub 

and Mes WAT SVFs of atherogenic diet-fed foz/foz than WT mice. OCA reversed this effect in 

Mes WAT SVF of foz/foz mice. (B) OCA treatment significantly reduced Ccr2 mRNA 

expression in all adipose compartments of atherogenic diet-fed WT mice (vs. non-treated). 

foz/foz genotype was associated with lower levels of Ccr2 mRNA, and OCA had no effect. 

(C,D) Expression of Cd11b and Cd11c mRNA was increased in atherogenic diet-fed foz/foz 

mice adipose SVF samples in comparison with WT control. OCA decreased Cd11b mRNA in 

Mes WAT SVF of atherogenic diet-fed foz/foz mice vs. non-treated counterparts but not at other 

sites. On the other hand, OCA-treated atherogenic diet-fed WT mice showed less Cd11c mRNA 

in Pov WAT SVF compared to non-treated controls, but not at other sites. 

Data are mean ± SEM (n=9-10/gp). Values are expressed relative to Pov WAT SVF of 

atherogenic diet-fed WT, which is set at 1.0. 

† P<0.05 vs. treatment-matched control (genotype effect); e.g., OCA-treated foz/foz vs. WT 

* P<0.05 vs. genotype-matched control (treatment effect); e.g., OCA-treated vs. non-treated WT 

 

   As stated in Section 5.1.2, AG1, FIZZ1 and CD163 are markers of A-AMs. The ratios 

of Cd163 / Cd68, Ag1 / Cd68, and Fizz1 / Cd68 ratios in mRNA expression provide 

evidence for the proportion of A-AMs in total macrophage population. Cd163 mRNA 

was significantly less in Pov WAT SVF of foz/foz mice vs. WT; OCA had no effect in 

any group (Fig. 5.12A). OCA treatment increased the ratio of Cd163 / Cd68 in 

atherogenic diet-fed WT mouse visceral (Pov and Mes) adipose SVFs (vs. non-treated), 
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but not in Sub WAT in which this ratio was already high (Fig. 5.12B). In atherogenic 

diet-fed foz/foz mice, OCA treatment did not alter this ratio. 

   Atherogenic diet-fed foz/foz mice tended to have less Ag1 mRNA in all adipose 

compartments (not significant) compared to WT counterparts (Fig. 5.12C). OCA 

appeared to increase Ag1 mRNA in Pov and Sub WAT SVFs of atherogenic diet-fed 

WT mice compared to non-treated control, but this increase was significant only in Sub 

WAT SVF. In atherogenic diet-fed foz/foz mice, the ratio of Ag1 / Cd68 were strikingly 

less compared to WT counterparts; OCA failed to reverse this effect. Conversely, OCA 

significantly increased the ratio of Ag1 / Cd68 in Sub and Pov WAT SVFs of 

atherogenic diet-fed WT mice (vs. non-treated) (Fig. 5.12D). Similarly, Fizz1 mRNA 

was less in all adipose compartments (SVFs) of atherogenic diet-fed foz/foz than WT 

mice; OCA did not alter on Fizz1 mRNA expression in foz/foz mice in any compartment 

(Fig. 5.12E). OCA increased the ratio of Fizz1 / Cd68 in Pov WAT SVF (and in 

subcutaneous but not significant) of atherogenic diet-fed WT mice vs. non-treated (Fig. 

5.12F). All atherogenic diet-fed foz/foz mice showed vanishingly low Fizz1 / Cd68 

ratios than WT counterparts in all adipose SVF samples; OCA did not reverse this 

effect. 
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Figure 5.12: Effects of OCA on mRNA levels of A-AM markers in adipose SVF samples of 

atherogenic diet-fed foz/foz and WT mice. (A) Cd163 mRNA expression was less in Pov 

WAT SVF of atherogenic diet-fed foz/foz mice vs. WT, but there were no effect on other sites. 

(B) The ratio of Cd163 / Cd68 was strikingly higher in atherogenic diet-fed WT mice than 

foz/foz in all sites. OCA further increased Cd163 / Cd68 ratio in Pov and Mes WAT SVFs of 

WT mice vs. non-treated, but had no effect in atherogenic diet-fed foz/foz mice. (C) Ag1 mRNA 

expression appeared to be less in all adipose compartments of atherogenic diet-fed foz/foz than 

WT mice; OCA failed to reverse this effect on Ag1 mRNA levels in adipose compartments of 

foz/foz mice, but caused a significant increase in Sub WAT SVF of WT mice, compared to non-

treated controls. (D) OCA significantly increased the ratio of Ag1 / Cd168 in Pov and Sub WAT 

SVFs of atherogenic diet-fed WT vs. non-treated counterparts. Atherogenic diet-fed foz/foz mice 

exhibited smaller Ag1 / Cd68 ratio compared to WT; OCA did not reverse this effect. (E) Fizz1 

mRNA was significantly less in Pov and Sub WATs of atherogenic diet-fed foz/foz mice 

compared to WT. OCA had no effect on Fizz1 mRNA in any adipose compartment in either 

genotype. (F) The ratio of Fizz1 / Cd68 was lower in atherogenic diet-fed foz/foz mice adipose 

compartments in comparison with corresponding WT controls. OCA significantly increased the 

Fizz1 / Cd68 ratio in Pov WAT SVF of WT mice (vs. non-treated control), but there were no 

effect in other sites. OCA did not affect on this ratio in atherogenic diet-fed foz/foz mice in any 

adipose compartment. 

Data are mean ± SEM (n=9-10/gp). Values are expressed relative to Pov WAT SVF of 

atherogenic diet-fed WT, which is set at 1.0. 

† P<0.05 vs. treatment-matched control (genotype effect); e.g., OCA-treated foz/foz vs. WT. 
* P<0.05 vs. genotype-matched control (treatment effect); e.g., OCA-treated vs. non-treated WT. 
 

5.5 Discussion 

   As discussed throughout this thesis, metabolic obesity is characterized by pro-

inflammatory macrophage recruitment in adipose tissues. The speed, mobility, and the 

ability of quick reaction confer great advantage to macrophages in pro-inflammatory 

immune responses. In Chapter 4, we showed that activation of TLR9 signalling assists 

macrophages to infiltrate into adipose tissue and recognize degenerating or dead 

adipocytes. However, as overviewed in Section 5.1, macrophages display great 

plasticity and they can develop different phenotypes depending on conditions of the 

tissue micro-environment. These conditions can be a threat to the health of the tissue 

and affect the recovery period after cell damage. In this context, we studied macrophage 

polarization in three different adipose compartments (two visceral and one 

subcutaneous) in obese and lean mice, then established the effects of OCA 

administration to determine whether an FXR agonist could alter the phenotype of 

recruited adipose inflammatory cells. 



CHAPTER 5: Effects of OCA on Macrophage Polarization in Metabolic Obesity 

200 
 

   OCA treatment reduced body weight gain in atherogenic diet-fed WT, but not foz/foz 

mice (Fig. 5.2). As discussed next, this reduction was mostly accommodated by reduced 

weight gain in adipose compartments, but the reason for gaining less adipose weight is 

not clear. Nevertheless, there is compelling evidence that this limitation on weight gain 

does not result from calorie restriction in mice taking OCA. For example, in 2013, 

Yongjie Ma and his colleagues conducted research with another FXR agonist, GW4064 

(432). GW4064 delayed weight gain in high fat diet-fed WT mice, but food intake did 

not change between treated and non-treated animals. Presumably, there is a positive 

effect of FXR activation on adipocytes (and possibly hepatocytes) on energy utilisation 

in WT mice, and this leads to a more metabolically active phenotype. Unfortunately, we 

could not perform adipogenic marker analyses such as PPARγ, PRDM16, aP2, or LD 

proteins (Table 1, Chapter 1) in whole adipose tissue lysates as analyses in SVF samples 

are heavily time consuming to perform. An important future direction is to establish if 

and how OCA exerts direct effect on adipocyte metabolism in whole tissue lysates. 

   By 28 weeks of age, all atherogenic diet-fed foz/foz mice were diabetic, and OCA 

treatment did not influence this complication. Specifically, glucose clearance from the 

circulation after intraperitoneal glucose injection was not improved by OCA treatment 

in foz/foz mice (Fig. 5.3). On the other hand, OCA treatment strikingly improved 

glucose clearance in atherogenic diet-fed WT mice compared to their non-treated 

counterparts. Apparently, atherogenic diet-fed mice with appetite defect (foz/foz) 

exhibited more disordered glucose metabolism than WT counterparts, so that OCA was 

unable to affect this, unlike its positive effects in WT mice. 

   One important reason for the “limited” effects of OCA in foz/foz mice might be the 

mode of drug administration. As will be shown in Chapter 6, the average atherogenic 

dietary intake is ~26 g per week for WT and ~33 g per week for female foz/foz 

NOD.B10 mice. In the present study, cupcakes were prepared with 10 mg/kg OCA 
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content, allowing this for WT mice to take in ~0.26 mg OCA, and foz/foz mice ~0.33 mg 

OCA per week. In the literature, there is no consensus on the amount of OCA 

administration that is optimal in mouse studies, but the general trend appears to be daily 

administration of amounts used in the present study (e.g., 0.2 mg OCA for a 40 g 

mouse), not weekly as in the present study. On the other hand, most of studies use such 

regime for only 10 to 14 days; in the present study, a lower dose of OCA was used for a 

longer period. Nonetheless, potential limitations on foz/foz mice may have occurred 

because of the amount of OCA taken in as it was below an optimal therapeutic dose. To 

solve this problem, the host is currently using the more demanding gavage technique to 

administer OCA and other drugs. 

   Another important finding in this study was that the interaction between genetic 

predisposition to develop obesity (foz/foz mutation) and a high fat/sugar/cholesterol 

dietary intake (atherogenic diet) exerts such a strong influence on adipose tissues that 

beneficial effects of OCA treatment, if any, was minimal. Previous studies provided 

evidence that OCA treatment improves adipose tissue function by increasing the 

expression and activation of adipogenic markers such as PPARγ (for details, see Section 

5.1). This was not measured in SVFs in the present study as direct analysis on adipose 

tissue is more relevant. On the other hand, as discussed in Chapter 3, adipose 

inflammation is associated with dysfunction of the adipose tissue; in other words, a 

reduction in adipose inflammatory recruitment is linked to better adipose function. With 

this in mind, it is assumed that OCA improved adipose tissue function in atherogenic 

diet-fed WT mice because pro-inflammatory gene mRNA levels (e.g., Cd68, Tnfα, 

Cd11b, Cd11c) were significantly less in adipose compartments of these animals 

compared to non-treated controls. Nevertheless, as discussed previously, direct effects 

of OCA treatment on adipose function will be clearer after conduct of experiments in 

whole adipose tissue lysates analyzing expression of adipogenic markers. 
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   Most proteins in adipose tissue show cell type-specific expression patterns. For 

example, CD68 is expressed only in macrophages, whereas adiponectin is specific for 

adipocytes. However, some proteins display a cross-expression profile between 

different cell types. For instance, AG1 is expressed by both adipocytes and 

macrophages, most likely because both cell types contribute to ECM formation in 

adipose tissues. Moreover, AG1 is used in determination of macrophage polarization 

analysis; it is an A-AM marker, not one for C-AM. Adipose tissue contains both 

adipocytes and macrophages. For this reason, molecular analysis of AG1 in whole 

adipose tissue lysates can be mis-leading. 

   In the present study, we isolated SVFs from each adipose compartment to avoid this 

complexity. As discussed in Section 1.5.2, over-expanded hyperplastic adipose tissues 

form increased amounts of ECM, and this process is considered to be orchestrated by 

wound-healing (A-AM) macrophages that express AG1, not by C-AMs. However, in 

the present study, the Ag1 / Cd68 ratio indicated less infiltration of A-AMs in adipose 

tissues of atherogenic diet-fed foz/foz mice. This may be an example of the highly 

complex nature of inflammatory responses in obesity. 

   As shown in Chapter 3 and 6, macrophage infiltration is highly abundant in adipose 

tissues of atherogenic diet-fed female foz/foz NOD.B10 mice, especially in Pov WAT. 

In the present study, although a numerical analysis of CLS infiltration had not been 

completed by the time of thesis submission, greater levels of Cd68, Tnfα, Cd11b, and 

Cd11c mRNA reflect an increased macrophage infiltration in adipose compartments of 

atherogenic diet-fed foz/foz mice compared to WT. Presumably, macrophage number 

and phenotype remain unchanged by FXR agonist administration, since OCA did not 

show any effect on expression levels of these pro-inflammatory markers. An unexpected 

finding was the lower expression of Ccr2 mRNA in SVF samples of atherogenic diet-

fed foz/foz vs. WT mice (Fig. 5.11B). There may be two reasons for this finding: (a) 
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SVF cells may not be the primary target of MCP1; perhaps most of adipose 

macrophages arise from BM cells (as shown in Chapter 4). (b) There may be a 

“macrophage saturation” point in these highly inflamed adipose tissues. This subject 

was beyond the limited scope of the present research, but it does merit further 

investigation. 

   The increasing proportion of cells that express Cd163, Ag1 and Fizz1 mRNA indicates 

that OCA treatment switches the macrophage phenotypes towards a more anti-

inflammatory phenotype in WATs of atherogenic diet-fed WT mice. The ratio of these 

markers to Cd68 mRNA expression is correlates positively with infiltration of A-AMs. 

OCA treatment significantly increased these ratios in all of adipose SVF samples of 

atherogenic diet-fed WT mice compared to non-treated counterparts, but was without 

effect in foz/foz mice in which these ratios were very low. Mes WAT SVF of WT mice 

showed a higher ratio of Cd163 / Cd68, whereas Sub WAT SVF showed a higher Ag1 / 

Cd68 ratio. In addition, Pov WAT SVF showed a higher Fizz1 / Cd68 ratio in 

atherogenic diet-fed WT mice (vs. non-treated). These observations strongly confirm 

that different adipose tissues differ in the phenotypes of infiltrated macrophages, as well 

as in response, somewhat, different to FXR agonist. 

   Atherogenic diet-fed WT mice developed mild NAFLD with no evidence of 

steatohepatitis, whereas foz/foz (appetite-dysregulated, diabetic/obese) mice developed 

absolute NASH (Fig. 5.8). In WT mice, OCA strikingly reduced liver steatosis 

compared to non-treated controls, as shown by gas chromatography and ORO staining 

analyses (Fig. 5.7). However, it is not clear whether this reduction in liver steatosis was 

attributable to reduced adipose inflammation, or to a primary effect of OCA via FXR 

activation in hepatocytes. This is of interest as in the recent FLINT study (429), OCA 

failed to reverse the pathology of NASH, despite of a significant (but relatively small) 

effect on steatosis and NASH. In the present study, OCA did not improve either 
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steatosis or necro-inflammatory score, and histology in atherogenic diet-fed foz/foz 

mice. 

   In summary, OCA treatment appears to confer adipo-, hepato- and metabo-protective 

effects in atherogenic diet-fed WT mice. The mechanism and inter-relation of these 

findings need further clarification by more direct evidence of FXR activation in the 

corresponding tissues. On the other hand, OCA may not be very efficient solely when 

overeating (foz/foz background) combines with atherogenic dietary intake. In mildly 

obese mice (between 40 and 50 g), treatment with OCA reduces mRNA expression of 

macrophage pro-inflammatory markers in adipose tissue, and causes a phenotypic 

switch towards to a more anti-inflammatory macrophage phenotype. This study also 

supports the concept that reduction in adipose inflammation is associated with 

improvements in glucose metabolism in atherogenic diet-fed WT mice. Pharmalogical 

FXR activation (by OCA) holds some potential for treatment of obesity and obesity-

related complications. However, further research is required to clarify the optimal dose 

and treatment duration in very obese individuals in addition to clarify the exact 

mechanism. This is especially important on adipose compartments in which studies of 

FXR expression in relation to differentiation markers (e.g., PPARγ, adipsin, 

adiponectin) could now be of interest. In the meantime, it seems from the present 

research, with its limitations (e.g., possible optimal dose), and from the FLINT study 

(429) in NASH that this pharmalogical approach to metabolic obesity is limited. To 

establish the full potency of conventional lifestyle modifications, an exercise 

intervention in these two lines of mice would be of interest, and this is described next. 
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CHAPTER 6: Exercise Improves Adipose Dysfunction in Obesity 

 

6.1 Introduction 

   In Chapter 3 it was demonstrated how constant energy surplus causes enlargement of 

adipocytes with their eventual degeneration, and this is associated with development of 

adipose tissue inflammation. Visceral depot adipocytes are more susceptible than 

subcutaneous adipocytes for the facilitation of adipose inflammatory recruitment. As 

reviewed in Chapter 1 (Section 1.3), physical inactivity contributes importantly to over-

nutrition and its resultant obesity complications. In T2D and NAFLD, exercise 

improves glycemic control and liver indices, but its effects on tissue-specific insulin 

sensitivity, adipose inflammation and liver histology are less clear. 

 

6.1.1 Body Weight and Exercise 

   Adipose and muscle function are key factors in weight control and metabolic health. 

As explained in Chapter 1, continuous disequilibrium in energy balance (intake vs. 

expenditure) can initiate adipose tissue over-expansion and impair its normal 

functioning (336). In this way, a sedentary lifestyle leads to adipose dysfunction and 

metabolic disorders, but the mechanisms whereby physical activity protects against 

adipose dysfunction is less clear.  

   There is an inverse relationship between body weight and physical activity. A detailed 

review about muscle activity, energy expenditure, and insulin sensitivity is given in 

Section 1.3. Physical inactivity results in reduced energy expenditure, therefore, 

exercise appears to have beneficial effects for mitigating excessive weight gain. 

Paradoxically, body weight also has effects on the regulation of physical activity (433). 

In an initial exercise intervention study with male mice, we found that levels of 
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voluntary physical activity decrease after mice reach a critical body weight suggests that 

physical activity is partly regulated by body weight. This finding and several similar 

studies led us to consider whether the level of physical activity may be a response to 

obesity rather than a contributor to weight control (433, 434). According to this 

consideration, regulation of physical activity and body weight is the result of multi-

factorial interactions between genetics, dietary habits, mental health (hypothalamic 

lesions, etc.), sex, age, and perhaps most importantly, environmental (433, 435). These 

factors can lead to hypoactivity of individuals. 

   Total energy expenditure (TEE) results from the combination of physical activity and 

basal metabolic rate (BMR). BMR is comprised of unconscious activities such as 

breathing, exercise-independent thermogenesis, maintenance of body posture, and 

cardiac contractions (433, 436). Besides voluntary physical activity, body weight also 

regulates non-volitional activity (spontaneous but purposeless movement), and this 

confers effects on an individual’s food intake as well as the overall energy utilization 

from ingested food and from catabolism of that stored in adipose tissues. 

 

6.1.2 Why Study Exercise in Mice? 

   The relevance of mouse exercise studies to humans is still debated; however, there are 

several aspects of experimental design that can prevent some of the complicating factors 

of human exercise studies. For example, biological determinants such as age, 

pharmacological and surgical interventions are easier to control in mouse studies. 

Moreover, it is easier to measure locomotor activity and minimize exploratory or free 

activity in rodents by using methods such as home cages and exercise wheels. This 

minimizes (or makes it easier to follow) the environmental effects. 

   Another important determinant that is easier to control in rodent studies is dietary 

habits (437, 438). The different composition of macronutrients in diets can affect energy 
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utilization, the thermic effects of food, and the oxidation of macromolecules (439). For 

example, fat is efficiently stored in adipose tissues whereas simple carbohydrates are 

efficiently oxidized in myocytes. Today, what is called a “Western diet” is a high-fat 

and cholesterol diet often with excessive simple carbohydrates (including fructose) 

(440, 441). Many studies have associated this atherogenic diet with excessive weight 

gain, inferring that dietary feeding is an important determinant of body weight and 

possibly level of physical activity. Nevertheless, some studies have implied there is no 

relationship between diet type and hypoactivity. In the present study, we addressed 

whether there is an influence of diet (atherogenic vs. chow) on the level of exercise in 

wild-type (WT) NOD.B10 mice. 

   Gender is another important determinant of exercise behaviour in mice. Female mice 

appeared to be more active and less aggressive than their male counterparts (442, 443). 

This is possibly because of hormonal differences between genders that affect mental 

(e.g., cognitive performance) and emotional (e.g., anxiety) states. In the present PhD 

project, conduct of experiments in the host lab posed a similar challenge. Accordingly, 

an initial (pilot) cohort of male C57.B6 mice (which are relatively aggressive), was 

established for 20 weeks of voluntary exercise. Serious fights between cage-mates, skin 

wounds, and a sharp decline in daily exercise after a certain age (critical body weight in 

obese mice) were probably key determinants of unsatisfactory results (variance, and 

incomplete effects on weight gain and related metabolic effects). Accordingly, we 

established a cohort of female mice, and provided an exercise wheel for the lesser time 

of 12 weeks. 

 

6.1.3 Exercise, Obesity, and Non-alcoholic Steatohepatitis 

   The close association between obesity, adipose inflammation, and progression of fatty 

liver disease is reviewed in Section 1.5. In metabolic obesity, exercise lowers post-
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prandial blood glucose levels with concomitant decrease in serum insulin. This slows 

progression to diabetes in diabetes intervention studies, and improves glycemic control 

in patients with type 2 diabetes (444, 445). Resolution of hepatic steatosis and improved 

insulin sensitivity in extra-hepatic sites have also been described (446). 

   In a large cohort of NAFLD patients, regular moderately vigorous exercise was 

associated with less severe hepatic fibrosis (447). Although limited in scope, meta-

analyses of lifestyle intervention studies in NAFLD likewise suggest that enhanced 

physical activity can improve (or prevent progression of) liver histology (448). The 

present study was designed to clarify interactions between adipose function and 

inflammation, glycemic control and pathogenesis of NASH and liver fibrosis, using 

exercise as an intervention to ameliorate onset of insulin resistance, obesity and 

diabetes. 

 

6.2 Aims 

   In this Chapter, we hypothesized that increased physical activity should suppress 

adipose inflammation and dysfunction in obese female mice. We expected this to 

improve insulin sensitivity in different tissues, improve glycemic control and reduce 

liver steatosis and liver injury, thereby reduce liver inflammation and fibrosis. 

Accordingly, the specific aims were to: 

1. Test whether provision of an exercise wheel prevents adipose inflammation and 

dysfunction in appetite defective mice prone to obesity. 

2. Examine whether resultant increased physical activity improves tissue-specific 

and whole body insulin resistance in mice with different types of obesity 

(obesity, dietary, both). 

3. Investigate whether exercise confers beneficial effects on hepatic steatosis and 

NASH. 
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6.3 Experimental Details 

   In the present study, female foz/foz mice were used (for details, see Section 3.1) 

because these animals simulate the key predisposing factors to human NASH, appetite 

dysregulation with over-nutrition, diabetes and metabolic syndrome. They exhibit the 

spectrum of simple steatosis to fibrotic NASH, depending on dietary composition (449). 

All experimental procedures were approved by the ANU Animal Ethics Committee (see 

Section 2.1.1.1). 

   After weaning at 4 weeks of age, groups (n=8) of foz/foz NOD.B10, generated by 

cross-breeding from the original strain reported by Arsov et al., as described elsewhere 

(339), and WT littermates were fed either standard chow or an atherogenic diet ad-

libitum (4.78 kcal/g digestible energy;  23% fat, 45% carbohydrate, 0.19% cholesterol; 

Speciality Feeds, Glen Forrest, Australia). Half the cages were fitted with an exercise 

wheel for voluntary exercise, and wheel rotations were recorded by a cycle computer 

(Fig. 6.1). The initial cohort with male mice were provided an exercise wheel for 20 

weeks (harvest at 24 week old) and the main cohort with female mice were housed with 

an exercise wheel for 12 weeks (harvest at 16 week old). All mice were kept on 12-hour 

light/dark cycle in the ANU Medical School animal facility at the Canberra Hospital. 
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Figure 6.1: Configuration of exercise intervention in animal facility. Igloos (orange plastic 

structure) were fixed on the floor of the cages. Half the cages were fitted with an exercise wheel 

(“satellite disc” shaped structure) for regular exercise; and wheel rotations were recorded by a 

cycle computer (magnet fixed to underside of wheel). Exercise data were monitored and 

recorded regularly by Vanessa Barn (photos were provided by Vanessa Barn, who developed 

this apparatus). 

 

   Body weights were monitored weekly from weaning to week 14 for all mice to plot 

the progression of weight gain. Mice were fasted 4 hours one week before sacrifice (as 

explained in Section 2.2.1), and glucose tolerance was measured after intraperitoneal 

glucose injection (2 g/kg body weight) using a glucometer (Accu-Chek Advantage; 

Roche Diagnostics, Mannheim, Germany). At the time of tissue harvest (24 weeks for 

males, 16 weeks for females), mice were fasted 14 hours, anesthetized (100 mg/kg 

ketamine, 16 mg/kg xylazine) and administered insulin (1 U/kg body weight; Eli Lilly, 

Indianapolis, IN) by intra-aortic injection. Liver, visceral (periovarian) and 

subcutaneous (lumbar) WATs, and gastrocnemius muscle were collected before and 3 

minutes after insulin injection for further analyses (Fig. 6.2). Later in vivo determination 



CHAPTER 6: Exercise Improves Adipose Dysfunction in Obesity 

 

213 
 

of insulin sensitivity assay was learnt/practised at the Baker IDI Heart and Diabetes 

Institute, Melbourne, under the supervision of Dr Emma Estevez (see Section 2.1.5). 

 

 

Figure 6.2: Mouse intra-aortic insulin injection and tissue collection. Insulin stimulation 

assay was performed during the tissue harvest. Anesthetized mice were given an intra-aortic 

insulin injection. Part of liver, visceral (periovarian) and subcutaneous (lumbar) WATs, and 

gastrocnemius muscle were excised before and 3 minutes after insulin injection. Tissue-specific 

insulin sensitivity was determined by measuring phospho-protein kinase B (AKT) / total-AKT 

ratio by western blotting (for methodology, see Section 2.3.2). 
 

   At the end of experiments, we studied adipose morphometry coupled to indicators of 

differentiation and inflammation to dissect the relationships between adipose 

compartments (see Section 2.2.3), tissue-specific insulin sensitivity and liver pathology. 

Data are presented as mean ± SEM. Protein/mRNA estimations were performed in 

duplicate. For the analysis of data significance, Prism 6 (GraphPad, La Jolla, CA) and 

SPSS Statistics 22 (IBM, New York, NY) software was used applying the Student’s t-

test for single comparison and one-way or two-way analysis of variance (ANOVA), 

followed by Bonferroni’s post hoc analysis (significant when P < 0.05) 
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6.3.1 Author Contributions 

   Fahrettin Haczeyni designed and conducted the experiments, performed data analysis, 

and wrote the Chapter and a related manuscript (in process of publication in Obesity). 

Vanessa Barn supervised the animal work (breeding and maintenance) and designed 

details of the exercise intervention. Auvro Robin Mridha and Emma Estevez assisted 

the experiments. Matthew M. Yeh provided blind analysis of liver histology. 

Christopher J. Nolan, Kim S. Bell-Anderson, and Narcissus C.-H. Teoh contributed 

intellectual input, reviewed and edited the Chapter. Bruce Shadbolt provided invaluable 

advice on statistical analyses. Geoffrey C. Farrell directed the study, reviewed and 

edited the Chapter. The authors thank The Canberra Hospital research office and animal 

house technicians for their highly skilled technical assistance. 

 

6.4 Results 

   In this Chapter, we propose exercise as an important factor that could reduce immune 

responses in adipose tissue that lead to inflammatory recruitment in the face of over-

eating and physical inactivity. For a better understanding of exercise effects on adipose 

tissue, we studied both visceral and subcutaneous WATs, thereby providing more 

detailed insights into functional and morphological differences between different 

adipose sites. 

 

6.4.1 A Pilot Study: Provision of Exercise Wheel to Male Mice 

   In this preliminary study, mice on the chow diet generally applied themselves to 

regular use of the exercise wheel, but atherogenic diet-fed male foz/foz mice declined 

using the exercise wheel after 12 weeks (16 weeks of age). Thereafter, a rapid increase 

of weight gain followed, and at the end of 24 weeks, both exercising and non-exercising 

foz/foz mice had similar body weight, irrespective of diet. 
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Figure 6.3: Mean daily activity in chow and atherogenic diet-fed WT and foz/foz male 

mice. Male WT mice travelled an average of 8 - 9 km in 24 hours. Chow-fed foz/foz mice were 

as active as WT counterparts, but atherogenic diet-fed foz/foz mice were sedentary. Exercise (as 

mean daily activity in km travelled) was measured from 6 weeks of age to 15 weeks. 

Data are mean ± SEM (n=8/gp). 

† P<0.05 vs. diet-matched WT (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect) e.g., atherogenic diet-fed vs. chow-fed WT 

 

   The running circumference of the exercise wheel was 377 mm. Accordingly, we 

calculated that 106 revolutions of the wheel was equal to 39.96 meters of running 

distance. This sample of exercise activity was measured between 6 and 15 weeks of age. 

A 24 week old chow-fed WT male mouse provided with an exercise wheel often 

travelled ~9 km in 24 hours (Fig. 6.3). Atherogenic diet-fed male foz/foz mice were 

notably sedentary (< 15% active as WT counterparts); these diabetic obese mice 

exercised around 1 km a day. 

   In foz/foz male mice fed either diet, exercise reduced (but did not normalize) weight 

gain for 16 weeks, after which this effect diminished strikingly (Fig. 6.4). Thus, in 

atherogenic diet-fed male foz/foz mice, increased physical activity slowed but failed to 

prevent development of obesity. The trend in reduction of weight gain declined after 16 

weeks, and at the end of the experiment (24 weeks), exercise had made no difference to 

the total body weight in these male mice with appetite defect. 
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Figure 6.4: Weight gain in exercising vs. non-exercising male mice during 20 weeks of 

voluntary exercise. In atherogenic diet-fed WT mice, increased physical activity strikingly 

prevented excessive weight gain. Exercise conferred similar but less pronounced effects on 

chow-fed WT mice (chow-fed WT groups are omitted from the graphic for clarity).  In foz/foz 

mice, exercise slowed development of obesity in the earlier stages, but ultimately failed to 

prevent obesity, irrespective of diet. 

Data are mean ± SEM. 

* P<0.05 vs. sedentary control 

 

   Increased physical activity corrected diet-induced weight gain in male WT mice (Fig. 

6.5A). In male foz/foz mice, exercise did not cause any reduction in body weight at 24 

weeks. Exercise improved FBG in WT mice on either diet (Fig. 6.5B). A similar but 

milder (not significant) trend was found in FBG levels for foz/foz mice. As a proportion 

of body weight, both visceral and subcutaneous WATs decreased in exercising WT mice 

on either diet (not significant for chow-fed WT subcutaneous WAT; Fig. 6.5C,D). In 

contrast, exercise appeared to increase visceral WAT in foz/foz mice compared to their 

diet-matched counterparts (Fig. 6.5C), and failed to reduce subcutaneous WAT in 

foz/foz mice, irrespective of diet (Fig. 6.5D). Finally, whereas exercise produced an 

impressive reduction in subcutaneous WAT of atherogenic diet or chow-fed WT mice, it 

did not reduce subcutaneous adiposity in foz/foz mice (Fig. 6.5D).  
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Figure 6.5: Effects of exercise on body weight, FBG, and relative visceral and 

subcutaneous WAT weights in male foz/foz and WT mice. (A) Atherogenic dietary feeding 

and foz/foz mutation promoted weight gain; exercise reversed this effect in atherogenic diet-fed 

WT mice, but failed to prevent excessive weight gain in foz/foz mice (growth curves are shown 

in Fig. 6.4). (B) A similar pattern was observed for FBG. (C) Exercise significantly reduced 

visceral (epididymal) WAT in WT mice, irrespective of diet. Interestingly, exercising foz/foz 

mice showed an increase of relative visceral WAT (significant for chow-fed foz/foz mice). (D) 

Exercise also decreased subcutaneous WAT in WT mice, but failed to influence subcutaneous 

WAT in foz/foz mice. 

Data are mean ± SEM (n=8/gp). 

* P<0.05 vs. sedentary control 

† P<0.05 vs. diet-matched WT (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect) e.g., atherogenic diet-fed vs. chow-fed WT 

 

   Atherogenic dietary feeding significantly increased serum cholesterol levels in male 

foz/foz and WT mice (vs. chow-fed counterparts; Fig. 6.6A). foz/foz mice developed 

hypercholesterolemia after 20 weeks of atherogenic dietary feeding (Fig. 6.6A). 

Exercise failed to lower circulating serum cholesterol levels in any group. Serum insulin 

appeared to increase in foz/foz mice on both diets compared to WT counterparts; 

however, possibly because of the high variability of data, none of the groups displayed a 
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significant improvement with exercise (Fig. 6.6B). There was a slight decreasing trend 

in serum adiponectin levels of atherogenic diet-fed foz/foz mice vs. WT counterparts, 

and exercise failed to alter serum adiponectin levels in any group (Fig. 6.6C). Serum 

MCP1 levels were increased in atherogenic diet-fed foz/foz mice compared to WT, but 

exercise did not reverse this increase (Fig. 6.6D). 

 

 

Figure 6.6: Effects of exercise on circulating serum cholesterol, insulin, adiponectin, and 

MCP1 in male foz/foz and WT mice. (A) Atherogenic diet-fed foz/foz mice developed 

hypercholesterolemia (vs. WT or diet-matched control); exercise did not protect these mice from 

increased serum cholesterol levels. (B) Serum insulin appeared to increase with foz/foz mutation 

irrespective of diet, although the apparent change was not significant. Exercise did not 

significantly affect serum insulin. (C) Atherogenic diet-fed foz/foz mice showed a slight but 

significant reduction in serum adiponectin levels, which was not altered by exercise. (D) Serum 

MCP1 levels were increased in atherogenic diet-fed foz/foz mice compared to diet-matched or 

genotype-matched counterparts, but exercise did not reverse either of these effects. 

Data are mean ± SEM (n=8/gp). 

* P<0.05 vs. sedentary control 

† P<0.05 vs. diet-matched WT (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect) e.g., atherogenic diet-fed vs. chow-fed WT 
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   Exercise had no effect on liver size in WT male mice, but caused a minor reduction in 

atherogenic diet-fed male foz/foz mice (9.5% relative body weight vs. 11%; P<0.05) 

(Fig. 6.7A). There may have been a subtle serum ALT reduction in atherogenic diet-fed 

foz/foz mice but this was not significant (Fig. 6.7B). A preliminary blind assessment of 

liver sections in the host lab indicated improvements in hepatic macro-steatosis in 

atherogenic diet-fed exercising WT mice compared to sedentary counterparts (Fig. 

6.7C). On the other hand, livers of atherogenic diet-fed foz/foz mice displayed evidence 

of inflammation, indicating development of NASH; exercise failed to improve liver 

histology in these livers (data not shown). 
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Figure 6.7: Exercise prevented steatosis in atherogenic diet-fed male WT mice but failed to 

alter liver indices in male foz/foz mice. (A) Atherogenic diet-fed foz/foz mice developed 

hepatomegaly (vs. WT mice); exercise slightly reduced but did not correct liver weights of these 

mice. (B) Serum ALT levels increased with atherogenic dietary feeding and foz/foz mutation; 

exercise failed to normalize high serum ALT in atherogenic diet-fed foz/foz mice. (C) Liver 

sections (50 μm scaling) of atherogenic diet-fed WT mice showed a complete prevention of 

hepatic macro-steatosis in the exercising group. 

Data are mean ± SEM (n=8/gp). 

* P<0.05 vs. sedentary control 

† P<0.05 vs. diet-matched WT (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect) e.g., atherogenic diet-fed vs. chow-fed WT 

 

   Behavioural aberrations and rapid weight gain with declining use of the exercise 

wheel indicated that there would be limited value of further analyses in these mice. We 

therefore established another exercise cohort with female mice. Unlike the previous 

cohort, these mice were housed with the exercise wheel for 12 weeks, so as to identify 

any changes in pathophysiology (e.g., insulin signalling) and adipose function (e.g., 

morphology, inflammation) that could be relevant to beneficial effects of exercise on 

glycemic control and the liver. 

 



CHAPTER 6: Exercise Improves Adipose Dysfunction in Obesity 

 

221 
 

6.4.2 Effects of Exercise Wheel Provision on Daily Physical Activity and Weight 

Gain in Female WT and foz/foz Mice 

   As measured by wheel rotations, dietary composition and genotype both influenced 

physical activity. Atherogenic diet intake tended to increase exercise in WT mice (9.24 

vs 6.47 km/day; P = 0.08). In contrast, atherogenic dietary feeding reduced, but did not 

minimize, daily activity in foz/foz mice (4.67 km/day; P < 0.05) (Table 6.1). 

 

TABLE 6.1 

Daily activity in foz/foz and wild-type mice fed chow or atherogenic diet 

Genotype    Diet  n  
Running 

time (h/day) 
 

Average 

speed 

(km/h) 

 
Distance 

(km/day) 

wild-type 

 

chow 
 

8 

 

3.75 ± 0.16 

 

1.70 ± 0.18 

 

6.47 ± 0.94 

foz/foz chow 8 3.16 ± 0.20 1.83 ± 0.06 5.82 ± 0.48 

       

wild-type atherogenic 
 

8 4.29 ± 0.24 2.13 ± 0.14 9.24 ± 0.94 

foz/foz atherogenic 8 2.77 ± 0.37
†
 1.66 ± 0.15 4.67 ± 0.85

†
 

Data are mean ± SEM. †P<0.05 (vs. diet-matched comparison [genotype effect]) 
 

   While it can be difficult to accurately measure food intake in rodent experiments 

(other than using metabolic cages), highly skilled animal technicians assisted this 

measurement based on food consumption in individual cages (see Section 2.1.2). As 

expected, exercise increased food consumption (particularly chow) in WT mice (Fig. 

6.8A,B). Interestingly, there was a non-significant trend for a reduction rather than 

increase in food intake in foz/foz mice with exercise, regardless of the type of diet (Fig. 

6.8A,B). The reason for this different food intake adaptation to exercise between the WT 

and foz/foz mice is not clear, but the possibility that exercise may (at least partly) reset 

appetite control in foz/foz mice is discussed later (Section 6.5). 
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Figure 6.8: Food consumption in exercising female foz/foz and WT mice vs. non-exercising 

counterparts. (A,B) Compared with non-exercising mice (NO EX), food intake was higher in 

exercising (EX) WT mice on either diet, but was less in exercising foz/foz mice. 

Data are mean ± SEM (n=8/gp; error bars are not shown for clarity). 

* P<0.05 vs. sedentary control 

 

   Exercise had a small effect on weight gain in atherogenic diet-fed WT mice (Fig. 

6.9B). In chow-fed foz/foz mice, exercise prevented excess weight gain compared to 

non-exercising counterparts, so that exercising mice remained similar in weight to WT 

until ~12 weeks of age (Fig. 6.9A). Atherogenic feeding for 16 weeks strikingly 

increased body weight in foz/foz mice (Fig. 6.9B,C). Exercise countered the sole effect 

of genotype (in chow-fed mice) on body weight, and exerted a significant but 

incomplete effect on reducing weight gain in atherogenic diet-fed foz/foz mice (Fig. 

6.9C). To establish whether energy consumption was increased by exercise, we 

performed overnight fasting weight measurement (wheel removed). Such overnight 

fasting weight loss was significantly higher in all exercising groups, except for the not 

significant trend in chow-fed foz/foz mice (Fig. 6.9D). 
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Figure 6.9: Body weight gain is curbed in exercising female foz/foz and WT mice vs. non-

exercising counterparts. (A,B) Exercise prevented diet-induced weight gain in female WT 

mice, irrespective of diet, and also prevented obesity development in chow-fed foz/foz mice, but 

slowed rather than normalized weight gain in atherogenic diet-fed foz/foz mice. (C) At 16 

weeks, exercise had caused a significant reduction in body weight in foz/foz mice. (D) After 

overnight fasting, weight loss was greater in all exercising groups. 

Data are mean ± SEM (n=8/gp). 

* P<0.05 vs. sedentary control 

† P<0.05 vs. diet-matched WT (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect) e.g., atherogenic diet-fed vs. chow-fed WT 

 

6.4.3 Effects of Exercise on Tissue Weights, Insulin Signal Transduction, and 

Markers of Adipose Differentiation 

   Tissue-specific insulin sensitivity was determined by the designated harvest protocol 

described in Section 2.1.5. Physical activity consistently increased relative 

gastrocnemius muscle mass, although the increase was significant only in foz/foz mice 

(Fig. 6.10A). Likewise, exercise significantly improved muscle AKT phosphorylation in 

all groups except chow-fed WT; thus post-insulin AKT-phosphorylation as a ratio of 

basal AKT increased with exercise (Fig. 6.10B). 
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Figure 6.10: Exercise increased insulin-induced AKT phosphorylation in 

gastrocnemius muscle in all groups of mice. (A) Muscle samples were collected before and 

(collateral side) 3 minutes after intra-aortic insulin injection. Exercise increased relative muscle mass 

in foz/foz mice on both diets. (B) Insulin-stimulated AKT-phosphorylation (ratio of phospho-AKT / 

total-AKT) was increased by exercise in muscle of all experimental groups, and this increase was 

significant in foz/foz and atherogenic diet-fed WT mice (*P<0.05 vs. pre-insulin control). 

Data are mean ± SEM (n=8/gp). 

* P<0.05 vs. sedentary control 

† P<0.05 vs. diet-matched WT (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect) e.g., atherogenic diet-fed vs. chow-fed WT 

 

   Atherogenic diet and foz/foz genotype were each associated with increases in visceral 

(periovarian) and subcutaneous (lumbar) WAT mass (Fig. 6.11). The effects of exercise 

were most pronounced when absolute adipose weights were considered. Thus exercise 

markedly reduced visceral adiposity in chow-fed foz/foz mice (Fig. 6.11A), and this 

trend was observed in other groups but was not significant. Subcutaneous adiposity was 

significantly reduced in atherogenic diet-fed foz/foz mice provided with an exercise 

wheel (Fig. 6.11B). When adipose mass was expressed as a proportion of body weight, 

exercise did not significantly reduce relative visceral WAT (Fig. 6.11C), but relative 
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subcutaneous WAT was less in exercising atherogenic diet-fed foz/foz mice (Fig. 

6.11D). 

 

 

Figure 6.11: Relative and absolute adipose weights in exercising female foz/foz and WT 

mice vs. non-exercising counterparts. (A,C) Atherogenic diet and foz/foz mutation were 

associated with increased visceral adipose weight, and the effects of exercise were minimal (if 

any). The only significant exercise-related reduction in visceral WAT weight gain was in chow-

fed foz/foz mice. (B,D) Conversely, exercise limited subcutaneous adipose expansion in foz/foz 

mice. 

Data are mean ± SEM (n=8/gp). 

* P<0.05 vs. sedentary control 

† P<0.05 vs. diet-matched WT (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect) e.g., atherogenic diet-fed vs. chow-fed WT 

 

   A western-blotting protocol similar to that used in gastrocnemius muscle (Fig. 6.10) 

was also applied to adipose tissues (see Section 2.3.2) to determine tissue-specific 

insulin sensitivity in exercising vs. non-exercising mice. Unlike in muscle, exercise 

failed to enhance AKT-phosphorylation in either visceral or subcutaneous WATs (Fig. 

6.12A,B). 
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Figure 6.12: Exercise failed to enhance post-insulin AKT phosphorylation in adipose tissue 

of female foz/foz or WT mice. Insulin-stimulated AKT-phosphorylation (as the ratio of 

phospho-AKT / total-AKT) was not altered by exercise in (A) visceral (Vis) or (B) 

subcutaneous (Sub) WATs. 

Data are mean ± SEM (n=8). 

 

   In WT mice, mRNA levels of Pparγ were similar in visceral and subcutaneous WATs 

and were not altered by exercise. However, in foz/foz mice, regular exercise consistently 

increased Pparγ mRNA levels in WAT, a change that was highly significant in visceral 

WAT (Fig. 6.13A). mRNA Levels of Glut4, the main insulin-regulated glucose uptake 

transporter in adipose (see Section 1.3.3), increased in a similar exercise-dependent 

pattern (Fig. 6.13B). Prdm16 mRNA expression (see Section 1.2.6) was also higher in 

subcutaneous than visceral WAT in all groups, and was particularly low in atherogenic 

diet-fed foz/foz mice. Exercise countered this very low expression level of Prdm16 

mRNA in visceral adipose of foz/foz mice (Fig. 6.13C). 
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Figure 6.13: Effects of exercise on adipogenic markers in adipose sites of foz/foz and WT 

mice. In atherogenic diet-fed foz/foz mice, 12 weeks of voluntary exercise increased mRNA 

expression of (A) Pparγ, (B) Glut4, and (C) Prdm16 in WATs. 

Data are mean ± SEM (n=8/gp). 

* P<0.05 vs. sedentary control 

† P<0.05 vs. diet-matched WT (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect) e.g., atherogenic diet-fed vs. chow-fed WT 

 

6.4.4 Effects of Exercise on Glycemic Responses 

   As explained in Section 6.3, mice were fasted (4 hours) one week before harvesting to 

measure FBG and glucose tolerance after intraperitoneal glucose injection (2 g/kg body 

weight). FBG increased with atherogenic dietary feeding and foz/foz mutation, being 

highest in atherogenic diet-fed foz/foz mice (Fig. 6.14A). Exercise failed to alter fasting 

hyperglycemia in any group (Fig 5.14A). However, the data for atherogenic diet-fed 

foz/foz mice appeared unduly influenced by 2 animals that developed severe diabetes 

(Fig. 6.14B). 
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Figure 6.14: Exercise prevented development of diabetes in most, but not all, atherogenic 

diet-fed female foz/foz mice. (A) FBG increased with atherogenic dietary feeding and foz/foz 

mutation; any effects of exercise were not significant. (B) Exercise failed to improve FBG 

levels in atherogenic diet-fed foz/foz mice, largely because of 2 severely diabetic mice (circled). 

Data are mean ± SEM (n=8/gp). 

* P<0.05 vs. sedentary control 

† P<0.05 vs. diet-matched WT (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect) e.g., atherogenic diet-fed vs. chow-fed WT 

 

   The methodology for IpGTT is given in Section 2.2.1. In chow-fed WT, exercise did 

not alter intraperitoneal glucose tolerance (Fig. 6.15A-C). In chow-fed foz/foz mice, the 

substantial impairment in glucose tolerance was reversed by exercise (Fig. 6.15A,C). A 

similar (but lesser) response was noted in atherogenic diet-fed WT mice (Fig. 6.15B,C). 

On the other hand, exercise wheel provision had little if any effect on impaired glucose 

tolerance in atherogenic diet-fed foz/foz mice (Fig. 6.15B,C). Closer analysis revealed 

that this negative result was largely attributable to one cage in which animals were slow 

to start exercising (no rotations recorded in week 1) and overall use of the wheel was 

2.5 weeks less. These are the same 2 mice that developed diabetes (see circled in Fig. 

6.14B) and NASH (see later). 
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Figure 6.15: Exercise improved intraperitoneal glucose tolerance in chow-fed foz/foz and 

atherogenic diet-fed WT mice, but not in atherogenic diet-fed foz/foz mice. (A,C) Exercise 

was associated with a striking improvement in intraperitoneal glucose tolerance in chow-fed 

foz/foz mice, and (B,C) moderate improvement in WT mice. (B,C) Glucose tolerance was 

severely impaired and did not improve with exercise in atherogenic diet-fed foz/foz mice, being 

partially influenced by the 2 diabetic mice (depicted in Fig. 6.14B). 

Data are mean ± SEM (n=8/gp). 

* P<0.05 vs. sedentary control 

† P<0.05 vs. diet-matched WT (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect) e.g., atherogenic diet-fed vs. chow-fed WT 

 

   In light of these ambiguous data, we established a small, separate cohort of 

atherogenic diet-fed foz/foz mice (n = 6/gp) and monitored glycemic responses over 

time (Fig. 6.16). 
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Figure 6.16: A separate cohort of atherogenic diet-fed female foz/foz mice with or without 

an exercise wheel. (A) Similar to the main cohort, exercise significantly delayed weight gain. 

(B) There was a break-point at ~8 weeks when the non-exercising mice developed significant 

hyperglycemia. (C) Exercise improved intraperitoneal glucose tolerance and (D) it appeared to 

delay the increase in fasting blood glucose together with a strong trend in reduction of blood 

insulin levels (P=0.1). (E) Hepatocellular injury marker serum ALT levels tended to be lower in 

exercising atherogenic diet-fed foz/foz mice than in sedentary counterparts. 

Data are mean ± SEM (n=8/gp). 

* P<0.05 vs. sedentary control 

 

   The results indicate that substantial increase in FBG following a significant weight 

gain (Fig. 6.16A) occurs abruptly during the 8
th

 week of atherogenic dietary feeding in 

non-exercising mice. All animals became prediabetic, and this effect appeared to be 

delayed in exercising atherogenic diet-fed foz/foz mice (Fig. 6.16B). Glucose clearance 

after intraperitoneal administration in exercising mice was faster than sedentary 

counterparts (Fig. 6.16C). Serum insulin (Fig. 6.16D) and serum ALT (Fig. 6.16E) 

levels were less in exercising than in sedentary atherogenic diet-fed foz/foz mice. 

 

6.4.5 Effects of Atherogenic Diet, Alms1 Mutation, and Exercise on Adipose 

Morphometry and Inflammation 

   As reviewed in Section 1.4, assessment of adipocyte size is informative about the 

function or dysfunction of adipose tissue. Although different techniques have been used 
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for adipose morphometric analyses in the last 20 years, the outcome measures for these 

analyses have been usually the same: mean adipocyte size and number. There is a lack 

of strong literature comparing morphometric aspects of different adipose pads. 

Accordingly, two different adipose tissues, visceral and subcutaneous WATs, were 

analyzed for detailed adipose morphometry in the current study. 

   In the present study, atherogenic dietary feeding increased mean adipocyte volume in 

the visceral compartment of WT mice (1.60 vs 0.55 µm
3
 x 10

5
), with similar changes in 

foz/foz mice on both diets (Fig. 6.17A). Exercise significantly increased 1000 µm
2
 

adipocytes in WT visceral WAT on both diet (Fig. 6.17C). In non-exercising chow-fed 

foz/foz mice, adipocytes >9000 µm
2
 comprised the major population; exercise altered 

this accumulation towards 3000 to 6000 µm
2
, although this trend was not significant.  In 

atherogenic diet-fed foz/foz mice, exercise failed to alter the size of enlarged visceral 

adipocytes (Fig. 6.17C). The average volume of subcutaneous adipocytes also increased 

progressively according to diet and phenotype, the largest median volume being in non-

exercising atherogenic diet-fed foz/foz mice. Exercise consistently reduced the mean 

volume of subcutaneous adipocytes in all groups (Fig. 6.17B). Thus, cell size 

distribution analysis revealed an increase in the subpopulation of small adipocytes in 

subcutaneous WAT of chow-fed WT mice (Fig. 6.17D). A similar trend was found in 

atherogenic diet-fed WT and chow-fed foz/foz mice but it was not significant. Exercise 

strikingly reduced the proportion of hypertrophic large adipocytes in subcutaneous 

WAT of atherogenic diet-fed foz/foz mice (Fig. 6.17D). 
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Figure 6.17: Effects of exercise on morphometry of visceral and subcutaneous adipose of 

foz/foz and WT mice on chow or atherogenic diet. (A,B) Morphometry performed on H&E-

stained adipose sections (160x magnification) showed that average adipocyte volume in both 

visceral and subcutaneous compartments increased with atherogenic diet and foz/foz mutation. 

(A) In visceral adipose, any effect of exercise was minor and not significant on adipocyte 

volume despite a consistent trend of reduction was found in exercising (EX) mice. (B) The 

effect of exercise on subcutaneous adipocytes was more pronounced, and average adipocyte 

volume diminished in all groups, being significant in atherogenic diet-fed foz/foz mice. (A,D) 

Adipocyte size distribution was assessed for visceral and subcutaneous WATs. (C) Exercise 

caused a significant increase in very small adipocytes (1000 µm
2
 [elsewhere small is ≤ 4000 

µm
2
]) in WT mice visceral WAT, irrespective of diet. In chow-fed foz/foz mice, adipocytes 

between 3000 to 6000 µm
2
 sizes were a major cell population in visceral WAT. Adipocytes > 

9000 µm
2
 appeared predominant in mice without an exercise wheel, although this analysis did 

not reach significance. Exercise did not alter adipocyte size distribution in visceral WAT of 

atherogenic diet-fed foz/foz mice. (D) A similar but more pronounced pattern was noted for 

adipocyte size distribution in subcutaneous WAT, but in exercising chow-fed WT mice,  

majority of adipocytes were between 1000 and 2000 µm
2
 (P < 0.05). There was a strong trend 

for moderate-sized adipocyte accumulation in chow-fed foz/foz subcutaneous WAT, and this 

alteration was significant in atherogenic diet-fed foz/foz mice. 

Data are mean ± SEM (n=8/gp). 

* P<0.05 vs. sedentary control 

† P<0.05 vs. diet-matched WT (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect) e.g., atherogenic diet-fed vs. chow-fed WT 
 

   In WT mice on either diet, there was no change in mRNA expression of the 

macrophage marker, Cd68. Conversely, Cd68 mRNA was abundant in visceral (and to a 

lesser extent subcutaneous) adipose of foz/foz mice, irrespective of diet. Exercise at least 

partially reversed these effects (Fig. 6.18A). Thus, levels of Cd11b mRNA, a marker of 

pro-inflammatory immune cells (Section 1.5.6.1), were higher in non-exercising foz/foz 

mice adipose depots, except in chow-fed subcutaneous WAT (Fig. 6.18B); exercise 

decreased Cd11b transcript levels in both adipose sites. Levels of Mcp1 mRNA 

expression were likewise increased in foz/foz adipose, particularly in the visceral depot; 

this increase in Mcp1 mRNA expression was limited by exercise (Fig. 6.18C). 

   A detailed review about adipose crown-like structures (CLSs) is given in Section 1.5. 

In Chapter 4, insights with the mechanisms of formation of this multicellular unit are 

provided in the Results Section (see Section 4.4.4). The contiguous clumps of 

macrophages abutting a small adipocyte that comprise CLSs (400x magnification; Fig. 

6.18E) are regarded as a marker of WAT inflammation (230). As established by number 
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of CLSs (normalized to 100 adipocytes), visceral WAT was highly inflamed in non-

exercising atherogenic diet-fed foz/foz mice (Fig. 6.18D,F); exercise decreased 

formation of CLSs at this site. Moderate inflammation was also observed in the 

subcutaneous adipose of atherogenic diet-fed foz/foz mice (Fig. 6.18D,F), and at this site 

exercise also significantly diminished macrophage infiltration. 

 

 

Figure 6.18: Effects of exercise on adipose inflammatory recruitment and formation of 

CLS in foz/foz and WT mice. (A) Exercise ameliorated the effects of atherogenic feeding on 

macrophage infiltration. In foz/foz mice, particularly in those fed atherogenic diet, Cd68 mRNA 

levels were high. This increase was more pronounced in visceral (Vis) than subcutaneous (Sub) 

WAT. A similar profile was found for (B) Cd11b and (C) Mcp1 mRNA expression. (D) The 

numbers of CLSs (normalized to 100 adipocytes), (E) inflammatory (F4/80 positive) 

macrophages surrounding an adipocyte (400x magnification), were consistent with the other 

inflammatory markers, (F) being highly abundant in inflamed visceral and subcutaneous WATs 

of foz/foz mice (160x magnification). (D,F) Exercise reversed the effect of atherogenic dietary 

feeding and foz/foz genotype on CLSs in both WATs. 

Data are mean ± SEM (n=8/gp). 

* P<0.05 vs. sedentary control 

† P<0.05 vs. diet-matched WT (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect) e.g., atherogenic diet-fed vs. chow-fed WT 
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6.4.6 Exercise Delays or Prevents Development of NASH and Liver Fibrosis 

   As previously reported, liver histology was affected both by atherogenic dietary 

feeding and appetite defect (foz/foz genotype) (232). Thus, chow-fed WT mice had 

normal liver histology (Table 6.2; 160x magnification, Fig. 6.19A), whereas atherogenic 

dietary feeding produced minor steatosis in 2 of 8 WT mice. None of 8 exercising 

atherogenic diet-fed WT mice developed steatosis. In chow-fed foz/foz mice, numerous 

small fat droplets were evident in hepatocytes with minor liver inflammation; exercise 

wheel provision prevented both steatosis and inflammatory recruitment in this group 

(Table 6.2; Fig. 6.19A). As expected from previous studies (339), atherogenic diet-fed 

foz/foz mice showed hepatomegaly with extensive steatosis, substantial inflammation 

and ballooned hepatocytes. The resultant median NAS of 5 (range 4-6) was comprised 

of 4 instances of definite NASH (score 5,6), and 3 of borderline NASH (score 4) (Table 

6.2). Exercise failed to prevent development of hepatomegaly in atherogenic diet-fed 

foz/foz mice (Fig. 6.19B), and 3 of 8 mice provided with exercise wheel still developed 

unequivocal NASH, but this included the 2 diabetic mice depicted in Fig. 6.14B. Of the 

remainder, 2 developed borderline NASH and 3 showed only simple steatosis (Table 

6.2, Fig. 6.19A). 
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   Development of substantial liver fibrosis in atherogenic diet-fed foz/foz mice after 24 

weeks has been reported by the host lab several times (339, 450).  Fibrosis is already 

evident at 16 weeks, as shown here by areas stained blue for collagen with Masson’s 

trichrome (Fig. 6.19D). By image analysis (explained in Section 2.2.3), fibrosis was 

significantly less in atherogenic diet-fed foz/foz mice provided with an exercise wheel 

than in non-exercising counterparts (Fig. 6.19E,F). The effects of exercise in 

ameliorating liver fibrosis were confirmed by decreased collagen 1A mRNA (not 

shown) and protein (Fig. 6.19G), and lower expression of alpha smooth muscle actin (α-

SMA) (Fig. 6.19H). 
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Figure 6.19: Effects of exercise on liver histology, insulin signalling and liver fibrosis in 

foz/foz and WT mice fed chow or atherogenic diet. (A) H&E-stained sections (160x 

magnification). Atherogenic dietary feeding caused steatosis in non-exercising (NO EX) WT 

mice, which was fully reversed by exercise. In foz/foz mice, steatosis is evident with chow diet 

and reversed by exercise, but NASH is present with atherogenic diet. In this example, exercise 

(EX) prevented NASH but simple steatosis is still present (see Table 6.2 for group effects). (B) 

Exercise failed to prevent hepatomegaly (expressed here as relative to body weight) in 

atherogenic diet-fed foz/foz mice, (C) or to influence insulin-stimulated AKT-phosphorylation in 

liver. (D-F) Exercise reduced abundance of collagen 1 positive tissue in atherogenic diet-fed 

foz/foz mice in comparison to sedentary counterparts. Correspondingly, liver fibrosis markers 

(G) collagen 1A and (H) α-SMA protein expression were lower in exercising atherogenic diet-

fed foz/foz mice liver compared to non-exercising mice. 

Data are mean ± SEM (n=8/gp). 

* P<0.05 vs. sedentary control 

† P<0.05 vs. diet-matched WT (genotype effect); e.g., chow-fed foz/foz vs. WT 

‡ P<0.05 vs. genotype-matched control (diet effect) e.g., atherogenic diet-fed vs. chow-fed WT 
 

6.5 Discussion 

   Metabolic obesity results from interactions between lifestyle (environmental) factors 

that favour energy excess and a genetically predisposed host. Tissue inflammation 

occurs in diabetes complications and in the fatty liver with NASH, two clinically 

important outcomes of metabolic obesity. Adipose inflammation invariably 

accompanies these disorders. In the present work, we tested whether exercise has 

beneficial effects on the complications of metabolic obesity in a mouse model that 

resembles the human condition by genetic predisposition to obesity and diabetes, and an 

environmental challenge (atherogenic diet). 

   In addition to metabolic outcomes, the results of the present experiments provide 

systematic data on changes in physical activity levels of mice according to gender and 

age. By monitoring weekly weight gain, food intake, and exercise levels, the present 

data contribute to understanding of the complicated relationships between body weight 

and physical activity levels. The first new finding was that exercise increased energy 

turnover sufficient to prevent both diet-induced and genetically-driven weight gain, but 

was less effective when these factors interacted. Thus, in atherogenic diet-fed male 

foz/foz mice, exercise slowed the rate of weight gain, but at an apparent “set point”, use 

of the wheel declined and weight gain then accelerated. In the female cohort, two 
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individual animals that were slow to adopt regular exercise discontinued such use at an 

earlier time than their 6 littermates. It is therefore of interest to observe that these 2 mice 

were the only ones to develop established diabetes by age 16 weeks. Despite this 

limitation of the voluntary exercise approach, the combined use of intraperitoneal 

glucose tolerance and tissue-specific AKT-phosphorylation after insulin administration, 

together with static measurements of serum insulin in the sub-study, provide a clear 

picture of exercise-induced improvements in energy homeostasis and metabolic control. 

   Food intake in the exercising foz/foz mice was lower than for their non-exercising 

counterparts, but remained higher than for exercising WT mice (which consumed more 

than their non-exercising counterparts). Although foz/foz mice displayed reduced food 

consumption with exercise, weight gain in these animals still exceeded non-exercising 

counterparts. Considering these findings, it is not possible to clarify whether the 

slowing of weight gain was a direct result of exercise, or secondary to the effect of 

reduced food intake. A tentative conclusion is that exercise can partly reset appetite 

control in foz/foz mice, but to clarify this ambiguity, a more detailed study of 

neurohormonal appetite regulation would be required and this was beyond the scope of 

the present research. On the other hand, the changes in metabolic indices and reduction 

of liver fat in exercising WT mice are clearly not due to changes in food intake as, this 

increased. By analogy, we think the improvements in metabolic regulation in exercising 

foz/foz mice are mostly attributable to increased physical activity. Nonetheless, the 

additional benefit of calorie restriction (to mitigate overnutrition) would assist exercise 

effects in amelioration of metabolic indices. 

   Energy surplus requires WAT remodelling (see Section 1.4.5-1.4.6) (451, 452). 

Facing positive energy imbalance, adipocytes become lipid-engorged, and exhibit 

reduced glucose uptake and increased chemokine/cytokine secretion (289, 336). 

Conversely, healthy adipose contains a higher proportion of smaller adipocytes and 
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shows no inflammation (453, 454). In the present study, both atherogenic diet and 

foz/foz background were associated with increased adipocyte volume, and this was 

apparent in both the visceral and subcutaneous compartments. However, more detailed 

morphometric investigation showed that the size distribution of adipocytes differed: the 

percentage of cells between 2000 and 6000 µm
2
 (small to medium) was higher in 

exercising foz/foz mice, even though the average adipocyte volume (assuming a 

spherical shape) did not change. Lipid-laden large adipocytes produce more pro-

inflammatory chemokines and cytokines which regulate cellular trafficking (289). It 

was therefore not surprising that atherogenic diet-fed foz/foz mice showed abundant 

immune cell infiltration, particularly into visceral WAT; exercise reversed this effect, in 

association with lowered MCP1 production. As discussed in the previous Chapter, most 

of the macrophages that infiltrate adipose, assemble around very small degenerating 

(dying/injured) adipocytes in CLSs (230). In parallel with the morphometric and 

molecular findings, exercise substantially reduced CLS numbers in both visceral and 

subcutaneous WATs of atherogenic diet-fed foz/foz mice. An apparently similar effect 

in chow-fed foz/foz was not significant. 

   Improved muscle insulin sensitivity in exercising mice clearly contributed to greater 

energy consumption, as evident by higher overnight fasting weight loss; this reflects 

basal energy utilisation to some extent. Active muscle cells oxidize more energy and 

thereby diminish the systemic lipid burden in exercising mice. This energy is mostly 

provided by adipocytes because, for example, the increase of circulating adrenalin 

levels before and during exercise activates HSL in adipose tissues. This increases 

lipolysis and energy release (in the form of FFAs as nutrients) from adipocytes. 

Activation of the sympathetic nervous system may improve adipose metabolism as well 

as muscle. Nevertheless, as discussed next, direct effects of exercise on adipose tissue 

are possible and merit further investigation. 
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   It is most likely that exercise confers beneficial effects on adipose through two 

different ways. Firstly, muscle inefficacy (or under-use) associated with inactivity 

together with over-eating creates a considerable burden on adipose sites for energy 

storage. Conversely, increased muscle activity reduces the lipid burden on adipocytes 

by clearing energy molecules (e.g., glucose) from the circulation and increasing 

metabolism (discussed later). This is an indirect effect of exercise on adipose 

metabolism. In addition to this, another secondary effect of exercise improves adipose 

function, “muscle-derived cytokines”. Active/healthier myocytes express anti-

inflammatory and insulin sensitizing myokines (such as Irisin) that improve adipocyte 

metabolism (455). Investigation of these muscle-derived factors is a relatively new 

subject in medical and sports sciences suggesting a more important role for exercise 

than simply balancing energy expenditure. There is also increasing evidence that muscle 

can release other important “myokines” into the circulation, such as IL10 and IL6 (456). 

Protein isolates of the muscle tissues obtained here will be useful in the future 

investigations to study myokine expression of exercising vs. sedentary skeletal muscle 

tissue. 

   Whether the effects of exercise on adipose were all indirect or not, this study provides 

clear evidence that exercise improves adipose structure and differentiation. Here this 

was indicated by changes in adipocyte size, and expression of PPARγ, the transcription 

factor which regulates glucose uptake and stimulates triglyceride storage. There was 

also a corresponding increase of Glut4 mRNA, and Prdm16, a transcription co-regulator 

that controls the myocyte/brown-beige adipocyte differentiation switch that induces 

brown fat-like gene program (reviewed in Section 1.2.6). Bruce Spiegelman and his 

colleagues has reviewed that exercise increases recruitment of beige adipocytes in WAT 

(455), and Prdm16
-/-

 mice develop profound visceral obesity (86). This reflects the 

important role that PRDM16-driven beige adipocytes plays in whole body energy 
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expenditure, since these cells are “mitochondria-rich” cells. In our project, we showed 

that suppression of this master regulator of adipocyte browning increased in concert 

with the adipogenic factor PPARγ and glucose transporter GLUT4. 

   Exercise-mediated improvement of adipocyte function has important consequences 

for the development of other metabolic disorders, such as NAFLD. This is because 

WAT sites become more responsive to circulating glucose and lipids, thereby reducing 

ectopic lipid deposition into liver and other cell types (457). Exercise has been shown to 

resolve steatosis in overweight humans with NAFLD (446, 458), and this effect was 

reproduced in exercising atherogenic diet-fed WT and chow-fed foz/foz mice.  The 

exercise-mediated suppression of adipose inflammation in foz/foz mice was also 

associated with other striking improvements in liver histology, including less 

inflammation and injury. The exceptions were two mice that failed to take up exercise 

early, discontinued it prematurely and developed diabetes (resembling the conundrum 

of lifestyle management of metabolic disorders in clinical practice). However, exercise 

consistently lowered liver fibrosis in atherogenic diet-fed foz/foz mice. In a transectional 

study, moderately vigorous exercise (but not lesser forms) was associated with 

improved liver indices and less severe liver fibrosis, although the mechanism was not 

explored (447). The present study in a metabolic syndrome model of NASH with 

genetic predisposition to diabetes should prove suitable to clarify this protective 

mechanism. The possibilities include a direct relationship to reduced hepatocyte injury 

(by lipotoxicity) and liver inflammation, stabilisation of hepatic stellate cells (shown by 

decreased α-SMA expression) and decreased levels of pro-fibrogenic growth factors and 

other humoral mediators as explained by the host lab (339). 

   In conclusion, these data show that moderately vigorous exercise suppresses adipose 

inflammation in mice with disordered appetite control. Exercise prevented excessive 

weight gain and improved adipose differentiation in atherogenic diet-fed WT as well as 
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chow-fed foz/foz mice, and slowed weight gain in atherogenic diet-fed foz/foz mice in 

association with an increased proportion of small-medium sized adipocytes. Exercise 

enhanced insulin signalling in muscle, but not in liver or adipose. Even in atherogenic 

diet-fed foz/foz mice, exercise suppressed the otherwise abundant CLSs of macrophages 

and inflammatory transcripts, particularly in visceral but also in subcutaneous WAT. In 

association with prevention of diabetes, exercise reduced steatosis, improved hepatocyte 

ballooning, liver inflammation (less NASH) and fibrosis in atherogenic diet-fed foz/foz 

mice. Thus, in appetite-dysregulated mice fed an energy-dense diet, exercise improved 

muscle insulin sensitivity to delay onset of diabetes, maintain adipose function, reduce 

adipose inflammation and ameliorate NASH and hepatic fibrosis, the important liver 

complications of obesity and diabetes. In addition to the benefits of lifestyle 

modification for prevention and treatment of pre-diabetes and significant liver disease, 

these findings have implications for drug targets that could lead to similar benefits in 

non-exercising overweight humans. One of these, an FXR agonist, was explored in the 

previous Chapter. 
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CHAPTER 7: Final Discussion 

 

7.1 Persistent adipose inflammation is associated with the development of fatty 

liver disease 

   The overall aim of the research compiled into this thesis was to characterize the 

developmental pattern of persistent adipose inflammation and explore its relationship 

with metabolic disorders such as insulin resistance, T2D, hypoadiponectemia, and more 

specifically, fatty liver disease. Each Chapter has focused on this subject from a 

different point of view and discussed the results pertinent to that aspect. The major 

findings will be recapitulated and summarized in the present Chapter, with a perspective 

on how they influence thinking in the field and address future research directions. 

   Chapter 3 focused on the age-dependent development of obesity in mice with an 

appetite defect (foz/foz) compared to WT mice. The results show that the impact of such 

factors as foz/foz genotype (dysregulated appetite) and atherogenic dietary intake differ 

quantitatively on body weight gain. Further, the interaction between these two factors 

clearly worsens the obesity phenotype. Another important outcome from Chapter 3 was 

that adipose tissues from different parts of the body are not identical in their response to 

“obesification”. Chapter 5 and 6 contributed further to this subject by showing that not 

only the pattern of weight gain, but also adipocyte functions and inflammatory 

phenotypes differ between different adipose compartments. In addition, Chapter 6 

provided important new data about connections between increased physical activity 

(exercise), improved adipose function (which is linked to muscle function), and 

subsequent amelioration of metabolic indices and fatty liver disease. 

   Chapter 4 provided a more detailed insight into adipose morphometry and 

inflammatory recruitment. The key finding was the strong footprint of adipose 
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morphology in relation to inflammatory response; the latter includes TLR9 signalling 

(addressed in Chapter 4), and macrophage infiltration in adipose tissue. Chapter 5 

brought this concept one step further by determining the phenotype of macrophages in 

dysfunctional vs. healthy adipose tissue. Obeticholic acid (6-ECDCA), which is a 

synthetic FXR agonist as well as an anti-obesogenic agent, was studied in this Chapter 

in an attempt to determine whether cholesterol-loading is relevant for adipose 

inflammatory recruitment. 

 

7.1.1 Regional Differences Exist in White Adipose Tissues 

   As detailed in Chapter 1, adipose tissues from different parts of the body can differ in 

ontogenetic, structural and functional characteristics. This diversity affects the obesity 

phenotype (unhealthy vs. metabolically healthy). The sections in Chapter 1 that point to 

these differences are listed in Table 7.1. 

 

Table 7 

Sections outlining differences of adipose tissues. 
 

Title  Section 

The Origins of Adipose Tissue  1.2.2 

Terminal Differentiation of Preadipocytes  1.2.4.3 

Adipose Structural Characteristics and Functional Differences  1.2.5 

Brown vs. Beige Adipocytes  1.2.6.1 

Subcutaneous vs. Visceral Adiposity: An Ergonomic Issue  1.2.7 

Relationship of Adipocyte Size to Function  1.4.7 

Vascularization in Expanding Adipose Tissues  1.5.1 

Dépôt-Specific Differences in Adipose Vascularization  1.5.1.1 

 

   In 2006, André Tchernof and his colleagues published their work investigating 

subcutaneous and visceral WATs in a large cohort of women (459). They found that 

adipocytes in subcutaneous WAT were larger compared to visceral cells. Moreover, 

subcutaneous WAT showed higher lipoprotein lipase activity and lipolysis rates than the 

visceral compartment. Interestingly, visceral WAT was significantly more sensitive to 
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lipolytic stimuli (e.g., forskolin, dibutyryl cAMP) than subcutaneous WAT. In another 

study, Tamara Tchkonia and her colleagues investigated preadipocytes from 

subcutaneous and visceral WATs of men and women (39). Preadipocytes from the latter 

compartment displayed less expression of adipogenic factors, less lipid accumulation, 

and higher TNFα-induced apoptosis. Although the reason is not clear, several other 

studies have also described how visceral adipose tissue is predisposed to develop 

inflammatory recruitment compared to subcutaneous dépôts. As stated in Section 1.4, 

visceral adiposity (visceral obesity) is central to the development of the unhealthy 

obesity phenotype. In fact, central obesity (the anthropometric manifestation of 

expanded visceral WAT) is a definitional component of metabolic syndrome as defined 

by the International Diabetes Federation (460). 

   The variation in function and size of fat dépôts in mice is analogous to that of in 

humans; in fact, studies of adipose tissue differences have usually been reported first in 

mouse models of obesity. Epidemiological studies have shown that accumulation of 

visceral fat in mice associates with the development of dyslipidemia, T2D, 

hypoadiponectemia, and even obesity-related cancers. Conversely, accumulation of 

subcutaneous WAT associates with more optimal (whole body) insulin sensitivity and 

lower risk of developing metabolic comorbidities (76). One factor that determines the 

differential deposition of fat is simply body ergonomy (see Section 1.2.7). Some 

adipose compartments are encaged around or within internal organs and inflexible 

tissues; an example is mesenteric fat. On the other hand, over-expansion of some 

adipose tissues can impair body posture and make it harder to move. When this is the 

case, feeding and survival in nature would be a problem for a mouse; dorsal 

(interscapular) fat is an example. The most flexible “organ” for storage is under the 

skin, as in subcutaneous lumbar WAT. In this context, it was not surprising to find 

lumbar WAT adiposity exceeded that of mesenteric and dorsal WATs during 
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development of obesity in atherogenic diet-fed foz/foz mice (female NOD.B10; see 

Chapter 3 for details) (Fig. 7.1). Surprisingly, however, we found similar levels of 

adiposity in Pov compared to lumbar WAT, especially by 12 weeks of age. As 

discussed in Section 1.2.2, Pov WAT is a visceral compartment that shows 

developmental and structural characteristics that are similar to other visceral depots. 

Despite this, in the present study, Pov WAT mass increased as much as lumbar WAT by 

12 weeks of age (Fig. 7.1). This may be because ergonomic limitation is less for Pov 

WAT expansion than for its mesenteric visceral compartment. 

 

 

Figure 7.1: Varying rates of WAT expansion during development of obesity in atherogenic 

diet-fed female foz/foz NOD.B10 mice. 
 

 

   In the exercise intervention study (Chapter 6), we used mice with similar properties to 

those in Chapter 3 (female, NOD.B10, foz/foz vs. WT mice). The main difference was 

that these mice had developed to young adulthood (16 week old), and half the cohort 

was introduced to an exercise wheel early in life (at weaning). At 16 weeks of age, all 

foz/foz and WT mice, whether fed atherogenic diet or chow, showed greater Pov than 

lumbar WAT mass (Fig. 6.11). When considered with previous findings, we conclude 
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that Pov WAT shows a higher adiposity rate than lumbar until the end of early 

development (16 weeks of age). 

   As discussed later in this Section, inflammation at 16 weeks of age was already 

significant and substantially higher in Pov WAT than in lumbar WAT in atherogenic 

diet-fed foz/foz mice. By 28 weeks of age, though, atherogenic diet-fed foz/foz mice 

showed less Pov than lumbar WAT mass (Chapter 5; Fig. 5.9). We anticipate that in 

atherogenic diet-fed foz/foz mice, Pov WAT mass reached its peak weight between 16 

and 20 weeks of age, and then started to decline at the time inflammation became 

persistent. The reason for that may be persistently (long-lasting) inflammation in 

adipose tissue reduced its capability to store ingested lipids. Interestingly, mesenteric 

WAT mass did not change much from 12 to 28 weeks of age, whereas lumbar adiposity 

showed a limited but increasing trend of expansion (Fig. 7.1, Fig. 5.9). 

   The evolutionary program as well as the molecular mechanisms that determine 

differential fat deposition remains unclear. We believe that clarifying this issue would 

be helpful to understand, and perhaps prevent, ectopic lipid partitioning into other 

organs, such as liver which was a focus of the present studies. Although some studies 

have attempted to identify the origins of lipids in hepatic steatosis, there is still a dearth 

of data to clarify whether hepatic lipid partitioning occurs from “older” fats escaped 

from inflamed and dysfunctional adipose tissues or from new fat synthesized in the liver 

(lipogenesis) from ingested carbohydrate and FAs. In the present study, liver weight 

was ~3.9 g in atherogenic diet-fed foz/foz mice (female NOD.B10) at 12 weeks of age 

(Fig. 7.2A). It increased to ~4.4 g at 16 weeks of age, and ~7.2 g at 28 weeks of age. 

Simple calculations reveal that liver weight increased ~0.5 g from 12 to 16 weeks of 

age, which equates to a gain of 0.125 g per week. From 16 to 28 weeks, liver weight 

increase was ~2.8 g, an average increase of 0.24 g weight gain per week. As seen in 

Figure 7.2A, liver weight gain accelerated in atherogenic diet-fed foz/foz mice when the 
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Pov WAT weight gain declined. Meanwhile, Pov WAT adiposity exhibited an 

increasing trend in atherogenic diet-fed WT mice, and consequently, liver was protected 

from developing hepatomegaly (a surrogate marker of steatosis) (Fig. 7.2A). This 

provides compelling evidence that hepatic steatosis increases when the capacity of 

adipose tissues, especially visceral WAT, is less well equipped to store excess energy as 

fat (Fig. 7.2B). The reason for these weight changes are explored further in the next 

section, with a particular focus on adipose morphological changes and inflammatory 

recruitment. 

 

 

Figure 7.2: Pov WAT vs. liver mass and hepatic lipid partitioning during development of 

obesity in atherogenic diet-fed female foz/foz and WT NOD.B10 mice. 

 

7.1.2 Inflammatory Recruitment is a Response to Over-Expansion of Adipose 

Tissue, but at What Cost? 

   As discussed throughout this thesis, inflammation is an immediate immune response 

to noxious stimuli such as pathogens, chemicals or tissue/cellular injury. Short-term 

(acute) inflammation is usually necessary to “fix” damaged tissues; however, when 

inflammatory recruitment becomes prolonged (chronic), it actually results in “tissue 

destruction or dysfunction” rather than healing. In this context, “undesirable persistent 

adipose inflammation” is the factor that makes obesity phenotype unhealthy, and the 
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present Section focuses on the mechanism for persistent adipose tissue inflammation as 

well as how it deteriorates the obesity phenotype. In the literature, mechanisms for an 

acute inflammatory response are well-defined, but little is known about perpetuation of 

persistent inflammation. 

   As stated in Section 1.5.6.1, single or fused macrophages coalesce around injured or 

dead cells. The aggregation of these macrophages is called CLSs. As discussed in 

Section 5.1.2, CLSs are formed by C-AMs that are activated by TLR ligands. They 

express pro-inflammatory factors, most importantly TNFα. The existence of CLSs 

occurs in the liver and possibly other tissues, but seems to be most abundant in adipose 

tissue (461). 

   The number of CLS defines the severity of adipose inflammation. In 2008, Caroline 

Apovian and her colleagues investigated inflammatory recruitment in adipose biopsies 

by quantifying the number of CLSs from 77 obese human subjects (BMI ≥ 30) (462). 50 

(65%) of these individuals exhibited abundant CLS formation in adipose tissue, and this 

abundancy was associated with hyperinsulinemia, insulin resistance, and distorted 

vascular endothelial function. Moreover, those individuals with higher number of CLS 

also exhibited increased adipose expression of CD68 and TNFα. There are several other 

studies both in human and mouse adipose tissues that measure inflammation recruitment 

by the number of CLSs. 

   In the present work, the formation of CLS in visceral WAT was already evident as 

early as 12 weeks of age in atherogenic diet-fed foz/foz female NOD.B10 mice (Fig. 

3.10). The number of CLS was ~5.4 per 100 adipocytes. At this stage, these animals 

were obese (body weight ~48 g) and pre-diabetic (FBG ~12 mmol/L). At 16 weeks of 

age, the number of CLSs increased to ~6.6 per 100 adipocytes (Fig. 6.18D). In addition, 

the obesity phenotype was worsened (body weight ~56 g), and all mice were diabetic 

(FBG ~15.6 mmol/L). At 28 weeks of age, body weight was 62 g (Fig. 5.2B). 
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Unfortunately, by the time of the submission of this thesis, quantification of CLS has 

not been completed in 28-week-old mice, but considering the compelling evidence of 

adipose restriction (Fig. 7.2A) and higher Cd68 mRNA expression levels (Fig. 5.10), we 

believe the number of CLS showed a strong continuing trend of increase. In all, these 

data show a positive correlation between development of obesity, the number of CLS in 

adipose tissue, and worsening glucose tolerance. 

   An interesting finding was that the number of CLSs was only ~3 per 100 adipocytes in 

subcutaneous WAT of atherogenic diet-fed foz/foz mice at 16 weeks of age; this number 

is less than the half of what observed in visceral WAT (Fig. 6.18D). Quantification of 

CLS in subcutaneous WAT of 12 and 28 week old mice is underway, but the current 

data support the concept that visceral WAT is more prone to inflammation than 

subcutaneous WAT. This proposal receives strong support from the other inflammatory 

readouts shown in Chapter 6 (Fig. 6.18). 

   In atherogenic diet-fed female foz/foz NOD.B10 mice, exercise dramatically reduced 

the number of CLSs in adipose compartments. This number was only ~3.3 in visceral 

WAT (vs. ~6.6 in sedentary mice) and ~1.9 in subcutaneous WAT (vs. ~3 in sedentary 

mice) (Fig. 6.18D). This striking decrease was confirmed with other pro-inflammatory 

readouts. Moderately vigorous exercise clearly suppressed adipose inflammation in 

atherogenic diet-fed foz/foz mice. In addition, weight gain was less in exercising foz/foz 

mice, on either chow or atherogenic diet. Moreover, exercise completely prevented 

development of obesity in atherogenic diet-fed WT mice (< 30 g). This reduction in 

weight gain was associated with increased proportion of healthy small and medium-

sized adipocytes, and we believe this reduction is the factor that minimized the number 

of CLSs in adipose compartments. In all, exercise reduced adipose inflammatory 

recruitment and improved adipose function, and this was associated with amelioration 

of NASH and hepatic fibrosis in atherogenic diet-fed foz/foz mice (Fig. 6.19, Table 6.2). 
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As opposed to this, OCA treatment failed to improve adipose inflammation and other 

related metabolic indices (e.g., glucose tolerance, liver histology) in atherogenic diet-fed 

female foz/foz NOD.B10 mice (see Chapter 5). Conversely, OCA ameliorated glucose 

intolerance and liver steatosis in atherogenic diet-fed WT mice compared to non-treated, 

possibly thorough a significant reduction in adipose inflammatory recruitment. 

Surprisingly, serum cholesterol levels did not change by OCA treatment in either 

genotype (Fig. 5.4B). 

   In 28 week old atherogenic diet-fed female foz/foz C57 mice, the number of CLS was 

“~15” per 100 adipocytes in visceral WAT (Fig. 4.15B). At this time, these mice 

weighed ~63 g, and only ~4% of their body weight was comprised of visceral WAT, 

whereas the liver comprised ~13% of body weight (see Chapter 4). Similar to the 

NOD.B10 mice, C57 mice also displayed adipose restriction at 28 weeks of age (Fig. 

4.3). As discussed in the previous section, the hepatomegaly that occurred in 

atherogenic diet-fed foz/foz C57 mice was most likely the result of hepatic partitioning 

of lipids which were not stored (or could no longer be) in adipose tissue (Fig. 4.22). 

   In addition to the above discussion, all atherogenic diet-fed foz/foz mice (C57 and 

NOD.B10) developed hypoadiponectemia. It is proposed that this too was a direct result 

of the increased number of CLSs in adipose tissue, as well as the restriction in tissue 

growth (Fig. 4.5). As explained in Section 1.5.4.2, adiponectin is an insulin-sensitizer, 

anti-inflammatory, adipogenic factor that shows reciprocal activity with other pro-

inflammatory factors, most importantly TNFα; TNFα suppresses adiponectin synthesis. 

The observation that tissue as well as serum adiponectin levels were considerably lower 

in atherogenic diet-fed foz/foz than in WT mice, in association with the severer obesity 

phenotype, could be attributable to the loss of beneficial effects of adiponectin on the 

liver. 
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   Another striking finding from the thesis is that the average adipocyte volume was 

~240,000 µm
3
 in visceral WAT of atherogenic diet-fed foz/foz C57 mice, whereas WT 

adipocytes averaged 350,000 µm
3
 (Fig. 4.6A). As discussed in Section 1.4.1, an 

important characteristic of obesity is the existence of lipid-engorged hypertrophic 

adipocytes. Conversely, atherogenic diet-fed WT mice displayed more hypertrophic 

adipocytes than foz/foz, yet they had less severe obesity (~41 g). The answer to this 

paradox lies in the number and phenotype of small adipocyte subpopulations. The data 

presented in Fig. 4.9 shows that chronic oxidative stress exists in visceral WAT of 

atherogenic diet-fed foz/foz, but not in WT mice. In addition, increased Rip3 mRNA 

expression reflects to an increase of programmed “necrotic” cell death in WAT (Fig. 

4.10). These findings need further confirmation by cell type-specific immunostaining 

assays. In the meantime, there is clear evidence that cellular damage and necrotic cell 

death (necroptosis vs. pyroptosis) were greater in visceral WAT of atherogenic diet-fed 

foz/foz than WT mice. 

   As elaborated in Section 1.5.7, there is increasing evidence to show that CLSs occur 

only around stressed dying or dead adipocytes. Several factors such as over-expansion 

with oxidative stress and hypoxia, lipotoxicity, and pro-inflammatory drive (increasing 

TNFα, lower adiponectin) result in degeneration of adipocytes. Considering the fact that 

there were ~15 CLSs per 100 adipocytes in visceral WAT of atherogenic diet-fed foz/foz 

C57 mice, this also means 15 of every 100 adipocytes were small and degenerating. 

This relatively high proportion of cells ultimately affects adipocyte size distribution in 

WAT. Accordingly, atherogenic diet-fed foz/foz mice exhibited a higher proportion of 

small adipocytes compared to WT, but it seems likely that these cells (surrounded by 

CLSs) were unhealthy and dysfunctional (Fig. 4.8). This opposes the general belief that 

adipose tissues with higher number of small adipocytes are healthier. This is an entirely 

novel finding in the literature, established by detailed adipose morphometry techniques. 
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Further analysis is now required to show whether how these small adipocytes 

degenerate by pyroptosis, necroptosis or perhaps a combination of each pro-

inflammatory pathways. 

   A final very novel finding of the thesis is that macrophages recognize these 

degenerating adipocytes by TLR9 activation. As explained in Section 1.5.3.1, injured 

adipocytes exhibit ultrastructural abnormalities and their degeneration creates necrotic 

debris that presumably include oligonucleotide particles (CpG DNA) which activate 

TLR9 signaling. TLR9 signalling may be relevant to neighbouring adipocytes (some of 

which were shown to exhibit TLR9 expression) and macrophages. Although somewhat 

preliminary, the data presented here that TLR9 expression was evident in a small 

proportion of adipocytes. On the other hand, a large proportion of macrophages 

displayed TLR9 expression. The use of BM chimeric mice demonstrated that activation 

of TLR9 on BM-derived cells combined with greater level of chemokines (e.g., 

RANTES, MCP1) and cytokine (e.g., IP10, IFNγ) expression is associated with 

infiltration of macrophages (perhaps monocytes) into adipose tissue (Fig. 4.18A). In 

Chapter 4, the strong connection between TLR9 signalling and macrophage infiltration 

was shown in inflamed adipose tissues by several techniques (mRNA analysis, flow 

cytometry, etc.). Nevertheless, future studies demand direct demonstration of TLR9 

expression specifically in CLS macrophages, for example by using 

immunohistochemistry, and this is an immediate future direction in this research. 

 

7.1.3 Concluding Summary 

   The most important and novel findings for this PhD thesis are: 

- foz/foz mice, especially those fed an atherogenic diet, display properties of 

unhealthy obesity and metabolic disorders that are homologous to human, such 

as insulin resistance and fatty liver disease. It therefore provides a useful and 
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relevant model to study development of obesity in relation to adipose expansion, 

adipose inflammation, and adipose dysfunction. 

- Over-expansion (hyperplasticity) in adipose tissue is characterized by greater 

numbers of lipid-engorged hypertrophic adipocytes. 

- Long term continuity of energy surplus (after 16 weeks of age in atherogenic 

diet-fed foz/foz mice) results in degeneration of adipocytes. This considerably 

increases the proportion of small (“sick”) adipocytes in inflamed and 

dysfunctional adipose tissues. 

- Small degenerating adipocytes appear to die via a programme of pro-

inflammatory necrotic cell death (pyroptosis vs. necroptosis). 

- Small degenerating adipocytes presumably release damage/danger-associated 

molecular patterns to the tissue micro-environment; macrophages recognize 

these DAMPs via TLR9 signaling. 

- Classically-activated pro-inflammatory macrophages are enriched for TLR9 

signalling. They coalesce around small dying adipocytes most likely in order to 

minimize any harmful effects to other cells and the whole tissue. 

- Pro-inflammatory macrophages migrate into the adipose tissue from bone 

marrow precursors. 

- The activation of inflammatory response in adipose tissue may confer beneficial 

effects at early stages of development, but persistent adipose inflammation 

confers harmful effects on body. 

- Hypoadiponectemia results from adipose tissue inflammation and dysfunction, is 

associated with impaired insulin sensitivity and glucose clearance. 

- Loss of function in adipose tissue, as well as its restriction, is connected to 

hepatic lipid partitioning and transition of simple steatosis to NASH. 
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- Obeticholic acid treatment improved adipose morphology and reduced adipose 

inflammation in atherogenic diet-fed WT mice, but not in foz/foz. 

- Increased physical activity by provision of an exercise wheel prevents adipose 

inflammation and dysfunction in appetite-defective mice prone to obesity. 

- Exercise improves whole body glucose tolerance and confers beneficial effects 

of hepatic steatosis and NASH. 
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Appendix A 

Major kits and compounds (alphabetical order): 

 Adipose morphometry: Leica Application Suite software (LAS), 

Leica Microsystems, Wetzlar, Germany 

 Atherogenic diet: Speciality Feeds, Glen Forrest, Australia 

 cDNA synthesis: High-Capacity cDNA Reverse Transcription Kit, 

Life Sciences, Carlsbad, CA, USA 

 Chemical compounds: Sigma Chemicals, St Louis, MO, USA 

 Chemiluminescence detection: Western Lightining Plus, 

Perkin-Elmer, Boston, MA, USA 

 Chow diet: Gordon’s Speciality Stockfeed, Sydney, Australia 

 Collagenase: Whittington, CA, USA 

 Cycle Computer: Bri2, Echowell, Taiwan 

 Densitometric analysis: MultiGauge Software, FujiFilm, Tokyo, Japan 

 ELISA kits: R&D Systems, Minneapolis, MN, USA 

 Exercise Wheel: ASIFTB-PC, Able Scientific, Canning Vale, Australia 

 Formalin: HD, Scientific Supplies, Wetherill Park, NSW, Australia 

 Gill’s hematoxylin: ProSciTech, Kirwan, QLD, Australia 

 Glucometer: Accu-Check Advantage, Roche Diagnostics, Mannheim, Germany 

 Image analysis: ImageJ, NIH, Bethesda, MD, USA 

 Insulin ELISA kit: EZRMI-13K Mouse Insulin ELISA, 

EMD Millipore, Darmstadt, Germany 

 Insulin: Humalog 100U/ml, Eli Lilly, Indianapolis, IN, USA 

 Ketamine & xylazine: Troy Laboratories, Smithfield, NSW, Australia 

 Liver fibrosis: Masson’s trichrome, POCD Healthcare, Sydney, NSW, Australia 

 qPCR reaction mix: iQ SYBR Green Supermix, 

Bio-Rad Laboratories, Hercules, CA, USA 

 qPCR reaction: iQ5 Real-Time Thermal Cycler, 

Bio-Rad Laboratories, Hercules, CA, USA 
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 Quantification of RNA: Nanodrop 1000, ThermoScientific, Waltham, MA, USA 

 RNA isolation kit: Promega SV Total RNA Isolation System, Madison, WI, USA 

 Statistics: Prism6 (Graphpad Software, La jolla, CA, USA) 

and SPSS Statistics 22 (IBM, New York, NY, USA) 

 Total RNA isolation: TRI Reagent, Sigma Chemicals, St Louis, MO, USA 

 

Other suppliers: Amresco (Solon, OH, USA), SAFC Biosciences (Brooklyn, VIC, Australia), 

GE Healthcare (Sydney, NSW, Australia), Applied Biosystems (Carlsbad, CA, USA), Pierce 

(Rockford, IL, USA), QIAGEN (Concaster, VIC, Australia), Chem-Supply (Adelaide, SA, 

Australia), BD Biosciences (Melbourne, VIC, Australia). 

Note: 

Primers: All qPCR primers were obtained from Sigma-Aldrich St Louis, MO, USA, specifically 

KiCqStart SYBR Green Primers by RefSeq Accession. 

 

Antibodies: Antibody information for Western Blotting, Immunohistochemistry and Flow 

Cytometry are stated under relevant protocol in Appendix B. 
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Appendix B 

Oil red-O (ORO) Staining Protocol 

Process maximum 16 samples at any time. 

- Prepare 0.25% ORO stock solution in 100% isopropanol. Vortex well and filter via 

a 70 µm cell strainer into a 50 ml falcon tube. 

- Prepare fresh 10% dextran solution before the experiment 

- Prepare ORO working solution of 6:4 (ORO:dextran) and filter it before use 

- Weigh 50 mg of frozen samples in a 1.5 ml Eppendorf tube 

- Homogenize with a disposable plastic homogeniser in 500 µl ORO working 

solution 

- Keep the samples on ice until incubation 

- Incubate the samples in an orbital shaker at low speed for 1 h at cold room 

- Centrifuge @ 10000 g  for 5 minutes, and discard supernatant 

- Add 1 ml 60% isopropanol, disturb the pellet with a 25 G needle and vortex 

- Centrifuge @ 10000 g  for 5 minutes, and discard supernatant 

- Add 1 ml 60% isopropanol and vortex 

- Centrifuge @ 10000 g  for 5 minutes, and discard supernatant 

- Add 1 ml 60% isopropanol 

- Centrifuge @ 10000 g  for 5 minutes, and discard supernatant and let dry for 2 

minutes 

- Add 1 ml 100% isopropanol, disturb the pellet with a 25 G needle and vortex 

- Centrifuge @ 12000 g  for 5 minutes 

- Keep the supernatant, use 96-well plate. Measure the absorbance @ 450 nm 

- Use 100% isopropanol as negative control; deduct the value from absorbance. 

 

* ORO stock solution – 0.25 g in 100 ml absolute isopropanol; molecular weight of ORO 

408.49, accordingly stock solution 6.12 mM 

* ORO working solution – 3.67 mM (3.67 x ½ - 5 times) 
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Immunohistochemistry 

Process maximum 12 slides at any time, to prevent sections drying out (approximately 5h) 

- Heat slides in oven, 10 minutes @ 60
o
C and immerse them in xylene, 30 minutes 

- Prepare 300 ml ARB* 

- Rehydrate through ethanol gradient (high to low) and place in deionized water (dH2O) 

- Immerse slides in ARB, and place in decloaking chamber, 3 minutes @ 123
o
C. Cool 

down to room temperature. 

- Wash slides in dH2O x 3 

- Wash slides through series of 1X TBS-T* (1.5L) 

- Drain off excess TBS-T and outline sections with DAKO wax pen 

- Cover sections with Chemicon blocking solution (blue cap), 5 minutes @ room 

temperature, moisture tray 

- Dilute antibody with antibody diluent  (300 μl/slide) 

 Incubation – 90 minutes @ room temperature, or overnight @ 4
0
C, 

moisture tray 

- Drain off blocking solution and dip slides into TBS-T 

- Cover sections with primary antibody and incubate 

- Prepare hydrogen peroxide solution* (HPS) (300 μl/slide) 

- Change the first cup of TBS-T and wash slides in after primary antibody 

- Cover sections with HPS and incubate for 10 minutes @ room temperature, moisture 

tray 

- Wash slides in TBS-T. Prepare secondary antibody in Antibody Diluent 

 Incubation – 30 minutes @ room temperature, moisture tray 

- Cover sections with secondary antibody and incubate 

- Wash slides in TBS-T 

- Cover sections with Chemicon Streptavidin (pink) and incubate for 10 minutes 

- Prepare Chromagen/DAB reagent* 

- Wash slides in TBS-T. Filter DAB with 0.22 μm Millex 

- Cover sections with DAB reagent and incubate for 15 minutes in dark 

- Discard DAB on slide and excess DAB in specific waste bottle 

- Wash slides in running hot water, 3-5 minutes 

- Counterstain with Gill’s hematoxylin, 30 seconds! 

- Wash under running water 

- Cover sections with ammonium alcohol, 10 seconds, then immerse in water 

- Dehydrate through ethanol gradient (low to high) 

- Immerse in xylene and mount slides 

- Put wax (Pertex) on the cover slips, make sure no air bubble is trapped 

 

*ARB - 0.882g sodium citrate tribasic dehydrate, 250 ml dH2O, 0.6 ml 25% Tween-20, Adjust 

pH to 6.0 using HCl, Add dH2O to 300 ml final volume 

*TBS-T – 150 ml 10X TBS buffer, 1350 ml dH2O, Add 6 ml 25% Tween-20, Divide into 4-5 

cups 

*HPS – 120 μl 50% H2O2, 1880 μl dH2O, 2 ml final volume of 3% H2O2 

*DAB – 12 μl solution A and 300 μl solution B, for each slide 

1
o
 Ab – F4-80 (AbD Serotec Cl:A3-1), 2

o
 Ab – Anti-Rat Biotin Ab (F4-80) 
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RNA Isolation using TRI reagent and Promega SV Total RNA Kit 

 

General comments: 

- A dedicated work  area for RNA only is designated in the host laboratory 

- DEPC-treated H2O was used for all solutions 

- Adjust centrifuge to 4
0
C before starting 

- Label 2 x 2 ml tube + 2 x 1.5 ml tube + 1 x 1.5 ml tube + 1 x 0.6 ml tube per sample to use 

during the protocol 

 

- Prepare 2 tubes of (same) adipose tissue sample (between 30 and 40 mg) in 2 ml 

Eppendorf tube 

- Homogenize the samples in 1 ml TRIzol and stand for 5 minutes @ room temperature. 

Centrifuge for 10 minutes @ 13000 g @ 4
0
C 

- Isolate supernatant (approximately 800 μl solution) to a new tube (discard lipid layer) 

- Add 200 μl chloroform, vortex 15 seconds, stand for 15 minutes @ room temperature. 

Centrifuge for 15 minutes @ 13000 g @ 4
0
C 

- Transfer clear upper phase to a new tube and combine the same samples 

- Add 400 μl 95% ethanol and mix by pipetting 

- Transfer half of it in into spin coloumn from Promega SV kit. Centrifuge for 1 minute 

@ 13000 g 

- Discard eluate with 1 ml pipette, and add the rest of the solution into the tube and repeat 

centrifugation 

- Add 50 μl DNase I solution per tube. Incubate for 15 minutes at room temperature 

- Add 200 μl DSA per tube. Centrifuge for 1 minute @ 13000 g 

- Add 600 μl RWA per tube. Centrifuge for 1 minute @ 13000 g 

-  Add 300 μl RWA per tube. Centrifuge for 2 minutes @ maximum g 

- Add 20 μl dH2O. Centrifuge for 1 minute @ 13000 g 

- Depending on the amount of the sample, add 10-15 μl dH2O. Centrifuge for 1 minute @ 

13000 g 

Solutions: 

- DNase I: (40 μl Yellow core + 5 μl 0.09 M MnCl2 + 5 μl DNase I) x tube number 

- RNA lysis buffer: 1 ml BME + 50 ml RLA 

- RNA wash solution: 100 ml 95% ethanol + 58.8 ml RWA 

- DNase stop solution: 40 ml 95% ethanol + 26.5 ml DSA 

Quick calculation for 12 samples: 

DNase I: 520 μl Yellow + 65 μl MnCl2 + 65 μl DNase I (1.5 ml Eppendorf tube) 

DSA: 1.5 ml 95% ethanol + 1 ml DSA   (15 ml falcon) store @ 4
0
C 

RWA: 7.37 ml 95% ethanol + 4.33 ml RWA  (50 ml falcon) store @ 4
0
C 

95% ethanol: 14.25 ab ethanol + 0.75 dH2O  (50 ml falcon) store @ 4
0
C 
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cDNA Synthesis 

 

(Applied Biosystems’ High-Capacity cDNA Reverse Transcription kit, plus RNase inhibitor) 

 

- Thaw one aliquot of extracted RNA samples and kit components on ice 

- Prepare diluted RNA samples using spreadsheet below 

 

Sample ID RNA 

ng/µl 

RNA 

µg/µl 

Vol RNA to give 5µg Vol H2O required 

 x = x / 1000 = 5 / RNA µg/µl = 10 – vol RNA µg/µl 

 

- Add to new PCR plate or individual microtubes required volume RNA and DEPC 

water (total volume = 10 µl), return undiluted samples to freezer 

- For each sample, make up Master Mix as shown below: 

 

Reagent  Volume required (µl) 

RT buffer   2 

100 mM dNTPs  0.8 

RT random primers  2 

MultiScribe reverse  1 

            transcriptase 

RNase OUT   1 

DEPC water   3.2 

 

Total reagent volume 10 µl per sample 

 

- Pipette 10 µl of Master Mix into each well of plate or microtubes 

- Seal plate or tubes, mix and spin down 

- Start the reaction 

(Involving 3 incubation steps: 10 minutes at 25
o
C, 2 hours at 37

o
C, and 5 minutes at 85

o
C to 

inactivate enzyme) 

- Chill on ice 

- Add 30 µl PCR-grade dH2O, to give cDNA concentration of 0.1µg/µl 

- Store at -20
o
C until needed 
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Primer Design for SYBR Green-Based qPCR 

 

 

 

- Decide on the target gene 

- NCBI -> Gene (write the name) -> Genomic sequence (FASTA) [copy the whole thing 

on word] 

- On the right side, find Nucleotide of the gene -> Origin (mRNA seq) (FASTA) [copy 

entire sequence on Words document] 

- NCBI - Primer Blast copy the symbol (>gi…) and paste the mRNA seq 

- “Refseq” mRNA organism 

- PCR product size 

- Exon junction span (primer must span exon-exon junction) 

- PerlPrimer v1.1.2.1 or Primer3 

- After design: bienzyme.enzim.hu  primer search ePCR cDNA 1000 DNA 100000 

- Copy the product sequence and paste to www.dna.utah.edu/umelt/um.php (Run uMelt 

HETS) 

- Thermodynamic set, most recent 

 

Most primers are obtained from Sigma-Aldrich St Louis, MO, USA, specifically KiCqStart 

SYBR Green Primers by RefSeq Accession. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.dna.utah.edu/umelt/um.php
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SYBR Green-Based qPCR 

 

 

- Prepare sample dilutions depending on the target genes 

- Abundant expression 1:30 dilution (ie. 5 µl stock cDNA + 145 µl PCR-grade dH2O) 

- For each sample, make up Q-PCR Mix as shown below 

 

Reagent  Volume required (µl) 

2X SYBR- Mix  10 

F primer (10 µM)  0.5 

R primer (10 µM)  0.5 

dH2O    5 

 

Total reagent volume  16 µl 

 

- Add 16 µl of Q-PCR Mix into Q-PCR plate (duplicate samples) 

- Add 4 µl of cDNA samples, standards and dH2O (in duplicate) 

- Seal plate, mix and spin 

- Load plate, select required run protocol and plate set-up 

- Common reaction 45 x 60
0
C [95-60-72] 

 

For qPCR standard, pool cDNA samples (at least 3 samples from each treatment group) to make 

standards 

 

3-5 µl from each sample was used to make pooled cDNA (use cDNA undiluted) 

 

Make 5 standards as below 

Standard 1   1:5 dilution 

Standards 2-5 seri  1:5 dilutions 
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Protein Isolation from Liver: 

 

 

- Weigh 60-80 mg tissue 

- Add 9x volume ERK buffer (to make 10% homogenate), homogenize, and centrifuge at 

10000 rpm @ 4 
0
C for 5 minutes 

- Transfer to new 1.5 ml tube (leaving fatty upper layer behind) 

- Centrifuge at 10000 rpm @ 4 C for 5 minutes 

- Aliquot into 3 tubes and snap freeze 

- Keep the rest for protein estimation 

- Dilute 1:30 for whole liver 

 

ERK buffer: 

 Conc 

(buffer) 

Conc (stock) Vol (ml) to make 

50 ml 

Inhibitors for 10 ml 

HEPES 50 mM 1M 2.5 For 10 ml add: 

 

100 µl protease inhibitor 

cocktail 

And 

100 µl phosphatase 

inhibitor cocktail 

NaCl 150 mM 2M 3.75 

MgCl2 1.5 mM 1M 0.075 

EGTA 1 mM 200 mM 0.25 

Glycerol 10% 80% 6.25 

Triton X-100 0.1% 1% 5.0 

dH2O - - 32.175 

 

Stock Solutions: 

 1M Hepes: mw 238.3    2M NaCl: mw 58.44 

 23.83 g / 100 ml dH2O   11.688 g / 100 ml dH2O 

   

 1M MgCl2: mw 95.21    200 mM EGTA: mw 380.3 

 4.76 g / 50 ml dH2O    3.803 g / 50 ml dH2O 
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Detergent-free protein extraction protocol for Adipose Tissue 

 

General comments 

Designate an area to conduct the procedures 

Adjust centrifuge to 4
0
C and heat block to 55

0
C 

 

- Homogenize adipose tissue (harvest tubes >2 ml) in 0.5 ml Isolation medium* and 

1875 μl chloroform/methanol (1:2)* 

- Keep homogenized tissue on ice and mix sporadically for 15 minutes 

- Diluate homogenate with 625 μl of chloroform and 625 μl of dH2O 

- Split the homogenate into 2 2 ml tubes and label carefully 

- Centrifuge for 7 minutes @ 800 g @ 4
0
C 

- Isolate the protein disks into new 2 ml tubes (keep the same samples together) 

 

Protein precipitation: 

- Add 3 volumes of 10 % TCA* and keep @ -20
0
C overnight 

- Centrifuge for 30 minutes @ 7500 g @ 4
0
C 

- Discard supernatant 

- Add 1 ml of acetone (ice cold!) and gently wash pellet (keep an eye on the pellet) to 

avoid its dispersion 

- Repeat the previous stage and carefully dry the pellet 

- Resuspend the pellet in resuspension buffer* (approximately 200 or 300 μl) 

- Keep the protein at -20 
0
C or -80

0
C 

 

*Isolation medium – 50 mM Tris, 150 mM NaCl, 0.2 mM EDTA and protease inhibitors 

100 ml solution: 5 ml 1 M Tris, 15 ml 1 M NaCl, 200 μl 100 mM EDTA, p. inhibitors and dH2O 

100 ml 1 M Tris: 12.1 g Tris and dH2O 

100 ml 1 M NaCl: 5.84 g NaCl and dH2O 

*10% TCA – add 10 g TCA into 80 ml acetone and after stirring complete the solution to 100 

ml 

*Resuspension buffer – 0.1% SDS in 40 mM Tris solution 

100 ml solution: 4 ml 1 M Tris, 95 ml dH2O and 1 ml 10% SDS 
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Protein Isolation from muscle: 

 

Prepare lysis buffer as below (make 5 ml aliquots and store at -20
0
C): 

 

HEPES   0.48 g 

EGTA    0.08 g 

Beta-glycerophosphate  1.08 g 

DTT     0.015 g 

Na3VO4     0.018 g 

Glycerol    10 ml 

Triton X    1 ml 

Make up to 100 ml with dH2O 

 

Prior to use of 5 ml solution and add: 

 

25 μl protease inhibitor 

25 μl phosphatase inhibitor 

50 μl  100 mM NaF (100 mM NaF – 0.02 g to 5 ml dH2O) 

50 μl 100 mM PMSF (100 mM PMSF – 0.09 g to 5 ml DMSO) 

 

 

- Homogenise 50 mg muscle in 300 μl lysis buffer (work on ice) 

- Centrifuge samples for 20 minutes @ 13,000 rpm @ 4
0
C 

- Change the tubes and centrifuge supernatant for 10 minutes @ 13,000 rpm @ 4
0
C 

- Freeze samples or keep on ice until use 

 

 

- For protein assay dilute samples 1:50 with dH2O 

- Perform protein assay 
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Protein Estimation: 

 

 

Standards 

prepare a serial dilution standard curve:  

 60 μl protein + 30 μl dH2O 

 Starting protein = 1.45 mg/ml BSA [5x 1/5 dilutions] 

 

Do each standard and sample in duplicate 

  

Reagent A’ = 20 μl of reagent S + 1 ml of reagent A 

 

- Add 5 μl standard / sample / blank per well 

- Add 25 μl Reagent A’ to each sample (using repeat pipettor)  

- Add 200 μl Reagent B 

- Stand for 15 minutes @ room temperature 

- Read at 750 nm in plate reader 

- Calculate standard curve and corresponding protein concentration of samples 

 

- Calculate 300 μg (protein solution + dH2O = 50 μl) 

- 2.5X loading dye + 1 tube DTT 

- Add 50 μl loading dye to samples 

- Boil mixture at 95
0
C for 5 minutes 

- Ready to use, or can be stored at -20
0
C 
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Western Blot protocol for Adipose Tissue 

Adjust heat block to 55
0
C 

Keep primary antibody dilutions at 4
0
C 

- Prepare resolving gel and stacking gel without adding TEMED 

- Decide on the appropriate concentration for acrylamide gel (7.5x to 12x) 

- Wipe glass apparatus with ethanol and put sponge on stands 

- Put the glass into the cuff and locate into the stand 

- Add TEMED into resolving gel; using a 1 ml micropipette, add it into the glass until the 

green level; add butanol onto the gel 

- After polymerisation suck out the butanol and wipe with a layer of paper towel 

- Add TEMED to the stacking gel and put it into the glass until top 

- Put the comb into the gel, and add a little more stacking gel onto the comb to prevent 

the gel drying out 

- When the gels are ready take the comb out 

- Put gels into the tank and add 1 X running buffer; label the tank for gels 

- Load the samples (15-30 μg sample, 5 μl ladder) 

- Start the machine with 100 V 10 minutes, then leave it 125 V for 2 hours 

- Cut PVDF membranes to 9 x 6 cm 

- Fix membranes in methanol for 30 seconds then leave them in the transfer buffer 

- When gels are ready, put them in transfer buffer with glass 

- Wet 4 blotting papers per gel with transfer buffer 

- Wet the drawer with transfer buffer 

- Put 2 blotting papers into drawer and open the glass, locate the gel onto papers and put 

2 more blotting papers on top 

- Finish blotting in 30 minutes using automated transfer system 

- Incubate the membranes in Ponceau for 5 minutes at room temperature 

- After bands are visualized, wash them twice with TBST 

- Incubate the membranes in TBST adding couple of drops absolute NaOH 

- Cut the membranes into strips from the relevant marker sizes (bands of interest) 

- Write the sample ID and the size on every strip using a pencil 

- Incubate the strips in 5 % skim milk for 1 hour 

- Prepare primary antibody solutions 

- Wash the strips in TBST for 3 times, especially if primary antibody is diluted in BSA 

- Incubate the strips in primary antibody solution overnight in the cold room (4
0
C) 

- Wash the strips in TBST for 3 times 

- Incubate them in secondary antibody solution for 2 hours at room temperature 

- Wash the strips in TBST for 3 times 

- Finish densitometric analysis with chemiluminescence substrate (mentioned in 

Appendix A  

Adiponectin Ab: 1/100 dilution in 5% skim milk (Santa Cruz) 

Total AKT Ab:  1/1000 dilution in 5% BSA (Cell Signaling) 

Phospho AKT Ab:  1/1000 dilution in 5% BSA (Cell Signaling) 

HSP90 Ab:  1/10000 dilution in 0.5% skim milk (R&D systems) 

Secondary antibody use according to data sheet of related product. 
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Adipocyte and SVF isolation from Adipose 

 

Prepare 15 ml falcon tubes with 10 ml sterile PBS added for each sample. 

Put the shaker in the incubator and adjust it to 37
0
C 

Put your FBS at 4
0
C 

Prepare sterile PBS, filters and tubes before starting the protocol 

 

- Wash adipose tissue samples with sterile PBS and mince it very finely with blades or 

small scissors 

- Put the minced tissues into 9 ml digestion buffer (falcon tube) and leave on ice 

- After finishing the harvest add 10 X collagenase buffer to your samples 

- Incubate the tissue for 30 minutes @ 37
0
C with constant shaking 

- After 30 minutes, examine cells by microscope (large cells are adipocytes, small ones 

are SVF) 

- If needed, an additional 10 minutes of digestion can be used 

- After incubation, add EDTA to a final concentration of 10 mM; and incubate 5 minutes 

- Pre-wet 180 μm filters with PBS; filter the sample solutions 

- Centrifuge at 150 g for 8 minutes at 4
0
C (floating layer is adipocytes) 

- Collect floating adipocytes in a 15 ml tube and add 3 volumes of FACS buffer; keep on 

ice 

- Pre-wet 100 μm filters with PBS, shake the remained of sample solutions, then filter 

them to a new clean Falcon tube 

- Wash filters with 10 ml FACS buffer twice to collect remaining samples on filters 

- Centrifuge at 500 g for 10 minutes at 4
0
C 

- Discard the supernatant, resuspend the pellet in 0.5 ml RBC lysis buffer and incubate 

for 5 minutes at room temperature 

- Centrifuge at 500 g for 10 minutes at 4
0
C 

- Resuspend the pellet in 4 ml FACS buffer 

- Centrifuge adipocytes at 150 g for 8 minutes at 4
0
C and keep the floating layer 

- Count the cells by hemocytometer (50 μm trypan blue + 50 μm sample) 

- Calculate the cell number for each sample. 

 

 

 

Digestion buffer: HBSS + 0.5% BSA 

FACS buffer: PBS + 1% FBS + 25 mM HEPES + 1 mM EDTA 

Collagenase solution: 10 mg/ml in digestion buffer 

RBC lysis buffer: 155 mM NH4Cl, 10 mM KHCO3, 0.1 M EDTA 

And 0.2% Tween 20 
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Flow Cytometry (Cell surface and Intracellular Antigens) 

 

 

- Prepare the plate lay-out for the assay (standards, controls, and samples) 

- Prepare tubes (number depending on the antibodies) of 50 μl FACS buffer for single 

cell controls 

- Put 10
6
 cells in wells for each sample 

- In a separate tube, mix the samples for a final number of 9 x 10
6
 cells 

- Divide 9 of 10
6
 cells evenly in wells (antibody number + 2 single cell control) 

- Add 0.5 mg of Fc-block (anti-Cd16/32) and incubate for 10 minutes in 4
0
C refrigerator 

- Prepare your master mix in FACS buffer up to your sample number (for 1 sample, 50 

μl master mix needed; accordingly volume for samples + antibody standards + 2 single 

cell controls) 

1/100 – 1/200 or 1/400 μl antibody dilutions 

- Prepare single cell controls 

- Spin the plate 1340 rpm 8
0
C 4 minutes 

- Wash the cells with 200 μl FACS buffer and spin the plate 1340 rpm, 8
0
C, 4 minutes 

- Add your M-Mix and single cell control dilutions to the wells 

- Cover the plate with aluminium foil and incubate at 4
0
C for 30 minutes 

- Add 150 μl FACS buffer per well, centrifuge at 1340 rpm, 8
0
C, 4 minutes 

- Flick off the supernatant and wash one more time with 200 μl FACS buffer, and 

centrifuge at 1340 rpm, 8
0
C, 4 minutes 

- Decant of the supernatant and resuspend the sample pellets and single cell control in 1 

ml of 0.2% Tween 20; incubate for 15 minutes at room temperature 

- Centrifuge, discard supernatant and add intracellular antibody 

- Cover the plate with aluminium foil and incubate at 4
0
C for 30 minutes 

- Add 150 μl FACS buffer per well and centrifuge at 1340 rpm, 8
0
C, 4 minutes 

- Flick off the supernatant and wash one more time with 200 μl FACS buffer and 

centrifuge at 1340 rpm, 8
0
C, 4 minutes 

- Optional: Fix cells by adding 200 μl of 10% NBF for 10 minutes on ice, in the dark 

- Spin the plate 1340 rpm, 8
0
C, 4 minutes 

- Resuspend samples and controls in 120 μl FACS buffer and transfer to FACS tube 

 

 

TLR9 Antibody: FITC-TLR9 (Cat number – 11 9093 80; e-Biosciences) 

F4/80 Antibody: APC-F4/80 (Cat number – 123115; Biolegend) 
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