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In 1854 Clausius proved the famous theorem that bears his name by assuming the second “law” of
thermodynamics. In the present paper we give a proof that requires no such assumption. Our proof
rests on the laws of mechanics, a T-mixing property, an ergodic consistency condition, and on the
axiom of causality. Our result relies on some recently derived theorems, such as the Evans-Searles
and the Crooks fluctuation theorems and the recently discovered relaxation and dissipation theorems.
© 2011 American Institute of Physics. [doi:10.1063/1.3592531]

I. INTRODUCTION

Recently, we derived some generalizations1 of the
nonequilibrium work relations due to Crooks2 that are valid
for thermal rather than mechanical changes in time reversible,
deterministic systems of interacting particles. Here, we extend
this work to study cyclic integrals of the generalized work and
heat, and in the process we give a proof of Clausius’ inequal-
ity. This proof is derived without assuming the second law
of thermodynamics. It also clarifies the meaning of the “tem-
perature” that appears in Clausius’ inequality and shows that
the equality and the inequality only apply to periodic cyclic
processes. Clausius’ inequality does not apply to aperiodic
cycles.

Clausius’ inequality states that if a system responds peri-
odically to a cyclic thermal process, then

lim
N→∞

lim
t→∞

∮
P

d Qtherm

T
≥ 0, (1)

where Qtherm is the heat transferred to the reservoir from the
system, N is the number of particles in the system, and t is
the time over which the process occurs. In the past, there has
been some question as to what temperature, T, should be used
in this relation (especially for the strict inequality), and in-
deed the question of how to define temperature, in general,
has been an open question (see, Ref. 3). In this paper we pro-
vide a proof of Eq. (1) which also clarifies exactly what this
temperature refers to.

In Secs. II and III, we present generalized forms of the
Crooks fluctuation theorem and the Jarzynski equality (JE),
respectively. Section IV presents the minimum average gener-
alized work relationship, a corollary of the Jarzynski equality,
and discusses its application to cyclic integrals of the gener-
alized work. These three relationships provide the formal re-
sults required for the derivation of Clausius’ inequality, later
in the paper. In Section V, we introduce a framework whereby
we can apply the generalized Crooks fluctuation theorem and
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the Jarzynski equality to thermal processes. This then allows
us in Sec. VI, to derive Clausius’ inequality for the heat, and
to clarify the meaning of “temperature” that appears in this
inequality. Finally, in the Sec. VII, we discuss other implica-
tions of these findings. In particular, we point out that unlike
dissipation, entropy does not appear to be a useful concept for
deterministic nonequilibrium systems.

II. GENERALIZED CROOKS FLUCTUATION
THEOREM (GCFT)

We consider two closed N-particle systems: 1, 2. These
systems may have the same or different Hamiltonians, tem-
peratures, or volumes; it does not matter. Nor does the
ensemble matter: microcanonical, canonical, or isothermal
isobaric. A protocol, and the corresponding time-dependent
dynamics, is then defined that will eventually transform equi-
librium system 1 into equilibrium system 2. The systems are
distinguished by introducing a parameter, λ, which takes on
a value λ1 in system 1 and λ2 in system 2, and the trans-
formation is also parameterised through λ(t) with λ(0) = λ1

and λ(τ ) = λ2. The equations of motion are therefore non-
autonomous (i.e., they depend explicitly on absolute time).

Following Ref. 4, we define a generalized dimensionless
“work,” �Xτ (�), for a trajectory of duration τ , originating
from the phase point �(0),

exp[�Xτ (�(0))] = lim
d�(0)→0

peq,1(d�(0))Z (λ1)

peq,2(d�(τ ))Z (λ2)

≡ feq,1(�(0))d�(0)Z (λ1)

feq,2(�(τ ))d�(τ )Z (λ2)
, ∀�(0) ∈ D1,

(2)

where Z (λi ) is the partition function for the system i = 1, 2,
D1 is the accessible phase space domain for system 1 (e.g.,
coordinates in a fixed special range (−L ,+L) and momenta
range (−∞,+∞)), and feq,i (�) is the equilibrium phase
space distribution for system i. Without loss of generality we
assume that both equilibrium distributions functions are even
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functions of the momentum. This simply means that we are
not moving relative to either system. In Eq. (2), d�(0) is an
infinitesimal phase space volume centred on �(0).

If the system is not canonical the partition function Zi is
just the normalization factor for the equilibrium distribution
function and feq,i (�) = exp[Fi (�)]/Zi , where Fi (�) is some
real single valued phase function.

Although the physical significance of the generalized
work, X, might seem obscure at this point, we will show that
for particular choices of dynamics and ensemble, it is related
to important thermodynamic properties and when it is evalu-
ated along quasi-static paths it is, in fact, a path independent
state function.

Before proceeding further with the analysis, it is useful
to consider precisely what the generalized work is dependent
upon. First, it is a function of the equilibrium states 1 and 2.
This occurs via the equilibrium distributions appearing in
Eq. (2) and also the partition functions for those states—see
Eq. (2). Second, it is a function of the endpoints of the pos-
sibly nonequilibrium phase space trajectory that takes phase
�(0) to �(τ ). As we will see later it is also a function of how
much heat is gained or lost from the system over the dura-
tion of that trajectory. This heat loss determines the ratio of
phase space volumes d�(0)/d�(τ ). Last, it is a function of
the duration of the trajectories τ .

The probability of observing ensemble members within
the infinitesimal phase volume d�, centred on the phase vec-
tor �, in the initial equilibrium distribution function, feq,i (�)
is peq,i (d�) = feq,i (�)d�.

It is very important to note that the time τ is the time
at which the parametric change in λ is complete. This means
that at time τ this system is not necessarily at equilibrium:
f (�, 0) = feq,1(�), but f (�, τ ) �= feq,2(�). The generalized
work is defined with respect to two different equilibrium dis-
tributions and the end points of finite time phase space tra-
jectories: �(s) : 0 ≤ s ≤ τ . The recently proved relaxation
theorem5 says that if the system is T-mixing and if the initial
equilibrium distribution is an even function of the momenta,
then lim

t→∞ f (�, t) = feq,2(�).

In order for �Xτ (�) to be well defined, ∀�(0) ∈ D1,
then �(τ ) ∈ D2 and both feq,1(�(0)) �= 0 and feq,2(�(τ ))
�= 0. This is known as the ergodic consistency for the
generalized work.

We identify ‖∂�(τ )/∂�(0)‖ as the Jacobian determinant
and note that ∥∥∥∥∂�(τ )

∂�(0)

∥∥∥∥ = d�(τ )

d�(0)
. (3)

The GCFT considers the probability, peq, f (�Xt = B ± d B),
of observing values of �Xt = B ± d B for forward trajec-
tories starting from the initial equilibrium distribution 1,
f1(�, 0) = feq,1(�), and the probability, peq,r (�Xt = −B
∓ d B), of observing �Xt = −B ± d B for reverse trajec-
tories but starting from the equilibrium given by feq,2(�),
system 2.

Consider two equilibrium ensembles from which initial
trajectories can be selected with known equilibrium distribu-
tions: feq,1(�) and feq,2(�). If initially we select phases from
feq,1(�), employ a particular protocol (f) and correspond-

ing time-dependent dynamics, defined by a parameter λ f (s)
with λ f (0) = λ1 and λ f (τ ) = λ2, then the probability that the
phase variable defined in Eq. (2) takes on the value B ± dB is
given by

peq,1(�Xτ, f = B ± d B) =
∫

�Xτ, f =B±d B
d� feq,1(�). (4)

If initially we select phases from feq,2(�) with a par-
ticular protocol (r) which is the time-reverse of (f), λr (s)
= λ f (τ − s), and corresponding time-dependent dynamics,
so λr (0) = λ2 and λr (τ ) = λ1, then the probability that
the phase variable defined in Eq. (2) takes on the
value −B is given by peq,2(�Xτ, f = −B ∓ d B)
= ∫

�Xτ, f =−B∓d B d� feq,2(�).
We note that a trajectory starting at point �, and evolv-

ing forward in time with the forward protocol to the point
�(τ ) will be related by a time reversal mapping to a trajectory
starting at MT �(τ ) and evolving with the time-reverse proto-
col. If Sτ

f/r is the time evolution operator with forward/reverse
protocol,

MT Sτ
r MT Sτ

f �(0) = �(0). (5)

Also, if �Xτ, f (�(0)) = B, then �Xτ, f (�(0)) = −B. As was
shown in Ref. 1, we can therefore write

peq,1(�Xτ, f = B ± d B)

peq,2(�Xτ,r = −B ∓ d B)
= exp[B]

Z (λ2)

Z (λ1)
. (6)

We note that at time τ , the system that is evolving from
feq,1(�) would not have relaxed to the distribution feq,2(�)
(or vice versa). We can calculate the generalized work af-
ter the parameter change has ceased but during the period
in which the system relaxes, as specified by the relaxation
theorem,5 to the new equilibrium. From Eq. (2), we see that

exp[�Xτ+s(�) − �Xτ (�)]

= feq,1(�(0))d�(0)Z (λ1)

feq,2(�(τ + s))d�(τ + s)Z (λ2)

feq,2(�(τ ))d�(τ )Z (λ2)

feq,1(�(0))d�(0)Z (λ1)

= feq,2(�(τ ))d�(τ )

feq,2(�(τ + s))d�(τ + s)
, ∀s > 0. (7)

If we look at the last line of Eq. (7), we recognize that it is
simply the integrated dissipation function, �eq,2,s(�(τ )) de-
fined in the Evans-Searles fluctuation theorem,6 for equilib-
rium system 2, evaluated at a phase �(τ ), and integrated for a
time s. It is important to note that both the numerator and the
denominator of Eq. (7) involve forward time integrations from
system 2 equilibrium [i.e., there is no forward and reverse as
in Eq. (2)]. Therefore,

[�Xτ+s(�) − �Xτ (�)]

≡ �Xs(�(τ )) = ln
feq,2(�(τ ))

feq,2(�(τ + s))
−

∫ τ

0
ds �(�(τ + s))

= �eq,2,s(�(τ )) = 0, ∀�(0) ∈ D2, ∀s ≤ 0, (8)

where � is the phase space expansion factor:

� ≡ ∂

∂�
· �. (9)

The last line in Eq. (8) is identically zero because the dissipa-
tion function �eq (�) for all equilibrium systems is identically
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zero,5 and we know from the relaxation theorem that the sys-
tem does eventually relax to the unique, ergodic, dissipation-
less equilibrium state of system 2.

III. GENERALIZED JARZYNSKI EQUALITY

The generalized Jarzynski equality (GJE), can be thought
of as the analogue of the nonequilibrium partition identity6

(NPI) evaluated for the generalized work. We say “analogue”
because the introduction of forward and reverse paths in the
definition of the generalized work is quite different from the
use of forward only paths, for the NPI.

As is the case for NPI, the GJE can be derived trivially
from the corresponding fluctuation theorem, Eq. (6) giving

〈exp[−�Xτ (�)]〉eq,1 = Z (λ2)

Z (λ1)
, (10)

where the brackets 〈...〉eq,1 denote an equilibrium ensemble
average over the initial equilibrium distribution. We also note
that with the change of variables the domain of integration
may change.

The GJE is very widely applicable. It relates the en-
semble average of the exponential of nonequilibrium path
integrals to equilibrium thermodynamic free energy dif-
ferences. The validity of Eq. (10) requires that ∀�(0)
∈ D1, feq,1(�(0)) �= 0, and feq,2(�(τ )) �= 0, which implies
∀�(τ ) ∈ D2, feq,2(�(τ )) �= 0. We call this the ergodic con-
sistency condition for the GJE.

Equations (6) and (10) are very general, and they even ap-
ply to stochastic dynamics (see Ref. 4). Obviously, the paths
do not need to be quasi-static paths as in traditional thermo-
dynamics. These equations are independent of the particular
protocol, provided the appropriate ergodic consistency holds.
In fact, it is possible to average over the initial ensemble and
a set of protocols, since the final answer is protocol or path
independent.

Although the GJE and NPI can be proved from their ap-
propriate fluctuation relation, the reverse is not true because
the corresponding fluctuation relations contain more informa-
tion than either the NPI or the GJE.

As we mentioned earlier, like the CFT, the application of
the GJE relies on the observation of improbable fluctuations.
In order to yield reliable estimates of free energy differences,
one must sample the trajectories that are the conjugate anti-
trajectories of the most probable trajectories. This means that
these formulae are of limited use for computing free energy
differences in the thermodynamic, or large system, limit.

IV. MINIMUM AVERAGE GENERALIZED WORK

We now derive a further simple corollary of the GJE.
From Eq. (10), we see that

Z (λ2)

Z (λ1)
= 〈exp[−�Xτ ]〉eq,1

= exp[−〈�Xτ 〉eq,1]〈exp[−�Xτ + 〈�Xτ 〉eq,1]〉
≥ exp[−〈�Xτ 〉eq,1]〈1 − �Xτ + 〈�Xτ 〉eq,1〉eq,1

= exp[−〈�Xτ 〉eq,1]. (11)

In deriving this relation the fact that ex ≥ 1 + x, ∀x ∈ R is
used.7 Taking the logarithms of both sides and then multiply-
ing both sides by –1, we get

〈�Xτ 〉 ≥ ln

[
Z (λ1)

Z (λ2)

]
. (12)

This is clearly the analogue of the second law inequality6

for ensembles of systems with changing free energy. Some
authors refer to work inequalities like Eq. (12) as Clausius’
inequality,8 however, we reserve that term for cyclic inequal-
ities of the heat, since as Planck remarked,9 “this is the form
of the second law first enunciated by Clausius.”

In actual systems the right hand side will turn out to
be a dimensionless free energy difference. For example, if
systems 1, 2 are canonical and at the same temperature
and have the same number of particles and volume, as we
will see later, ln[Z1/Z2] = β�A21 = β(A2 − A1) and �X
= β

∫ τ

0 ds W (s), where W denotes the work (i.e., the change
caused by the internal energy minus the change caused by
the heat) and Ai is the Helmholtz free energy of system i.
The minimum average work inequality implies in this case
�W21 ≥ �A21. The minimum work is expended if the path
is reversible or quasi-static, in the case where that work is, in
fact, the difference in the Helmholtz free energies divided by
kB T . In the quasi-static case there are no fluctuations in the
value of the generalized work.

If the parametric protocol takes us around a closed cycle
that is defined in terms of the parameter λ(t), we see that since
by definition Z1/Z2 = 1,∮

ds〈Ẋ (s)〉 =
∮

〈d X〉 ≥ 0. (13)

The ensemble average of the cyclic integral of the generalized
work is non-negative. Because the dynamics is microscop-
ically reversible, the cyclic integral can only be zero if the
cycle is thermodynamically reversible—what we term quasi-
static. A pathway is traversed quasi-statically if the average
work for a forward path is equal and opposite to the average
work for the reversed path.

The cyclic integral of the generalized work for a quasi-
static cycle is zero. In fact, this is the definition of a quasi-
static process. The fact that the cyclic integral of the general-
ized work is zero,

∮
d X = 0, also implies that

qs

∫ f

i
d X = independent of path, (14)

where the subscript qs denotes the fact that the integral is for
a quasi-static or thermodynamically reversible pathway. The
proof of Eq. (14) is obvious. Construct a reversible cycle i
→ f, f → i . The cyclic integral must be zero, so if we vary
the path for the return leg f → i , we must always get the
same value for the integrated reversible work, independent of
the precise path.

Finally, we can see that if the integral of the generalized
work for paths is independent of the pathway, that integral
must be a state function (i.e., a function only of the initial and
final states of the system). In fact, this is why the seemingly
abstract generalized work defined in Eq. (2) is so important.
The generalized work for a thermodynamically reversible
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pathway is always a history independent function of the
thermodynamic states of the system at the end points of the
path.

V. NONEQUILIBRIUM WORK RELATIONS FOR
THERMAL PROCESSES

We wish to consider a realistic model of a system that is
driven away from equilibrium by a reservoir whose tempera-
ture is changing. For this case the simple parametric change
in the Hamiltonian or the external field usually employed in
the derivation of the JE or the CFT, is not applicable and care
is needed in developing the physical mechanisms, see Ref. 1.

Here, we could address this issue by considering a system
of interest, containing some very slowly relaxing constituents,
such as soft matter or pitch, in contact with a rapidly relaxing
reservoir. The reservoir may be formed from a copper block or
another highly thermally conductive material. Changing the
temperature of the reservoir (say with a thermostatically con-
trolled heat exchanger) then drives the system of interest out
of equilibrium. The change in the temperature is slow enough
that the reservoir may be treated to high accuracy, as under-
going a quasi-static temperature change. The slowly relaxing
system of interest is far from equilibrium. We employ gener-
alized versions of the CFT and the JE to describe this system.
Importantly, the quantities that appear in the theory are phys-
ically measurable variables.

Another mechanism for achieving the required result
would be (following Planck9) to have a set of large equilib-
rium thermostats that can be thermally coupled to the sys-
tem of interest in a protocol sequence. If these thermostats are
large they can be regarded as being in thermal equilibrium. If
they are sufficiently remote from the system of interest there
is no way the system of interest can “know” the precise math-
ematical details of how heat is ultimately taken from or added
to the system of interest.

For convenience from a theoretical perspective, we
choose the Nosé-Hoover thermostating mechanism,10 and the
equations of motion, including the thermostat multiplier, are
then

q̇i = pi

m
,

ṗi = Fi (q) − Si (α(�)pi + γ th),

α̇ =
( ∑N

i=1 Si pi · pi/m

3(Nth − 1)kB T (t)
− 1

)
1

τ 2
α

, (15)

where τα is an arbitrary Nosé-Hoover time constant. The
value of T (t) is the target temperature of the thermostat and
Si = 0, 1 is a switch that controls which particles are coupled
to the Nosé-Hoover thermostat:

∑N
i=1 Si = Nth . In our model

the particles that are coupled to the thermostat can be taken
to be remote from the system of interest. This ensures that the
particles in the system of interest are ignorant of the precise
details of this unphysical thermostat. These thermostated par-
ticles are also subject to a fluctuating force γ th that is chosen
to ensure that the total momentum of the thermostated parti-
cles

∑N
i=1 Si pi ≡ pth = 0 is identically zero.

The extended, time-dependent internal energy is
HE (�, α, t) = H0(�) + (3(Nth − 1)/2)kB T (t)α2τ 2

α and the
extended phase space of the system is �′ = (�, α). The
Liouville equation states6, 10 d f/dt = −� f , and
using Eq. (15) it is easy to show that kB T � =
kB T

(
(∂/∂�)�̇+(∂/∂α)α̇

)=−3(Nth −1)kB T α = −Q̇therm ,
where Q̇therm is the rate of decrease in HE due to the ther-
mostat or equivalently the rate of increase of energy by the
imaginary external thermostat. From the relaxation theorem,
the unique equilibrium distribution function for this system
at a fixed temperature T is then5

feq (�, T, α) = τα

√
3(Nth − 1)/(2π )

Z (T )

× exp(−βHE (�, T, α))δ(pth), (16)

where Z (T ) is the canonical partition function and λ(t)
≡ T (t).

We now consider applying the GCFT, Eq. (6), when a
thermal rather than a mechanical process occurs. Consider a
thermostated system of N particles whose target kinetic tem-
perature is changed from T1 to T2 over a period 0 < t < τ . We
do not change the Hamiltonian during this process. For sim-
plicity we consider a canonical ensemble for the two equi-
librium states, Eq. (16), and use the equations of motion,
Eq. (15). The temperature dependence of the reservoir is
achieved by making the Nosé-Hoover target temperature T (t)
in Eq. (15) a time dependent variable.

From Eqs. (15) and (16), we see that the generalized di-
mensionless work is

�Xτ (�′; 0, τ ) = β2 HE (�′(τ ))

−β1 HE (�′(0)) +
∫ τ

0
dt β(t)Q̇therm(�′(t)),

(17)

where β(t) = 1/(kB T (t)) is the inverse, time-dependent tar-
get temperature. (Note: as noted above d E = dW − d Qtherm

= dW + d Qsoi because, following Planck, our change in the
heat refers to the thermal reservoir (therm) rather than to the
system of interest.) Now if we take the derivative of the ex-
tended Hamiltonian while the temperature is changing, but
with no other external agent acting on the system, we obtain

d

dt
HE (�′(t)) = −Q̇therm(�′(t))

+ 3

2
(Ntherm − 1)kB Ṫ (t)α2(t)τ 2

α . (18)

We then obtain

d

dt
[β(t)HE (�′(t))] = −β(t)

[
H0(�(t))

Ṫ (t)

T (t)
+ Q̇(�′(t))

]
,

(19)

and combining Eqs. (19) and (17), the generalized “power”
for a change in the target temperature with time is

Ẋ (�(t)) = β̇(t)H0(�(t)). (20)

Note that the right hand side of Eq. (20) only depends
upon physical variables and not the unphysical thermostat
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multiplier α or the extended Hamiltonian. Equation (10) then
becomes〈

exp

(
−

∫ τ

0
dt β̇(t)H0(�(t))

)〉
1

= Z2

Z1

= exp[−β2 A2 + β1 A1].

(21)

Since for quasi-static processes the target kinetic temperature
of the Nosé-Hoover thermostat is, in fact, equal to the equilib-
rium thermodynamic temperature, one can see that this equa-
tion is consistent with thermodynamics because in the quasi-
static limit, equilibrium thermodynamics gives us the relation

∫ τ

0
dt β̇(t)U (t) =

∫ τ

0
dt Ṫ (t)

d

dT
[β(t)A(t)]

=
∫ τ

0
dt

d

dt
[β(t)A(t)]

= β2 A2 − β1 A1. (22)

For this case we see that the dimensionless work is the rate of
change of dimensionless free energy.

VI. CLAUSIUS’ INEQUALITY AND THE
THERMODYNAMIC TEMPERATURE

We now turn our attention away from work to heat.
As before we consider a periodic protocol. However for
the heat (and unlike work), we can only deduce useful re-
sults if the system responds periodically to the cyclic pro-
tocol. We note that if we periodically cycle a given proto-
col, not all systems will respond periodically. The necessary
and sufficient conditions for the system to respond periodi-
cally are not known. Clausius’ inequality only applies if, in
the long time limit (t → ∞), the average system response is
periodic.

If we now substitute Eq. (17) into Eq. (13) and apply it to
a periodic cycle after any cyclic transients have decayed, we
can deduce that

lim
t→∞

∮
P

ds 〈Ẋ (t + s)〉= lim
t→∞

∮
P

ds 〈β(t + s)Q̇therm(t + s)〉

= lim
t→∞

∮
P

〈
d Qtherm

kB T

〉
≥ 0, (23)

where we use the notation:
∮

P ds to denote the cyclic inte-
gral of a periodic function. We note that the cycle is driven
by a periodic parametric change. In this equation t is the
time when you start the cyclic integral. Because the cycle
is periodic in Eq. (17), the change in βHE around the cy-
cle is identically zero. Thus for periodic cycles, Eq. (13)
reduces to an integral of the heat divided by the target
temperature.

In more usual notation Eq. (23) implies that in the large
system limit, N → ∞, where fluctuations are negligible, we
obtain the very well-known Clausius’ inequality,9 given in
Eq. (1), that is, lim

N→∞
lim

t→∞
∮

P
d Qtherm

T ≥ 0.

In these equations, Eqs. (1) and (23), the time depen-
dent temperature is the target temperature of the Nosé-Hoover

thermostat. At any instant the numerical value of the target
temperature is, in fact, the equilibrium thermodynamic tem-
perature that the entire system would relax to, if at that same
moment, this parameter was fixed at its current value. We
know that this is so from the relaxation theorem for T-mixing
systems. We will often use the phrase that the temperature ap-
pearing in Eqs. (1) and (23) is at any instant of time, the equi-
librium thermodynamic temperature of the underlying equi-
librium state.

If the cycle is traversed rapidly so that the system of in-
terest is not in thermodynamic equilibrium, the actual thermo-
dynamic temperature of the system of interest is of course not
defined.

If the thermostat is composed of a large Hamiltonian re-
gion coupled to the system of interest and a remote Nosé-
Hoover thermostated region, we can argue that the precise
details of the thermostat cannot possibly be “known” to the
system of interest and are therefore unimportant.

If the thermostat is comparable in size to the system
of interest and if the cycle is traversed quickly, both the
system of interest and the thermostat will be away from
equilibrium. At any point in the cycle there is a profound
difference between the nonequilibrium state generated by
Gaussian processes and Nosé-Hoover processes. However, for
both types of thermostat, Eqs. (1) and (23) take the same form.
For Gaussian thermostats the change in the kinetic temper-
ature of the thermostat is instantaneous, whereas for Nosé-
Hoover thermostats there is a variable phase lag ∼ τα in
Eq. (15). (The value of this feedback time constant is arbi-
trary.) The only “temperature” any of these systems have in
common is the equilibrium thermodynamic temperature that
they will relax to if at any point in the cycle the parametric
change is halted. At any point in the cycle the precise na-
ture of the nonequilibrium state (e.g., the instantaneous av-
erage pressure or energy) is highly dependent on the phase
lag τα , or whether the thermostat is Gaussian or Nosé-Hoover
like.

In Planck’s discussion of Clausius’ inequality,9 at any in-
stant in the cycle, T is the equilibrium thermodynamic temper-
ature of the particular large equilibrium reservoir with which
the system of interest is currently in contact.

Clausius’ thermodynamic inequality equation (1), is of
course only exact in the thermodynamic limit, and in small
systems it can occasionally be violated as in Eq. (23).
The probability ratio that for a finite system the work in-
tegral takes on a value A compared to −A can be com-
puted from a time dependent version of the fluctuation
theorem.

Equations (1) and (23) show that on average we cannot
construct a perpetual motion machine of the second kind. A
perpetual motion machine of the second kind would require
that

∮
P 〈d Qtherm/T 〉 < 0, so that ambient heat from the reser-

voir is converted into useful work. Thus, the proof of Eqs. (1)
and (23) constitutes a direct mechanical proof of Clausius’
statement of the second “law” of thermodynamics.

If the cycle is reversible we can apply Eq. (1) to the
forward cycle and to the reversed cycle that must have
the same value for magnitude of the integral but opposite
sign. The only possible value for both integrals is therefore

Downloaded 03 Jul 2011 to 150.203.34.18. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



204113-6 Evans, Williams, and Searles J. Chem. Phys. 134, 204113 (2011)

zero:

lim
N→∞ qs

∮
d Qtherm

T
= 0. (24)

The subscript qs, denotes a quasi-static cycle. We note that
a quasi-static cycle cannot have any transients and is always
periodic.

Applying the same arguments as we did for the quasi-
static cyclic integral of the generalized work shows that the
quasi-static integral from an initial to a final state,

lim
N→∞ qs

∫ f

i

d Qtherm

T
≡ Stherm

f − Stherm
i (25)

is, in fact, a state function, denoted by the symbol Stherm.

The state function Stherm, defined in Eq. (25) is known
as the change in the equilibrium entropy of the thermostating
reservoir.

If we combine Eqs. (10), (17), and (21), we see that in
the thermodynamic limit where fluctuations are negligible,

lim
N→∞ qs

∫ f

i

d Qtherm

T
= −

(
A f − HE, f

T f

)
+

(
Ai − HE,i

Ti

)

= −Ssoi
f + Ssoi

i , (26)

where in the second term we have used our previously proven5

relation between the partition function, the Helmholtz free en-
ergy, and the equilibrium thermodynamic temperature. Now
if we compare Eqs. (25) and (26), we see that in the thermo-
dynamic limit, the equilibrium entropy, the Helmholtz free
energy, and the energy must be related by the following
equation:

A f/ i = HE, f/ i − Ssoi
f/ i T f/ i , (27)

where we have used the fact that the heat gained by the ther-
mostat is equal and opposite to the heat gained by the system
of interest.

Equation (25) tells us another very important piece of
information. The integration factor for the heat in quasi-
static (i.e., reversible) processes is the time dependent ther-
modynamic temperature. The fact that the equilibrium tem-
perature is the integrating factor for the heat ultimately
comes from the form of the canonical equilibrium distribu-
tion function. The relaxation theorem says that this distri-
bution is unique5 for T-mixing systems. The consequence
of this is that the integrating factor for the heat is also
unique.

We make a final observation on Clausius’ inequality. Sup-
pose instead of cycling the temperature we perform a work
cycle keeping the temperature of the thermal reservoir fixed.
In this case we can make the thermal reservoir very large and
in the limit where it becomes infinitely large compared to the
system of interest, it can be viewed as being in thermody-
namic equilibrium at a fixed equilibrium thermodynamic tem-
perature.

At a great physical distance from the system of interest
we could fix the reservoirs temperature with either a Nosé-
Hoover or a Gaussian isokinetic thermostat—it does not mat-
ter. The system of interest cannot distinguish the fine details
of how the heat is ultimately and remotely removed.

For this case, if and only if the system settles into a peri-
odic work cycle, Eq. (23) becomes

lim
t→∞

∮
P

ds 〈Ẋ (t + s)〉 = lim
t→∞ β

∮
P

ds 〈Q̇therm(t + s)〉

⇒ lim
t→∞

∮
P

〈d Qtherm〉 ≥ 0, (28)

where T is the fixed equilibrium thermodynamic tempera-
ture of the reservoir. This shows that for periodic work pro-
cesses carried out in contact with either a large thermal reser-
voir at a fixed equilibrium thermodynamic temperature or a
small nonequilibrium thermal reservoir with a fixed under-
lying equilibrium temperature, the cyclic integral of 〈d Q〉 is
positive on average, and for quasi-static processes,

∫
qs 〈d Q〉

is a state function.

VII. CONCLUSIONS

We have proved Clausius’ thermodynamic inequal-
ity from time reversible microscopic equations of motion.
Clausius of course proved his theorem assuming the second
“law” of thermodynamics. Our proof requires no such as-
sumption. Our proof rests on the laws of mechanics, on the
axiom of causality, ergodic consistency, and the assumption
that the system is T-mixing. This is quite a different log-
ical position from that used by Clausius in 1854. The re-
quirement of causality is extensively discussed in Ref. 6. Ba-
sically, causality is required for the proof of all fluctuation
theorems.

The necessary and sufficient conditions for a system to
be T-mixing are not presently known. However, it is extremely
easy to test whether a system is T-mixing. In thermostated sys-
tems driven by a dissipative field, if the system is T-mixing it
will relax to a time independent nonequilibrium steady state
where the averages of suitably smooth phase functions be-
come time independent at long times. This is easily seen
from the dissipation theorem.12 Similarly in T-mixing relax-
ing systems that possibly interact with a thermostat but which
are not driven by external dissipative fields, averages of suit-
ably smooth phase functions become time independent at long
times.

Our derivation allows us to understand the mean-
ing of the “temperature” appearing in Clausius’ inequality
for nonequilibrium systems. Temperature can only be de-
fined for equilibrium systems but Clausius’ (strict) inequal-
ity refers to nonequilibrium systems. We also now know
that Clausius’ inequality is only valid for periodic cycles.
Planck9 also realized this. Most textbooks do not state this
requirement.

When subject to a periodic parametric cycle, not all
systems will settle into a periodic response. For small sys-
tems (not covered by Clausius’ proof of his inequality), we
know that the inequality is only valid if we take ensemble
averages. We now also know that the integrating factor for
the heat is unique for T-mixing systems. Other conclusions
follow.

Our proof used the vehicle of the Nosé-Hoover ther-
mostat. It provided a simple means of constructing a time
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dependent thermal protocol. The formal results are indepen-
dent of how near or far this Nosé-Hoover thermostated re-
gion is from the system of interest. If the thermostat is moved
progressively further from the system of interest, there is no
way that the system of interest can “know” the details of
how the thermostating is achieved. This means that the for-
mal results are independent of the Nosé-Hoover thermostat.
Indeed, we could have derived the same formal results us-
ing a variation of a Gaussian thermostat where the kinetic en-
ergy of the thermostated particles was forced to be a periodic
function of time with no fluctuations away from the periodic
function.

If we consider the thermal equilibration of a T-mixing
system that has a nonuniform initial temperature distri-
bution, we see from the relaxation theorem5 that the fi-
nal equilibrium state is the one with a spatially uniform
thermodynamic temperature distribution—as in the canoni-
cal or microcanonical distributions. The proof shows5 that
in T-mixing systems these equilibrium distribution func-
tions are unique. This is equivalent to a proof of the ze-
roth “law” of thermodynamics. Subsystems of an equi-
librium system must all be at the same thermodynamic
temperature.

We now look again at Eq. (23). If our system is subject to
a periodic thermal protocol and if the system settles into a pe-
riodic cycle, the ensemble averaged heat absorbed by the ther-
mostat (d Qtherm) is non-negative lim

t→∞
∮

P〈d Qtherm/T 〉 ≥ 0.

If the sign was reversed we would have been able to construct
a perpetual motion machine of the second kind. So we have
given a proof of the second “law” of thermodynamics, since
Clausius’ statement of that “law” refers to the impossibility
of constructing such a machine.

There is a complementary inequality for the system of
interest (soi), namely,

lim
t→∞

∮
P〈d Qsoi/T 〉 ≤ 0. (29)

If we combine the system of interest and the thermostat we
see that for the combined system (uni) we find that for all
periodic cycles, nonequilibrium and quasi-static,

lim
t→∞

∮
P〈d Quni/T 〉 = 0. (30)

Because the temperature appearing in Eqs. (29) and (30) is the
temperature of the underlying equilibrium state, this tempera-
ture is the same for the system of interest and for the thermal
reservoir.

At first sight Eq. (30) seems somewhat unexpected, at
least for nonequilibrium systems, but we have known since
Gibbs’ work10, 11 that the time derivative of the fine grained
Gibbs entropy Ṡ of a thermally isolated nonequilibrium

system is zero:

Ṡuni = −kB
d

dt

∫
D

d� f uni (�, t) ln[ f uni (�, t)] = Q̇uni

T
= 0.

(31)

In our proof of the relaxation theorem for systems in contact
with a heat bath,5 we proved that the Helmholtz free energy
and the partition function are related by

A = −kB T ln

[∫
D

d� exp[−HE (�)/kB T ]

]
. (32)

We also proved for equilibrium systems, the equivalence of
the target kinetic temperature employed in a Nosé-Hoover
thermostat and the thermodynamic temperature for canonical
systems.

Now we have arrived at a completely new logical posi-
tion. We have proved the zeroth, first, and second “laws” of
thermodynamics; the latter in the form of Clausius’ equality.
This means that logically we can now construct thermody-
namics without any assumptions except the laws of mechan-
ics, the assumption of T-mixing, ergodic consistency, and the
axiom of causality.
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