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Abstract

The prevalent theory of cosmological inflation, which attempts to explain the high degree
of isotropy observed from the Earth’s location in the Universe, has been criticised for be-
ing ad hoc and thermodynamically unsound. A viable alternative to inflation is the com-
bined theory of quiescent cosmology and the Weyl curvature hypothesis, in which cos-
mological models are studied within a mathematical framework that features conformal
transformations between physical and unphysical spacetimes. The focus of this thesis
is to augment the conformal framework by incorporating a symmetry-related spacetime
property known as self-similarity, or scale invariance.

An initial obstacle to this purpose is the lack of a satisfactory definition in the litera-
ture for asymptotic self-similarity, i.e. approximate self-similarity at early or late times in
a cosmological model’s evolution. In this thesis, we conduct an example-driven develop-
ment of a working definition that is both suitable for use in the conformal framework and
sufficiently concordant with existing notions of asymptotic self-similarity. The definition
is an asymptotic generalisation of the homothetic equation (which formalises the prop-
erty of exact self-similarity), and is modified appropriately to generate better agreement
with various results in the dynamical systems approach to cosmology.

One unavoidable difficulty with our working definition is that the asymptotic self-
similarity of a specified cosmological model is generally not trivial to determine: the
existence of a vector field satisfying given conditions is required under the definition,
but no universal method of constructing said vector field is provided. We derive several
propositions and theorems that seek to address this problem, although such results are
limited in their applicability.

After settling on an adequate working definition of asymptotic self-similarity, we
employ it in the conformal framework of quiescent cosmology and the Weyl curvature
hypothesis. Example spacetimes that have been studied within the framework are ex-
amined for self-similarity in this thesis; most significantly, we are able to demonstrate
asymptotic self-similarity for the Friedmann-Lemaitre-Robertson-Walker models, i.e.
the class of all isotropic and homogeneous cosmological models (with some exceptions).

To better understand the characterisation of self-similarity in the conformal frame-
work, we detail the conditions under which it is preserved by conformal transforma-
tions. We also investigate the relationships between self-similarity and other symmetry-
related spacetime properties in the framework: many of these properties are shown to be
pairwise independent via relevant counterexamples, but whether self-similarity stands
completely apart remains an open question.

It is hoped that the definition and analysis of asymptotic self-similarity in this the-
sis will contribute an additional facet to the conformal framework, thereby facilitating
further research on quiescent cosmology and the Weyl curvature hypothesis.
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Chapter 1

Introduction

A key concept in cosmology — the study of the Universe’s structure and evolution —
describes the fact that on large enough scales, space “looks the same” in every direction
from the Earth. More precisely: large-scale observations of the Universe at any time, as
well as the physical laws implicit in such observations, are independent of direction. This
concept is known formally as spatial isotropy (henceforth isotropy) at a point.

Isotropy at the Earth’s location in the Universe is evident in observations such as the
spatial distribution of galaxies on scales of at least 300 million light-years [1], or the uni-
formity of the cosmic microwave background of early-Universe radiation to one part in
100,000 [2]. It is worth emphasising that while exact isotropy and its negation, anisotropy,
exist as well-defined mathematical concepts (see Definition 2.4), being able to talk about
high or low isotropy is more useful for physical purposes. As it turns out, the degree of
isotropy may be defined and quantified in several ways (see Section 2.2.1).

Closely related to isotropy is the concept of spatial homogeneity (henceforth homo-
geneity) and its negation, inhomogeneity (see Definition 2.5). In the cosmological context,
homogeneity is essentially the statement that the Earth occupies a “typical” location in
the Universe, i.e. large-scale observations of the Universe at any time are independent of
position. There is no direct evidence for a homogeneous Universe. However, homogene-
ity follows from the observed isotropy by assuming the Earth is not in a central, specially
favoured position (named the Copernican principle by Bondi [3]), since an inhomoge-
neous universe can appear isotropic only to an observer in a special position [4].

The relationship between isotropy and homogeneity can be muddled through usage
of the terms in a non-cosmological sense. For example, the cosmic microwave back-
ground itself is often said to be isotropic and homogeneous, but what its uniformity indi-
cates about the Universe is isotropy at the Earth’s location and homogeneity confined to
the edge of the observable universe. In general, isotropy at a point (or local isotropy) and
homogeneity are independent properties of a universe. However, isotropy everywhere
(or global isotropy) implies homogeneity, while local isotropy plus homogeneity implies
global isotropy [2]. Extending the argument in the previous paragraph, it follows that
the Universe is also globally isotropic; this collective assumption of global isotropy and
homogeneity in the Universe is known as the cosmological principle.

Another accepted fact about the Universe is that space itself is expanding, in the sense
that any two fixed points are growing apart with time. This idea was explored indepen-
dently by Friedmann and Lemaitre [5, 6] in the 1920s, and corroborated by Hubble’s [7]
observation that galaxies recede from the Earth at speeds increasing with distance. The
Universe’s expansion strongly indicates the initial existence of an origin for space and
time, i.e. a past cosmological singularity (henceforth singularity) known as the Big Bang.

As gravity is the dominant interaction on cosmological scales, much of modern cos-
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2 Introduction

mology seeks to model the Universe’s expansion within the framework of Einstein’s [8]
general theory of relativity — the most consistent theory of gravity available. In general
relativity, space and time are combined into a single continuum known as a spacetime,
which may be used as a cosmological model of a universe (see Definitions 2.1 and 2.3). The
Universe’s evolution after the Big Bang is assumed to be governed by the Einstein field
equations (EFE): a system of 10 nonlinear partial differential equations, whose solution
with specified boundary conditions gives a metric tensor (henceforth metric) describing
the geometry and causal structure of a spacetime.

Cosmological models of the Universe

The metric describing the class of all globally isotropic, homogeneous and expanding
cosmological models was investigated independently by Robertson and Walker [9, 10] in
the 1930s; as such, both metric and class bear the name Friedmann—Lemaitre—Robertson—
Walker (FLRW). It is perhaps unsurprising that the FLRW models yield many predictions
in good agreement with observation, since the cosmological principle is not a particularly
far-fetched assumption. While there are several problems with the standard near-FLRW
description of the Universe, these models still serve as adequate approximations in dif-
ferent epochs of the Universe’s evolution, and are worth studying in detail if only for
their tractability (see Section 2.1.3).

One serious flaw in the standard near-FLRW picture is its failure to address the horizon
problem, which essentially asks how the Universe can obey the cosmological principle in
the first place. Under typical assumptions on the nature of matter in the early Universe,
a high degree of isotropy and homogeneity near the Big Bang is improbable. The resul-
tant anisotropy or inhomogeneity cannot be smoothed out through any form of physical
interaction as the Universe expands, since sufficiently separated regions of space grow
apart faster than the speed of light [11].

A notable attempt at tackling the horizon problem was introduced by Misner [12] in
1968. The problematic assumption of highly isotropic and homogeneous initial condi-
tions is not made, and the Universe near the Big Bang is modelled by a homogeneous
but anisotropic model instead. In this non-FLRW model, the high degree of anisotropy
can be smoothed out through particle collisions or other dissipative processes, such that
the Universe obeys the cosmological principle after its early evolution. However, the ob-
served photon-baryon ratio in the Universe has been used to rule out the theory in its full
generality [13]. Misner’s approach is known commonly as chaotic cosmology, although the
term may also serve as a broader label for any approach that assumes highly anisotropic
or inhomogeneous initial conditions.

The widely accepted theory of cosmological inflation, introduced by Guth [14] in 1981,
is one such approach. As in Misner’s theory, any anisotropy or inhomogeneity near the
Big Bang is smoothed out through dissipative processes. This takes place rapidly, how-
ever, since the early Universe is posited to expand slowly at first. A period of exponential
expansion follows shortly; it “freezes in” the isotropy and homogeneity, and brings the
early Universe up to speed for the onset of normal expansion as per the near-FLRW pic-
ture. While inflation is lauded for its ability to resolve the horizon problem and explain
a wealth of other observations, it is not without criticism. For example, all proposed
mechanisms for the exponential phase are based on speculative ideas in particle physics;
also, the incorporation of dissipative processes in inflation —and chaotic cosmology —
arguably violates the second law of thermodynamics [15].
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Figure 1.1: Schematic representation of a conformal transformation between spacetimes, with
one spatial dimension suppressed. An IPS is a regular spacelike hypersurface in the unphysical
spacetime that corresponds to the singularity in the physical spacetime.

Quiescent cosmology and the Weyl curvature hypothesis

Chaotic cosmology and the inflationary paradigm seem to have been motivated by the
assumed improbability of near-FLRW models being valid near the Big Bang. This im-
probability is disputable, as demonstrated by Barrow’s [16] introduction of quiescent cos-
mology in 1978. Indeed, near-FLRW behaviour in the early Universe is probable and ther-
modynamically stable if the nature of matter is taken to be “stiff” (see Table 2.1) at high
densities —a speculative but by no means implausible assumption. With highly isotropic
and homogeneous initial conditions, the horizon problem ceases to exist.

Just as there are thermodynamic arguments against chaotic cosmology and inflation,
the thermodynamically stable initial conditions in quiescent cosmology also appear to vi-
olate the second law’s assertion that the entropy (loosely, a system’s proximity to equilib-
rium) of the Universe should increase with time from a minimal initial level. A possible
solution to this issue emerged in 1979, with Penrose’s [17] introduction of gravitational
entropy and the Weyl curvature hypothesis. Gravitational entropy is the entropy associ-
ated with the gravitational “clumping” of matter. The Weyl curvature hypothesis states
that gravitational entropy is related to the Weyl tensor, a measure of a spacetime’s intrin-
sic curvature, and that this tensor vanishes near the Big Bang. Hence the maximal initial
level of matter entropy in quiescent cosmology poses no problem to the second law, since
the Weyl curvature hypothesis implies that the total entropy can still increase with time
from a minimal initial level.

For a cosmological model to be compatible with quiescent cosmology and the Weyl
curvature hypothesis (QC-WCH), it must exhibit isotropy, homogeneity and minimal
gravitational entropy near its past singularity —at least in an approximate sense. The
isotropic and entropic constraints are formalised in the definition of an isotropic past sin-
gularity (IPS), introduced by Goode and Wainwright [18] in 1985. Briefly, a spacetime
admits an IPS if there exists a conformal (i.e. angle-preserving) transformation relating it
to an unphysical counterpart that is regular at the time of the singularity (see Figure 1.1).



4 Introduction

Figure 1.2: Schematic representation of an exactly self-similar cosmological model, with one spa-
tial dimension suppressed. The spacelike hypersurfaces are similar to one another at all times.

The feasibility of the IPS as a preliminary framework for QC-WCH has been investigated
with promising results, e.g. the possibility of explaining and modelling the formation of
galaxies in the Universe [19].

A further implication of the Weyl curvature hypothesis is that the Universe evolves
towards anisotropy and inhomogeneity, since the clumpiness of matter increases with
time. Hence a full framework for QC-WCH must also be able to describe cosmological
models that exhibit anisotropy, inhomogeneity and maximal gravitational entropy near
their future states. In 2009, Hohn and Scott [20] extended the conformal framework of
the IPS to introduce definitions for an anisotropic future endless universe (AFEU) and an
anisotropic future singularity (AFS), along with their isotropic counterparts. A spacetime
that admits an AFEU or AFS is thought to be compatible with the isotropic and entropic
constraints of QC-WCH (further research in this area is ongoing). These new definitions,
taken together with the IPS, are the leading candidate for a framework to put the ideas
of Barrow and Penrose on firm mathematical footing.

Self-similarity in the conformal framework

To facilitate the study of cosmological models in the context of QC-WCH], it is desirable
to fit other common properties of spacetimes into the conformal framework. Incorpo-
rating the property known as self-similarity is the focus of this thesis. In classical hydro-
dynamics, self-similarity is precisely the notion of scale invariance with time, and often
allows simplification of the governing partial differential equations to ordinary ones [21].
Since the Universe is modelled as an expanding fluid in relativistic cosmology, it might
conceivably be self-similar during some phase of its evolution (see Figure 1.2); as such,
standard techniques for deriving and analysing self-similar solutions are both applicable
and relevant to the EFE. This fact was first realised in 1971 by Cahill and Taub [22], who
used it to characterise spherically symmetric self-similar spacetimes.

Self-similarity in cosmological models has since been investigated in considerable
breadth and depth. Many exactly self-similar solutions have been found or identified
(e.g. a restricted subclass of the flat FLRW models). These solutions play a central role
in the dynamical systems approach to cosmology, which primarily uses the assumption of
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exact homogeneity to reduce the EFE to a system of ordinary differential equations in
time. The dynamical systems approach is able to qualitatively describe the evolution of
homogeneous cosmological models, a large class of which turn out to be approximated
by exactly self-similar solutions at early, intermediate or late times [21]. Solutions that are
nearly self-similar at early or late times are said to exhibit asymptotic self-similarity; they
are of particular interest for the purposes of this thesis, since the conformal framework of
QC-WCH deals with cosmological models in those regimes.

The most prominent obstacle to fitting self-similarity into the conformal framework
is definitional in nature. While exact self-similarity has several adaptable and equiva-
lent definitions in the literature, the existing definition for asymptotic self-similarity only
makes sense in the dynamical systems approach. It is not immediately generalisable to
the conformal framework, due to the restrictive assumption of homogeneity and the dis-
parate nature of the two approaches. Formulating a definition that is compatible with the
conformal framework and a majority — if not all — of the dynamical systems results is a
difficult but not prohibitive problem. A number of candidate definitions are proposed
and tested in this thesis.

With an adequate working definition of asymptotic self-similarity, the relationships
between isotropy, homogeneity and self-similarity may be thoroughly explored in the
early and late regimes. In particular, it is important to ascertain if and how these proper-
ties are connected, or alternatively to prove their mutual independence. Another interest-
ing line of enquiry is whether the conformal transformations in the framework preserve
exact and/or asymptotic self-similarity. Such questions are addressed in this thesis; it is
hoped that their resolution will strengthen the existing conformal framework, paving the
way for further research on the combined theory of QC-WCH.

1.1 Chapter outline

The central concepts in this chapter are formally expanded upon in Chapter 2, which
lends a degree of self-containment to this thesis by providing a short summary of the
technical background requisite for its purposes. Specifically, we give a more detailed
introduction to the conformal framework of QC-WCH and the spacetime property of
exact self-similarity, and highlight the need for a refined definition of asymptotic self-
similarity by examining existing interpretations in the literature.

A heuristic approach to the development of said definition is adopted in Chapter 3.
We shortlist and discuss three candidate definitions of asymptotic self-similarity, before
settling on one that promises compatibility with both the conformal framework and the
dynamical systems approach. Several example cosmological models are analysed under
the preliminary definition, and the findings from this investigation are used to guide our
formulation of the eventual working definition.

With a suitable definition of asymptotic self-similarity in hand, Chapter 4 moves on
to the primary task of integrating self-similarity into the conformal framework of QC-
WCH. The translation of self-similarity under conformal transformations is explored,
along with its relationship to other symmetry-related spacetime properties. We also con-
sider additional example models that have been studied in the conformal framework.

Finally, Chapter 5 recapitulates the key results obtained in this thesis, and presents
possible avenues of future study that arise from various issues and open problems iden-
tified during the course of our research.



6 Introduction

1.2 Preliminaries

Readers are assumed to have at least a rudimentary knowledge of differential geometry,
general relativity and relativistic cosmology. Influential treatments of these subjects have
been given by Ellis and Hawking [1, 23], and serve as the backdrop to this thesis. The
material presented here builds on ideas and results introduced in an earlier thesis by Cain
[24], but otherwise stands on its own.

1.2.1 Conventions

e Latin indices run from 0 to 3, while Greek indices run from 1 to 3.

e The Einstein summation convention applies only to lower—upper pairs of indices.
Hence X,Y" = XY + XoV? 4+ X3Y3, while XY, = (X1Y1, X2Yo, X3Y3).

e The metric signature is (—, +, +, +).
e The sign convention for the Riemann and Ricci tensors is R, = R°

ach*

e Partial derivatives are denoted by commas, covariant derivatives with respect to a
physical metric are denoted by semicolons, and covariant derivatives with respect
to an unphysical metric are denoted by colons.

e Symmetrisation is denoted by round brackets, e.g.

1
Ttary = 5 (Tap + Tha) (L.1)

Skew-symmetrisation is denoted by square brackets, e.g.

1
= (Tabc + Tcab + Tbca + Tacb - Tbac - cha) . (12)

T[abc] = 6

e Geometrised units such that ¢ = 87G = 1 are used, where c is the speed of light in
vacuum and G is the gravitational constant.

e We write f(t) = O(g(t)) as t — tg if there exists K > 0 such that

| ()
Jim g(t)‘ <K. (1.3)
We write f(t) = o(g(t)) as t — 1o if
)
tli)r% m =0. (1.4)
We write f(t) ~ g(t) ast — to if
lim M =1. (1.5)

t—to g (t
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1.2.2 Abbreviations

AFEU Anisotropic future endless universe (Def. 2.9a)
AFS Anisotropic future singularity (Def. 2.10a)
AHVF Asymptotically homothetic vector field (Def. 3.4)
CKVF Conformal Killing vector field (Eq. (2.18))
EFE Einstein field equations (Eq. (2.2))
FIU Future isotropic universe (Def. 2.8a)
FLRW Friedmann-Lemaitre-Robertson-Walker
HVF Homothetic vector field (Eq. (2.18))
IFS Isotropic future singularity (Def. 2.7a)
IPS Isotropic past singularity (Def. 2.6a)
KVF Killing vector field (Eq. (2.8))
QC-WCH | Quiescent cosmology and the Weyl curvature hypothesis

Table 1.1: Glossary of abbreviations.
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Chapter 2

Background

In this chapter, we give an overview of the background required to integrate the concept
of self-similarity into the conformal framework of quiescent cosmology and the Weyl cur-
vature hypothesis. Section 2.1 is a brief introduction to spacetime and its symmetry prop-
erties, as well as the fundamentally important Friedmann-Lemaitre-Robertson-Walker
models. Past and future states in the conformal framework are defined and discussed in
Section 2.2, while Section 2.3 introduces self-similarity and identifies differing notions of
asymptotic self-similarity in the literature.

2.1 Introduction to relativistic cosmology

With its roots in Einstein’s general theory of relativity, the mathematical framework of
modern cosmology has been extensively developed over the past century. As such, a
short primer on the subject is necessary for this thesis, but can by no means be exhaus-
tive. Unless otherwise cited, the material in this section is summarised and adapted from
expositions by Ellis et al. [1, 23, 25, 26, 27]. Formulae for various canonical curvature and
kinematic quantities are relegated to Appendix A.

2.1.1 Formalism

In general relativity, the collection of all events in space and time is known as spacetime.
It can be modelled mathematically as a topological space, equipped with additional struc-
ture that allows the definition of geometric notions and causal relationships on the space.

Definition 2.1 (Spacetime): A spacetime (M, g) is a four-dimensional smooth manifold
M that is connected and Hausdorff, along with a nondegenerate C? Lorentzian metric
tensor g on M.

The manifold M essentially comprises one temporal and three spatial dimensions,
and locally resembles Euclidean space R* in that it can be covered by coordinate patches.
More precisely, there exists a collection of injective maps ¢; : U; — R* where |J, U; = M.
Calculus may be performed since M is smooth, i.e. the maps ¢; o gpj_l (when they exist)
are of class C*°, or infinitely differentiable, in the Euclidean sense. The connected and
Hausdorff conditions are more technical: the former is imposed since we would have no
knowledge of any disconnected component of the Universe, while the latter rules out
certain pathological behaviour.
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The metric g is a symmetric tensor field of type (0,2) on M; it generalises the notion
of an inner product on the tangent space at each point p € M, and may be described in
local coordinates (%) by g = gupdz® @ da’ (o, for brevity, the tensor components gg;).
Since g is nondegenerate, continuous and Lorentzian, the matrix [g,5] of components is
invertible, while the signs of its eigenvalues at any p € M are given by (—, +, +, +).

A considerable amount of structure on M is added by the specification of g. For exam-
ple, g defines a unique covariant derivative (a generalisation of the directional derivative)
V on M, by requiring that Vg in the direction of any vector field on M is everywhere
zero. We use said covariant derivative in this thesis (see (A.3)), and write

Gab;e = 0 (21)

in local coordinates (where the semicolon denotes covariant differentiation). Also, since g
is the analogue of an inner product on M, it defines angles and lengths in similar fashion.
Hence the metric g is often synonymous with its associated line element ds? = g,,dz®dz®,
which represents the infinitesimal length determined by the coordinate displacement
x® — x® 4 dx“. Finally, the Lorentzian requirement on g defines a causal structure on M,
with a vector field X on M classified respectively as timelike, null (lightlike) or spacelike
if g(X, X) is everywhere negative, zero or positive. This allows, among other things, the
definition of a cosmic time function.

Definition 2.2 (Cosmic time function): A cosmic time function 7" on a spacetime
(M, g) is a smooth function on M whose gradient VT is everywhere timelike and
future-directed.

In other words, T increases into the spacetime’s designated future with g(V7,VT) < 0;
we also impose smoothness on 7" here, in accordance with several definitions in the
literature that use cosmic time functions. A spacetime admits a cosmic time function if
and only if it is stably causal (admits no closed timelike curves) [28], and so we restrict
our study in this thesis to such spacetimes. The existence of 7" on (M,g) allows M
to be foliated into three-dimensional spacelike “slices” of constant 7', such that local
coordinates (T, ) may be chosen with T" as coordinate time.

A spacetime may be extended to a cosmological model of a universe, by specifying a
collection of world lines for fundamental observers in the spacetime. This is made precise
in the following definition.

Definition 2.3 (Cosmological model): A cosmological model (M, g,u) is a spacetime
(M, g), along with a timelike C? unit vector field u on M that generates a congruence
with somewhere positive expansion.

The fundamental four-velocity field u satisfies g(u,u) = —1, and is nowhere zero
on M since it generates a congruence, i.e. a collection of integral curves. Kinematic
quantities such as expansion 6§, shear ¢ and vorticity w may be defined for a spacetime
via the specification of u (see (A.11)-(A.17)). As the Universe is expanding, the definition
of a cosmological model excludes spacetimes where 6 is everywhere zero/negative
(e.g. Minkowski space, the spacetime of special relativity). We note, however, that the
distinction between Definitions 2.1 and 2.3 might be blurred in this thesis: most of the
spacetimes studied are cosmological models, while u is not always required for the
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Matter content | Equation of state | -y
q

Vacuum energy D= —U 0

Dust p=20 1
Radiation p=(1/3)u 4/3

Stiff fluid D=l 2

Table 2.1: Equations of state for common types of perfect fluids.

analysis. This is also the case in the cosmological literature, where the terms space(time),
(cosmological) model, cosmology and universe are often used interchangeably.

General relativity’s central assumption is that the geometry of a spacetime interacts
with its matter content, which is represented by the stress—energy tensors T; of the mat-
ter components M;, and that this interaction is governed by the Einstein field equations
(EFE). In geometrised units such that ¢ = 87G = 1, and with the cosmological constant
term treated as a matter component M}, the EFE are written in local coordinates as

1
Rab - QRgab = Tab7 (22)

where Ry, and R are derived from the Riemann tensor describing spacetime curvature
(see (A5)~(A.7)),and T =), T,.

In practice, the form of T (or each T;) may be restricted by making assumptions on
the matter content. The simplest one is that there is no matter at all, in which case Tp, = 0,
and the EFE reduce via contraction to the vacuum field equations

Ray = 0. (2.3)

Another possible assumption is that the matter is a non-tilted y-law perfect fluid (hence-
forth perfect fluid), whose four-velocity field is the fundamental four-velocity field u. Its
stress—energy tensor is given by

Top = pugup + D (Gap + UaUp) (2.4)

where the energy density ;1 and pressure p are related by a vy-law equation of state

p=0O-1p (2.5)

Table 2.1 gives the values of v for common types of perfect fluids: vacuum energy, which
corresponds to a nonzero cosmological constant A = y; dust (or nonrelativistic matter);
radiation (or relativistic matter); and stiff fluids, in which the speed of sound is the speed
of light [16]. We note that all the examples studied in this thesis are either vacuum or
perfect fluid spacetimes.

As the Riemann tensor R9_; and its various traces can be expressed in terms of the
metric gq, and its derivatives, it is seen from (2.2)-(2.4) that the EFE is a system of 16
partial differential equations for the metric components (in the case of perfect fluids, u
must be specified first). Ten of these are distinct, since the tensors in (2.2) are symmetric.
Furthermore, contracting the Bianchi identities

Rab[cd;e] =0 (2.6)
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twice and substituting (2.2) into the result yields the four conservation equations
7%, =0, (2.7)

which express the local conservation of energy and momentum —and reduce the EFE to
six independent equations. In relativistic cosmology, all valid models are exact solutions
to these six equations with appropriate boundary conditions; regardless of whether the
metric is known explicitly or studied implicitly, the dynamical evolution of such models
is fully compatible with the EFE.

2.1.2 Spacetime symmetries

As mentioned in the discussion following Definition 2.2, a spacetime (M, g) may be foli-
ated into spacelike hypersurfaces Sz C M of constant 7. In this thesis, the cosmic time
function is constructed such that 7" = 0 corresponds to a cosmological past/future state
(which is either a singularity or an endless universe). We note here that Sy is contained
not in M but in its boundary OM, and may be defined as a spacelike slice of some un-
physical extended manifold M> M (equipped with some metric g that is conformally
related to g on M). The concepts of isotropy and homogeneity introduced in Chapter 1
are now made precise [2].

Definition 2.4 (Spatial isotropy): A spacetime (M, g) is spatially isotropic at a point
p € S C M if, for any two unit tangent vectors v, w € 7,57, there exists an isometry ¢ on
the spacelike hypersurface Sy such that ¢,,(v) = w. If the spacetime is spatially isotropic
at each p € S7, it is spatially isotropic on S7. If the spacetime is spatially isotropic on
each S C M, it is spatially isotropic.

Definition 2.5 (Spatial homogeneity): A spacetime (M, g) is spatially homogeneous
on a spacelike hypersurface S C M if, for any two points p,q € Sr, there exists an
isometry ¢ on St such that ¢(p) = ¢. If the spacetime is spatially homogeneous on each
St C M, it is spatially homogeneous.

An isometry is a smooth, invertible map of a manifold into itself that leaves the
equipped metric invariant. In Definitions 2.4 and 2.5, ¢ is defined on the submanifold Sz
with the restricted metric g|s, such that ¢.(g|s,) = g|s,, where ¢, : TS — TSt is the
differential (or pushforward) of ¢. An isotropic spacetime is necessarily homogeneous
since, for each spacelike slice, isotropy everywhere implies homogeneity.

While useful for intuitive purposes, Definitions 2.4 and 2.5 are not particularly
tractable. Equivalent formulations of isotropy and homogeneity for a spacetime (M, g)
may be obtained via its r-dimensional isometry group G, which is the Lie group formed
from the set of all isometries on (M, g). Each one-dimensional subgroup of G, deter-
mines a collection of curves whose tangent field is known as a Killing vector field (KVF);
conversely, each KVF generates a one-parameter group of isometries. The set of all KVFs
K on M is the solution space to Lxg = 0 (where £ denotes the Lie derivative, an-
other generalisation of the directional derivative on a manifold). In local coordinates
(see (A.4)), this gives the Killing equation

K(a;b) =0, (2.8)
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] Spacetime(s) \ d \s\ T ‘
Minkowski 6 4 10
Einstein 3 4 7
FLRW 3 3 6

Kantowski-Sachs 1 3 4
Bianchi 0,1,3 | 3] 3,4,6

Go 0 2 2
Szekeres 0 0 0

Table 2.2: Isometry-based classification for common types of spacetimes.

which may be solved completely to recover information on the isometry group—
specifically, the orbits of points in M under the action of ;.. The s-dimensional (s < r)
orbit of a point p € M is the set of points into which p is mapped when all elements of
G, act on it; this also determines the d-dimensional (d = r — s) isotropy subgroup of p.
Since M is four-dimensional, we have 0 < r < 10and 0 < s < 4.

Now, a spacetime (M, g) is homogeneous (in the sense of Definition 2.5) if s > 3,
where the orbits are the spacelike hypersurfaces S for s = 3. It is also isotropic (in
the sense of Definition 2.4) if d > 3. Various other types of spacetimes may be located
within an isometry-based classification (see Table 2.2). One such class comprises the
Bianchi cosmologies, which are homogeneous models that admit an isometry (sub)group
Gs C G, acting transitively on the spacelike hypersurfaces. The three-dimensional Lie
algebra associated with G3 has a KVF basis {K,,}, relative to which the Lie bracket may
be expanded such that [K,,,K,| = C%,,K,. These structure constants C,,, allow further
classification of the Bianchi models. Spacetimes with Bianchi representations include a
subclass of the Friedmann-Lemaitre-Robertson-Walker (FLRW) models, which are in-
troduced in Chapter 1 and elaborated upon in the following section.

2.1.3 FLRW models

The FLRW models are characterised by the most general metric describing an isotropic
and homogeneous spacetime. In curvature-normalised coordinates, the line element as-
sociated with this metric is given by

ds® = —di* +a” (t) (dx* + 7 (x) (d6° + sin® 0 do”))
siny, k=1,
_sin \/EX _ X

, k=0, 2.9
O 29
sinhy, k=-1,

fe (X)

where the scale factor a is arbitrary up to consistency with the EFE. The fundamental
four-velocity field is then given by u = 9/0t.

Following the sign of £ in (2.9), the spacelike hypersurfaces S; of an FLRW model have
uniform positive/zero/negative curvature. The first case corresponds to closed elliptic
spaces S?, the second to flat Euclidean spaces R?, and the third to open hyperbolic spaces
H3. Coordinate domains for k = 0, —1 are ¢,y € (0,00), # € (0,7) and ¢ € (0,2n), while
the only difference for £ = 1is x € (0, 27). Other common incarnations of the FLRW line
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element are the reduced-circumference form

dr?
2 2, 2 2 (102 1 w2 2
ds? = —dt?> + a* (t) (1_kr2 +r? (d6” + sin” 0 do )> , (2.10)
which is obtained from (2.9) via the coordinate transformation r = fi(x), and the
isotropic form [29]
2 2 a’ (t) 2 20102 | 2 12
ds® = —dt* + (dp* + p* (d6” + sin® 6 d¢?)) , (2.11)

(1+ Lkp2)?

which is obtained from (2.9) via the coordinate transformation p = 2tan ((1/2)vVk x)/Vk.

We note here that (2.9) encompasses line elements for some special spacetimes that
are technically FLRW, e.g. Minkowski space (a(t) = 1 and k£ = 0), the Milne universe
(a(t) =t and k = —1), the Einstein static universe (a(t) = 1 and k£ = 1), and the de Sitter
universe (a(t) = exp (1/(1/3)A t) and k = 0). For the purposes of this thesis, however, we
exclude such spacetimes from the FLRW label, and focus on models with a single perfect
fluid component where v € (0, 2]. Our FLRW models are also required to be expanding
in some epoch, which rules out certain time-reversed variants.

For a single-component perfect fluid FLRW model, the EFE reduce to a system of two
ordinary differential equations in time; these are the Friedmann equations

a 1
—=—(3y-2 2.12

N2
a 1 k
(a) “3E T (2.13)

which may be solved exactly (for a and/or i) by specifying «, k and appropriate initial
conditions. It is convenient to define here the Hubble parameter

H=2 (2.14)
a

which measures the expansion rate of the universe, and the deceleration parameter

aa H

which measures whether the expansion is speeding up or slowing down. Furthermore,
we note that .
H =30, (2.16)

where the expansion 6 is determined by u. Equation (2.16) defines a generalised Hubble
parameter for non-FLRW models, which in turn defines a generalised scale factor and
deceleration parameter via (2.14) and (2.15) respectively.

The high degree of symmetry in the FLRW models leads to strong restrictions on their
kinematic quantities; in particular, these models are shear-free (¢ = 0) and irrotational
(w = 0). They also have an everywhere zero Weyl tensor, which indicates their incom-
patibility with the Weyl curvature hypothesis (see Section 2.2). Finally, as mentioned in
Section 2.1.2, the single-component perfect fluid FLRW models admit Bianchi represen-
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tations: the closed models are Bianchi IX, the flat models are Bianchi I/ VIIj, and the open
models are Bianchi V/VII;,. It is useful to locate the FLRW models within the Bianchi
classification, since Bianchi cosmologies play a central role in the dynamical systems ap-
proach to cosmology (see Section 2.3.2.2), which in turn provides many examples and
results that guide the search for a definition of asymptotic self-similarity in Chapter 3.

2.2 Conformal framework of QC-WCH

Quiescent cosmology is the idea that the Universe is approximately FLRW (i.e. highly
isotropic and homogeneous) near the Big Bang; the Weyl curvature hypothesis offers
thermodynamic justification for this via the concept of gravitational entropy. Hence a
cosmological model that is compatible with quiescent cosmology and the Weyl curva-
ture hypothesis (QC-WCH) must exhibit isotropy and minimal gravitational entropy in
the past (which is taken to be a singularity), and tend towards anisotropy and maximal
gravitational entropy in the future. The past constraints are captured in the definition of
an isotropic singularity, while a set of future state definitions has been formulated in an
attempt to accommodate the future constraints.

2.21 Isotropic singularities

The following definition of an isotropic (past) singularity is due to Goode and Wain-
wright [18, 19], with some technical amendments by Scott [30, 31].

Definition 2.6a (Isotropic past singularity): A spacetime (M, g) admits an isotropic
past singularity (IPS) if there exists a spacetime (M, g), a cosmic time function 7' on
(M, g), and a conformal factor (7") such that:

1. M is the open submanifold 7" > 0;

2. g = 0?g on M, with g regular (at least C? and nondegenerate) on an open neigh-
bourhood of T = 0;

3. Q(0) =0, and 3¢ > 0 such that Q € C°[0, ] N C?(0,c] and Q > 0;

4. Lo :=limp_,o+ L(T) exists and Lo # 1, where L := Q"Q/Q".

Essentially, the physical spacetime (M, g) is conformally related to an unphysical coun-
terpart (M, g), in which Sy is a regular spacelike hypersurface known as an IPS. The
singularity in (M, g) that corresponds to Sy arises solely due to the vanishing of the con-
formal factor €2 for T = 0. When applying Definition 2.6a in the cosmological context,
however, the behaviour of the fundamental four-velocity field u (equivalently, the time-
like congruence it generates) near the singularity must also be considered [18].

Definition 2.6b (IPS fluid congruence): With any timelike unit vector field u on (M, g),
we may associate a timelike unit vector field u on (Mv , &) such that u = Qu on M. The
vector field u is regular at the IPS if U is regular (at least C?) on an open neighbourhood
of T'= 0. It is also orthogonal to the IPS if u is orthogonal to 7" = 0.
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Now, it is not obvious from Definitions 2.6 how the admission of an IPS charac-
terises an (asymptotically) isotropic cosmological model, in the sense of Definition
2.4. To show this, it is necessary to consider various isotropy-related curvature and
kinematic quantities that provide different measures of a model’s isotropy. Specifically,
we have Weyl isotropy (where the Weyl tensor Cy.q is everywhere zero), Ricci isotropy
relative to u (where the anisotropic parts ., and £ of the Ricci tensor relative to u are
everywhere zero), and kinematic isotropy relative to u (where the shear o, vorticity w
and acceleration vector 4* are everywhere zero) [18]. As mentioned in Chapter 1, the
Weyl tensor is also directly associated with gravitational entropy. Formulae for these
quantities are given in Appendix A.

In general, all curvature and kinematic quantities might diverge at the singularity; for
an asymptotic notion of isotropy (and low gravitational entropy), it is sufficient to require
that Cypeq and the other quantities are dominated respectively by the Ricci tensor R, and
the expansion . Hence a cosmological model that admits an IPS also exhibits isotropy
and minimal gravitational entropy near its singularity, in the sense that

li Cabcdcade li Eaza li 2abzab
m ————— = 11m = 11m
TS50+ RgyRab TS0+ 64 70+ 604
2 2 ca
— lim 2 = lim 2 = lim 22 —0 (217)

750+ 62 TS50+ 62 TS0+ 02

for a fundamental four-velocity field u that is orthogonal to the IPS [18]. In this thesis, we
study models that admit an IPS at which u is regular —in which case u may be chosen
as orthogonal to the IPS, since a hypersurface-orthogonal congruence always exists.

Many general and model-specific results regarding isotropic singularities have been
derived by Scott and Ericksson [32, 33, 34, 35]. For example, vacuum spacetimes do not
admit an IPS; neither do shear-free, perfect fluid models that are not FLRW. Interestingly,
while FLRW models might be expected to admit an IPS on account of their isotropy,
only those that are initially decelerating (limy_,o+ ¢ € (0,00)) actually do so. Another
example that admits an IPS is a radiation-filled universe in the Kantowski-Sachs class of
homogeneous but anisotropic non-Bianchi models (see Section 4.2.2.2). Finally, we note
that Definitions 2.6 are generalisable to a time-symmetric form: this defines an isotropic
singularity in the future, and is detailed in the following section.

2.2.2 Future states

The conformal framework of the IPS offers a powerful method of modelling the Universe
at early times, as the singular behaviour at 7" = 0 may be “removed” via the conformal
transformation. An attempt to extend this method to late times has been made by Hohn
and Scott [20, 36, 37, 38], who have defined and studied four possible future states for the
Universe. Two of these are isotropic in nature and incompatible with the Weyl curvature
hypothesis, but have been included for completeness. The first is simply a time-reversed
analogue of the IPS, and describes a spacetime that collapses to a singularity in a highly
isotropic manner.

Definition 2.7a (Isotropic future singularity): A spacetime (M, g) admits an isotropic
future singularity (IFS) if there exists a spacetime (M, g), a cosmic time function 7" on
(M, g), and a conformal factor Q(T') such that:
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1. M is the open submanifold 7" < 0;

2. g = Q0%g on M, with g regular (at least C? and nondegenerate) on an open neigh-
bourhood of T' = 0;

3. Q(0) = 0, and 3¢ > 0 such that Q2 € C°[—¢, 0] N C?[—¢,0) and Q > 0;

4. Lo := limp_,q- L(T) exists and Lg # 1, where L := Q"Q/Q.

The main difference from Definition 2.6a is that 7 < 0 and approaches zero (the future
singularity) from below. As an added distinction, the unphysical manifold and metric
are denoted with bars instead of tildes; this convention may be extended to all quantities
defined on M and M if clarity is necessary, although past and future states are analysed
separately in this thesis (as they are, in principle, completely independent). The second
isotropic future state is defined in similar fashion to the IFS, and corresponds to a space-
time that expands forever in a highly isotropic manner.

Definition 2.8a (Future isotropic universe): A spacetime (M,g) admits a future
isotropic universe (FIU) if there exists a spacetime (M, g), a cosmic time function 7' on
(M, g), and a conformal factor €2(T') such that:

1. M is the open submanifold 7" < 0;

2. g = 0°g on M, with g regular (at least C? and nondegenerate) on an open neigh-
bourhood of T = 0;

3. limy_,0- Q = 0o, and J¢ > 0 such that Q € C?[—c,0) and 2 > 0 is strictly increasing
on [—¢,0);

4. Lo = limp_,g- L(T) exists and Lo # 1,2, where L := Q"Q/Q? and L € C°[—c,0).

As intuition might suggest, an FIU essentially differs from an IFS in that the conformal
factor €2 increases strictly and without bound as 7" — 0~ (since the physical metric g is
expected to blow up in an ever-expanding spacetime, instead of becoming degenerate
as at a singularity). For cosmological models, the regularity /orthogonality of a timelike
congruence at these isotropic future states must also be defined. This is done exactly as
in Definition 2.6b [20].

Definition 2.7b/2.8b (IFS/FIU fluid congruence): With any timelike unit vector field u
on (M, g), we may associate a timelike unit vector field @ on (M, g) such that © = Qu
on M. The vector field u is regular at the IFS/FIU if u is regular (at least C?) on an open
neighbourhood of 7" = 0. It is also orthogonal to the IFS/FIU if u is orthogonal to 7" = 0.

As with the IPS, we focus on models that admit an IFS/FIU at which u is regular.
Isotropic future states are appropriately named, as cosmological models that admit
them exhibit Weyl isotropy and kinematic isotropy relative to u in the asymptotic sense
of (2.17) [20]. Possible future states for the FLRW models have been studied in detail
by Threlfall [39]: only models that are eventually decelerating (limy_,p- ¢ € (0,00))
admit an IFS, while only those that are eventually accelerating with a divergent scale
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factor (limy_,o- ¢ € (—00,0) and limy_,p- a = o0) admit an FIU. Hence there is an entire
subclass of FLRW models that admit neither an IFS nor an FIU, even though they are
isotropic in the usual sense. We return to these in the context of anisotropic future states
(and the corresponding timelike congruences), whose definitions follow.

Definition 2.9a (Anisotropic future endless universe): A spacetime (M, g) admits an
anisotropic future endless universe (AFEU) if there exists an extended manifold M > M,
a symmetric C° tensor field g of type (0,2) on M, a cosmic time function T on (M, g),
and a conformal factor €2(7") such that:

1. M is the open submanifold 7" < 0;

2. g = Q%g on M, with g at least C° on an open neighbourhood of T' = 0 and degen-
erate, but not causally degenerate, on 7' = 0;

3. limy_,- Q = 0o, and J¢ > 0 such that Q € C?*[—c,0) and Q > 0 is strictly increasing
on [—¢,0);

4. Lo :=limy_,o- L(T) exists and Lo # 1, where L := Q"Q/Q? and L € C°[—c,0);

5. limp_,o- Q5| detg| = cc.

Definition 2.10a (Anisotropic future singularity): A spacetime (M,g) admits an
anisotropic future singularity (AFS) if there exists an extended manifold M > M, a
symmetric C” tensor field g of type (0,2) on M, a cosmic time function 7' on (M, g), and
a conformal factor Q(T") such that:

1. M is the open submanifold 7" < 0;

2. g = Q%g on M, with g at least C° on an open neighbourhood of T' = 0 and degen-
erate, but not causally degenerate, on T' = 0;

3. limy_,g- © = 0o, and J¢ > 0 such that Q € C?*[—¢,0) and > 0 is strictly increasing
on [—¢,0);

4. Lo :=limg_,o- L(T) exists and Lo # 1, where L := Q"Q/Q? and L € C°[—c,0);

5. hmT_)()— QS| d@tg‘ =0.

Definition 2.9b/2.10b (AFEU/AFS fluid congruence): With any timelike unit vector
field u on (M, g), we may associate a timelike unit vector field w on (M, g) such that
u = Qu on M. The vector field u is regular at the AFEU/AFS if u is regular (at least
C?) on an open neighbourhood of 7" = 0. It is also orthogonal to the AFEU/AFS if u is
orthogonal to T" = 0.

Definition 2.9b/2.10b is analogous to Definition 2.7b/2.8b; again, we focus on mod-
els that admit an AFEU/AFS at which u is regular. A distinguishing feature of the
anisotropic future states is that the unphysical “metric” g must be degenerate on the
spacelike hypersurface Sy (but non-causally such that g(u,u) # 0 on &), since any
regular choice of g leads inevitably to Weyl isotropy and kinematic isotropy relative to u
in the asymptotic sense of (2.17) [20]. The pair (M, g) is defined separately, as it does not
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strictly constitute a spacetime under the nondegeneracy requirement of Definition 2.1.
While the conformal factor Q2 blows up for both anisotropic future states, the difference
between an AFEU and an AFS still lies in the unboundedness or degeneracy of the
physical metric g (which is reflected by the limiting behaviour of det g as 7" — 07).

The anisotropic future states, with their degenerate conformal structures, are consid-
erably harder to study than their isotropic counterparts. Still, the continuity of g and as-
sumed regularity of u at Sy makes the unphysical spacetime in an AFEU-/AFS-admitting
model far more tractable than the physical one.

It is of concern, however, that some isotropic spacetimes (e.g. Minkowski space, or
the subclass of FLRW models that do not admit an IFS/FIU) have been shown to admit
an anisotropic future state [39]; this might necessitate a slight revision of the anisotropic
definitions to exclude exact isotropy and the admission of an isotropic future state. Fur-
thermore, models that admit an AFEU/AFS are not immediately compatible with the
Weyl curvature hypothesis, in that gravitational entropy (which may be measured by
the quotient CoapedC® /Ry R in (2.17)) might not be maximal at the future state [36].
Further research on these and other issues is ongoing.

2.3 Self-similarity in cosmology

Self-similar solutions in general relativity were first studied by Cahill and Taub [22]; these
correspond to spacetimes that are scale-invariant (usually with a time-dependent scale),
and are often straightforward to derive or analyse as the additional symmetry allows
simplification of the EFE. A cosmological model might be exactly self-similar, or only
approximately so in different epochs of its evolution. Following Eardley [40], we loosely
define asymptotic self-similarity here as the notion of approximate self-similarity at early
or late times, and seek a more precise working definition in Chapter 3.

Three other dichotomies for self-similarity in the context of general relativity have
been identified by Carr and Coley [21]. One of these distinguishes between continu-
ous self-similarity (in which all dimensionless quantities are preserved) and discrete self-
similarity (in which all dimensionless quantities repeat themselves on some spacetime
scale). Another makes the distinction between geometric self-similarity (of the spacetime
metric) and physical self-similarity (of the matter content), although the former implies
the latter for perfect fluid spacetimes. Finally, there are self-similar solutions that pos-
sess exact self-similarity or pass into the self-similar regime in a regular manner (self-
similarity of the first kind), and more general ones that do not (self-similarity of the sec-
ond kind). We restrict our study in this thesis to continuous, geometric self-similarity of
the first kind for vacuum and perfect fluid spacetimes.

2.3.1 Exact self-similarity

The isometry framework introduced in Section 2.1.2 may be expanded to include more
general symmetries of a spacetime (M, g), i.e. homothetic symmetries (also known as ho-
motheties or similarities) and conformal symmetries. A conformal symmetry preserves
the metric up to a general point-dependent scaling factor A\, which is constant in the case
of a similarity [41]. One-parameter groups of such symmetries are generated by C? vec-
tor fields X on M that satisfy Lxg = 2Ag. In local coordinates, this gives the conformal
Killing equation

X(a;b) = Adab, (2.18)
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where the scaling factor A # 0 is a C? function on M and X is known as a conformal
Killing vector field (CKVEF). If A # 0 is a constant, (2.18) may be termed the homothetic
equation and X is known as a homothetic vector field (HVF). If A = 0, the Killing equation
(2.8) is recovered and X is a KVE. Our focus in this section is on the homothetic equation,
since exactly self-similar spacetimes are characterised by the existence of an HVE

While an isometry on a spacetime (M, g) leaves g invariant, a similarity on (M, g)
induces a constant scale transformation g — e**g. We are concerned primarily with
nontrivial (A # 0) similarities whose associated HVF has a nonzero timelike component.
Hence an exactly self-similar spacetime typically exhibits scale invariance with time, i.e.
the spacelike hypersurfaces Sy are similar to one another at all times. For the exactly
self-similar spacetimes in this thesis, an important result due to Eardley [40] states that
the r-dimensional isometry group G, of (M, g) is a subgroup of the (r + 1)-dimensional
similarity group H,; (the set of all similarities on (M, g)). In other words, there exists
precisely one (up to a constant factor) HVF for an exactly self-similar spacetime.

Many specific examples of exact self-similarity are known, in that the spacetime met-
ric is given explicitly and admits an HVE. Two simple ones are presented here for future
reference. First we have the Milne universe, an expanding vacuum spacetime whose line
element is given by

ds® = —dt* + ¢* (dx* + sinh? x (d6? + sin® 6 d¢?)), (2.19)

i.e. (2.9) with a(t) = t and k = —1. This line element also describes a future-directed light
cone in Minkowski space, and may accordingly be cast as the Minkowski line element
(in spherical coordinates)

ds* = —dt* + dr* + r* (d6* + sin® 0 d¢?) (2.20)
via the coordinate transformation
t = tcoshy, r = tsinh x. (2.21)
Another common form for the Milne line element is given by [42]
ds? = —dt’ + 1 (dz® + €2 (dy® + d2?)) (2.22)
which may be obtained from the Minkowski line element (in Cartesian coordinates)
ds® = —dt* + du® + dv? + dw? (2.23)
via the coordinate transformation

?ﬂ—u
o

Y= Z= =, (2.24)

t=o, z=1In
t+u t+u

where o = (2 —u? —v? —w?)'/2. Tt is straightforward to verify from (2.18) and (2.19) that
the HVF for the Milne universe is given (in the coordinates of (2.19)) by

X® = (t,0,0,0). (2.25)

The other example is the class of exactly self-similar Bianchi I cosmologies, whose line
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element is given by [42]
ds? = —dt? + t?Prda® + t?P2dy® + t?P3d22. (2.26)
These include as special cases the “circle” of Kasner vacuum solutions, where

1

p1 == (1—2cosv), P23 = % (1 + cos v £ V/3sin 1/1) (2.27)

wil

for ¢ € [0,27), and the flat FLRW models with v € (0, 2], where

2
PL=P2=P3= o (2.28)
8

In accordance with (2.9), the line element for the latter may also be written as
ds? = —dt? + 157 (d® + X (d6? + sin? 0 dg?)) , (2.29)
i.e. a(t) = t*/7) and k = 0. The HVF for these Bianchi I cosmologies is given by
X= @0 =p)z,(1-p2)y, (1 —ps3)z). (2.30)

The tractability of exactly self-similar solutions is such that all vacuum/perfect fluid
Bianchi cosmologies admitting an HVF (with nonzero timelike component) have already
been found, as proven by Hsu and Wainwright [43]. Furthermore, a Hamiltonian formu-
lation of the EFE has been used by Uggla [44] to systematically derive several classes of
inhomogeneous, exactly self-similar spacetimes. Research on exactly self-similar space-
times is actively ongoing, since such models are amenable to in-depth investigation and
also approximate a large variety of spacetimes, either at intermediate times or in the
asymptotic regime [45].

2.3.2 Asymptotic self-similarity

Three distinct notions of the term “asymptotic self-similarity” are identifiable in the lit-
erature, and it is not immediately clear if or how they are equivalent. We discuss these
approaches in general and with respect to the conformal framework of QC-WCH.

2.3.2.1 Spherically symmetric approach

Exact self-similarity in spherically symmetric spacetimes has been studied extensively,
due to the applicability and relative simplicity of such models. We note here that spher-
ical symmetry in the cosmological context is a property of the spacelike hypersurfaces,
and does not necessarily imply that the spacetime is isotropic. Analysis of spherically
symmetric, exactly self-similar spacetimes may be carried out in various coordinate sys-
tems; we focus on the comoving approach used by Carr and Coley [46, 47] to provide a
thorough classification of such spacetimes. The full method is fairly involved, and only
its main features are presented.

Following Cahill and Taub [22], the general line element for a spherically symmetric,
exactly self-similar spacetime may be written (in spherical coordinates) as

ds® = —e*@at® + P dr? 1 §? (2) r? (d6* + sin 0 dp?) (2.31)
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where z = r/t is a dimensionless “similarity variable”, and the functions «, 5 and S are
arbitrary up to consistency with the EFE. For a perfect fluid spacetime, o and /5 may be
eliminated by introducing the function = (z) = ((1/2)ur?)~"=1/7 and integrating the
conservation equations (2.7). This yields the line element

4(y—1)
ds* = —Cpa’z Tt + CgSf4x%dr2 + 522 (d02 + sin? 6 d¢2) ) (2.32)

where C,, and Cj are constants of integration.
The remaining EFE may be cast as a system of four ordinary differential equations in
In|z| for S and z (i.e. S = 2dS/dz), and analysed qualitatively using standard methods.

Three exactly self-similar solutions (which might be unphysical) are explicitly obtainable
for each value of v; these are given by

2 _20=1)

S1(z) =2 3, x1(z)=2 7, (2.33)
(v=1)

Sa(2) = 52702_1, xe (2) = m27oz_2 K : , (2.34)

Sz (2) = 53,0, x3(2) = 30, (2.35)

where the constants S; o and ;o depend on . Equations (2.33), (2.34) and (2.35) corre-
spond respectively to FLRW, Kantowski-Sachs and static spacetimes, although suitable
coordinate transformations are required in order to demonstrate this explicitly.

We now consider asymptotic solutions of the form
S(2)=Si(2) e, 2(2) =i (2) P, (2.36)

where S; and z; are given by (2.33)—(2.35), such that the governing equations for S and x
may be cast as ordinary differential equations in In |z| for A and B. These solutions are
said to be asymptotically FLRW /Kantowski-Sachs/static, in the sense that they asymp-
tote to (2.33)—(2.35) as A, B — 0. Having been constructed from (2.31), however, they are
exactly self-similar as well. Hence “asymptotic self-similarity” in this context refers to the
existence of asymptotic relationships among spherically symmetric, exactly self-similar
spacetimes —and differs from the notion of asymptotic self-similarity that we are after.

2.3.2.2 Dynamical systems approach

As implied in Chapter 1, usage of the term “asymptotic self-similarity” is most prevalent
in a subfield of cosmology that employs general methods in dynamical systems theory to
deduce the qualitative behaviour of cosmological models. Application of such methods
to homogeneous models was initiated by Collins [48, 49], then developed extensively by
Wainwright, Hsu and Hewitt [50, 51, 52] in their comprehensive analysis of Bianchi cos-
mologies. The dynamical systems approach has been generalised (with limited success)
to inhomogeneous and anisotropic models with a G isometry group [53, 54, 55], and
more recently to fully inhomogeneous models that admit no isometries [56].

Central to the dynamical systems approach is the orthonormal frame formalism pio-
neered by Ellis and MacCallum [57, 58]. Instead of choosing the usual coordinate basis
{0/0x*} for a spacetime (M, g) such that

g 0
g (W’ 83:b> = Yab; ds® = gupdz®da’, (2.37)
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we switch to an orthonormal basis {e,} that satisfies
g(€a,ep) =y, ds® = ngww’, (2.38)

where [1,,] = diag(—1,1,1,1) and {w*} is the corresponding dual basis of one-forms.
Expanding the Lie bracket relative to {e,} such that [e,, e)] = 7¢,e. yields the 24 inde-
pendent commutation functions v¢,, and the Jacobi identities

[[eq, €], €ec] + [[€c, €al €] + [[€,€c),€q] =0 (2.39)

may be written as
€Y %) — VeaVan = 0- (2.40)

Equations (2.2), (2.7) and (2.40) essentially allow the EFE to be cast as a system of
tirst-order evolution equations for the commutation functions, as opposed to second-
order partial differential equations for the metric components. If a fundamental four-
velocity field u is specified, the commutation functions may be decomposed into various
geometric and kinematic variables (including the generalised Hubble parameter H), and
the EFE recast in terms of these variables.

For a homogeneous cosmological model (M, g, u), the vector field e is typically cho-
sen to be u = 0/9T, where T is a cosmic time function determined by u. The EFE
simplify to a system of first-order ordinary differential equations in 7', which may be
analysed qualitatively using the methods of dynamical systems theory. If (M, g, u) is
further assumed to be exactly self-similar, the EFE become purely algebraic; this implies
that exactly self-similar models correspond to equilibrium points in the state space of the
system. The number of commutation function variables describing the state of a cosmo-
logical model is also reduced by the assumption of homogeneity. In the case of Bianchi
cosmologies, the state vector (x, H) is six-dimensional, i.e. it comprises three curvature
variables, two shear variables, and the expansion variable H.

Now, defining dimensionless time 7 = In|a/ag| (where a is the generalised scale fac-
tor) and five dimensionless, expansion-normalised variables y = x/H, it follows from
(2.14) and (2.15) (with a@ = da/dT) that

drl 1
dH

Equation (2.42) gives the evolution of H, which is decoupled in that the evolution equa-
tions for y are an autonomous system of ordinary differential equations dy/dr = f(y).
Hence the effects of expansion are essentially scaled away by this transformation to di-
mensionless variables, and the dynamical evolution of a Bianchi model may be analysed
in a five-dimensional state space.

The notion of asymptotic self-similarity in the dynamical systems approach follows
naturally from this framework: a cosmological model is asymptotically self-similar in
the past (future) if there exists a past (future) attractor for its dynamical evolution in
state space. Such attractors (i.e. equilibrium points where dy/dr = 0) represent exactly
self-similar models in state space. For example, the open and closed FLRW models with
v € (2/3,2] are asymptotically self-similar in the past to the corresponding flat FLRW
models; in the future, however, the open models approach the Milne universe while the
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Figure 2.1: Graph of d2/dr against € for (2.48), with v € (2/3,2]. All stable (solid) and unstable
(open) equilibrium points where d€2/dr = 0 have also been plotted.

closed models asymptote to the time-reversed, contracting flat “models” [59, 60].

These are the simplest results in the dynamical systems approach, as the state space
for the FLRW models is reduced to just one dimension by the high degree of symmetry.
The first three may be derived in a few short steps; a different analysis is required for
closed models in the future, since they recollapse and the expansion-normalised variables
diverge at the point of maximal expansion (H = 0). First we define the density parameter

:i%, (2.43)

which allows (2.12) and (2.15) to be written jointly as

q:%@v—mﬂ- (2.44)

From (2.13), (2.14) and (2.43), the value of  is related to the geometry of the model by

O>1s k=1, N=1<k=0, O<lek=-1 (2.45)

Next, we eliminate a from the Friedmann equations (2.12) and (2.13) such that

f=—3Hypu, (2.46)
which yields (via (2.41) and (2.42))
dQ
i (2¢g — (3v —2)) Q. (2.47)
-

Substituting (2.44) into (2.47), we arrive at

% =By—-2)(2-1)Q, (2.48)
which describes the (expansion-normalised) dynamical evolution of a single-component
perfect fluid FLRW model in terms of its density. Equation (2.48) has an unstable equilib-
rium point at {2 = 1 and a stable one at {2 = 0 (see Figure 2.1). Hence the open and closed
models are asymptotically self-similar in the past to the flat models, and the open models
are asymptotically self-similar in the future to the Milne universe (which has 2 = 0 as it
is empty). We also note that all FLRW models with v = 2/3 are exactly self-similar, since
they correspond to equilibrium points of (2.48) as well.
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Asymptotic self-similarity in the dynamical systems approach agrees with the notion
of approximate self-similarity at early and late times, but only up to the effects of ex-
pansion. This is not necessarily undesirable, as a similar caveat exists in the conformal
framework of QC-WCH: spacetimes that admit an isotropic past/future state are kine-
matically isotropic up to expansion effects as well (see (2.17)). There are some problems
with fitting the dynamical systems definition into the conformal framework, however.

Firstly, due to the difficulty of extending dynamical systems theory to systems of par-
tial differential equations such as the unsimplified EFE, the dynamical systems approach
is restricted mainly to homogeneous models for now. On the other hand, the conformal
framework is far more general as it focuses on the geometric properties of a given space-
time instead of its dynamical behaviour. Another obstacle is that the dynamical systems
definition for an asymptotically self-similar model depends on the existence of an ex-
actly self-similar counterpart for it to asymptote to; it is not immediately clear how this
is reflected in the properties of the asymptotic model itself. The definition of asymptotic
self-similarity that we are after is ideally an intrinsic one, since spacetimes are dealt with
individually in the conformal framework.

A successful generalisation of the dynamical systems definition to the conformal
framework is likely to use the fact that all dimensionless variables are preserved by the
flow of an HVF (see Section 3.1.3), and/or incorporate some form of normalisation with
respect to expansion (see Section 5.1). Even if such ideas are not adopted, it is still desir-
able for the eventual working definition to demonstrate good agreement with the numer-
ous asymptotic self-similarity results that exist within the dynamical systems approach.

2.3.2.3 Homothetic equation approach

Although exact self-similarity in a spacetime corresponds precisely to the existence of an
HVE, there have been no significant attempts in the literature to formulate a definition
of asymptotic self-similarity based on the homothetic equation, i.e. (2.18) with constant
A # 0. However, Cain [24] explores a couple of ways in which this might be done.

The first approach is arguably the most natural, and involves searching for a solution
to the homothetic equation with an approximation to the metric at early or late times.
One example suited to this method is a Heckmann-Schiicking dust universe, whose line
element is given by [40]

4_ 4_ 4_

ds? = —dt? + 2m (t+t9)? 2P1 2 + $2p2 (t +t9)3 2p2 dy2 + %P3 (t+1to)3 2ps sz, (2.49)

where the exponents p; satisfy (2.27) and ¢, > 0 is a constant. At early times, t — 07
and (2.49) is approximated by the Kasner line element (2.26) (after rescaling each spatial
coordinate); at late times, ¢ — oo and (2.49) is approximated by the flat FLRW line ele-
ment (2.29) with v = 1 (in Cartesian coordinates). These line elements admit the HVF
(2.30) with p; given respectively by (2.27) and (2.28), which agrees with the fact that
the Heckmann-Schiicking solutions are asymptotically self-similar in the past and future
within the dynamical systems approach [42].

On the other hand, this method contradicts the result in Section 2.3.2.2 that the open
and closed FLRW models with v € (2/3, 2] are asymptotically self-similar in the past. As
a specific example, the line element for the open radiation (y = 4/3) model is given by

ds® = —dt* + (2C + t) t (dx* + sinh® x (d6* + sin® § d¢?)) , (2.50)
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ie. (2.9) with a(t) = \/(2C 4 t)t and k = —1, where C' = /(1/3)ua* is a constant [2]. At

early times, t — 01 and we have
ds® ~ —dt* + 20t (dx* + sinh? x (d6* + sin” 6 d¢?)) , (2.51)

which fails to admit a solution to the homothetic equation.

The second approach appears slightly more general, in that an approximate solution
to the homothetic equation (with the exact metric) is sought instead. This is formalised
by Cain [24] as requiring the existence of a vector field H on a spacetime (M, g) such that

i (H,p — Agap) = 0, 252
T_)gf(i)( (asb) — AJab) (2.52)

where the cosmic time function 7' — 07(~) as the spacetime’s past (future) is approached,
and A # 01is a constant. Taking H = AX for the open radiation FLRW model (2.50), where

1
X = (t, 2X,o,o) (2.53)

is also the HVF (2.30) for the flat radiation model in spherical coordinates, the nonzero
components of the difference tensor Dy, := H (4, — Agap are given by

1
Dy = §At2, (2.54)
1
Do = A <2t2X cosh x + Ct (x cosh x — sinh X)> sinh , (2.55)
1
D33 =\ <2t2x cosh x + Ct (x cosh x — sinh X)) sinh y sin” 6. (2.56)

The terms in (2.54)-(2.56) clearly vanish in the limit as ¢ — 0*. Hence the open radiation
FLRW model is asymptotically self-similar in the past according to (2.52) with T' = ¢,
which agrees with the dynamical systems result. Contrary to expectation, however, it is
not asymptotically self-similar in the future with the Milne HVF (2.25) in place of (2.53).
Furthermore, the Heckmann-Schiicking solutions studied in the first approach are no
longer asymptotically self-similar in the future with the flat dust FLRW HVF (2.30).

Several problems exist in Cain’s [24] investigation of these candidate definitions for
asymptotic self-similarity. The most serious ones pertain to the second approach, i.e. the
attempt to formalise the notion of approximate self-similarity via the limit of a difference
of terms in (2.52). This is misguided on two counts.

Firstly, the time-dependent metric components g, typically vanish as a spacetime’s
past (singularity) is approached, and so the corresponding components of H,, are also
required to vanish if (2.52) is to be satisfied. However, simply taking the limit of two
vanishing quantities is the wrong way of comparing their asymptotic behaviour, as it
disregards the rates at which they approach zero and permits trivial/degenerate equiva-
lence. For example, the tensor components (2.55) and (2.56) vanish as ¢ — 07 if and only
if we neglect terms that are O(¢), which essentially implies that the open radiation FLRW
model (2.50) is being considered in the degenerate regime (ds? ~ —dt?).

Secondly, the time-dependent metric components g, typically blow up as an ever-
expanding spacetime’s future is approached, and so the corresponding components of
H 4y are also required to blow up if (2.52) is to be satisfied. Hence the difference tensor
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D, tends to blow up as well (e.g. the terms in (2.54)—(2.56) are unbounded as ¢t — o0),
and (2.52) will not be satisfied unless H(,.;) = Agap to begin with, i.e. H is an HVF and the
spacetime is exactly self-similar. This explains the negative results for the open radiation
FLRW and Heckmann-Schiicking models in the future.

A homothetic equation-based approach to a definition of asymptotic self-similarity is
worth developing, but some care is required since the difference between the two can-
didate approaches is more subtle than expected. The second type of definition is par-
ticularly promising, as it lends itself to generalisation by shifting the asymptotic process
into the homothetic equation. While these approaches might appear simplistic (much
of the spacetime’s dynamical information is not taken into account), they are far more
tractable than the dynamical systems approach; also, they narrow the notion of asymp-
totic self-similarity down to an intrinsic property of individual spacetimes, which is more
compatible with the conformal framework of QC-WCH.
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Chapter 3

Defining asymptotic self-similarity

In this chapter, we execute our strategy for formulating a definition of asymptotic self-
similarity that is compatible with the conformal framework and the set of dynamical
systems results. Section 3.1 introduces three candidate approaches that correspond to
distinct notions of asymptotic self-similarity, while building a case for developing the
homothetic equation approach in particular. Various examples from the set of dynamical
systems results are examined in Section 3.2 under this preliminary definition, with a view
to improving the eventual working definition that is formalised and discussed in Section
3.3. The chapter closes with a brief commentary in Section 3.4 on the difficulties that arise
with the definition, and the possible role of conformal Killing vector fields.

3.1 Candidate definitions

Motivated by the existing notions of asymptotic self-similarity in the literature, as well
as the discussion in Section 2.3.2 of their relevance to the conformal framework, three
preliminary definitions are formulated and presented here for further consideration.

3.1.1 Exact mapping approach

The first approach outlined in Section 2.3.2.3 has heuristic and practical merit due to its
intuitiveness and simplicity. Loosely, a spacetime (M, g) is said to be asymptotically self-
similar if it is exactly self-similar in an asymptotic regime. If a cosmic time function 7" is
defined such that 7" = 0 corresponds to the spacetime’s past/future state, the asymptotic
regime may be taken as an arbitrarily small open submanifold ¢/ C M whose boundary
OU contains the spacelike hypersurface Sy. This notion of asymptotic self-similarity is
then equivalent to the existence of an exact mapping between (i, g;/) and its counterpart
on some exactly self-similar spacetime, and is made precise in the following definition.

Definition 3.1 (Exact mapping approach): A spacetime (M, g) is asymptotically self-
similar to an exactly self-similar spacetime (M’, g’) in the past (future) if there exist cos-
mic time functions 7" on (M, g) and 7" on (M’, g’) such that T, 7" — 0*(~) respectively
as each spacetime’s past (future) is approached, open submanifolds i/ ¢ M and U’ c M’
such that 7, 7" = 0 are contained respectively in O/ and o', and a diffeomorphism
6 : U — U’ such that

0. (gly) = &'|,, (3.1)

29
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In other words, the pair (U, gly/) is isometric to the pair (U’, g'[i+) (since 6 is a smooth,
invertible map whose differential carries g|;; into g’|;;). Following Hawking and Ellis
[23], spacetimes that are isometric to one another are taken to be in the same equivalence
class, which justifies the statement that (M, g) = (M’, g) in the asymptotic regime.

As illustrated in Section 2.3.2.3, the exact mapping approach has an equivalent form
in local coordinates (7, z*) on M: a spacetime (M, g) is asymptotically self-similar if its
associated line element ds? reduces as T — 01(~) to the line element ds’ for an exactly
self-similar spacetime (M’, g’) (via any required coordinate transformation). This line
element formulation is valid as all the geometric information of a spacetime is captured
implicitly in the metric (since it is defined on the manifold), which in turn is described
locally by the associated line element. It is also clearly more convenient to work with
than the original form of Definition 3.1.

The lack of ambiguity and ease of use provided by the line element formulation stems
from the purely geometric nature of the exact mapping approach. Another key advan-
tage offered by Definition 3.1 is versatility. The idea of a spacetime being asymptoti-
cally self-similar to an exactly self-similar counterpart is well-defined as in the dynamical
systems approach, but compatibility with the conformal framework is maintained since
prior knowledge of the exactly self-similar spacetime is not required in principle. Indeed,
a spacetime is asymptotically self-similar under Definition 3.1 as long as the asymptotic
form of its line element yields a solution to the homothetic equation.

There are several drawbacks with the exact mapping approach that rule it out as a
working definition. Crucially, it fails to demonstrate agreement with numerous results
in the dynamical systems approach, e.g. the closed FLRW models being asymptotically
self-similar in the past to the flat models. The discrepancy boils down to the fact that
Definition 3.1 actually describes the much stronger notion of a spacetime being asymp-
totically identical to another; the closed and flat FLRW models do not satisfy this, as
their spacelike hypersurfaces are diffeomorphic to S* and R? respectively. Furthermore,
not every spacetime has a line element that reduces to an asymptotic form (see Section
3.2.1.5), while the exactness of the approach itself resists any attempt at modification.

3.1.2 Homothetic equation approach (revised)

Another candidate approach to a definition of asymptotic self-similarity is more directly
based on the homothetic equation than the exact mapping approach, and essentially in-
volves casting (2.18) itself into a suitable asymptotic form. Equation (2.52) has been ruled
out as such a form in Section 2.3.2.3, due to inherent problems with taking the limit of
a difference of terms. It is also unclear if a homothetic equation approach is necessarily
weaker (in the definitional sense) than the exact mapping approach, but this is required
in order to generate better agreement with the dynamical systems results.

Our idea, then, is that an asymptotically self-similar spacetime (M, g) should admit a
vector field X such that both sides of (2.18) are equivalent up to some order of cosmic time
T as the past/future state is approached, i.e. (2.18) is satisfied asymptotically. Further-
more, X is permitted to be “approximately homothetic” in an even broader sense than the
asymptotic one: the scaling factor A # 0 may be a function on the spacelike hypersurface
Sp instead of a constant, and (2.18) is considered as the conformal Killing equation rather
than the homothetic equation. A more rigorous statement of this approach follows.
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Definition 3.2 (Homothetic equation approach): A spacetime (M, g) is asymptotically
self-similar in the past (future) if there exists a cosmic time function 7" such that 7" — 0+
as the spacetime’s past (future) is approached, and a vector field X on M such that

Lxg ~2)\g (3.2)

as T — 01(2) for some function A # 0 on T = 0.

The asymptotic regime may be formalised as the open submanifold ¢/ introduced
in Definition 3.1, but the looser expression “as T — 0%(7)” is chosen in this case to
emphasise the asymptotic process. Since (3.2) is a tensor relation, it is not strictly
well-defined with respect to the asymptotic notation of (1.5) (as a quotient of tensors is
generally meaningless). In local coordinates (7, z*), however, we obtain the 10 distinct
relations Xy ~ Agap as T' — 0+(=); these generalise (2.18) to asymptotic form, and are
well-defined (for nonzero terms) since each tensor component is a function of (7, z*).
We naturally require correspondence between the everywhere zero components of X .
and g, as well.

With the option of point-dependence in the scaling factor A, Definition 3.2 is weaker
than the exact mapping approach by construction. As it turns out, the homothetic equa-
tion approach is sufficiently weak to ensure the asymptotic self-similarity of some FLRW
models (see Sections 3.2.1.2 and 3.2.1.3). It also allows further classification of asymptot-
ically self-similar spacetimes according to whether they satisfy (3.2) with constant A or
not, and lends itself to modification if an improved working definition is desired.

However, it remains to be seen if the full set of dynamical systems results can be
reproduced by the homothetic equation approach, in which the spacetime’s dynamical
information is largely unused. Definition 3.2 also contributes nothing to the notion that a
spacetime might be asymptotically self-similar to another (although this is not a problem
in the context of the conformal framework), since the vector field X is defined only on one
spacetime and generally has no canonical counterpart on the other. Finally, the amount of
freedom in (3.2) (as opposed to, say, the exact homothetic equation) may make it difficult
to find a vector field that satisfies Definition 3.2 — or to show that none exists.

3.1.3 Dimensionless variables approach

In accordance with Section 2.3.2.2, the dynamical systems definition of asymptotic self-
similarity for a Bianchi cosmology may be stated in terms of the dimensionless vari-
ables that describe its evolution in state space: the limits of all such variables exist as the
model’s past/future state is approached (and equal the constant values of the same vari-
ables on some exactly self-similar model). This statement may be applicable to a general
cosmological model in principle, if not in practice, and motivates a related definition that
is compatible with both the dynamical systems approach and the conformal framework.

An HVF X on a spacetime (M, g) induces a scale transformation T — ¢P*T for every
tensorial object T on (M, g), where D is the physical dimension of T. Following Eardley
[40], the metric g is assigned D = 2 such that g — ¢”*g. This determines the physical
dimension of other objects on (M, g), e.g. vector fields and various kinematic scalars
have D = —1, while local coordinates (%) and commutation functions v, are dimen-
sionless (D = 0). We then have LxT = DAT by analogy with the homothetic equation;
in particular, the Lie derivative of any dimensionless scalar along X is everywhere zero.
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Hence all dimensionless variables on an exactly self-similar spacetime are constant along
the integral curves of its HVF [61].

To fulfil the dynamical systems notion of asymptotic self-similarity, the limits of the
dimensionless variables that describe a spacetime’s evolution need only exist (and need
not be evaluated as per the dynamical systems approach). In other words, it may suffice
to require that the change of these variables along the integral curves of some vector field
vanishes in the limit as the spacetime’s past/future state is approached.

Definition 3.3 (Dimensionless variables approach): A spacetime (M, g) is asymptot-
ically self-similar in the past (future) if there exists a cosmic time function 7" such that
T — 07(7) as the spacetime’s past (future) is approached, and a vector field X on M
such that

lim ~Lxdé;=0 (3.3)
T—0+(=)

for each 0; € A, where A is a finite set of dimensionless variables on M that fully
describes the dynamical evolution of (M, g).

The set A is finite, since it may always be taken as the set of 24 independent com-
mutation functions 7, for a general spacetime. As mentioned in Section 2.3.2.2, the
cardinality of A is reduced to five for Bianchi cosmologies and just one (the density
parameter 2) for FLRW models. Definition 3.3 is likely to reproduce most results in
the dynamical systems approach, and may potentially be applied to spacetimes that lie
beyond its scope. The definition also suits the conformal framework, as it makes no
mention of the exactly self-similar spacetime to which (M, g) asymptotes.

However, there are serious issues that hinder development of the dimensionless vari-
ables approach. For one, deriving explicit expressions for elements of the set A is usually
no less involved than solving the EFE in full generality, and indirect methods of verify-
ing (3.3) are required. Even if A is obtainable, it will in general be extremely unwieldy
due to its size. Without reducing the cardinality of A (i.e. the number of independent
constraints in (3.3)), the practicality of Definition 3.3 is severely limited and all but rules
it out as a working definition.

3.2 Fine-tuning the homothetic equation approach

In this section, we focus our attention on moulding the homothetic equation approach
into a suitable working definition. The exact mapping approach (with its tractability and
possible relationship to Definition 3.2) is also investigated in parallel, while the dimen-
sionless variables approach is given no further consideration in this thesis.

According to Definition 3.2 in local coordinates (T, z*), a spacetime (M, g) is asymp-
totically self-similar if there exists a vector field X such that

X(a;b) ~ AGab (34)

as T — 0T, Implicit in (3.4) is the requirement that each component of X, corre-
sponding to a zero (nonzero) component of g,, must itself be zero (nonzero). Depending
on the coordinate dependence of the vector components X¢, this may lead to additional
constraints on the choice of X. For example, if g, is diagonal and X“ has full coordinate



3.2 Fine-tuning the homothetic equation approach 33

dependence such that

X = (X%(T,2"), X" (T, 2"), X* (T, "), X*(T,2")), (3.5)
the zero components of g, yield six constraint equations

Xo;1) = X(0;2) = X(03) = X(1;2) = X(1;3) = X(233) = 0, (3.6)
while the nonzero relations in (3.4) yield three limit equations

lim M = lim @ = lim M = lim M (3.7)
T—0+(=) goo T—0+()  g11 T—0+()  g22 T—0+()  g33
that determine the scaling factor A # 0 on the spacelike hypersurface S.

It becomes clear that demonstrating asymptotic self-similarity (i.e. solving (3.4)) for a
general spacetime is not trivial, considering the number of constraint equations that may
arise. Some or all of these equations may be eliminated by making assumptions on the
coordinate dependence of X%, e.g. “simple” coordinate dependence where each vector
component depends only on the coordinate it corresponds to, or “faithful” coordinate
dependence where, say, X? and X3 are both functions of (22, 23) if go3 # 0. The following
propositions show that such restrictions on coordinate dependence are sufficient (but not
necessary) for correspondence between the zero components of X ,.;) and ggp.

Proposition 3.1: If a vector field X on a spacetime (M,g) has simple coordinate
dependence in local coordinates (z%), each zero component of g, corresponds to a zero
component of X 4.
Proof:  First we have

X(a;b) = 35 (Xa;b + Xb;a)

Yac C;b + gbCXC;a)

NI RN RN RN~

(gacX
(gacXC’b + gchfa + (Pacb + Fbca) Xc)
(gacXC’b + gchfa + gab,cXC) . (3.8)

Since X “ has simple coordinate dependence, we have

Xo=(X%(z%), X" (z'), X? (2?), X? (2%)), (3.9)
which reduces (3.8) to
1
Xy = 5 (900 (X% + X%) + g X°) (3.10)
Hence each zero component of g, corresponds to a zero component of X 4. [ |

Proposition 3.2: If a vector field X on a spacetime (M,g) has faithful coordinate
dependence in local coordinates (z¢), and g,, has exactly six (four diagonal and two
off-diagonal) nonzero components, each zero component of g,, corresponds to a zero
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component of X gy

Proof: Without loss of generality, suppose g23 # 0. Since X has faithful coordi-
nate dependence, we have

X% = (X" (%), X" (2), X? (2, 2°), X7 (2%, 2%)) . (3.11)
Considering all cases in (3.8), we have
Xy = X02) = X(o3) = X2y = X(3) =0, (3.12)

while X (0.0, X(1:1), X(2:2), X(2;3) and X(3.3) are in general nonzero. Hence each zero
component of g, corresponds to a zero component of X, |

Proposition 3.1 is particularly useful, as it holds for all spacetimes and implies that
vector fields with simple coordinate dependence may be taken as a starting point when
applying Definition 3.2. If no such solution to (3.4) can be found, coordinate dependence
may be added via Proposition 3.2 without inducing further constraints. The conditions
of Proposition 3.2 are not overly restrictive, as many line elements in the literature are
either diagonal or have one additional off-diagonal term. Proposition 3.2 does not extend
easily to more general cases, however (e.g. X(1.2) # 0 if g12 = 0 and g13,923 # 0, or
X(2:2) # 0if g22 = 0 and go3 # 0). Finally, we note here that all known exactly self-similar
spacetimes admit an HVF with simple coordinate dependence (in some set of local
coordinates) [42].

3.2.1 Guiding examples

We now apply Definitions 3.1 and 3.2 to various vacuum/perfect fluid cosmologies that
are known to be asymptotically self-similar in the dynamical systems approach. For each
example in Chapter 3, the fundamental four-velocity field is hypersurface-orthogonal
and given by u = (—goo)~'/29/0t.

3.2.1.1 Example: Heckmann-Schiicking

The class of all Bianchi I dust solutions was discovered independently by Robinson [62]
and Heckmann and Schiicking [63] in the 1960s. These homogeneous and anisotropic
models have the line element (2.49) with p; given by (2.27), and are said to asymptote
in the past and future to the Kasner vacuum solutions and the flat dust FLRW mod-
els respectively [42]. As demonstrated in Section 2.3.2.3, the Heckmann—-Schiicking so-
lutions satisfy Definition 3.1 since (2.49) reduces to the Kasner/FLRW line elements in
the past/future asymptotic regimes. Hence it is reasonable to expect that Definition 3.2
should also be satisfied via the Kasner/FLRW HVFs.

At early times, we take T' = ¢ and choose X as the Kasner HVF (2.30) with p; given by
(2.27); this vector field is well-defined due to the exact mapping between the Heckmann-
Schiicking and Kasner models in the past asymptotic regime. The simple coordinate
dependence of (2.30) ensures correspondence between the zero components of X,y and
Jab, While the nonzero components yield

Xo:0) X (i) (2-3p)T

T GO Gk DR 3.13
900 Gii 3(T +to) (3.13)
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Since the limits as 7' — 0" of all terms in (3.13) exist and are equal (to 1), the Heckmann-
Schiicking solutions are asymptotically self-similar in the past under Definition 3.2.

At late times, we take ' = —1/t such that T — 0~ as t — oo; the line element and
coordinate basis transform respectively as

1 0 0
2 - T2 N T27 .
dt T4d , T 5T (3.14)

such that the flat dust FLRW HVF (2.30) with p; given by (2.28) becomes

1 1 1
Xt=(-T,2a,2y, -2 . 1

The vector field (3.15) has simple coordinate dependence, and yields

Xoo _ (i) _ (L+3pi)toT — 3 (3.16)
900 Gii 3(toT' —1)

Again, the limits as 77 — 0~ of all terms in (3.16) exist and are equal (to 1); hence the
Heckmann-Schiicking solutions are also asymptotically self-similar in the future un-
der Definition 3.2. This is a promising start, and indicates that an exact mapping be-
tween spacetimes in the asymptotic regime is preserved by the asymptotic process of
the homothetic equation approach. As an artefact of this asymptotic process, how-
ever, the choice of X in Definition 3.2 is not restricted to an exactly self-similar space-
time’s HVF should Definition 3.1 be satisfied. For example, any vector field of the form
X*= (=T +o(T),(1/3)x,(1/3)y,(1/3)z) as T — 0~ may be used in place of (3.15).

3.2.1.2 Example: FLRW (open, radiation)

An example cosmology that satisfies the exact mapping approach in the future, but not
in the past, is the open radiation FLRW model discussed in Section 2.3.2.3. This Bianchi
V /VII,, solution has the line element (2.50), which reduces as t — oo to the Milne line
element (2.19). At late times, we take 7' = —1/t and choose X as the Milne HVF (2.25)
(transformed accordingly via (3.14)) such that

X0 _, Xy _ Xep _ Xgy o CT-1
goo g g2 gm 20T -1

(3.17)

Since the limits as 7" — 0~ of all terms in (3.17) exist and are equal (to 1), the open
radiation FLRW model is asymptotically self-similar in the future under Definition 3.2.
At early times, the open radiation FLRW model asymptotes to the flat radiation model
in the dynamical systems approach. The exact mapping approach is not satisfied, how-
ever: although the open manifold R x H3 is diffeomorphic to the flat manifold R?, the two
models with their equipped metrics are not isometric in the past. Indeed, taking 7' = ¢
and simply choosing X as the analogue of the flat radiation FLRW HVF (2.53) yields

X X1,
lim 2O _ gy 2D g
T—01t goo T—0t 911
X, X4
lim =32 _ iy 268

1 th 3.18
T—0t  g22 T—0t+ ¢33 ( + X co X)7 ( )

N =
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where the last two limits vary with x across the spacelike hypersurface Sy.

The lack of an exact mapping to guide the choice of X calls for more general methods
of solving (3.4). An obvious one is to assume simple coordinate dependence (i.e. to
choose X as the general vector field (3.9)), in which case the three limit equations (3.7)
evaluate to

d C+T d
lim —X%(T) = 1 X9(r) ———— + —Xx!
P, op X (1) = lim, ( M a1 Ty (X)>

C+T d
m + X! (x) coth x + @X2 (9))

= lim, <X0 (T) m + X1 (x) cothx + X? (0) cot 0 + ;;X?’ (¢)> . (3.19)
Existence of the first two limits yields X°(T) ~ KT as T — 07 for some constant K # 0,
while equality yields X!(x) = (1/2)Kx. Hence the first two limits are constant while
the last two limits depend at least on x, and Definition 3.2 cannot be satisfied with the
assumption of simple coordinate dependence.

Since coordinate dependence must be added and Proposition 3.2 may not be applied
(the line element (2.50) is diagonal), additional constraints on X inevitably come into
play. The spherical symmetry of the model motivates the choice

X = (X%(T,x), X" (T,x),0,0), (3.20)

and the resultant constraint equation X (o,;) = 0 evaluates to

0 0
—X%(T,x)=2C+T)T—X"(T,x). 21
oy (Tx) = QO+ T)THRX (T x) (3.21)
Equations (3.19) are essentially unchanged, but the last equation is redundant as X2 =

X3 = 0. We further assume the vector components are separable functions and choose
X(T,x) = f(T)sinh x, such that (3.19) reduces to

lim 2 X0 (T,x) = lim <X0 (T, x)

C+T
=0+ OT TS0+ 7+ f(T) cosh x) : (3.22)

2C+ 1)

Integrating (3.21) and substituting the result into (3.22), we obtain a limit equation in f;

one possible solution to this equation is given by f(T') = ¢’/¢, which yields
1 T T .
X = (C’ (2C +T)Tec coshy,ec smhx,0,0) , (3.23)
X0
% = % (202 +4CT + T2) e@ cosh X,

X1 Xo. X¢a. 1
(LY _ 2422 _ 263 _ L (2C +1T) e coshy. (3.24)
911 922 933 c

Hence the limits as 7' — 07 of all terms in (3.24) exist and are equal (to a point-dependent
scaling factor A(x) = 2cosh x), and the open radiation FLRW model is asymptotically
self-similar in the past under Definition 3.2.

The vector field (3.23) is smooth, since each component is separable into smooth func-
tions of a single variable. No pathological behaviour exists in A either: the scaling factor



3.2 Fine-tuning the homothetic equation approach 37

is smooth and nowhere zero on the spacelike hypersurface Sy, although it does blow up
as x — oo. Interestingly enough, the asymptotic form of (3.23) as T, x — 0T is precisely
the analogue of the flat radiation FLRW HVF (2.53) (up to a factor of two); this might re-
flect the fact that the open line element (2.50) reduces as T, y — 0" to the flat line element
(2.29) with v = 4/3 (after rescaling the spatial coordinates).

3.2.1.3 Example: FLRW (closed, radiation)

At late times, the closed radiation FLRW model behaves very differently from the open
model as it recollapses to a singularity. According to the dynamical systems approach,
however, it is still asymptotically self-similar in the future (to the time-reversed, contract-
ing flat “model”) [60]. The closed model is Bianchi IX, and its line element is given by

ds® = —dt* + (2C — t) t (dx* + sin® y (d6” + sin® 0 d¢*)) , (3.25)

ie. (29) with a(t) = /(2C —t)t and k = 1, where C = /(1/3)ua* is a constant [2].
Although (3.25) is similar to (2.50) in form, we have ¢t € (0, 2C') in this case since the future
state is the singularity corresponding to ¢t = 2C; furthermore, x € (0, 2) is essentially a
third angle instead of a radial coordinate. For our analysis, we cast (3.25) as [20]

ds®> = C?T? (—4dT* + (2 — T?) (dx* + sin® y (d6” + sin® 0 d¢?))) (3.26)

via the coordinate transformation

1
T=—/ 720~ (3.27)

such that T € (—v/2,0)and T'— 0~ as t — 20

The exact mapping approach is clearly not satisfied by the closed radiation FLRW
model, which is not isometric to the flat model in any regime (since the closed manifold
R x S? is not even diffeomorphic to the flat manifold R?*). As in the case of the open
model, the assumption of simple coordinate dependence also fails to yield a solution
to (3.4). We then consider the separable and spherically symmetric ansatz (3.20) with
X(T, x) = f(T)sin x, such that the constraint and limit equations reduce to

X0, X,
T gy 20D

X(O;l) = 0, lim (328)
T—0— goo T—0- J11
One possible solution to (3.28) is given by
1
X = (m (2 - TQ) sinv/2 T cos x, cos V2 T'sin y, 0, 0> , (3.29)

which yields

goo 2 V2T

X1 X(o. X (. inv2T
(1;1) (2;2) (3;3) V2 2y Sl
= = = |cosv2T + (1 -1 cosy. (3.30
g1 go2 933 ( ( ) V2T ) x. (3.30)

X, i
200 _ (1 (2 -12) COS\/§T+%(2_3T2) Sm?) CoS X,
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Since the limits as 7" — 0~ of all terms in (3.30) exist and are equal (to a point-dependent
scaling factor A(x) = 2cos ), the closed radiation FLRW model is asymptotically self-
similar in the future under Definition 3.2. Again, the vector field (3.29) and A are smooth.
The scaling factor is now bounded on the spacelike hypersurface Sy, but vanishes at
X = m/2,3m/2; this is not a major concern, as such values of x correspond to distinguished
points on the manifold M where the timelike component of (3.29) vanishes as well.

At early times, we take 7' = ¢t and choose (using the same procedure)

1
X = <C(2C—T)Te_g cosx,e_% sinx,0,0) , (3.31)
which yields
X0 1
% = &5 (20° — 40T + T%) ¢ € cosix,

LY _ A22) _ AG3) 1 (2C —T) & cosy (3.32)
g11 922 933 C

and the same scaling factor A(x) = 2cosx. Hence the closed radiation FLRW model is
also asymptotically self-similar in the past under Definition 3.2.

3.2.1.4 Example: Joseph

This Bianchi V vacuum solution was discovered by Joseph [64] in 1966; it is past asymp-
totic in the dynamical systems approach to the Kasner vacuum solution (2.26) with
p1 = 1/3 and p23 = (1 = v/3)/3, and future asymptotic to the Milne universe (2.19)
[42]. The line element is given by

ds® = sinh 2t <—dt2 + da? + e** <(tanh t)\/g dy* + (tanh t)_\/g d22)> : (3.33)
At late times, (3.33) reduces as t — oo to

45 = 56 (~df? + da? + & (dy? + d2?) (3.34)

which transforms to the alternate Milne line element (2.22) via

_ 1
t=—¢. 3.35
7 (3.35)
Hence the exact mapping approach is satisfied, and we expect Definition 3.2 to be satis-
fied as well with the Milne HVF X = (¢,0,0,0) (i.e. (2.25) in the coordinates of (2.22)).
Taking T' = —1/t, the Milne HVF transforms via (3.35) and (3.14) to

X =(7%0,0,0), (3.36)
which yields
X0 X1 2 X9y X(3. 2 2
M:ﬁ:—co‘ch—, ﬂ,ﬂz—coth—$\/§csch—. (3.37)
900 g1 T g22 933 T T

Since the limits as 7" — 0~ of all terms in (3.37) exist and are equal (to a constant scaling
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factor A = 1), the Joseph solution is indeed asymptotically self-similar in the future under
Definition 3.2.
At early times, it is unclear if an exact mapping exists between the Joseph and Kasner

solutions. Transforming (3.33) via
1 :
— (2t
5 (20

and taking the asymptotic form as ¢ — 0% yields (after rescaling each spatial coordinate)

[SIIeY

t= (3.38)

ds? ~ —dB + T3 da? + C° (ﬁ(”@dy? n tN%(l*@dz?) : (3.39)

where C' = 2/3!/3. Each term in (3.39) has the same dependence on coordinate time
as in the Kasner line element (2.26) with p; = 1/3 and p23 = (1 £ 1/3)/3, although the
similarity ends with the nontrivial presence of the spatial factor e“*. It may be possible to
map (3.39) to (2.26) via a coordinate transformation of comparable complexity to (2.24),
but it is just as likely that no such transformation exists.

Furthermore, a vector field that satisfies Definition 3.2 has yet to be found: assuming
simple coordinate dependence fails to yield a solution to (3.4), and even considering the
full set of constraint equations (3.6) with a separable ansatz does not appear to work.
There is no requirement for the vector components to be separable, however, and we are
unable to rule out the existence of a more general vector field that fulfils the conditions
of the homothetic equation approach. Hence it is not possible at this stage to comment
on the past asymptotic self-similarity of the Joseph solution under Definition 3.2.

3.2.1.5 Example: Ellis-MacCallum

This Bianchi VI vacuum solution was discovered by Ellis and MacCallum [58] in 1969,
and has the line element

ds® = t73e"” (—di® + da?) + t (¥ dy? + e 27d2?) . (3.40)

According to the dynamical systems approach, (3.40) is past asymptotic to the Kasner
vacuum solution (2.26) with p; = —1/3 and py = p3 = 2/3; it is also asymptotically self-
similar in the future to the Taub form of flat spacetime, whose line element and HVF are
given respectively by [42]

ds? = —df* + £2dz? + dy? + d2, (3.41)
X*=(t,0,7,%). (3.42)

At early times, no exact mapping has been found between the Ellis-MacCallum and
Kasner solutions. Transforming (3.40) via

t:

W

" (3.43)

Q| W~

and taking the asymptotic form as ¢ — 0% yields (after rescaling each spatial coordinate)
ds® ~ —dP + T 5da” + 15 (C%dy? + e d2?) (3.44)

where C' = 2(3/4)'/3. As in the case of the Joseph solution, (3.44) is similar in form to the
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Kasner line element (2.26) with p; = —1/3 and py = p3 = 2/3, but only up to the spatial
factors e*“*. Since no vector field has been found to satisfy the homothetic equation
approach either, it is not possible at this stage to comment on the past asymptotic self-
similarity of the Ellis-MacCallum solution under Definitions 3.1 and 3.2.

At late times, however, this example cosmology offers a new twist on our character-
isations of the exact mapping and homothetic equation approaches. Attempts to find
an exact mapping between the Ellis-MacCallum and Taub solutions have been unsuc-
cessful, and are hampered by the fact that the line element (3.40) is non-analytic in the
future asymptotic regime. This may be seen by, say, taking 7' = —1/¢ and noting that
the inverse metric ¢ contains terms with the factor e~/ T* (which is non-analytic in the
limit as 7" — 0~ since its Taylor series vanishes). In other words, (3.40) has no power
series representation as ¢ — oo, which hinders the search for a coordinate transformation
between its asymptotic form and (3.41).

On the other hand, a vector field that satisfies Definition 3.2 is easily found. We take

T = —1/t and assume simple coordinate dependence in solving the limit equations (3.7),
which yields
X = (-T%0,y,2), (3.45)
X0 X 1 Xo. X (3. 1
©0 _y _Oge 20Dy lpe fed 269 g le g
goo 4 g1 4 922 933 2

Since the limits as 7' — 0~ of all terms in (3.46) exist and are equal (to 1), the Ellis—
MacCallum solution is asymptotically self-similar in the future under Definition 3.2.

The similarity of (3.45) to the Taub HVF (3.42) seems to indicate the existence of an
exact mapping between the Ellis-MacCallum and Taub solutions as ¢ — oc. Indeed, an
approximate mapping has been found via the (non-analytic) coordinate transformation

2

D=

1
€2

ot

t=1t" , T =tz y=t2e"y, zZ= t%e_mz, (3.47)
where the spatial Taub coordinates (7,7, Z) are assumed to be bounded. Then we have

x,y,z = o(l) as t — oo, and the Taub line element (3.41) becomes

ds> =t72e"” (= (1+0(1)) df? + (1 +o(1)) da® + o (1) dt dx)
+t(e*dy* + e *dz* + o (1) dx dy + o (1) dz dz) + o (1) dt dy + o (1) dt dz, (3.48)

i.e. it is approximately equivalent to the Ellis-MacCallum line element (3.40) as t — oc.
This mapping also explains the cubic dependence on cosmic time in (3.45), as the vector
field transforms via (3.14) and (3.47) to

_ 5 T 1 1
xe=(t(1--2),29(14+=—=).2(1+ = .
((-) 370 am) (rm). oo

which asymptotes to the Taub HVF (3.42) as t — oo. Nevertheless, since (3.47) does not
constitute an exact mapping due to the off-diagonal terms in (3.48) (the dt dx term even
blows up faster than the dy? and dz? terms), we temporarily withhold comment on the
future asymptotic self-similarity of the Ellis-MacCallum solution under Definition 3.1
(see Section 3.3.1).
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3.2.2 Asymptotic self-similarity breaking

The Joseph and Ellis-MacCallum examples in Section 3.2.1 illustrate that the asymptotic
self-similarity of a spacetime under the homothetic equation approach might in general
be rather difficult—if not impossible—to determine. For Definition 3.2 to be of any
credible use, however, we ideally require it to exclude spacetimes that exhibit asymptotic
self-similarity breaking (i.e. the negation of asymptotic self-similarity) in the dynamical
systems approach.

Asymptotic self-similarity breaking occurs in the dynamical systems approach when
a cosmological model fails to asymptote to an exactly self-similar counterpart in state
space. This typically manifests itself in the unbounded and/or oscillatory behaviour
of various dimensionless variables in the asymptotic regime, such that their limits do
not exist [65]. While asymptotic self-similarity is known to break in this way for several
classes of models, explicit solutions in the literature that possess such behaviour are com-
paratively rare. We now consider some of these examples, explicit or otherwise, in the
context of Definition 3.2; the question of how asymptotic self-similarity breaking (in the
dynamical systems approach) relates to Definition 3.1 is addressed in Section 3.3.

3.2.2.1 Example: Szekeres (decaying)

An explicit and tractable example of asymptotic self-similarity breaking is found in the
class of irrotational dust models discovered by Szekeres [66] in 1975. These solutions
are fully inhomogeneous, i.e. they admit no KVFs. The Szekeres solutions may be in-
terpreted as exact linear perturbations of dust FLRW models via a reformulation due to
Goode and Wainwright [67, 68], in which the line element is given by

2
ds? = —dt? + t3 ((A (2,9, 2) + ky ()3 + k_ (2) t*l) dx® + dy* + dz2> ,

Az, y,2) =a(x)y+b(x)z+c(z) + ngr () (y* +2%), (3.50)
where the functions a, b, ¢ and k4 are arbitrary but sufficiently differentiable. This line
element has a growing mode corresponding to the presence of the term k %/, as well as
a decaying mode corresponding to the presence of the term k_¢~1.

Now, the decaying Szekeres solution witha =b =k =0, ¢(z) = Cand k_(z) = Kz
(where C, K > 0 are constants) is known to exhibit asymptotic self-similarity breaking at
early times, in that a given dimensionless variable blows up as t — 07 [69]. We apply the
homothetic equation approach to this solution; the line element (3.50) reduces to

ds? = —dt? + 13 ((O + Kot da® + dy? + dz2) : (3.51)

while taking 7" = ¢ and assuming X has simple coordinate dependence yields the three
limit equations

20T —Ke vy K d
3T (CT + Kz) YorT+ Kz dat
2 d 2 d

= Jim, (XO (T) Vi @XQ (y)> = lim, (XO (T) 37t £X3 (z)> . (3.52)

d
lim —X%(T) = i x0T
S, X (T) T;%a( (T)
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If the (T, x)-dependent terms in (3.52) are considered as functions of 7" with constant
z, a “solution” is found without much difficulty. For = # 0, we have

2 1 1
X*=(t 2z, -y - .

U I <,
goo 922 933 ’ g11 3(CT + Kz)’
where the limits as 7" — 07 of all terms in (3.54) exist and are equal (to 1). This is not
the case for z = 0, however, since the last equation in (3.54) evaluates to X(1.1)/g11 = 4/3
instead. Such pathological behaviour is undesirable in the ideal notion of an asymptot-
ically self-similar spacetime, and should be disallowed even if the limits are equal but
to some discontinuous scaling factor A on the spacelike hypersurface Sp. In any case, by
properly considering the (7', z)-dependent terms in (3.52) and (3.54) as functions on the
manifold M, it is clear that their limits as (T, z) — (0, 2) do not even exist. Hence the
vector field (3.53) fails to satisfy Definition 3.2.

It is possible that every vector field on M fails to satisfy Definition 3.2 in similar fash-
ion to (3.53) (i.e. via the non-existence of limits), which would show that the decaying
Szekeres solution (3.51) is not asymptotically self-similar under the homothetic equation
approach. Such a claim cannot be substantiated at this stage, however. Nevertheless, this
example cosmology has highlighted the need to exclude spacetimes with any form of dis-
continuous behaviour from the eventual working definition of asymptotic self-similarity.

Xoo _ Xeo) _ Xep) _

(3.54)

3.2.2.2 Example: Wainwright-Marshman

Another explicit solution that exhibits asymptotic self-similarity breaking at early times is
found in the class of irrotational stiff fluid models discovered by Wainwright and Marsh-
man [70] in 1979. These solutions are inhomogeneous but admit a G isometry group,
and may be used to model the presence of gravitational waves in otherwise homoge-
neous cosmologies.

Asymptotic self-similarity is known to break in an oscillating subclass of the
Wainwright-Marshman solutions, in that given dimensionless variables are unbounded
and/or oscillatory as the past singularity is approached [71]. The line element for this
subclass is given by

ds? = ent=2) (=dt? + da?) + t2 (dy +m (t —z)dz)* + t2d22,
2 2
m(t—x)-—ocSi( b >, n(t—x)——Q(Cy—i—asin(Z_[iU), (3.55)

t—x

where a, 8 > 0 are constants and Si denotes the sine integral (i.e. Si(z) = [; sin(s)/s ds).
Coordinate domains for (3.55) are t € (z,0), z € (0,00) and y, z € (—o0,00), such that
t — z7 as the singularity is approached. Transforming to cosmic time 7" = ¢ — x and
choosing the most general vector field (3.5), we find that the five limit equations

lim =90 _ g5, 20D _ oy, 20D
T—0t goo T—01t go1 T—0+ g11

Xo. Xo. X (3.
= lim —%2 = i 2@ gy 269

- (3.56)
T—0t g22 T—0t g23 T—0t Q33
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necessarily contain terms with the factors sin (8/7") and Si (5/71). These terms do not ap-
proach 7' = 0 in a smooth manner, since their limits and/or the limits of their derivatives
as T — 07 do not exist.

Encouragingly, such behaviour is consistent with the oscillatory nature of asymptotic
self-similarity breaking in the dynamical systems approach, where the past/future state
is either undefined or approached via increasingly rapid oscillations. Hence imposing a
sufficient degree of differentiability on the asymptotic process in Definition 3.2 appears
to be justifiable, and furthermore ensures that the oscillating Wainwright-Marshman so-
lutions are not asymptotically self-similar under the homothetic equation approach.

3.2.2.3 Example: Davidson

This inhomogeneous radiation solution was discovered by Davidson [72] in 1991; it ad-
mits a G2 isometry group and describes a cylindrically symmetric universe that expands
irrotationally. In cylindrical coordinates, the line element is given by
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ds? = — (1—|—p2)

The Davidson solution is an example of a G cosmology with a diagonal and separa-
ble line element. Such models have been classified and studied generally in the dynam-
ical systems approach; this particular solution belongs to a subclass of diagonal, separa-
ble G2 cosmologies that are not known to be future asymptotic to an exactly self-similar
model [73]. It is unclear if said subclass constitutes a concrete example of asymptotic
self-similarity breaking, since the analysis of G2 cosmologies in the dynamical systems
approach is largely incomplete. The late-time evolution of the Davidson solution itself
has not been examined in detail either.

In any case, the existence of an explicit member of the subclass allows the homoth-
etic equation approach to be applied. Taking ' = —1/t and assuming X has simple
coordinate dependence fails to yield a solution to (3.4), while choosing the cylindrically
symmetric (and separable) ansatz

X = (X°(T,p), X" (T, p),0,0) (3.58)

does not appear to work either. These non-results are inconclusive either way, however,
and it is not possible at this stage to comment on the future asymptotic self-similarity of
the Davidson solution under Definition 3.2.

3.2.2.4 Example: Wainwright-Hancock-Uggla

Asymptotic self-similarity is known to break at late times for perfect fluid Bianchi
VIIy /VIII cosmologies of sufficient generality, in that a given dimensionless variable is
typically (depending on the matter content) unbounded and oscillatory as the future state
is approached [65, 74, 75].

Although the late-time evolution of Bianchi VIIy/VIII cosmologies is more con-
veniently studied in the dynamical systems (orthonormal frame) formalism, a future
asymptotic form for the general Bianchi VIIj line element relative to a coordinate ba-
sis has been derived by Wainwright, Hancock and Uggla [74]. For a Bianchi VIIy dust
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model at late times, this line element is given by

ds? ~ —%637—617'2 + l862(7725+(7)) (w1)2
0
+ 2B (D +V3 8- () (w?)? 4 22T HA+ () VB (m) (w?)?,

Bu(r)=2C%T, B (7) = yHulaCe sin (el ), (359)

Holo
where Hy, ly, C, 1y > 0 are constants, 7 € (—o0, ), and the one-forms w* can be chosen
canonically as [76]

w! = dz, w? =cosz dy — sinzx dz, w3 =sinz dy + cos z dz. (3.60)
We note that taking C' = 0 in (3.59) (and transforming coordinates appropriately) yields
the flat dust FLRW line element (2.29), which is unsurprising as the flat FLRW models
admit a Bianchi VIIj representation.

Numerous Bianchi VIIj results exist in the literature, but an exact line element has
yet to be found. For the purposes of this thesis, then, we apply the homothetic equation
approach to the asymptotic form (3.59). Taking 7' = —e™" (such that 7" — 0~ as 7 — o0)
and choosing the most general vector field (3.5), we find that the four limit equations

fm SO0 oy, X o Xea o Kew o Xes (3.61)

T—0~  goo T—0-  g11 T—0~  g22 T—0~  g23 T—0~  §33
necessarily contain terms with factors of similar form to sin(1/yv/-7T) and
exp (T'sin (1/y/=T)). These terms do not approach T = 0 in a smooth manner,
since their limits and/or the limits of their derivatives as 7' — 0~ do not exist. As
in the case of the Wainwright-Marshman solutions, imposing a sufficient degree of
differentiability on Definition 3.2 ensures that the Bianchi VIIy dust models are not
asymptotically self-similar under the homothetic equation approach (up to the fact that

the asymptotic form (3.59) has been used in place of an exact line element).

3.2.2.5 Example: Mixmaster

Vacuum Bianchi IX cosmologies are well known to exhibit stochastic oscillatory be-
haviour as the past singularity is approached; they were named Mixmaster universes by
Misner [77], who studied them as possible models for the dissipative processes posited
in chaotic cosmology (introduced in Chapter 1). Such stochastic oscillations are not ex-
clusive to the Mixmaster universes, however, and have been described in more general
models by Belinskii, Lifshitz and Khalatnikov [78] via a chaotic map (i.e. a discrete evo-
lution function that is exponentially sensitive to initial conditions). In this picture, the
early-time evolution of a Mixmaster-like model is closely approximated by an infinite
(and hence increasingly rapid) sequence of generalised Kasner solutions that are linked
by generalised vacuum Bianchi II solutions [79].

Mixmaster-like behaviour occurs in vacuum/perfect fluid Bianchi VIII/IX cosmolo-
gies of sufficient generality, and leads to asymptotic self-similarity breaking in the dy-
namical systems approach since the singularity is approached via increasingly rapid os-
cillations [65]. Although the homothetic equation approach is not strictly applicable with-
out explicit knowledge of the metric g, it is clear that the stochastic oscillations between
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Kasner epochs in a Mixmaster-like model prevent the scaling factor A from being well-
defined in the past asymptotic regime. Hence we may also conclude that such models
are not asymptotically self-similar in the past under Definition 3.2.

3.3 Working definition

From our analysis of example cosmologies in Section 3.2, several improvements to the
homothetic equation approach are required. The main imperative is to introduce some
notion of differentiability into Definition 3.2, for added compatibility with the nature of
asymptotic self-similarity breaking in the dynamical systems approach. More precisely,
the quotient terms in the limit equations should be sufficiently differentiable functions on
the manifold M, while their limits as 7 — 07(~) should exist and equal some sufficiently
differentiable function on the spacelike hypersurface S.

It is also desirable to remove any ambiguity caused by the asymptotic notation of
(1.5) in Definition 3.2, which necessitates a proper reformulation in local coordinates.
With these objectives in mind, we amend the homothetic equation approach accordingly
and arrive at the following working definition of asymptotic self-similarity.

Definition 3.4 (Asymptotic self-similarity): A spacetime (M, g) is asymptotically self-
similar in the past (future) if there exists a cosmic time function 7" such that 7" — 0+(-) as
the spacetime’s past (future) is approached, and a C? vector field X on M such that

X(ap) = fabGab (3.62)
in some set of local coordinates (7', z*), where the functions f,;, # 0 on M satisfy

fap € CH(M), lim  fop (T, 2") = X\ (zH) (3.63)
T—0+(=)
for some C'! function A # 0 on T' = 0. If ) is constant on 7' = 0, the spacetime is also
uniformly self-similar in the past (future).

By analogy with the homothetic equation (2.18) and the definition of an HVEF, the
vector field X is termed a past/future asymptotically homothetic vector field (AHVF).
We are concerned primarily with AHVFs that have a nonzero timelike component (i.e.
the notion of asymptotic scale invariance with time), but note that Definition 3.4 has
been formulated more generally in order not to exclude spacetimes that asymptotically
exhibit spatial scale invariance.

Definition 3.4 is an improvement over its predecessor in several ways. Most promi-
nently, the asymptotic notation in (3.2) and (3.4) has been recast as a limiting process
for the 10 distinct functions fy; (i.e. the quotient terms X (4)/gqs) in (3.62) and (3.63).
This lends precision and practicality to Definition 3.4, while preserving the central re-
quirement in Definition 3.2 that X, and g, are equivalent up to some order of cosmic
time 7" as the past/future state is approached. The new definition also deals with the
everywhere zero components of X ;) and g rather neatly, since the existence of fu, # 0
immediately implies correspondence between said components.

With the asymptotic process shifted into the functions f,;, imposing differentiability
on Definition 3.4 becomes straightforward. The AHVF X is required to be at least C? on
M, in accordance with the C? conditions of Definition 2.1 and the conformal framework.
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A C! degree of differentiability is imposed on each f,;, and the scaling factor A, where the
latter condition rules out the possibility of A behaving discontinuously on Sy (as raised
in Section 3.2.2.1). However, as seen in the FLRW examples, A is permitted to vanish at
distinguished points on M (more precisely, on a subset of Sy with measure zero).

Finally, spacetimes that admit a constant scaling factor may be thought of as being
uniformly self-similar, i.e. asymptotically self-similar in a uniform (across Sp) sense; they
come closest to exact self-similarity in the asymptotic regime, and are identified under
Definition 3.4 as a special subclass of asymptotically self-similar spacetimes.

Although Definition 3.4 is derived from the coordinate-invariant tensor relation (3.2),
its formulation in local coordinates might appear problematic at first glance. Crucially,
(3.62) is not a tensor equation as the object f,; is not tensorial; in general, then, the ex-
istence of the functions f,;, will depend on the set of coordinates they are considered in
(since correspondence between the zero/nonzero components of X, and g, in other
coordinates might be broken). The definition only requires (3.62) to hold in some coordi-
nate frame, however, and allows the choice of a different AHVF (with the same asymp-
totic behaviour) in another frame if necessary. We revisit this point in Section 5.1.

Armed with a formal working definition, we derive a couple of preliminary results
that characterise asymptotic self-similarity in the context of other similarity-related prop-
erties. Firstly, a simple proposition linking the existence of HVFs, CKVFs and AHVFs
follows immediately from Definition 3.4.

Proposition 3.3: A spacetime (M, g) is asymptotically self-similar in the past (future)
if it admits an HVE, or a CKVF whose associated scaling factor is C' I and nonzero in the
limit as the spacetime’s past (future) is approached.

Proof: If X is an HVF on (M,g), its associated scaling factor X\ is a nonzero con-
stant. Hence X is a uniform AHVF with f,;, = ), and (M,g) is asymptotically
self-similar in the past (future). If X’ is a CKVF on (M, g) that satisfies the conditions
of Proposition 3.3, its associated scaling factor X' # 0 is a C? function on M that is C!
and nonzero in the limit as the spacetime’s past (future) is approached. Hence X’ is an
AHVEF with f/, = X, and (M, g) is asymptotically self-similar in the past (future). |

An exactly self-similar spacetime is asymptotically self-similar by Proposition 3.3,
along with spacetimes that admit the specified class of CKVFs (see Section 3.4).

We also return to the notion of an exact mapping (between a spacetime and an exactly
self-similar counterpart) in the asymptotic regime, which is related to Definition 3.4 and
the dynamical systems definition of asymptotic self-similarity by the following theorem.

Theorem 3.1: If a spacetime (M, g) admits an exact mapping to an exactly self-similar
spacetime (M'’,g’) in the past (future) asymptotic regime, (M,g) is uniformly self-
similar in the past (future). Furthermore, (M, g) is past (future) asymptotic to (M’, g’) in
the dynamical systems approach.

Proof: For (M, g) and (M’,g’) to be isometric in the past (future), M and M’ must be
diffeomorphic; we then use the same set of local coordinates (7', z*) for both spacetimes,
where T — 01(7) as the spacetimes’ past (future) is approached. From the line element
formulation of Definition 3.1, we see that g, ~ ¢/, as T — 0+t(=). Now, we choose X on
M to be the analogue of the C2> HVF H on M’ such that X* = H. Since (T, z") may
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always be chosen such that H* has simple coordinate dependence, each zero component
of gap corresponds to a zero component of X ,.;) by Proposition 3.1. We take fq;, = A for
the zero components of g,,, where A # 0 is the constant scaling factor associated with H.
For the nonzero components, we have

X 3 (9 (X% + X)) + gapeX©
((1 b) ]
Jab=—""+= (3.64)
Gab Gab

from (3.10). Then f,; € C*(M) since gup, X € C?(M), and we also have

Hm  fa = HS“?’)) —\ (3.65)
T—0+(=) gab

Hence X is a uniform AHVEF, and (M, g) is uniformly self-similar in the past (future).
Furthermore, sinceg — g’ as T — 01(7), any orthonormal frame (2.38) for (M, g) ap-
proaches a corresponding orthonormal frame for (M’, g’) in the past (future) asymptotic
regime. In other words, all dimensionless variables constructed from the commutation
functions 7¢,, on M asymptote to their counterparts on M’. Hence (M, g) is past (future)

asymptotic to (M’, g') in the dynamical systems approach. [

As alluded to in the discussion following Proposition 3.2, it is reasonable to assume
the existence of local coordinates (7, z#) in which the HVF H has simple coordinate
dependence [42]. We also note that f,;, # 0 for the nonzero components of g, since
limp_,g+-) fab # 0.

Theorem 3.1 is useful on several counts. For one, it shows that an isometry between
spacetimes in the asymptotic regime is preserved by the asymptotic process of Defini-
tion 3.4, such that the search for an exact mapping to an exactly self-similar spacetime
becomes an alternative method of finding a uniform AHVF. Conversely, any form of
asymptotic self-similarity breaking (under Definition 3.4 or in the dynamical systems ap-
proach) implies via the contrapositive of Theorem 3.1 that no such mapping exists. Hence
all the example cosmologies in Section 3.2.2 do not satisfy Definition 3.1; we summarise
these and other results in the following section.

3.3.1 Summary of examples

In formulating Definition 3.4, we have considered the asymptotic self-similarity of vari-
ous example cosmologies under a homothetic equation-based approach, as well as an ex-
act mapping definition for the purpose of comparison. Guided by existing results in the
dynamical systems approach, 10 (classes of) models have been examined in detail: five
of these are both past and future asymptotic to known exactly self-similar models, while
the other five exhibit asymptotic self-similarity breaking at early or late times (although,
as mentioned in Section 3.2.2.3, the Davidson result is not completely established).

The asymptotic self-similarity of these cosmologies under the dynamical systems, ho-
mothetic equation and exact mapping definitions is presented in Table 3.1. While the
analysis of several examples under Definition 3.4 remains inconclusive, the homothetic
equation results that have been obtained show perfect agreement with those in the dy-
namical systems approach. As seen from the FLRW models, however, the exact mapping
results do not. Theorem 3.1 verifies that Definition 3.1 is the strongest of the three defini-
tions being considered; this allows the existence of an exact mapping to be ruled out in
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| Model(s) | P/F | DS | Def. 3.4 (uniform) | Def. 3.1 |

L P Y Y (Y) Y
Heckmann-Schiicking F Y Y Y
L P Y Y (N¥) N
FLRW (open, radiation) 5 Y YY) Y
L P Y Y (N%) N
FLRW (closed, radiation) F Y Y (N9 N
P Y 2 ?
Joseph F | Y Y (Y) Y
. P Y ?2(?) ?
Ellis-MacCallum F Y YY) v
Szekeres (decaying) P N ? (N%) NT
Wainwright-Marshman P N N (N) Nf
Davidson F | N ? (N%) NT
Wainwright-Hancock-Uggla | F | N N (N) N
Mixmaster P N N (N) NT

t: Theorem 3.1 % : Conjecture 3.1

Table 3.1: Past and/or future asymptotic self-similarity of the example cosmologies in Chapter 3,
according to the dynamical systems, homothetic equation and exact mapping definitions.

the five examples that exhibit asymptotic self-similarity breaking.

There appears to be a correlation between uniform self-similarity and Definition 3.1,
in that an exact mapping always yields a uniform AHVF (i.e. the exactly self-similar
model’s HVF) in accordance with Theorem 3.1, while no uniform AHVFs have been
found for the examples that do not satisfy Definition 3.1. However, it is not trivial to
prove that an example is asymptotically but not uniformly self-similar (e.g. the FLRW
models); AHVFs with simple coordinate dependence have generally been ruled out in
such cases, but it is possible to conceive of more general AHVFs admitting spatially de-
pendent functions f,; (7, z*) that become constant in the limit as 7 — 0+(-),

On the other hand, a strong argument has been made in Section 3.2.1.5 for the exis-
tence of an exact mapping in the Ellis-MacCallum (future) example, even though uni-
form self-similarity has been demonstrated without the HVF from such a mapping. With
the apparent correlation between uniform self-similarity and Definition 3.1 in mind, we
offer the following conjecture.

Conjecture 3.1: If a spacetime (M, g) is uniformly self-similar in the past (future), it
admits an exact mapping to an exactly self-similar spacetime (M’, g’) in the past (future)
asymptotic regime.

Taken together with Theorem 3.1, Conjecture 3.1 essentially posits that uniform
self-similarity and Definition 3.1 are equivalent notions of self-similarity. It supports the
existence of an exact mapping in the Ellis-MacCallum example, while allowing us to
make speculative claims regarding the breaking of uniform self-similarity in the FLRW,
Szekeres and Davidson examples.
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3.4 Further discussion

Several difficulties arise when using Definition 3.4 to determine the asymptotic self-
similarity of a general spacetime (where the line element might be extremely complex).
As evident from the Joseph and Ellis-MacCallum solutions at early times, attempting to
find an AHVF via the constraint and limit equations is daunting if a non-separable ansatz
with full coordinate dependence is required. Furthermore, showing that the functions f,;
are C'! is not trivial if they are multivariate and non-separable.

Proving that a spacetime is not asymptotically self-similar might be even harder than
proving it is, although any solution with inherent oscillatory behaviour similar to that in
the Wainwright-Marshman or Mixmaster models is unlikely to satisfy the differentiabil-
ity conditions of Definition 3.4. By such reasoning, we have drawn our conclusions on
the general Bianchi VIIy dust models from the Wainwright-Hancock-Uggla asymptotic
form with confidence.

It is clearly desirable to devise additional methods of finding AHVFs. One hitherto
unexplored possibility is to search for the specified class of CKVFs that serve as AHVFs
by Proposition 3.3. For example, the highly symmetric FLRW models admit nine inde-
pendent CKVFs (one of these is homothetic if the model is exactly self-similar) [80]; the
simplest is the hypersurface-orthogonal vector field X = a(t)0/0t, where a is the FLRW
scale factor and ¢ is coordinate time. In the case of the open radiation model with T" = ¢,

this CKVF is given by
X = (\/(20 Y T)T,0,0, 0) , (3.66)

which yields the divergent (as T' — 07) scaling factor

c+T

MNT) = ——. 3.67
T) VRC+T)T ( )
Another CKVF is given by
1 1 .
X% = (C (2C +T) T cosh x, c (C + T)sinh x, 0, O) , (3.68)

which yields the scaling factor

MNT,x) = % (C+T)coshy, Tli_)ng+ A = 2cosh . (3.69)
Since (3.68) satisfies the conditions of Proposition 3.3, it is a past AHVFE. We note that
(3.68) is asymptotically equivalent to the AHVF (3.23), and accordingly admits the same
function A(x) = 2 cosh x on the spacelike hypersurface Sy.

While CKVFs are (in principle) a convenient source of AHVFs, they rarely exist and
are usually homothetic when they do [41]. In fact, most spacetimes that admit a CKVF
are very simple and highly symmetric to begin with [81]. Nevertheless, since CKVFs are
relatively well-documented in the literature, we may employ them whenever they are
available and concordant with the conditions of Proposition 3.3 (see Section 4.2.1).
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Chapter 4

Self-similarity in the conformal
framework of QC-WCH

In this chapter, we seek to integrate exact self-similarity and the working definition of
asymptotic self-similarity into the conformal framework of quiescent cosmology and the
Weyl curvature hypothesis. Section 4.1 details the conditions under which these prop-
erties are preserved by the conformal transformations in the framework, while addi-
tional example cosmologies with known conformal structures are examined for exact
and asymptotic self-similarity in Section 4.2. The results in this thesis are consolidated in
Section 4.3 to provide new insights into the relationships between isotropy, homogeneity
and self-similarity in the asymptotic regime.

4.1 Self-similarity under conformal transformations

A key aspect of fitting self-similarity into the conformal framework is determining if and
how the notions of exact self-similarity (i.e. the homothetic equation (2.18) with constant
A # 0) and asymptotic self-similarity (i.e. Definition 3.4) translate under the conformal
transformations in the framework. Specifically, we are looking to ascertain whether self-
similarity (breaking) in a physical spacetime necessarily implies similar behaviour in its
unphysical counterpart, and vice versa.

It is clear that such an investigation cannot be conducted using the dynamical sys-
tems definition of asymptotic self-similarity: the unphysical spacetimes in the conformal
framework are generally not exact solutions to the EFE (with physically viable matter
content), much less solutions that are Bianchi. On the other hand, it is perfectly meaning-
ful for an unphysical spacetime (M g) to be asymptotically self-similar under Definition
3.4. Indeed, while the functions fab might even be well-defined on all of M (and in partic-
ular on the spacelike hypersurface Sy), they need only be C'* on the physical submanifold
Mn M and approach some C! function A # 0 on the past/future state 7' = 0.

As it turns out, asymptotic self-similarity is largely preserved by the conformal trans-
formations in the framework —up to the fulfilment of certain technical requirements on
the conformal factor and relevant vector field.

Theorem 4.1: Suppose a physical spacetime (M, g) admits an unphysical past (future)
counterpart (M,g) in the conformal framework. If a vector field X on (M,g) is an
AHVF with associated function A, and the function A := X(In ) is C! and differs from
A in the limit as the spacetime’s past (future) is approached, X is an AHVF on (Mv . 8).

51
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Proof: First we have M C M and g = O?(T)g from the conformal framework,
where the cosmic time function T — 07(7) as either spacetime’s past (future) is
approached. The Leibniz rule for the Lie derivative yields

Lxg = Lx (%) = (—207°Lx0Q) g+ 277 (Lxg) (4.1)
In local coordinates (7', z*) such that X is an AHVF on (M, g), it follows from (4.1) that

Xp)y = _973XCQ,cgab+972X(a§b)
= Q03X 0gap + 2 fargar

QN -
= (fab_XOQ) YGab

= <fab - XO (ln Q),O) Eab
= (fab - A) gab: (4.2)

where the colon denotes covariant differentiation with respect to g, and A € C LM)
since X, Q € C?(M). Then each (f,; — A)is Cton MNM,and (A —limy_, (- A) # 01is
C'on T = 0. Hence X is an AHVF on (M, g). [ |

The added conditions on the function A in Theorem 4.1 (ie. limg; 4+ A is C 1
and differs from )) are crucial but not overly restrictive. Furthermore, X° is typically
O(T) as T — 0*() while Q'/Q = O(1/T) for an analytic conformal factor, such that A
is typically O(1) (and hence bounded in the limit as 7" — 0*(=)). We also note that A is
permitted to vanish on 7' = 0.

Now, exact self-similarity is essentially a stronger notion of uniform self-similarity,
which is in turn a special case of asymptotic self-similarity. It is unsurprising, then, that
a couple of corollaries regarding uniform and exact self-similarity may be derived by
imposing stronger constraints on A in Theorem 4.1.

Corollary 4.1: In addition to the conditions of Theorem 4.1, if X is a uniform AHVF on
(M, g) and A is constant in the limit as the spacetime’s past (future) is approached, X is
a uniform AHVF on (M, g).

Proof: As given in the proof of Theorem 4.1, except (A — limp_,5+(—) A) # 0 is con-
stant on 7' = 0. Hence X is a uniform AHVF on (M, g). [ |

Corollary 4.2: In addition to the conditions of Corollary 4.1, if X is an HVF on (M, g)
and A is constant, X is an HVF on (M, g).

Proof: As given in the proof of Corollary 4.1, except each (fus — A) equals a con-
stant scaling factor (A — A) # 0. Hence X is an HVF on (M, g). [ |

From Theorem 4.1 and its corollaries, any given degree of self-similarity in the physical
spacetime may be used to demonstrate an equal or lower degree of self-similarity in
the unphysical spacetime. We note, however, that the latter spacetime is not necessarily
restricted to said degree of self-similarity; for example, a physical spacetime that is
only asymptotically self-similar might be conformally related to an exactly self-similar
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counterpart. This is alluded to in the following theorem (and its corollaries), which is
essentially the converse of Theorem 4.1 with a similar proof.

Theorem 4.2: Suppose a physical spacetime (M, g) admits an unphysical past (future)
counterpart (M,g) in the conformal framework. If a vector field X on (M,g) is an
AHVF with associated function ), and the function A := X(ln Q) is C! and differs from
—X in the limit as the spacetime’s past (future) is approached, X is an AHVF on (M, g).

Proof: In local coordinates (T, z#) such that X is an AHVF on (M, g), we have

X(a;b) - QXCQ,Cgab + Q2)2:(11:17)
= QX°Q 0G0 + QO farab

~ ~.
= (fab+XOQ> YGab
= (J?ab +X°(In Q),o) Yab

= (J?;zb + K) Jab- (4.3)

Then each (far+A)is Cton M C M, and (X + limg 1) A) #0is C*on T = 0. Hence
X isan AHVF on (M, g). |

Corollary 4.3: In addition to the conditions of Theorem 4.2, if X is a uniform AHVF on
(M, g) and A is constant in the limit as the spacetime’s past (future) is approached, X is
a uniform AHVF on (M, g).

Proof: As given in the proof of Theorem 4.2, except (X + limy_ oo A) # 0 is con-
stant on 7' = 0. Hence X is a uniform AHVF on (M, g). |

Corollary 4.4: In addition to the conditions of Corollary 4.3, if X is an HVF on (M, g)
and A is constant, X is an HVF on (M, g).

Proof: As given in the proof of Corollary 4.3, except each (fas + A) equals a con-
stant scaling factor (A + A) # 0. Hence X is an HVF on (M, g). |

The theorems and corollaries in this section are constructive existence results for
(A)HVFs; they describe, but do not fully characterise, how self-similarity translates
under the conformal transformations in the framework. On the other hand, there is no
analogous result for the breaking of self-similarity. This may be seen by, say, considering
the contrapositive of Theorem 4.1: if X is not an AHVF on (/T/Z , &), we cannot conclude
that it is not one on (M, g) unless A satisfies the specified conditions. Hence the
non-existence of AHVFs on (M, g) necessarily carries over to (M, g) only if every vector
field on M fulfils the requirements of Theorem 4.1 —which is clearly untrue.
Conveniently, Theorem 4.2 provides another method of finding AHVFs for models
that admit an isotropic past/future state in the conformal framework. As the unphysical
metric in this case is regular on an open neighbourhood of the spacelike hypersurface Sy,
the search for an AHVF is potentially simpler on the unphysical spacetime. One example
is the closed radiation FLRW model studied in Section 3.2.1.3, whose line element (3.26)
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has been cast into a form compatible with the admission of an IFS (where Q(T") = —CT).
The line element of the unphysical spacetime follows as

ds? = —4.dT* + (2 — T?) (dx* + sin® x (d6* + sin® 0 d¢?)) , (4.4)

which is regular near and on 7' = 0. Although the constraint equations resulting
from (4.4) are identical to those from (3.26), the limit equations are slightly less com-
plex and may be solved to yield the unphysical AHVF (3.29) with associated function
x) = 2cos x. Applying Theorem 4.2, we then have

sinyv2T
V2T

i.e. (3.29) is a future AHVF for the closed radiation FLRW model as well.

AT, x) = (2 — T2) cos X, lim A = cos Y # —, (4.5)
T—0~

N

4.2 Examples in the conformal framework

In this section, we discuss the self-similarity of several additional cosmologies whose
conformal structures have been studied in the literature, and identify the examples in
Chapter 3 that are known to admit or preclude a conformal past/future state.

421 Self-similarity of FLRW models

As mentioned in Section 2.2, the conformal structures of FLRW models have been thor-
oughly investigated and classified via the asymptotic properties of the scale factor a and
deceleration parameter g [35, 39]. The exact self-similarity of perfect fluid FLRW models
is also well known: any flat model with v € (0, 2] admits an HVF (see (2.28)—(2.30)), as
does any model with v = 2/3. In the latter case, the line element is given by (2.9) with
a(t) = t/C, where C > 0 is a constant and C' < 1 for k¥ = —1 [42]. The empty Milne
universe (2.19) is recovered by taking C' = 1 for kK = —1; accordingly, all FLRW models
with v = 2/3 share the Milne HVF (2.25).

While some open and closed FLRW models are known to be asymptotically self-
similar in the dynamical systems approach, we may demonstrate under Definition 3.4
the asymptotic self-similarity of all FLRW models at early and late times. This result is
not restricted to perfect fluid models, and exploits the existence of CKVFs in its proof.

Theorem 4.3: All FLRW models are asymptotically self-similar in the past (future).

Proof: First we have the general FLRW line element (2.11) in isotropic form, which
may be cast as

-2
ds®> = a® (1) (—d72 + (1 + ikﬁ) (dp® + p* (d6® + sin® 0 d¢>2))> (4.6)

via the coordinate transformation 7 = [ 1/a(t) dt. Assuming the scale factor a has a
(one-sided) generalised power series representation in the asymptotic regime, we write

a(r) =Y Cilr—ml", (4.7)
=1
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where ¢} > 0,7; < ;41 € Rand 7 — 7 ) as the spacetime’s past (future) is approached.
We note that 71 = —1 corresponds to the special case of de Sitter-like spacetimes, which
we have excluded from the FLRW label in Section 2.1.3. Transforming to cosmic time
T =1 — 19 yields

a(T)=> GIT", ' (T)=>_+(=)rCi|T|" ", (4.8)
=1 =1

while the line element (4.6) is essentially unchanged. As T — 0*(~), we see that

' =) |7 0,
gN +( )Tl, | ’ . T (4.9)
a + (—) 7"202/01 ’T‘ 2 , T = O,
ie.d /a=0(1/|T|) in all cases.
For k = 1, we consider the CKVF given by
a 4 — [)2 .
X4 = 1T, sinT, pcosT,0,0 |, (4.10)
which yields the scaling factor
2 / 2
—p a . . 4—p
= —)— T 1 =——(1 411
AT = 50 (cosT 4 () snfr]), i A= 0k0), @D

where C' € {r1,0} is a constant. Since (4.10) satisfies the conditions of Proposition 3.3 for
r1 # —1, it is an AHVF for all closed FLRW models in the past (future).

For k = 0, we consider the CKVF given by

X = (T,p,0,0), (4.12)
which yields the scaling factor
/
AT) =1+ (=) L1, lim A=1+C, (4.13)
a T—0+(=)

where C € {r;,0} is a constant. Since (4.12) satisfies the conditions of Proposition 3.3 for
r1 # —1, it is a uniform AHVF for all flat FLRW models in the past (future).

For k = —1, we consider the CKVF given by

4 2
Xa:('“gmmﬂpmmTpﬁ), (4.14)
4—p
which yields the scaling factor
MT.p) = 257 (cosn T+ (=) © simh T im A= 00 @3
= —— | cos —-)— = —7 .
7p 4 _ p2 a ’ 750+ _ p2 9

where C' € {r1,0} is a constant. Since (4.14) satisfies the conditions of Proposition 3.3 for
r1 # —1, it is an AHVF for all open FLRW models in the past (future). Hence all FLRW
models are asymptotically self-similar in the past (future). [
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The proof of Theorem 4.3 hinges on assuming the generalised power series in (4.7)
converges locally to a in the asymptotic regime, which is certainly the case for all
known FLRW models in the literature [82]. We note that a//a = +a (where a = da/dt),
and should not be confused with the generalised Hubble parameter H = a/a. Also,
(4.10)/(4.14) and (4.12) correspond respectively to the CKVFs H* and H given by
Maartens and Maharaj [80]. Finally, the x-coordinate domain for k£ = —1 transforms to
p € (=2,2),i.e. the scaling factor on 7" = 0 is well-defined for the open models.

Theorem 4.3 applies to any class of spacetimes described by the FLRW line element,
with two exceptions. Firstly, while AHVFs may be found on non-evolving spacetimes
such as the Einstein static universe, it is meaningless for these to be asymptotically self-
similar at “early” or “late” times (although they may be interpreted as being asymptoti-
cally self-similar at all times). Secondly, when 7y = —1in (4.7), a is approximately expo-
nential in coordinate time ¢; such scale factors generally describe de Sitter-like spacetimes
with a positive cosmological constant A. These spacetimes of constant (four-dimensional)
curvature include the de Sitter universe as a specific example, which we attend to in the
following section.

4.2.2 Further examples

At present, only about 15 distinct (classes of) cosmologies have been studied within the
conformal framework. We have examined a handful of these for exact and asymptotic
self-similarity; null results for the Carneiro-Marugan [35, 36] and Senin [39] models are
neither informative nor presented in this thesis. As in Chapter 3, the fundamental four-
velocity field is hypersurface-orthogonal and given by u = (—goo)~'/20/6t.

4.2.2.1 Example: de Sitter

The de Sitter universe is a vacuum energy spacetime with exponential expansion; it pos-
sesses distinctive mathematical properties while serving as a physical model for the ex-
ponential phase of cosmological inflation (introduced in Chapter 1) [2]. In spherical co-
ordinates, the line element is given by

ds® = —dt* + €2 (dx® + x> (d6? + sin® 6 dg?)) , (4.16)

ie. (29) with a(t) = e“* and k = 0, where C = /(1/3)A is a constant. We note that
asymptotic self-similarity is not well-defined for the de Sitter universe in the dynamical
systems approach, since the model corresponds to an exceptional equilibrium point that
is not exactly self-similar [51].

Although there is no singularity in the de Sitter universe, we may consider t = 0 as
corresponding to an unphysical past state. At early times, we take 7" = ¢ and choose the
hypersurface-orthogonal CKVF

X = (“7,0,0,0), (4.17)
which yields the scaling factor
(T = CeT, lim \=C. (4.18)
T—0+

Since (4.17) satisfies the conditions of Proposition 3.3, it is a uniform AHVF for the de
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Sitter universe. However, the model is uniformly accelerating with a finite scale factor
as its past state is approached (¢ = —1 and limy_,o+ a = 1); from results by Ericksson
[35] and Threlfall [39], we may conclude that the de Sitter universe does not admit a past
conformal state at which u = 9/0T is regular.

At late times, we take T = —e~¢? such that (4.16) transforms to
1 1 .
ds? = = (—CQdTQ +dx® + x* (d6* + sin® 0 d¢>2)> . (4.19)

This line element happens to be in conformal form g = Q?g with Q(T) = —1/T and g
regular, but is incompatible with the admission of an FIU since Ly = L = Q"$/ 02 =
(see Definition 2.8a). The hypersurface-orthogonal CKVF becomes

X* = (C,0,0,0), (4.20)

which yields the divergent (as 7" — 07) scaling factor
ANT)=—=. (4.21)

We consider in similar fashion the eight remaining CKVFs H, M, and K, given
by Maartens and Maharaj [80]; interestingly, each yields a scaling factor of the form
ANT,z#) = f(xH)/T as well.

It is mentioned in Section 3.2.1.1 that AHVFs appear to fall into asymptotic equiva-
lence classes, such that spacetimes admit only a finite number of AHVF classes; further-
more, as seen in Section 3.4, AHVFs are known to be asymptotically equivalent to (some)
CKVFs when the latter exist. Since every CKVF for the de Sitter universe yields a scale
factor that blows up as ' — 0, there is a strong indication of asymptotic self-similarity
breaking at late times. Hence we are reasonably justified in offering the following conjec-
ture, whose significance is made clear in Section 4.3.

Conjecture 4.1: The de Sitter universe is not asymptotically self-similar in the future.

4.2.2.2 Example: Kantowski-Sachs

One example cosmology that has been given much attention within the conformal frame-
work is found in the class of homogeneous and anisotropic models discovered by Kan-
towski and Sachs [83, 84] in 1966. These irrotational perfect fluid solutions are non-
Bianchi, in that their G4 isometry group fails to admit a G3 subgroup acting transitively
on the spacelike hypersurfaces (which have the topology of S? x R [49]). The recollapsing
radiation model studied in the framework has a form due to Wainwright [85]; its line
element is given by

ds* = —A(t)dt* + <1d:c2 + A (dy* + 1* (v) dz2)> (4.22)

A(t) b?

with A(t) = 1 — (4/9)b*t and f(y) = siny. Asymptotic self-similarity is not well-defined
for the Kantowski-Sachs models in the dynamical systems approach, although those that
admit a G isometry subgroup are in general asymptotically self-similar [73]. The asymp-
totic self-similarity of this particular model is not given in the literature.
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At early times, we take 7' = t and choose the ansatz
X = (XU(T,2,y), X (T, 2,y), X* (T, z,y),0) (4.23)

with X2 = f(T, x) siny, such that the constraint and limit equations reduce to

X0 X1 X(a.
X(O;l) = X(O;Q) = X(1;2) = 0, hm M = hm ﬁ = hm ﬂ (424)

T—0t goo T—0t g11 T—0t g22

No solution to (4.24) exists if f is further assumed to be separable, although the choice

2 1
X% = <—3A§Tcosh bx cosy, EA% sinh bx cos y, A2 cosh bz sin Y, O> (4.25)

is a “near” solution in that

X (o, X X X
lim =0 — iy 20D gy 2@2 gy 26

T—0% goo T—0*+ g11 T—0t g22 T—0+ @33

2
= ig cosh bz cos y, (4.26)

where only the first limit is negative. It is unclear if such sign discrepancies are inherent
(such that the radiation Kantowski-Sachs model cannot be asymptotically self-similar),
or whether a solution to (4.24) might exist for non-separable f. On the other hand, it
is straightforward to show that the model admits an IPS by taking T' = V2t in (4.22)
[18]. We note that attempts to find an AHVF via the resultant unphysical spacetime and
Theorem 4.2 have also been unsuccessful.

At late times, we take T = — A2 such that T € (—1,0) and T — 0~ as the future
singularity corresponding to ¢t = 9/(4b?) is approached; accordingly, (4.22) transforms to

81 9 1 1 3 .
ds> = O (T) (_wdﬁ + = (1 - (—T)2> (dﬁ + 33 (=T)2 (dy® + sin®y dz2)>> ,

I

Q(T) = (-T)"7, (4.27)

which is in a form compatible with the admission of an AFS [20]. However, no AHVF
has been found (on either the physical or unphysical spacetime) via this coordinate trans-
formation. Hence it is not possible at this stage to comment on the future asymptotic
self-similarity of the radiation Kantowski-Sachs model.

4.2.2.3 Example: Kantowski

The radiation Kantowski-Sachs model has a related counterpart in the class of all Bianchi
III radiation solutions, discovered by Kantowski [83] in 1966; the line element of this
ever-expanding model is given by (4.22) with A(t) = 1 + (4/9)b*t and f(y) = sinhy.
In the dynamical systems approach, Bianchi III solutions are past asymptotic to Bianchi
I solutions and future asymptotic to the Bianchi III form of flat spacetime, whose line
element and HVF are given respectively by [42]

ds? = —dt’ + dz? + T (dy® + €¥dz?) (4.28)
X*=(t,7,0,0). (4.29)

At early times, the radiation Kantowski model admits an IPS (as in the Kantowski-
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Sachs case, this is seen by taking 7" = /2t in (4.22)) [18]. Its line element reduces to
1
ds? ~ —dt*> +t <d:v2 + = (dy2 + sinh?y dz2)> (4.30)

ast — 0T, butitis unclear if an exact mapping of (4.30) to the Bianchi I line element (2.26)
exists. No AHVF has been found via the usual procedure either, although taking 7" = ¢
and choosing the ansatz (4.23) with X2 = f(T, x) sinh y yields another “near” solution

2 _: 1 :
X = (—3A_3Tcos bx cosh y, EA% sin bx cosh y,A_% cos bz sinh y, 0) ) (4.31)
X(o. X1 X9 X3 2
im 2O gy DO gy D@D gy 268 L2 chrcoshy,  (4.32)
T—0t  goo T—0t  g11 T—0+  g22 T—0t ¢33 3

where only the first limit is negative. Hence it is not possible at this stage to comment on
the past asymptotic self-similarity of the radiation Kantowski model.

At late times, we take T = —A~! such that T € (—1,0) and T — 0~ as t — oc;
accordingly, (4.22) transforms to

Q(T) = (-T)"%, (4.33)

1 1
L T)T* <—T3dx2 + — (dy? + sinh®y dz?)

2 2
— Q2T
ds ( )< 16" 42 b

N———

which is in a form compatible with the admission of an AFEU [20]. Assuming simple
coordinate dependence and solving the limit equations (3.7) yields

2
X0 = <—3T,9:,0,0> , (4.34)

Xy Xeg  Xeg  2T+3

X(0:0) -1 _ —

900 g1 922 g3 3T +3
Since the limits as 77 — 0~ of all terms in (4.35) exist and equal a constant scaling fac-
tor A = 1, the radiation Kantowski model is uniformly self-similar in the future. It is
unsurprising that the AHVF (4.34) resembles the Bianchi III HVF (4.29), in light of Con-
jecture 3.1. Finally, we note that this result continues a trend of uniform self-similarity for
cosmologies that are future asymptotic to flat (Minkowski) spacetime in the dynamical
systems approach, i.e. the open radiation FLRW, Joseph and Ellis-MacCallum models
(see Table 3.1).

(4.35)

4.2.24 Example: Szekeres (growing)

The inhomogeneous Szekeres solutions introduced in Section 3.2.2.1 have also been stud-
ied within the conformal framework, but in the absence of the decaying mode (i.e. k- =0
in (3.50)). Transforming to cosmic time 7" = 3t'/3 casts the line element (3.50) into a form
compatible with the admission of an IPS [19, 35], while the admission of an AFEU is
demonstrated by taking 7' = —1/t [36]. Within the dynamical systems approach, the
Szekeres solutions are in general asymptotically self-similar at early times (to Bianchi I
solutions), but not necessarily at late times [86, 87, 88]. The growing Szekeres solutions
in particular are known to admit FLRW-like singularities [67, 68].
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Table 4.1: Past and/or future self-similarity of the example perfect fluid cosmologies in Chapters

Model(s) ‘ P/F ‘ (A)HVF \ Conformal state(s) \
Heckmann-Schiicking g giigii N(Xlg}(;l[ljnd
Wainwright-Marshman P None None
Davidson F | Not uniform* AFS
P Exact None
FLRW (flat, 7 € (0,2/3)) |—¢ Exact FIU
P Exact IPS
FLRW (flat, v € (2/3,2]) F Exact Not isotropic
P Exact None
FLRW (y = 2/3) F Exact None
P | Asymptotict IPS
FLRW (general) F Asympto’cic:E All
_ P Uniform None
de Sitter E None™ Not found
Kantowski-Sachs 11: Eg: igﬁgg /IXI;SS
antowekd P Not found IPS
owskl F Uniform AFEU
] P Exact IPS
Szekeres (growing) F Exact AFEU

1: Theorem 4.3

*: Conjecture 3.1

3 and 4 that admit or preclude conformal states.

%% : Conjecture 4.1

For our analysis, we focus on the growing Szekeres solution witha =b=c=k_ =0

and k4 (z) = Kz" (where K, r > 0 are constants), which has the line element

9

5 2
ds? = —dt? + 3 <K23;2T ( (y2 + z2) + t§> de? + dy? + d22> .

As it turns out, the vector field

1 1 1
X'=t,—0F——=7, 5y, 5 4.37
(’ 3(r+1)x’3y’3z> (+37)
solves the homothetic equation (2.18) with A = 1. Hence (4.37) is an HVF, and the grow-
ing Szekeres solution (4.36) serves as a handy example of exact self-similarity in an inho-
mogeneous cosmological model.

4.2.3 Summary of examples

Most of the example cosmologies studied in the conformal framework are perfect fluid
spacetimes, due to their physical significance over vacuum spacetimes (which do not
admit an IPS [35]). Table 4.1 lists all such models that have also been examined for exact
or asymptotic self-similarity in Chapters 3 and 4.

The Heckmann-Schiicking and Davidson examples from Chapter 3 are known to ad-
mit anisotropic conformal states [39]. While analysis of the Davidson solution under
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Definition 3.4 remains inconclusive, we claim that no uniform AHVF exists by Conjec-
ture 3.1. Furthermore, spacetimes in which the past singularity is not point-like do not
admit an IPS at which u is regular [35]; this allows us to rule out the existence of a past
conformal state for the Wainwright-Marshman solutions (where the singularity corre-
sponding to ¢t = x oscillates between the “barrel” and “pancake” types [25, 71]).

Our conclusions on the conformal states admitted (or precluded) by the FLRW mod-
els in Table 4.1 are based on general results by Ericksson [35] and Threlfall [39]. For
the flat FLRW models, the scale factor is given by a(t) = t*©7) as per (2.29), such that
limy_,y+(-) @ = 0(c0). The deceleration parameter (2.15) evaluates to

4=5 312, (4.38)

such that the models with v € (0,2/3) or v € (2/3,2] are, respectively, uniformly accel-
erating or decelerating. Hence the former admit an FIU but not an IPS, while the latter
admit an IPS but not an IFS/FIU. For the FLRW models with v = 2/3 (and any spatial
curvature), no conformal states are admitted as we necessarily have Ly = 1. Finally, it is
possible for a general FLRW model (which is at least asymptotically self-similar by The-
orem 4.3) to admit any conformal state, isotropic or otherwise; even the past isotropic
universe, an unphysical time-reversed analogue of the FIU, is allowed.

At first glance, Table 4.1 indicates no obvious relationship between self-similarity and
the admission of (isotropic) conformal states. This is largely borne out by closer scrutiny
of the logical connectives among various symmetry-related spacetime properties, which
is conducted in the following section.

4.3 Isotropy, homogeneity and self-similarity

Definition 3.4 provides a formal, intrinsic notion of approximate self-similarity in the
asymptotic regime, just as the admission of an isotropic conformal state in a spacetime
represents the property of asymptotic isotropy (in the Ricci-/expansion-dominated sense
of (2.17)). Noticeably, there is no asymptotic counterpart for homogeneity; since isotropy
implies homogeneity, a spacetime that admits an isotropic conformal state may loosely
be interpreted as being asymptotically homogeneous as well. We note that a provisional
definition of asymptotic spatial homogeneity within an isotropic conformal structure has
been offered by Ericksson [35], and essentially requires homogeneity of the regular space-
like hypersurface Sy in the unphysical spacetime. This definition is not analogous to an
isotropic conformal state, however, and has not been further developed in the literature.
For the purposes of this thesis, then, there are five symmetry-related spacetime prop-
erties in the conformal framework: isotropy, homogeneity, exact self-similarity, asymp-
totic self-similarity, and the admission of an isotropic conformal state at which the funda-
mental four-velocity field u is regular. These properties are abbreviated as logical state-
ments in Table 4.2, with 10 pairwise relationships among them. A couple of implications
are immediately identified, i.e. isotropy implies homogeneity and exact self-similarity
implies asymptotic self-similarity. From various counterexample cosmologies in Table
4.3, pairwise independence is demonstrated in seven other cases (one is based on Con-
jecture 4.1). All known relationships are then presented schematically in Figure 4.1.
Even if Conjecture 4.1 is shown to be untrue and all de Sitter-like spacetimes are
asymptotically self-similar, a definitive result is still obtained. Since every isotropic (and
homogeneous) cosmological model is described by the FLRW line element (2.9), we may
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| Statement | Spacetime is/admits: ‘
ISO Spatially isotropic (Def. 2.4)
HOM Spatially homogeneous (Def. 2.5)
ESIM Exactly self-similar (Eq. (2.18) with constant A # 0)
ASIM Asymptotically self-similar (Def. 3.4)
ICS Isotropic conformal state at which u is regular (Defs. 2.6-2.8)

Table 4.2: Symmetry-related spacetime properties in the conformal framework.

conclude that isotropy implies asymptotic self-similarity by Theorem 4.3.

The remaining pairwise relationship, namely that between asymptotic self-similarity
and the admission of an isotropic conformal state, is partially established. Spacetimes
that are asymptotically self-similar in the past/future do not necessarily admit a corre-
sponding isotropic past/future state, e.g. the FLRW models with v = 2/3. A counterex-
ample has yet to be found for the converse case, as explicit instances of asymptotic self-
similarity breaking are comparatively rare and difficult to verify in the first place. One
possible counterexample is the de Sitter universe (again, assuming Conjecture 4.1), where
the admission of an FIU is enough to establish the pairwise independence of asymptotic
self-similarity and the admission of an isotropic conformal state. This is an unlikely sce-
nario, however, as Definition 2.8a appears to have been formulated with the exclusion of
de Sitter-like behaviour in mind [36].

On the other hand, it seems considerably harder to prove that the admission of an
isotropic conformal state implies asymptotic self-similarity. The challenge is essentially
to construct an AHVF on a spacetime via its isotropic conformal structure, where the
only significant property to work with is regularity of the unphysical spacetime near
and on 7" = 0. It might be simpler to find an AHVF on such an unphysical spacetime
(and apply Theorem 4.2), since each nonzero metric component g, typically does not
vanish or blow up as T — 0*(7), i.e. the homothetic equation may be directly verified
on T = 0. However, this possibility is not trivial to show in the general case and has not
been successfully exploited at this stage.

For a general spacetime that admits an isotropic conformal state, even imposing addi-
tional structure such as homogeneity (on either the spacetime or the regular spacelike hy-
persurface Sp) does not yield any insight into its asymptotic self-similarity. Once again,
we are limited by the difficulty of finding AHVFs on spacetimes of greater complexity
than the FLRW models. Hence the relationship between asymptotic self-similarity and
the admission of an isotropic conformal state remains an open problem, albeit one that
might be resolved with further study or amendments to the existing framework.
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] Connective \ Counterexample ‘
ISO = ESIM | FLRW (open, radiation)
ESIM = ISO Kasner
ISO = ASIM de Sitter™
ASIM = ISO Heckmann-Schiicking

ISO = ICS FLRW (y = 2/3)
ICS = ISO Kantowski-Sachs

HOM = ESIM | Heckmann-Schiicking
ESIM = HOM Szekeres (growing)

HOM = ASIM Mixmaster
ASIM = HOM Szekeres (growing)
HOM = ICS FLRW (y = 2/3)
ICS = HOM Szekeres (growing)
ESIM = ICS FLRW (y = 2/3)

ICS = ESIM | FLRW (open, radiation)

*+: Conjecture 4.1

Table 4.3: Counterexample cosmologies that illustrate the pairwise independence of various
spacetime properties in Table 4.2.

Figure 4.1: Schematic representation of relationships among the spacetime properties in Table 4.2.
While isotropy implies homogeneity and exact self-similarity implies asymptotic self-similarity
(black lines), the properties are otherwise independent (grey lines). It is not known at this stage if
the admission of an isotropic conformal state implies asymptotic self-similarity (dashed line).
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Chapter 5

Conclusion

The research in this thesis has been directed solely by the purpose of integrating self-
similarity (as a spacetime property) into the conformal framework of quiescent cosmol-
ogy and the Weyl curvature hypothesis; these cosmological constructs are introduced
conceptually in Chapter 1, and formalised from a technical perspective in Chapter 2.

As the conformal framework deals with spacetimes in the asymptotic regime, it is
crucial to address the lack of a satisfactory definition for asymptotic self-similarity in the
literature. Three existing usages of the term are identified in Section 2.3.2: it refers to
asymptotic relationships among exactly self-similar spacetimes in the spherically sym-
metric approach, describes spacetimes that evolve towards self-similarity in the power-
ful but specialised dynamical systems approach, and is formally defined but developed
improperly in the homothetic equation approach. None of these are suitable working
definitions as they stand, and so an improved alternative is required.

To this end, much emphasis has been placed on formulating a robust definition of
asymptotic self-similarity in Chapter 3. Two geometric approaches and one that is closer
in nature to the dynamical systems definition are shortlisted in Section 3.1. The exact
mapping approach is overly rigid but retained for comparative purposes, while the di-
mensionless variables approach is discarded for its lack of practicality. Our focus is on a
homothetic equation-based definition, under which an asymptotically self-similar space-
time admits a vector field satisfying (2.18) in a given asymptotic sense as the spacetime’s
past/future state is approached.

It is immediately evident that such a definition needs to be weakened sufficiently for
agreement with the dynamical systems results on the asymptotic self-similarity of the
open and closed FLRW models (this is done by permitting point-dependent scaling fac-
tors on the spacelike hypersurface Sy). Also, the definition is more naturally formulated
in local coordinates, which leads to a couple of propositions on coordinate dependence
that guide the choice of ansatz in the search for AHVFs.

Various example cosmologies that exhibit asymptotic self-similarity (breaking) in the
dynamical systems approach are investigated under a preliminary definition in Section
3.2, where two issues promptly surface. Firstly, a common cause of asymptotic self-
similarity breaking in spacetimes is attributable to oscillatory behaviour that becomes
increasingly rapid at early or late times; this is implemented in the working definition by
imposing a C! degree of differentiability on the asymptotic process.

Of more concern, it is generally difficult to find AHVFs (or rule out their existence) on
spacetimes that are less symmetric than the FLRW models. Several results that facilitate
the search for AHVFs are obtained in Section 3.3: a specified class of CKVFs may serve
as AHVFs (by Proposition 3.3), while the HVF from any exact mapping between the
spacetime and an exactly self-similar counterpart in the asymptotic regime may also be
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used (by Theorem 3.1). However, such results are limited in their applicability.

The eventual working definition is deemed adequate despite this difficulty, and is
considered within the conformal framework in Chapter 4. Section 4.1 analyses how ex-
act and asymptotic self-similarity translate under the conformal transformations in the
framework; as it turns out, these properties are preserved with the fulfilment of certain
conditions on the conformal factor and relevant vector field. Furthermore, by Theorem
4.2, the possibility of finding AHVFs on a spacetime via its unphysical counterpart pro-
vides another method of applying Definition 3.4 within the conformal framework.

Additional example cosmologies whose conformal structures have been studied in
the literature are examined for exact and asymptotic self-similarity in Section 4.2. The
most significant result is Theorem 4.3, whose proof exploits the existence of CKVFs. This
theorem asserts asymptotic self-similarity for the class of all isotropic and homogeneous
cosmological models (i.e. spacetimes described by the FLRW line element), with the
possible exception of de Sitter-like spacetimes. We also demonstrate past asymptotic
self-similarity for the de Sitter universe, and conjecture that it is not asymptotically self-
similar at late times.

Armed with a substantial number of example cosmologies (from Chapters 3 and 4),
we are able to draw conclusions on the relationships among the five symmetry-related
spacetime properties in the conformal framework. It is shown in Section 4.3 via var-
ious counterexamples that most of these properties are pairwise independent, apart
from isotropy implying homogeneity and exact self-similarity implying asymptotic self-
similarity. However, analysis of the relationship between asymptotic self-similarity and
the admission of an isotropic conformal state remains inconclusive.

5.1 Future research directions

There is considerable room for improvement in the working definition of asymptotic
self-similarity developed in this thesis. As raised in Section 3.3, the definition is not
coordinate-invariant; we illustrate this here by first introducing the standard coordinate
transformation matrices

a ra’
B ox o7 - ox
R W ar Pgo’

(5.1)

Now, suppose X is an AHVF on a spacetime (M, g) in some set of local coordinates
(T, "), such that the functions fu, = X(44)/gab satisfy (3.63). Then the corresponding
functions in another set of coordinates (77, z’*') are given by

Xaw) _ ot Py' X(a)
9o’ <Da;l(pb/bgab

fay = (5.2)

Each function f,,, generally still equals the scaling factor A in the limit as 7' — 0+(~).
However, (5.2) might not be well-defined as both the dividend and divisor are now sums
of terms, and it is conceivable for one to sum to zero but not the other (since f,; does not
factor out of the dividend). In other words, correspondence between the zero/nonzero
components of X4/, and g, might be broken —which is a minor hassle, as we would
prefer the same AHVF to hold in all coordinate frames. It is not immediately clear how
or whether to resolve this issue, since a formulation in local coordinates is necessary to
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make the definition precise (and to distinguish it from the conformal Killing equation).

If greater compatibility with the dynamical systems approach is desired, the working
definition may be amended or even reworked to incorporate approaches that have not
been explored in this thesis. For example, the definition may be reformulated relative to
an expansion-normalised basis {v,} = {H16,29/02°} such that

Ja'vy = 8 (Va/a Vb/) = H_2.gaba (53)

where H is the generalised Hubble parameter. Another possibility is to employ the (un-
physical) dimensionless metric § = H?g in some way; relative to the usual coordinate
basis {0/0x"}, the metric components are given by

N ( d 0
Gab = 8 (83:“’ W’) = Hzgab- (5.4)

The general idea with these approaches is to somehow take into account the effects of a
spacetime’s expansion, in accordance with the dynamical systems definition.

Several avenues of future research are available if Definition 3.4 is accepted as a suit-
able working definition of asymptotic self-similarity. New example cosmologies must be
studied and —despite the difficulty of finding or ruling out AHVFs—more conclusive
results are required in order to augment the definition. At present, there appears to be
good agreement in Table 3.1 between Definition 3.4 and the dynamical systems defini-
tion, but this is not expected to persist as further results are obtained. It is also desirable
to prove (or disprove) Conjectures 3.1 and 4.1, such that we may better understand the
role of an exact mapping in the asymptotic regime and the anomalous behaviour of de
Sitter-like spacetimes.

The analysis in Chapter 4 of exact and asymptotic self-similarity within the confor-
mal framework may be expanded upon as well. A complete characterisation of how
self-similarity translates under the conformal transformations in the framework would
be welcome; specifically, we are looking to get a firm handle on the origin and implication
of the technical conditions in Theorems 4.1 and 4.2 (plus their corollaries). Uncovering the
relationship between asymptotic self-similarity and the admission of an isotropic confor-
mal state is also important —especially if the latter turns out to imply the former, which
would indicate that the spacetime property of self-similarity is not stand-alone and has a
significant part to play in the conformal framework.
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Appendix A

Formulae in relativistic cosmology

Various curvature and kinematic quantities in relativistic cosmology are required for or
relevant to the purposes of this thesis. Formulae for these quantities in local coordinates
(z*) on a cosmological model (M, g, u) are sourced from reference material by Ellis et al.

[1, 18, 23], and are listed in this appendix for the reader’s convenience.

A.1 Curvature quantities

e The inverse metric g% is given implicitly by

9 goe = 0%, (A.1)

ab} ]—1.

ie. [g = [gab

e The Christoffel symbols (of the second kind) are given by

1
abc = 7gad (gdb,c + 9deb — gqu) . (Az)

2

e The covariant derivative (with respect to the Levi-Civita connection) of a type-(r, s)

tensor T along the vector field 0/0x¢ is given by

ai...ar _ mat...ar ay d...a, ar aj...d
T e =T e T Ly e DT,
d aj...ar d ai...ar
ST e T4 T (A3)

e The Lie derivative of a type-(r, s) tensor T along the vector field X is given by

ai...ar _ crpal...ar ay c...ar ar ai...c
('CXT> b1..bs — XT by..bsic X ;cT bi..bs T X ;cT b1...bs
c ai...ar c ai...ar
+X;blT c...bs +. +X;bsT by...c’
e The Riemann tensor is given by
a a a a € a €
bed = Ubde = Ubed T 1 cel va — Dael be- (A.5)
e The Ricci tensor is given by
_ C
Rab - R ach*
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e The scalar curvature is given by
R = RY,. (A7)
e The Weyl tensor (on a four-dimensional manifold) is given by
1
Cabed = Rabed + Jala By + GoleRaja + 5 RGalcIajp- (A.8)
A.2 Kinematic quantities

The projection tensor into the rest space of an observer moving with four-velocity

u is given by
hab = gab + Uatp-

The acceleration vector is given by

u® = uyub.

The expansion tensor and scalar are given respectively by
Hab = h(;hb)duc;dv
0= 0% =u’,.

The shear tensor and scalar are given respectively by

1
Oab = eab - geh(zba

1 ab
o= §Uab0' .

The vorticity tensor, vector and scalar are given respectively by
—h c h d
Wab = Ig Mp) Uesd,

1
w® = Ve e,

2
1
W = Vw,w? = iwabwab,

where V = |det g |~/ and €% is the Levi-Civita symbol.

The anisotropic parts of the Ricci tensor relative to u are given by

Yo = —h Rfu.,

C 1 C
Yr=hniRE — ghabhd R

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)
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