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Abstract

Three-dimensional entanglement, including knots, periodic arrays of woven filaments

(weavings) and periodic arrays of interpenetrating networks (nets), forms an integral part

of the analysis of structure within the natural sciences. This thesis constructs a catalogue of

3-periodic entanglements via a scaffold of Triply-Periodic Minimal Surfaces (TPMS). The

two-dimensional Hyperbolic plane can be wrapped over a TPMS in much the same way as

the two-dimensional Euclidean plane can be wrapped over a cylinder. Thus vertices and

edges of free tilings of the Hyperbolic plane, which are tilings by tiles of infinite size, can

be wrapped over a TPMS to represent vertices and edges of an array in three-dimensional

Euclidean space. In doing this, we harness the simplicity of a two-dimensional surface as

compared with 3D space to build our catalogue.

We numerically tighten these entangled flexible knits and nets to an ideal conformation

that minimises the ratio of edge (or filament) length to diameter. To enable the tightening of

periodic entanglements which may contain vertices, we extend the

Shrink-On-No-Overlaps algorithm, a simple and fast algorithm for tightening finite knots

and links. The ideal geometry of 3-periodic weavings found through the tightening process

exposes an interesting physical property: Dilatancy. The cooperative straightening of the

filaments with a fixed diameter induces an expansion of the material accompanied with an

increase in the free volume of the material. Further, we predict a dilatant rod packing as the

structure of the keratin matrix in the corneocytes of mammalian skin, where the dilatant

property of the matrix allows the skin to maintain structural integrity while experiencing a

large expansion during the uptake of water.
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