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Abstract

Three-dimensional entanglement, including knots, periodic arrays of woven filaments

(weavings) and periodic arrays of interpenetrating networks (nets), forms an integral part

of the analysis of structure within the natural sciences. This thesis constructs a catalogue of

3-periodic entanglements via a scaffold of Triply-Periodic Minimal Surfaces (TPMS). The

two-dimensional Hyperbolic plane can be wrapped over a TPMS in much the same way as

the two-dimensional Euclidean plane can be wrapped over a cylinder. Thus vertices and

edges of free tilings of the Hyperbolic plane, which are tilings by tiles of infinite size, can

be wrapped over a TPMS to represent vertices and edges of an array in three-dimensional

Euclidean space. In doing this, we harness the simplicity of a two-dimensional surface as

compared with 3D space to build our catalogue.

We numerically tighten these entangled flexible knits and nets to an ideal conformation

that minimises the ratio of edge (or filament) length to diameter. To enable the tightening of

periodic entanglements which may contain vertices, we extend the

Shrink-On-No-Overlaps algorithm, a simple and fast algorithm for tightening finite knots

and links. The ideal geometry of 3-periodic weavings found through the tightening process

exposes an interesting physical property: Dilatancy. The cooperative straightening of the

filaments with a fixed diameter induces an expansion of the material accompanied with an

increase in the free volume of the material. Further, we predict a dilatant rod packing as the

structure of the keratin matrix in the corneocytes of mammalian skin, where the dilatant

property of the matrix allows the skin to maintain structural integrity while experiencing a

large expansion during the uptake of water.
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Chapter 1

Introduction

Three-dimensional entanglement, including knots, periodic arrays of woven filaments

(knits or weavings) and periodic arrays of interpenetrating networks (nets), forms an in-

tegral part of the analysis of structure within the natural science. This thesis constructs

novel, 3-periodic knits and nets, then tightens them to an ‘ideal’ shape in order to give

geometric inspiration to the many disciplines of science influenced by structure.

A 3-periodic net in three-dimensional Euclidean space (E3) is a simple1 3-connected2

graph, which is invariant under three independent translations of E3 [Klee 04]. A

3-periodic weaving in E3 is an arrangement of infinite one-dimensional space curves, also

invariant under three independent translations of E3. Fig. 1.1 shows a portion of both a net

and a weaving: the infinite structure extends infinitely in three directions.

(a) (b)

Figure 1.1: A 3-periodic net and a 3-periodic weaving. The net (a) consists of vertices joined by
edges and the weaving (b) of filaments that are infinite in length.

The scaffold we use for the construction of 3-periodic knits and nets are Triply-Periodic

Minimal Surfaces (TPMS). A minimal surface is a surface with mean curvature of zero: it

is equally concave and convex at every point. Every point on the surface is a saddle point,

1A simple graph is a set of vertices and edges, where each edge connects a distinct pair of vertices.
2A 3-connected graph can have no fewer than 3 vertices (and attendant edges) removed before it forms

two or more disconnected components [Gros 92]
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4 Introduction

except at isolated flat points of zero gaussian curvature, hence the surface is hyperbolic.

The term ‘minimal’ refers to the fact that many of these surfaces minimise the surface area

given a set of conditions (boundary constraints, volume constraints, et cetera). A soap

film on a wire loop is a minimal surface given the constraints of the wire [Dier 92]. TPMS

are minimal surfaces that are periodic in three directions: they are invariant under three

independent translation vectors.

The genus of an orientable surface (one which has two distinct sides) is a topological

invariant defined as the largest number of non-intersecting simple closed curves that can

decorate the surface without separating the surface into two distinct components [Stil 87].

Equivalently, the genus of an orientable surface is the number of torus-like handles it

forms: the surface of a sphere has genus 0, the surface of a torus has genus 1. The genus of

a TPMS is defined by taking a translational unit cell (of the oriented surface) and identify-

ing opposite faces by gluing it modulo translations to obtain a compact surface [Hyde 10].

There are most likely only five highest symmetry TPMS for which this compact surface

is genus 3 (a donut with three holes)3. These are Schwarz’ Primitive surface (P surface),

Schwarz’ Diamond surface (D surface), Schoen’s Gyroid Surface (G surface), Schwarz’

Hexagonal Surface (H surface) and Schwarz’ Cross Layer Parallel Surface (CLP sur-

face) [Fogd 92]. In this thesis, we utilise each of the P surface, D surface, G surface and

H surface.

To define the cover of a surface, we consider a cylinder of infinite length. Any infinite

strip of the two-dimensional Euclidean plane (E2) can be wrapped over the cylinder such

that it covers the surface. Thus any infinite strip of E2 is a cover of the infinite cylinder.

The universal cover of a surface is the cover of all possible covers of that surface, for

example the universal cover of the infinite cylinder is E2. More technically, the universal

cover of a topological space Y (such as a TPMS), is a simply connected4 space X , along

with a covering map5 f : X → Y . The universal cover of a TPMS is the two-dimensional

hyperbolic plane (H2), which can be wrapped over the TPMS, in much the same way as

E2 can be wrapped over a cylinder. To harness the simplicity of a two-dimensional surface

as compared with 3D space, tilings of the TPMS are initially constructed as tilings of the

3The completeness of these five genus-3 TPMS is still an open question due to the possibility of ‘gyroid-
like’ intermediate surfaces within other families of TPMS.

4A domain is simply connected if any loop within the domain can be shrunk to a point continuously, i.e.
the area enclosed by a circle is simply connected, the area between two concentric circles is not [Stil 87].

5A covering map, from a topological space (X) to another (Y ), is a surjective map that is locally a
homeomorphism, each point in X has a neighborhood whose image under the covering map in Y is equiv-
alent [Stil 87].
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universal cover of the TPMS: H2. These vertices and edges in H2 are wrapped over the

TPMS, and in turn represent vertices and edges of an array in E3. For example, Fig. 1.2

shows the vertices and edges of a tiling in H2, an equivalent tiling wrapped over the D

minimal surface and the vertices and edges of the tiling that results in E3.

(a) (b) (c)

Figure 1.2: The vertices and edges of a tiling shown (a) in H2, (b) wrapped over the D minimal
surface, and (c) as an entangled structure in E3.

Furthermore, we numerically tighten the entangled flexible structures to an ideal con-

formation that minimises the ratio of edge (or filament) length to diameter, which builds on

a wide body of work containing the numerical tightening of finite knots and links [Katr 96,

Stas 98]. To enable the tightening of periodic entanglements and structures containing ver-

tices, we extend the Shrink-On-No-Overlaps (SONO) algorithm [Pier 98], a simple and

fast algorithm for tightening finite knots and links.

The ideal geometry of weavings exposes an interesting physical property: Dilatancy.

The cooperative straightening of the component filaments of a 3-periodic weaving with a

fixed diameter induces an expansion of the material in conjunction with an increase in the

free volume. We catalogue weavings with varying dilatancy, and predict a dilatant weaving

as the alignment of keratin in the corneocytes of the outer ‘horny’ layer of mammalian skin.

The dilatant property of the matrix allows the skin to maintain structural integrity while

expanding during the uptake of water.

1.1 Historical Context

Soft condensed matter, including gels, foams, polymers, colloids and liquid crystals dis-

play behaviour not necessarily determined by their molecular or atomic structure alone.

Interactions of structure assembled at the mesoscale, an intermediate length scale larger
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than molecules but smaller than the bulk material, can influence macroscopic behaviour of

the material: that which is visible to the naked eye (> 1mm). Particularly influential are

the geometry and topology of mesoscale structures that self assemble from amphiphilic

molecules [Char 85, Hyde 97, Sado 90]. These structures are clearly related to smaller

scale patterns found in molecular and atomic crystals.

To understand the structure of chemical frameworks, we may consider their abstrac-

tion to geometric objects. A simple approach is the use of homogeneous sphere packings,

where atoms are located at sphere centres and bonds at contacts between spheres. Enu-

meration of periodic structures by homogeneous sphere packings, which catalogues peri-

odic nets of edge length 1, is still incomplete, but leads to a relatively manageable set of

physically relevant frameworks [Koch 99, OKee 08]. An extension to this approach is to

pack infinite cylinders, where cylinders represent rods of strongly bonded atoms within a

chemical framework [OKee 01, OKee 05]. These so-called rod packings have structural

stability yet low packing fractions, and are widely identified throughout structural chem-

istry [OKee 96]. An example of such a rod packing, the cubic Γ rod packing, is shown in

Fig. 1.3.

Figure 1.3: Sculpture of the Γ rod packing, located at the Max-Plank-Institut Für Metallforschung,
Stuttgart. Photo courtesy of Vanessa Robins.

As another approach, a periodic structure may be considered as a packing of convex,

closed, finite cells (polyhedra), where the vertices and edges of the cells within the packing

define the net. A simple description of nets constructed in such a way comes from the

component polyhedra: this description is known as a polyhedral description [OKee 96].

This may also be generalised to polyhedra with curved faces, as well as infinite polyhedra.

Details of the use of these packings in new materials can be found in [Lord 06].

Despite these extensive collections of structures, there are still structures that may not
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be described by these methods, particularly those that contain multiple interpenetrating

nets or weavings of infinite filaments. The TPMS reticulation method presented in this

thesis intends to fill these unexplored regions of structure that are not covered by current

enumerative techniques.

The energetically favourable assembly of atoms (and molecules) in crystalline arrange-

ments involves (intrinsic) curvature [Hyde 84]. Hanging structures from a TPMS scaffold

mimics these conditions in crystalline solids such as Zeolites (microporous aluminosilicate

minerals commonly referred to as molecular sieves) and Metal-Organic Frameworks (crys-

talline compounds consisting of metal ions or clusters coordinated to organic molecules to

form porous structures). This curved geometry stems from the diffusion and confinement

of interstitial charges within a charged lattice, or alternatively from templating molecules.

Supporting this hypothesis, the theoretical framework of some (real) Zeolites were found

to reticulate TPMS [Hyde 91, Hyde 93]. Fig. 1.4 shows how the graph of Sodalite, an

aluminosilicate, can be considered as a reticulation of the P minimal surface. We note

that this Sodalite graph also arises as a reticulation of the D minimal surface. Frameworks

derived from TPMS reticulations may consist of multiple interwoven components, as well

as large pore spaces [Chen 01].

(a) (b) (c)

Figure 1.4: The Sodalite structure shown (a) in E3, (b) as a reticulation of the P minimal surface,
and (c) as a tiling commensurate with the ∗246 tiling in the covering space of the surface, H2.
Image courtesy of [Hyde 10].

If we map decorations in the universal covering space of the TPMS (H2) to E3, we

allow complex (3D) euclidean geometry to be reduced to simpler (2D) hyperbolic ge-

ometry. Tiling the universal cover of a TPMS, discretised by the in-surface symmetries

of the surface (rather than E3 symmetries), dates back to the ideas of Sadoc and Char-
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volin [Sado 89]. As candidates for reticulation, decorations of H2 are restricted based

on sub-symmetries and translational symmetries of the TPMS, where the latter restric-

tion guarantees the periodicity of the resulting structures in E3 [Fogd 92]. Each fam-

ily of TPMS has a set of in-surface symmetries that dictate allowed symmetry groups in

H2 [Robi 04a, Robi 04b, Robi 05].

The systematic enumeration of commensurate tilings of H2, those with symmetry that

is a subgroup of the maximal 2D symmetry group of the desired TPMS, calls upon the use

of Delaney-Dress tiling theory. In the 1980’s, Andreas Dress developed a finite symbol

to encode both the topology and symmetry of an infinite periodic tiling (on 2D surfaces

with positive, zero or negative curvature) using the earlier work of Matthew Delaney: the

Delaney-Dress symbol [Dres 87]. The encoding is unique for finite disk-like tiles that fill

any simply connected space. Delgado-Friedrichs and Huson harnessed the uniqueness of

the Delaney-Dress symbol in developing an algorithmic enumeration of periodic tilings of

each of the sphere, plane and hyperbolic plane [Huso 93, Delg 03a].

To obtain an enumeration of such tilings commensurate with the P, D and G surfaces

and their corresponding TPMS reticulations is a complex process. The map from H2 tilings

to TPMS tilings is many-to-many due to complications with group automorphisms and the

multiply-connected nature of the TPMS. An online enumeration of these tilings (in H2 and

on the TPMS) is located at [Hyde 10], and details of the process given in [Hyde 06]. A

complete description of the reticulation of tilings with Kaleidoscopic symmetry is given

in [Rams 09]. This work considers tilings of H2 that are composed entirely of tiles topo-

logically equivalent to a compact disk: this constraint means that all resulting structures in

E3 will be single component, 3-periodic nets. In this thesis, we extend to tilings of H2 by

tiles that are topologically equivalent to infinite ribbons or infinite branched ribbons, free

tilings, which gives two more classes of structures in E3: multiple component nets and

filament weavings.

Examples of the reticulation of some high symmetry free tilings on TPMS have been

published [Hyde 99, Hyde 00a, Hyde 00b, Hyde 00c, Hyde 03a, Hyde 03b, Hyde 03c].

Topology of the vertices and edges remaining in E3 once the surface is dissolved are ex-

amined in these publications, but no approach is detailed as to the analysis of the resulting

structure. This thesis will examine a larger set of examples through the extension of the

Delaney-Dress tiling theory to include free tilings. This enables easy description of free

tilings as well as the scope for an enumeration. We also examine a particular class of these

free tilings where the tile boundaries are infinite and vertex-free, which result in TPMS
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reticulations that are weavings of curvilinear one-dimensional filaments.

Current techniques for analysis of nets in E3 that contain either a single component or

multiple components include three main approaches: quotient graphs, SyStRe analysis and

TOPOS analysis. A few simple methods are also available for the analysis of weavings of

one-dimensional filaments: crossing number, minimal crossing number, average crossing

number among others. We detail these methods here.

Note that a structure is comprised of three elements: the first is its topology, which

refers to the abstract graph connectivity of the structure, the second is ambient isotopy

class, which refers to all structures related to each other by an ambient isotopy6 and the

third is the geometry of the edges of the structure in E3. We consider each of the current

methods in relation to these three elements of structure.

The quotient graph of a periodic network is built from a single representative of each

translationally equivalent vertex and each translationally equivalent edge. A labelled quo-

tient graph labels the edges by their lattice translation vectors in the periodic net [Chun 84].

For example, Fig. 1.5 shows the labelled quotient graph of a periodic graph which follows

the edges of stacked cubes (the pcu net). Quotient graphs encapsulate the topology of

periodic structures. In general however, there is no algorithm for determining when two

quotient graphs represent the same periodic net. Further, the labelled quotient graph gives

no information about the ambient isotopy class or edge geometry of the structure.

(a) (b)

Figure 1.5: (a) The 3-periodic pcu net. (b) The labelled quotient graph of pcu.

The SyStRe algorithm [Delg] provides an equilibrium (barycentric) placement of ver-

tices (crystalline form) within a labelled crystallographic quotient graph. This placement

6An ambient isotopy is a continuous deformation of an embedding space. Two nets are equivalent if there
is an ambient isotopy from one to the other i.e. one net can be deformed into the other without allowing edges
to cross through each other [Crom 04].
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gives a system for comparing the topology of periodic nets [Delg 03b]. This canonical

form for periodic nets, however, does not prescribe the equivalence of nets within an am-

bient isotopy class. Furthermore, the SyStRe algorithm is unable to find an equilibrium

placement for nets where distinct vertices occupy the same location in an equilibrium

placement (vertex collisions) and where distinct edges intersect in the equilibrium place-

ment (edge collisions), and is also unable to relax non-crystallographic nets. Additionally,

the algorithm is only able to find a canonical form for single-component nets.

TOPOS analysis of a net [Blat 06] collates the knots formed by single cycles, and

links found by disjoint pairs of cycles, in the net. This approach is unique in that fact that

it is sensitive to the equivalence of nets by ambient isotopy. An algorithm such as this,

based on analysis of interpenetration of rings, is excellent at identifying when two nets

belong to distinct ambient isotopy classes, but fails to prove two nets belong to equivalent

ambient isotopy classes when their linking signature is equivalent. A further challenge to

analysis methods such as this are entanglements that occur on a scale beyond cycles, such

as the ravel [Cast 08]. These entanglements have no knotted or linked cycles, yet are still

entangled, and hence will be overlooked by the TOPOS analysis. Such an entanglement

has been recently synthesised: a finite molecule that forms a ravel is described in [Li 11].

To encompass more general spatial patterns, in particular those of one-dimensional

(1D) filaments, we delve into an area examined by polymer physicists and mathemati-

cians alike. The Crossing Number of a material is a simple intuitive measure counting the

number of times a filament crosses over itself or another. This measure is also used in

knot theory to analyse knots and links. A related quantity is the Minimal Crossing Num-

ber, where an object is manipulated (within an ambient isotopy class) so as to have the

minimal number of crossing over itself or other objects [Buck].

To obtain a quantity that is independent of the viewing direction, one may consider an

average of the crossing number across all 2D projections of the material (as the crossing

number may vary with the chosen perspective). This value is known as the Average Cross-

ing Number (ACN). Analysis of materials by the ACN is a geometric problem, involving a

specific embedding of a topological object. A quantity associated with the ACN for entan-

gled infinite filaments is how this ACN changes with the increase of the material sample

size [Buck]. Another concept related to the ACN is the temperature of a tangle [Buck 08].

This considers what portion of a filamentous array is visible from a particular view point:

those arrays that are more tangled will have a larger portion of filaments obscured, and

thus a higher temperature.
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We may also consider the shape of individual filaments within an array: restrictions on

the curvature of a filament influences how filaments can tangle together [Buck 07]. This

entanglement measure requires some physical thickness to the filament, and a minimisa-

tion of an energy associated with the curvature of the filament [Buck 98, Simo 09].

These available methods are far from comprehensive in the analysis of 3-periodic

structure, and this is the gap in the literature that we will partially fill with the work in

this thesis. To do this, we extend a technique that has been insightful when analysing

finite knots and links. The idea is intuitive: take a knot, give it thickness and pull it

tight, forming an Ideal Knot. To quantify the entanglement of an ideal knot, one must

first choose a physical quantity associated with this conformation. There are many en-

ergy measures to consider7, which include the minimum distance energy [Simo 94], the

symmetric energy [Buck 93], [Buck 95], and the conformal energy [OHa 91, Dioa 98]. A

simple quantity of the ideal conformation is the ratio of length to radius. This quantifies

the entanglement of a knot, which is useful in identifying distinct conformation which be-

long to the same equivalence class by ambient isotopy. Much intuition has been gained in

knot theory by considering this energy function of ideal knots [Stas 98].

Figure 1.6: The ideal conformation of a trefoil knot.

A different conformation energy is a compactness energy. The minimisation of this

energy in turn minimises the occupied space of the filaments, which represents the struc-

ture in a most compact form. This has been considered elsewhere for a single untangled

filament, where the result is a helical form [Przy 01]. Interestingly, the pitch given by the

compact helix is the same as that of a collagen helix [Mari 00].

For each of these energy quantities, it is difficult to identify the conformation of a knot

7A comprehensive summary of energy measures for finite entanglements pre-1998 can be found
in [Scha 98]
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or link which minimises the energy. A fruitful approach is to computationally tighten any

given configuration of the entanglement to a minimal energy state. One such algorithm

is simulated annealing [Kirk 84, Laur 98]. Initially, the knot is discretised to a series of

vertices and edges, and an energy functional is defined. A random move is applied to any

node of the knot trajectory, the energy recalculated and the move either accepted if the

energy is less or rejected if the energy is greater. Through the continued application of

this process, a local energy minimum is achieved. A similar recipe is given in [Simo 94],

which uses random perturbations to decrease the minimum distance energy. Further to this,

another process of simulated annealing with some additional measures in place to remove

trapping of the structure in local minima is given in [Grze 97]. Finally, an algorithm to

relax the energy of a knot is given in [Kusn 97, Dioa 98]. There is no proof, however, that

any of these simulated annealing algorithms find a global minimum.

The SONO algorithm (Shrink-On-No-Overlaps [Pier 98]) is one approach to the com-

putational tightening of knots and links, which minimises the ratio of length to radius as

the energy function. It uses a repulsion mechanism to push nearby segments of the knot

away, coupled with a shrinking mechanism to tighten the knot. This algorithm is simple

and efficient. Mechanisms are in place within the algorithm to shake the knot out of local

minimum energy conformations (that are not global energy minima), but a proof that these

mechanisms will always ensure the global minimum is reached is still elusive and likely

untrue. In this thesis, we will extend the SONO algorithm to tighten both 3-periodic knits

and nets to optimal forms by minimising the ratio of length to diameter.

We predict that the ideal forms of many of these branched and 3-periodic structures

will realise all possible symmetries of the structures, however we see that previous results

of the SONO algorithm may indicate otherwise. The SONO algorithm shows a symmetry

breaking effect when tightening torus knots with a high crossing number, and also for the

tightening of a periodic double helix [Pier 98], where the ideal form sees one strand of the

helix pull straight and the other wind around the outside. We also note that an optimal

conformation for the double helix while preventing a symmetry breaking event has also

been studied [Olse 10].

1.2 Significant Results

A key body of work to come from this thesis is the construction of an array of structures

with a specific embedding, rather than simply a prescribed topology, which are relevant to
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the natural sciences. The nets that we construct in this thesis are, in most cases, multiple

component interpenetrating nets. Such nets arise frequently in synthetic chemical frame-

works, as seen in Ch. 3, and we generate more complex examples of such nets as possible

targets for synthesis. In the construction process presented in this thesis, all three ele-

ments of the structure are prescribed, including topology, ambient isotopy class and edge

geometry, which is in contrast to previous enumeration techniques. We obtain two such

edge geometries for a net, one is the geometry of the tile edges as they sit on the TPMS,

and the other is the ideal geometry found through simulation. These specific geometries,

that are often distinct from SyStRe barycentric embeddings, may yield important material

properties.

The 3-periodic entanglements of infinite filaments constructed in this thesis are, in the

simplest cases, well recognised rod packings. Through the TPMS reticulation method, we

are able to generalise the notion of a rod packing to contain curvilinear as well as rectilinear

components, and build a more complete taxonomy of 3-periodic weavings. A catalogue

of entanglements of infinite filaments is certainly missing from the current literature, and

these new structures may provide insight into weavings of polymers, proteins and DNA.

An interesting consequence of the idealisation of weavings to optimal configurations

is the geometry of the filaments is often helical. In many cases, the geometry prescribed by

the idealisation is equivalent to that of the weaving as it sits on the TPMS, which implies

relevance for the exact filament geometry obtained from the TPMS. The helical geome-

try of some weavings in their optimal configuration leads to an exotic physical property:

Dilatancy. In addition to this, it is possible that these ideal weavings may display other

interesting physical regimes, such as auxetic behaviour, which is a likely consequence of

dilatancy.

These dilatant weavings are attractive design targets for new synthetic materials, stem-

ming from the potent increases in the free volume of the material on straightening of the

filaments, while maintaining structural stability of the material. As a bio-material, this

beautiful property of the ideal Σ+ rod packing gives an explanation for the keratin organ-

isation in the corneocytes of the stratum corneum layer of the skin. The dilatancy of the

keratin matrix allows us to explain the remarkable structural rigidity of the skin during

the uptake of water and subsequent swelling of the skin. The ramifications of knowledge

of the keratin organisation are immense: the barrier properties of the skin are important

in many areas of the medical and therapeutic sciences, and surely relate to the structural

forms of the skin.
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1.3 Overview of the thesis

We begin in Ch. 2, titled “Free Tilings of the Hyperbolic Plane”, where we extend the

Delaney-Dress encoding of conventional tilings of H2 to include free tilings of H2, which

are tilings by tiles of infinite size. The chapter includes a brief catalogue of such free

tilings, that are regular (1-transitive edges, vertices and tiles) and are composed of infinite

ribbon tiles with high symmetry. We embed these selected, high symmetry free tilings into

either the ∗246 or ∗2226 chart of H2, so as to be commensurate for projection to the P, D

and G surfaces in the former case, and the H surface in the latter. Complications arise in

the embedding of free tilings with Stellate symmetry (to be defined later), for which there

are an infinite number of embeddings commensurate with the TPMS, and we establish

rules to systematically enumerate such embeddings.

Of the free tilings we consider, some have tile boundaries consisting of vertices and

edges and others have tile boundaries that are vertex-free infinite geodesics. In Ch. 3, titled

“Reticulations of Triply-Periodic Minimal Surfaces”, the free tilings containing vertices

and edges along the tile boundaries are reticulated over the TPMS to give a catalogue

of multiple component interpenetrating nets in E3. We analyse these resulting structures

using the standard SyStRe algorithm and TOPOS program to ascertain information about

the structure. Additionally, this chapter contains the reticulation of examples of the other

genre of free tilings, composed of infinite geodesic tile boundaries. These free tilings give

3-periodic knits composed of infinite tangled filaments when reticulated over the TPMS.

We catalogue these structures, and give details about their geometry and entanglement.

Ch. 4, titled “Ideal geometry of branched and periodic structures”, extends the SONO

algorithm to computationally tighten 3-periodic structures and is capable of tightening en-

tanglements that contain vertices. We lay the foundations of this algorithm by considering

tight finite knots, where the tight configuration is previously established in the literature.

Finite knotted graphs are tightened to show the reliability of the algorithm at vertices, and

further obtain measurements of the L
D energy for a variety of graph embeddings. Various

3-periodic entanglements of infinite filaments, constructed in Ch. 3, are computationally

tightened to reveal the geometry of their tight configurations. Finally, we tighten a few

selected single component nets to compare the tight configuration with the SyStRe canon-

ical embedding, and include nets where the SyStRe embedding contains vertex collisions.

We then consider the multiple component nets constructed on the TPMS to ascertain their

ideal geometry.
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The physical property of dilatancy for 3-periodic weavings, where the straightening

of filaments leads to an unprecedented increase in the free volume of the material, is de-

scribed in Ch. 5: “Dilatancy of Woven Filament Arrays” . We show examples of several

genres: zero dilatancy, finite dilatancy and infinite dilatancy. We finally explore the di-

latant weaving Σ+, which we propose as the scheme for keratin organisation within the

corneocytes of the outer layer of mammalian skin. The dilatant property of this matrix al-

lows the swelling of the skin in the presence of water without loss of inter-keratin contacts

with the corneocyte, which preserves structural stability.





Chapter 2

Free Tilings of the Hyperbolic Plane

A tiling is the faces, edges and vertices of a 2D tessellation of a surface, where tiles only

intersect along their boundaries and the tiles cover the whole of the surface. A reticulation

of a Triply-Periodic Minimal Surface (TPMS) is the edges and vertices (not faces) of a

tessellation on the surface: these vertices and edges in three-dimensional Euclidean space

(E3), define a structure. Tilings of the covering space of these intrinsically hyperbolic

TPMS, i.e. tilings of the two-dimensional Hyperbolic plane (H2), mimic direct tilings

of the TPMS when they adhere to a compatible set of isometries of the chosen surface:

in-surface symmetries of the TPMS are represented by symmetries of H2. Tilings that

consist of finite tiles with Coxeter symmetry, corresponding to Coxeter discrete groups

which contain only mirror symmetries, have been previously explored in detail [Rams 09].

(a) (b) (c)

Figure 2.1: (a) A free tiling with symmetry ∗2223 in H2. (b) The tiling shown on one unit cell of
the Gyroid surface. (c) The structure remaining in E3 is two interpenetrating srs networks.

This chapter explores tilings of H2 by tiles of infinite size with an infinite translation

as an internal symmetry (free tilings). Free tilings are of interest for their form as tilings of

TPMS: regular tilings give a single component net in E3, whereas free tilings give multiple

disconnected components in E3 that are interpenetrating [Hyde 03a, Hyde 00a, Hyde 00c].

For example, Fig. 2.1 shows a free tiling with symmetry ∗2223 in H2, as a surface tiling of

17
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the Gyroid minimal surface, and as a structure in E3: two interwoven srs nets of equivalent

chirality. Further, this chapter extends beyond Coxeter tilings to those with rotational

symmetry elements.

This is done by an extension to the Delaney-Dress method for encoding the abstract

topology of tilings, which represents the abstract topology of free tilings. In addition, we

embed these free tilings firstly into H2, where an ordering is borrowed from the Euclidean

plane, and further into tilings commensurate with the TPMS. To begin, we introduce both

orbifolds and the Poincaré Disc model of H2.

2.0.1 Conceptual Detour: Orbifolds and The Poincaré Disc model

An orbifold is the quotient of a manifold by a discrete group of isometries of the man-

ifold [Thur 80]. An orbifold represents a single asymmetric domain of an infinitely re-

peating pattern along with its symmetry information. More specifically, it is a topological

structure where all copies of the repeating pattern are “glued” under appropriate sym-

metries, such that “unrolling” the orbifold into any covering space results in a repeating

pattern. The corner and cone points of this single unit combined with its topology (details

of the symmetries of the pattern) gives the orbifold [Conw 92, Conw 02].

A two–dimensional orbifold encodes an infinite pattern on any two–dimensional sur-

face, be it intrinsically Spherical (S2), Euclidean (E2) or Hyperbolic (H2). The isometries

of two–dimensional space encoded by such orbifolds are [Conw 92]:

1. Reflections in a line, represented by the orbifold boundary and corner points. A

vertex may have n mirror lines incident, denoted by Conway symbol ∗n. Simply-

connected orbifolds containing only reflections are denoted ∗ab...c and are called

Coxeter orbifolds.

2. Rotations, represented by a cone point, denoted by Conway symbol N denoting a

2π/N rotation.

3. Translations: the identification of two pair of edges is denoted by ◦ (handle), two

directions of translational copies symmetry. Topologically, ◦ adds a handle to the

orbifold, adding to the genus.

4. Glide reflections, involving a reflection and a translation of the motif along the mir-

ror line, denoted by Conway symbol ×. Topologically, a × adds a non–orientable

cross–cap structure to the orbifold [Fran 99].
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The terminology of orbifolds is combined to form a string of the relevant symmetries

of the form AB...C∗ab...c× ...◦ .... An arbitrary Conway symbol encodes a realisable

orbifold and discrete group, except for the cases ∗mn and mn where (m %= n), and also the

specific case of ∗m and M, (m,M > 1). These are the only orbifold symbols that do not

represent groups [Conw 02].

The combinations of topological features within an orbifold give rise to eight distinct

categories, classified by the orientability of simply – or multiply – connected orbifolds,

with or without boundaries [Hyde 11]. We describe three of these categories, to be con-

sidered later in this chapter. The first is the Coxeter orbifolds, which contain only mirror

symmetries and correspond to Coxeter groups (Fig. 2.2(a)). This orbifold is a polygonal

section of the plane (be it Spherical, Euclidean or Hyperbolic) bounded by mirror bound-

aries. The second category is the Hat orbifolds, which consist of rotational symmetries

with a single mirror boundary. The rotational symmetries define the cone points and the

mirrors define the boundary (Fig. 2.2(b)). Finally, the Stellate orbifolds contain only rota-

tional symmetries, and resemble a pillow punctuated by distinct cone points (Fig. 2.2(c)).

(a) ∗abcd (b) A∗ab (c) ABCD

Figure 2.2: (a) A Coxeter orbifold: it is bounded by mirror boundaries and corner points. (b) A
Hat orbifold, it has a single mirror boundary and rotational symmetry. This consists of a cone
point bounded by the mirror lines. (c) A Stellate orbifold: it has purely rotational symmetry. The
orbifold is a pillow punctuated by each of the distinct cone points.

The neat orbifold notation of Conway described above allows us to find directly the

cost (C) of the orbifold, which is identical to both its Euler–Poincaré characteristic and

the area of the orbifold [Conw 92]. The global Gauss–Bonnet formula gives a relationship

between the Gaussian curvature of a surface (K) and the Euler–Poincaré Characteristic

(χ) [Spiv 79]. More precisely, where A is the given area:

2πχ =
Z Z

K dA
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Thus where the Gaussian curvature of the surface is constant, or the area is taken in the

universal cover of the surface, the sign of the Euler–Poincaré characteristic gives the sign

of the Gaussian curvature of the surface by:

K =
2πχ
A

The cost, C, of the orbifold (and in turn the mean Gaussian curvature) is calculated by:

C = 2−∑
i

di

The following table shows the value of each di.

Symmetry Element Symbol di

Mirror ∗ 1

Glide Reflection × 1

n–fold rotation centre N N−1
N

Mirror Intersection (angle π
n ) n n−1

2n

Translation (handle) ◦ 2

The hyperbolic plane, H2, has constant negative Gaussian curvature, denying it the

luxury of embedding in E3 without singularities. These singularities manifest as ob-

structions in the visual representation of H2in our Euclidean world: immersing H2 in

E3 with singularities may result in the singularities acting as obstructions to the paths

of geodesics [Hilb 52]. This is not ideal for our purposes, and in turn we are led to the

Poincaré Disc model of the H2 [Hilb 52, Coxe 47a, Bear 95].

Figure 2.3: The Poincaré Disc: a conformal representation of the H2. Geodesic paths passing
through the centre of the circle, such as m, are represented by straight lines. All other geodesic
paths, such as l and n, are represented by circular arcs that intersect the boundary at right angles.
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The Poincaré Disc model represents H2 as the interior of a circle, where H2 approaches

infinity at the boundary of the circle. A geodesic is an arc of the circle that is incident at

right angles to the boundary of the circle, as shown in Figure 2.3. Defining the interior of

the Poincaré Disc by {z ∈ C : |z| < 1}, the metric for this model is given by

ds =
2|dz|

1−|z|2

The Poincaré Disc model is a conformal model: Euclidean angles on the disc corre-

spond to angles in H2. Parallel lines, or “equidistant” lines, in the hyperbolic plane are sig-

nified by lines that meet at the disc boundary, e.g lines ‘l’ and ‘m’ in Fig. 2.3 [Coxe 47a].

“Hyperparallel” lines are represented by non–intersecting lines, e.g lines ‘m’ and ‘n’ in

Fig. 2.3. Fig. 2.4 shows a regular hexagon in both the two–dimensional Euclidean plane

(E2) and H2, where the Poincaré Disc model is used to represent H2.

(a) (b)

Figure 2.4: (a) A regular hexagon in E2. (b) A regular hexagon in H2, shown on the Poincaré Disc
model of H2. It has angles less that 120◦.

2.1 Abstract topology of tilings: Delaney–Dress

Conventional tilings

To encode conventional tilings of H2 (those which are topologically equivalent to a disk),

we consider the Schläfli symbol. The Schläfli symbol is of the form {p,q,r, ...}, and

encodes regular polytopes and tessellations [Coxe 47b]: a symbol {p} encodes a regular

(‘Platonic’) polygon with p sides, a symbol {p,q} encodes the tessellation of q regular

p–sided polygons around each vertex. Where this tessellation may be embedded in S2, the

symbol defines the polyhedron enclosed by the tiling.

Where the Schläfli symbol encodes only the topology of the tiling, the so–called
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Delaney–Dress symbol encodes more information: for any periodic tiling of a

two–dimensional plane by tiles of finite size it gives a canonical and finite encoding of the

topology and symmetry of the tiling [Dres 87]. Conversely, the Delaney–Dress symbols

can be used to build tilings of a given symmetry and topology. The symbol triangulates

each tile of the periodic tiling into a series of chambers, where the three vertices of the

chamber lie at a vertex, edge and face of the tiling respectively. Tilings with the following

properties have canonical encodings [Dres 87, Rams 09]:

1. Each tile is topologically equivalent to a disk (they are closed).

2. Tiles only intersect along their boundaries.

3. The size of the tiles is uniformly bounded.

4. Tiles cover the whole of the plane (be it S2, E2 or H2).

Given a tiling of any two–dimensional plane, the construction of the triangulation for

the purposes of encoding the topology of the tiling follows a specific recipe:

1. At the barycentre of each tile (the ge-

ometric centroid of masses placed at

each vertex of the tile), place a vertex

denoted ‘2’.

2. At the midpoint of each edge, place

a vertex denoted ‘1’.

3. At each vertex of the tiling, place a

vertex denoted ‘0’.

4. The domain is triangulated by con-

necting vertices as shown to the

right.

5. ‘Colour’ the chambers such that

those related by isometries of the

tiling are the same colour.

For example, the triangulation of a portion of a tiling of H2 is constructed using this

prescription in Fig. 2.5. A smallest asymmetric unit of the tiling contains two triangular
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regions, one shown in red and the other in blue, these two regions represent the two dis-

tinct tiles of the tiling. When encoding the tiling, we consider only the chambers within

an asymmetric domain: all copies of these chambers are encoded through the adjacency

relation information.

(a) (b)

Figure 2.5: (a) A tiling of H2 by two distinct tiles. (b) A triangulation of an area of the tiling. The
triangulation is composed of vertices placed at each of the tile faces, tile vertices and tile edges.
This example has two distinct chambers within a asymmetric domain, one shown in red and one
shown in blue [Hyde 10].

The ‘adjacency map’ of each chamber encodes which chambers are adjacent to a se-

lected chamber on each of its boundaries. The term s0 denotes the neighbouring chamber

across the 0–edge, s1 across the 1–edge, and s2 across the 2–edge. To encode the topology,

we consider the orbits around each of the vertices for each distinct chamber. Around the

2–vertex (the vertex in the centre of the face), we consider how many sets of 0–edges (the

edge opposite the 0–vertex) and 1–edges (the edge opposite the 1–vertex) are incident to

that 2–vertex. The order of this orbit is denoted m01. In general, m01 corresponds to the

number of edges of a tile. For example, in Fig. 2.5, m01 for the red chamber is 6, and

m01 for the blue chamber is 4. Similarly, we require the order of the 0–vertex orbit, m12.

For each distinct chambers in Fig. 2.5, m12 is of order four. The 1–vertex orbit (m02) is

always two, by the prescribed construction of triangulation. The full encoding of the tiling

shown in Fig. 2.5 is given by the following table:

Chamber Class s0 s1 s2 m01 m12

Red Red Red Blue 6 4

Blue Blue Blue Red 4 4
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A unique ordering of complexity may be obtained from Delaney–Dress encodings, and

in turn these tilings are enumerable up to a given complexity [Delg 03a]. Another approach

to encoding the equivalent information is the Generalised Schläfli Symbol [Conw 08].

This is an extension of the Schläfli symbol as it defines a tessellation together with its

symmetries, as opposed to an abstract polyhedron. This encoding gives a good visual

representation of the tiling. Within this section, however, we use only the Delaney–Dress

encoding for tilings of H2.

Free tilings

To construct and encode tilings of H2 by tiles of infinite size, termed free tilings, we delete

edges from a conventional tiling while preserving the original Delaney–Dress triangula-

tion. The term free tiling (Vanessa Robins, private communication) is due to the internal

symmetry elements of the resulting infinite tile being a free group. These free tilings are

denoted by the original Delaney–Dress encoding with an additional signifier, namely a

1̄–vertex rather than the standard 1–vertex, on the chambers that now contain a ‘ghosted’

edge. By associating each free tiling with a conventional tiling, free tilings inherit the

enumerable structure of Delaney–Dress symbols.

This encoding is complicated by the fact that most free tilings may be constructed from

multiple distinct conventional tilings: if two conventional tilings differ only by a single

edge (and have different Delaney–Dress encodings), and this particular edge is ghosted, the

same free tiling will result and will be classified by two distinct encodings. For example,

Fig. 2.6 shows the ghosting of two conventional tilings, where the result is equivalent free

tilings.

The unique encoding of a free tiling is chosen to be the simplest among all possible en-

codings, as defined by the number of chambers within the triangulation of a single orbifold

domain. Where there exist multiple simplest encodings of a single free tiling, the unique

encoding is chosen to be that which has come from the least complexity Delaney–Dress

encoding (Delaney–Dress encodings may be uniquely ordered [Delg 03a]). For example,

the encoding of the free tiling shown in Fig. 2.6 part (b) is simpler than that which is shown

in part (d).

Two issues arise in finding a unique encoding of a free tiling. Given two distinct

encodings, how do we determine if they represent the same free tiling? To find the unique

encoding of a free tiling, how do I first enumerate all possible encodings from which to
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(a) (b)

(c) (d)

Figure 2.6: (a) A conventional tiling of H2 shown with its Delaney–Dress encoding. (b) By
ghosting a single edge of the conventional tiling shown in part (a), a free tiling of H2 results, which
inherits the Delaney–Dress encoding. (c) A conventional tiling of H2, which is different from that
shown in part (a), shown with its encoding. (d) The ghosting of an edge gives a free tiling which is
equivalent to that shown in part (b), yet it inherits a distinct encoding.

choose the simplest? We address these issues through a set of rules that construct the

unique encoding of a free tiling from the tile vertices and edges of the free tiling, without

information about the conventional tiling from which it originated.

A necessary restriction for the uniqueness of the encoding obtained from this construc-

tion process is that we only remove edges from a conventional tiling that leave at least two

edges incident at each of its vertices (i.e. the removal of an edge does not remove all edges

incident at a vertex), and only remove edges which begin and end at symmetry sites of the

orbifold. The completeness of the set of free tilings enumerated with these restrictions is

not yet proven, nevertheless this lies outside the scope of this thesis.

We proceed with the construction algorithm. The notation 1̄ is added to the encoding to

represent edges that are present in the conventional tiling but not in the free tiling (ghosted).
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We begin with a parent symbol, constructed as follows:

1. Identify an asymmetric orbifold domain of the free tiling; this is the domain for

triangulation.

2. All symmetry ‘corners’ of the tile boundary (intersection points of mirror lines or

rotation centres) are occupied by 0–vertices. These locations are the only locations

where vertices may have been present in the conventional tiling, given the restric-

tions placed on where edges may be removed from conventional tilings.

3. A 1–vertex is placed at the mid–point of all tile edge segments which connect

0–vertices.

4. All symmetry ‘corners’ in the interior of the tile with order > 2 are occupied by

2–vertices.

5. All other symmetry ‘corners’ in the interior of the tile (those with order ≤ 2) are

occupied by 1̄–vertices. This defines all locations where edges may have been re-

moved.

6. A 2–vertex is placed at the mid–point of all orbifold boundary segments in the inte-

rior of the tile which connect two 1̄–vertices.

7. The domain is triangulated where each triangle has a 0–vertex, a 2–vertex and either

a 1–vertex or a 1̄–vertex.

For example, Fig. 2.7 part (a) shows a free tiling of H2 and part (b) shows the parent

symbol of one asymmetric orbifold domain: this triangulation has two 0–vertices at the

∗3 and ∗2 mirror intersections on the tile boundary with a 1–vertex between, and two

1̄–vertices at each of the ∗2 mirror intersections in the interior of the tile and a 2–vertex

between. The triangulation in the example exactly covers a single orbifold domain.

A further process must now take place to find the unique encoding, which is the sim-

plest symbol related to the parent symbol. A simplification may be performed by removing

chambers of the encoding (where possible). We then permute through all possible simplifi-

cations to find the simplest (and unique) encoding. As simplifications, we wish to remove

chambers of the symbol such that we no longer have 0–vertices which are of degree–2

(those which do not lie at actual vertices of the free tiling), and also delete chambers such

that we remove as many 1̄–vertices as possible.
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(a) (b)

Figure 2.7: (a) A free tiling of H2. (b) The construction recipe dictates the placement of the
vertices and chambers of the parent triangulation, where both 1̄–vertices are superfluous.

A 1̄–vertex is a candidate for removal when it is of degree–4 in the full triangulation

of H2 or equivalently of degree-2 in the triangulation of a single orbifold domain, and

it is neighboured by a 2–vertex that is not at a symmetry corner. For example, each of

the 1̄–vertices in the parent symbol shown in Fig. 2.7 are candidates for removal. After

the removal of a 1̄–vertex (and its associated edges), the neighbouring 2–vertex slides to

the location of the past 1̄–vertex, and maintains all other connections. This decreases the

number of chambers within the symbol by 1, yet the topology and symmetry of the free

tiling which it describes is equivalent.

In a similar process, a 0–vertex that lies on an edge of the tiling and is not at a vertex

of the tiling is a candidate for removal when it is neighboured by a 1–vertex not at a

symmetry corner, and it is also of degree–4 in the full triangulation of H2 or equivalently

of degree–2 in the triangulation of a single orbifold domain. The 0–vertex in the parent

symbol shown in Fig. 2.7 is not a candidate for removal as it is of degree–3 in one orbifold

domain of the triangulation. After the removal of a 0–vertex (and its associated edges), the

neighbouring 1–vertex slides to the location of the past 0–vertex, and maintains all other

connections. This process also decreases the number of chambers within the symbol by 1,

yet the topology and symmetry of free tiling which it describes is equivalent.

These chamber removals are performed until there are no longer any candidate cham-

bers for removal. It is at this stage that a unique simplest encoding is found. For example,

consider the parent symbol shown in Fig. 2.7. Each of the 1̄–vertices of the encoding are

candidates for removal: we note however, that once one is removed, the other is no longer

suitable for removal, as its neighbouring 2–vertex will now be on a symmetry corner. We

remove each of the 1̄–vertices, and examine the resulting encodings, as shown in Fig. 2.8.
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After the initial chamber removal, the upper encoding in Fig. 2.8 has no further cham-

bers which are suitable for removal. In the lower encoding, however, the 0–vertex of

degree–2 is now a candidate for removal. The removal of this chamber, and the subse-

quent sliding of the 1–vertex gives a simpler encoding of the free tiling. This is the unique

encoding of the free tiling.

Figure 2.8: The parent symbol of a free tiling in H2 may be simplified in two ways, which give two
distinct encodings. The upper encoding may not be simplified any further, yet the lower encoding
may be further simplified by the removal of the 0–vertex of degree 2. This simplification leads to
the unique encoding of the free tiling.

We document the encoding from the neighbour maps, as well as the orbits of the

0–vertices and 2–vertices of the chambers. To encode the missing edge, we must note

the chamber with the ‘ghost’ edge. We do this by denoting all chambers with a real (not

ghosted) edge in bold and the ghosted edge 1̄. Denote the chamber shown in blue ‘A’

and that shown in red ‘B’ to obtain the following tabular representation of the simplest

encoding of the free tiling shown in Fig. 2.8:

Chamber Class s0 s1 s2 m01 m12

A A B A 4 6

B B A B 4 6
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2.2 Embedding orbifolds in the universal cover space

The Delaney–Dress symbol is an encoding of the topology and symmetry of a tiling, but

not the geometry, for both conventional tilings and free tilings. This encoding is a decora-

tion of an orbifold. An embedding of an orbifold assigns a presentation of the symmetry

group encompassed by the orbifold in its universal cover, where a presentation is a way

to define a group by listing a specific set of elements which generate the group plus a

set of relations between the generators. It is trivial to interchange between orbifolds and

symmetry groups by choosing a set of generators.

We explore the embedding of orbifolds of the form ∗222k, 2∗2k and 222k in their

universal cover. For Coxeter orbifolds, the orbifold is (by definition) bounded by mirrors.

When embedded in the covering plane, the positions of the generators (the distinct mir-

rors) are set uniquely relative to each other as bounding an asymmetric patch. For “hat”

orbifolds (with the form 2∗2k), the relative positions of the generators are uniquely set,

which gives a unique embedding into the covering space. The uniqueness of this embed-

ding is obvious if you consider the domain of two orbifolds doubled around the 2–fold

rotation: this is a ∗2k2k (Coxeter) domain, which we know uniquely embeds.

Stellate orbifolds have infinite freedom in the relative positions of the generators (rota-

tions) in the covering plane (i.e. infinite scope in the presentation of the group). We wish to

systematically generate all distinct presentations of the 222k group, so as to specify all dis-

tinct embeddings of the orbifold into the covering plane. We begin with the 2222 orbifold,

which embeds in E2 by the orbifold cost formula: C = 2−∑i di = 2−
( 1

2 + 1
2 + 1

2 + 1
2
)
= 0.

Embedding the 2222 orbifold into E2 requires nominating four generating 2–fold ro-

tation sites. Fig. 2.9(a) shows an embedding, where the generators are at the positions

{0,0}, {1,0}, {1,1} and {0,1} of E2. This results in the set of all elements (not just the

generators) of the infinite group being grid points in Z×Z (the two–dimensional integer

grid: elements are represented by a couple {x,y} where x and y are integers).

Given the reference frame established by the embedding in Fig. 2.9(a), distinct presen-

tations of the same group may be obtained by expressing the generators as other elements

of the group (i.e. other points in the plane) [Coxe 72]. Labelling the 2–fold rotations lo-

cated at {0,0}, {1,0}, {1,1} and {0,1} as QT , QA, QB and QC respectively, presentation

of the group given by the reference frame is

< {QT ,QA,QB,QC} : (QA)2 = (QB)2 = (QC)2 = (QT )2 = I,QT = QAQBQC >
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(a) (b)

Figure 2.9: (a) An embedding of the 2222 orbifold in E2. The corners of the square coincide with
the points {0,0}, {1,0}, {1,1} and {0,1}, establishing a reference frame of Z×Z for subsequent
embeddings (b) Another embedding of 2222 relative to the established reference frame.

A new presentation of the same symmetry group specifies generators Q′
T , Q′

A, Q′
B and

Q′
C with respect to the reference frame such that the group relations are preserved. Thus

we express the generators in terms of the original QT , QA, QB and QC.

The set of possible presentations may be represented through parallelograms on

Z×Z. To reduce duplication of embeddings, we begin by considering only one quad-

rant of E2 and we pin the 2–fold rotation QT in place, so as to eliminate the possibility of

constructing a domain of equivalent shape translated by some vector. We require that the

only isometries of the parallelograms are the 2–fold rotations at the corners and that the

enclosed area must be 1 (area equivalent to the square in the reference frame embedding),

as all cuttings of the orbifold must span the same area. These restrictions are equivalent to

satisfying the group relations for a presentation. Note also that this domain is the area en-

closed by the four distinct 2–fold rotations, and that a full 2222 symmetry group is double

this quadrilateral over any of its edges, where this full domain has area exactly 2 units.

As an example, Fig. 2.9(b) shows a unit area parallelogram on Z×Z with corners

{0,0}, {r,s}, {p + r,q + s} and {p,q}. Each grid point in the plane represents elements

of the infinite group, hence we may express the corner points of the parallelogram (with

respect to the reference frame) as:

Q′
A = QBQCQB

Q′
B = QBQCQBQAQBQCQB

Q′
C = QB

Q′
T = QT

It is simple to show that the group relations (Q′
A)2 = (Q′

B)2 = (Q′
C)2 = (Q′

T )2 = I are
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satisfied for these new generators. The other group relation, where Q′
AQ′

BQ′
C must be equal

to Q′
T , is also satisfied by these elements (working shown below), hence the generators

Q′
T , Q′

A, Q′
B and Q′

C are a presentation of the symmetry group of the 2222 orbifold.

Q′
AQ′

BQ′
C = QBQC(QBQB)QCQBQAQBQC(QBQB)

= QB(QCQC)QBQAQBQC using (QB)2 = I

= (QBQB)QAQBQC using (QC)2 = I

= QAQBQC using (QB)2 = I

= QT

= Q′
T

Enumeration of all such embeddings of parallelograms of unit area in Z×Z may be

thought of as a 3–parameter family: the 5 parameters {p,q}, {r′,s′} and k, reduce to 3

when the area of the parallelogram is expressed as ps′ − r′q = 1. To ensure that no ad-

ditional symmetry points are located on the boundary of the parallelogram, the {p,q} (or

Q′
C) corner of the parallelogram is chosen such that {p,q} are coprime. One solution of

the other corner of the parallelogram, {r′,s′} (or Q′
A) is chosen such that the parallelo-

gram has unit area. For a given {p,q}, the full set of solutions for the other corner is

{r,s} = {r′,s′}+ k{p,q}. This 3–parameter family describes all embeddings of 2222 into

a discretised E2.

The orbifold 2223 has H2 as the universal cover, as given by the cost formula:

C = 2−∑
i

di = 2−
(

1
2

+
1
2

+
1
2

+
2
3

)
=−1

6

Begin by choosing an embedding of the orbifold to be a reference frame in H2, nominating

four generators to present the symmetry group: QT , QA, QB and QC. Consider the quadri-

lateral formed by connecting the four generating elements of the group (Fig. 2.10(a)),

establishing a reference frame and discrete infinite grid.

The group relations for the 2223 symmetry group are given by

< {QT ,QA,QB,QC} : (QA)2 = (QB)2 = (QC)2 = (QT )3 = I,QT = QAQBQC >

Fig. 2.10(b) shows a quadrilateral whose four corner points are elements of the infinite

group 2223. To establish if the corner points represent generators of the group, and hence
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if the quadrilateral is a valid presentation of the group, we consider the group relations.

The corner points of the quadrilateral may be expressed as:

Q′
T = QT

Q′
A = QBQCQB

Q′
B = QBQCQBQAQBQCQB

Q′
C = QB

(a) (b)

Figure 2.10: (a) An embedding of the 2223 orbifold into H2. The corners of the quadrilateral are a
reference frame grid for other embeddings. (b) A subsequent embedding of the 2223 orbifold into
H2 relative to the reference frame established previously.

It is straightforward to see that the group relations (Q′
A)2 = (Q′

B)2 = (Q′
C)2 = (Q′

T )3 = I

are satisfied for these elements. The other group relation, where Q′
AQ′

BQ′
C must be equal

to Q′
T , is also satisfied, with working shown below, and hence the quadrilateral shown is a

valid embedding of the 2223 orbifold in H2 given the reference frame.

Q′
AQ′

BQ′
C = QBQC(QBQB)QCQBQAQBQC(QBQB)

= QB(QCQC)QBQAQBQC using (QB)2 = I

= (QBQB)QAQBQC using (QC)2 = I

= QAQBQC using (QB)2 = I

= QT

= Q′
T
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To enumerate possible embeddings, we determine possible locations of the Q′
C gener-

ator with respect to the reference frame: the analogue of finding the coprime {p,q} vertex

of the parallelogram. We fix the QT generator as an origin, and consider a π
3 sector of the

plane, as all others will be equivalent by symmetry (as was the case for the π
2 sector of

2222 in E2). The edge from the origin to Q′
C must not intersect any image of itself.

Consider a 3–fold rotation site, !0 , in Fig. 2.11(a) to be at the origin, along with an

image of the origin by a 2–fold operation, shown as the 3–fold rotation site !1 . Any

geodesic ray from the origin (whose end will be the location of Q′
C) will have exactly three

copies radiate from !1 , one in each of the sectors W1, W2 and W3. If Q′
C (the end of the

geodesic ray) is placed in the sector W3, as shown by the blue geodesic in Fig. 2.11(b), it

certainly intersects an image of itself radiating from !1. This prohibits the placement of

Q′
C in the sector W3.

(a) (b)

Figure 2.11: (a) The configuration of the 3–fold rotation at the origin (!0) and an image (!1),
where !1 divides H2into three sectors, W1, W2 and W3. (b) If Q′

C (the end of the blue geodesic) is
located in the W3 sector, the edge from the origin to Q′

C (the blue geodesic) will certainly intersect
an image of itself, as shown by the red geodesic.

(a) (b)

Figure 2.12: (a) The sector W3 can be excised and the boundary sewn together to form a bound-
ary free plane. (b) The result is a line of 2–fold rotations, terminating at a new 3–fold rotation.
Repeating the cutting process further removes territory from where Q′

C is prohibited.

We then remove this prohibited sector (to infinity) from H2. Fig. 2.12(a) shows how
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we may then sew up the remaining boundary to make the space boundary free once again.

The result is shown in Fig. 2.12(b), the 3–fold rotation !1 has now become a 2–fold

rotation, and the 3–fold rotations !2 and !3 have been joined. By use of the same

argument on this new configuration, further W3 sectors of the plane can excised and the

boundary sewn, resulting in an infinite line of 2–fold rotations on a boundary free plane.

These prohibited sectors are shown on the 2223 discretisation of H2 in Fig. 2.13.

Figure 2.13: Prohibited sectors of the 2223 discretisation of H2 are shown. There are infinitely
many prohibited sectors, located at every 3–fold rotation of the discretisation, where only three
such sectors are shown here. The remaining ‘allowed” section is a Euclidean subdomain of H2.

Reducing every 3–fold rotation of the discretisation of H2 to a 2–fold rotation trans-

forms the discretisation to exactly the 2222 symmetry group, hence, by the orbifold cost

formula, we are left with a discretisation of E2. The removal of sectors of the Hyperbolic

plane and subsequent sewing of the boundaries has resulted in exactly a boundary free

Euclidean plane.

By only removing territory in which the Q′
C location is prohibited, we have shown

that the scope of possible locations of Q′
C are in a Euclidean subset of H2, discretised by

exactly Z×Z. The same geometric argument may be used to show that the edge from the

origin to Q′
A is also limited to also lie within E2 discretised by Z×Z. The location of Q′

B

is then completely determined by Q′
A and Q′

C.

As a result of this ordered Euclidean subdomain of H2, we may index all possible
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quadrilateral domains of the 2223 orbifold exactly by embeddings of parallelograms of

unit area in Z×Z. Fig. 2.14 shows the Z×Z grid within a π
3 sector of the discretisation of

H2 by the 2223 reference frame embedding.

Figure 2.14: The positioning of the grid points of Z×Z in a π
3 sector of 2223 discretisation of H2.

An equivalent process may be applied to any 222k discretisation of H2. The rotational

symmetry at each k–fold vertex always restricts the location of the Q′
C generator to be

within the adjacent sector, and hence any 222k discretisation of H2 has an allowed sub-

domain for the embedding of the orbifold that is equivalent to the 2222 discretisation of

E2 within a 2π
k sector.

2.3 Embedded tilings commensurate with TPMS

Reticulation patterns of a TPMS must be commensurate with the sub–symmetries of the

chosen surface. The 2D asymmetric patch of each of the P, D and G surfaces is a triangle

bounded by in–surface mirrors meeting at angles of π/2, π/4 and π/6 at the corners of

the patch. The asymmetric patch corresponds to a single ∗246 triangle uniquely embedded

in H2, whose generators are mirrors R1, R2 and R3: the reflection R1 maps across the line

passing from ∗6 though ∗2 vertices, R2 from ∗2 through ∗4 vertices and R3 from ∗6 through

∗4 vertices [Robi 04a, Moln 02]. The infinite ∗246 pattern is shown in Fig. 2.15(a). Sim-

ilarly for the H surface, the smallest asymmetric patch of the surface is a quadrilateral

bounded by in–surface mirrors meeting at angles of π/6, π/2, π/2 and π/2 at each of the
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corners [Robi 04b]. This has hyperbolic orbifold ∗2226, and one example of this orbifold

is shown in the universal cover of the H surface (H2) in Fig. 2.15(b).

(a) (b)

Figure 2.15: ∗246 and ∗2226 tilings represented on the Poincaré Disc model of H2. The tilings
are coloured by an orientation preserving subgroup.

The H surface has a degree of freedom corresponding to a deformation of the surface

along the z–axis (variation of the ratio of a to c in the lattice parameters) [Hyde 03b]. This

gives a degree of freedom in the asymmetric patch, and a degree of freedom in the ∗2226

tiling of H2. The ∗2226 tile in H2 can be divided into two triangles, with the first having

angles π/6, α and β, and the second having angles π/2−α, π/2−β and π/2. The angles

α and β are related using hyperbolic trigonometric identities to give:

cos(α)cos(β)+ cos(π/6)
sin(α)sin(β)

=
sin(α)sin(β)
cos(α)cos(β)

This results in a one–parameter family of asymmetric domains for ∗2226 [Hyde 03b],

given by the following association:

cos(α) =
√

1− 13
16

cos2(β)−
√

3
4

cos(β)

Surface reticulations are also chosen adhere to the translational symmetries of the

TPMS: “◦◦◦” (in Conway’s notation), as one primitive unit cell of the oriented (coloured)

TPMS has integral curvature −8π, which corresponds to genus–3 with gluings. In doing

so, we ensure that reticulations are continuous over the primitive unit cell boundaries, and

also display all translations of the TPMS [Rams 09, Robi 04a, Robi 04b].

The combination of these symmetry requirements restricts possible reticulations of
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the surfaces to come from particular decorated orbifolds. Specifically, reticulation of the

P, D and G surfaces must have decorated orbifolds within the quotient group ∗246/◦◦◦:

the orbifold must be a subgroup of ∗246, yet always contain ◦◦◦ symmetries. The 131

possible orbifolds has been enumerated [Robi 04a], and this list of numbered groups are

presented in Appendix A. Likewise, reticulations of the H surface must have decorated

orbifolds within the quotient group ∗2226/◦◦◦: the orbifold must be a subgroup of ∗2226,

yet always contain ◦◦◦ symmetry. The 32 possible orbifolds commensurate with the

H surface are also enumerated [Robi 04b], and this numbered list is also presented in

Appendix A.

Before embedding with a commensurate symmetry, we must consider our final goal:

structures in E3. Where two reticulations of a single TPMS are related by an intrinsic sur-

face symmetry which lifts to a Euclidean isometry of 3D space, they are called conjugates,

and we wish to consider only one representative within a conjugacy class. In hyperbolic

terms, this indicates that tilings of H2 that are related by a symmetry of the underlying

surface tiling (∗246 or ∗2226) are considered within the same conjugacy class. An exam-

ple of two tilings of H2 that are related by a symmetry of ∗246, and will give equivalent

surface frameworks, is shown in Fig. 2.16.

(a) (b)

Figure 2.16: Two free tilings with symmetry ∗2223 (group 124 [Robi 04a]) that are related by a
reflection of the ∗246 tiling shown behind the tiling. These tilings fall within the same conjugacy
class, and they give equivalent frameworks on the TPMS.

The embedding into ∗246 or ∗2226 requires us to express the reference frame genera-

tors of the group in terms of the generators of the underlying tiling. For Coxeter and Hat

orbifolds, we must take into account automorphic embeddings of the orbifold. An auto-

morphism of an orbifold is an abstract symmetry of the orbifold. Where the automorphism

of an embedded orbifold is not a symmetry within the underlying tiling, automorphic em-
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beddings of a tiling, which are images of each other through the abstract symmetry, will

give distinct surface patterns. An example of two automorphic embeddings of the ∗2224

orbifold, which gives two distinct tilings not related by a symmetry of ∗246, is shown in

Fig. 2.17. For Stellates, enumeration of embedded parallelograms into the reference frame

accounts for all automorphic embeddings.

(a) (b) (c)

Figure 2.17: (a) Unique embedding of the ∗2224 (group 123 [Robi 04a]) orbifold into the ∗246
tiling, where the abstract symmetry of the orbifold is now asymmetrised. (b,c) Two regular ribbon
tilings related by an automorphism of ∗2224.

Regular ribbon tilings and their complements

A regular ribbon tiling is a tiling by infinite ribbons that has 1–transitive edges (one type

of tile edge), 1–transitive vertices (one type of tile vertex) and 1–transitive tiles (one type

of tile face). A complementary tiling, related to a regular ribbon tiling, has tile vertices and

faces interchanged, and edges interchanged with ghosted edges. Complementary tilings

are equivalent to regular, dense forests in alternative nomenclature [Hyde 00a]1. This ter-

minology is compatible with that for standard tilings.

In a regular ribbon tiling, 1–transitive edges imply that the degree–3 vertex of the

tile boundary must have either 3–fold symmetry or ∗3 symmetry. Further, 1–transitive

vertices indicate that an edge must have a midpoint at either a 2–fold rotation or ∗2 site.

The translation within a tile may be defined by some combination of ∗2 symmetries, 2–

fold rotations, ‘◦’ or ‘×’. Of the groups within the ∗246/◦◦◦ quotient group, 4 groups fit

these criteria: ∗2223 (group 124), 2∗23 (group 129), 2223 (group 118), and 23× (group

121). We find that simple decorations, such as regular ribbon tilings, on the 23× orbifold

1Regularity is an equivalent term in the two schema: i.e. in a dense forest, the tile between neighbouring
trees is a ribbon.
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has increased symmetry of 2∗23 (a supergroup of 23×), thus we disregard decorations

of this orbifold. We consider regular ribbon tilings and their complements on the three

remaining orbifolds, and their embedding into the ∗246 chart of H2.

The abstract orbifold ∗2223 supports a regular ribbon tiling with a decorative edge

passing from the ∗3 location along the mirror boundary to a ∗2 site. The decoration has

boundary vertices at the ∗3 corner, edge midpoints at the ∗2 corner, and an infinite transla-

tion generated by the parallel mirrors of the remaining two ∗2 corners. This decoration is

shown in Fig. 2.18 along with a table representing its Delaney–Dress encoding. We refer

to this tiling by the name 124R: the Regular ribbon tiling of group 124.

Chamber Class s0 s1 s2 m01 m12
A A B A 4 6
B B A B 4 6

Figure 2.18: The Delaney–Dress representation of a regular ribbon tiling on the ∗2223 orbifold:
124R. The edge passes along the mirror boundary from the ∗3 site to the ∗2 site.

The complement of the regular ribbon tiling on ∗2223 interchanges the 0–vertex and

2–vertex sites of the triangulation as well as the 1–vertex and 1̄–vertex sites. This pro-

cess swaps the boundaries of the tiles with the infinite translation axes of the tiles. The

Delaney–Dress encoding of the complementary regular ribbon tiling of ∗2223 is shown in

Fig. 2.19. We call this tiling 124C: the Complementary tiling of group 124.

Chamber Class s0 s1 s2 m01 m12
A A B A 6 4
B B A B 6 4

Figure 2.19: The Delaney–Dress coding of the complementary tiling on the ∗2223 orbifold: 124C.
It is obtained by interchanging the 0–vertex and 2–vertex sites and the 1–vertex and 1̄–vertex sites
of the regular ribbon tiling.

The ∗2223 orbifold has a unique embedding into the ∗246 chart of the P, D and G sur-
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faces [Robi 04a], but is not commensurate with the ∗2226 chart of the H surface [Robi 04b].

This embedded orbifold is composed of exactly two ∗246 triangles, glued along R3 (the

mirror passing from ∗6 to ∗4). This amalgamated domain has two ∗2 vertices from the

original two triangles, an additional ∗2 vertex from a gluing of two ∗4 vertices, and a ∗3

vertex from a gluing of two ∗6 vertices. One fundamental domain of the ∗2223 orbifold

embedded in the ∗246 is shown in Fig. 2.20(a).

(a) (b) (c)

Figure 2.20: (a) The embedding of the ∗2223 orbifold in the ∗246 tiling of H2: two ∗246 tri-
angles fused along an R3 boundary. (b) ∗246124R, the embedded regular ribbon tiling of ∗2223.
(c) ∗246124C, the embedding of the complementary regular ribbon tiling on ∗2223.

The ∗2223 orbifold has an abstract symmetry (automorphism) along the axis passing

from the ∗3 vertex to the opposite ∗2 vertex. Once the orbifold is embedded, however,

this abstract symmetry aligns with the R3 reflection of the ∗246 chart: the automorphism

of the orbifold corresponds to a conjugacy of the ∗246 map, so we need only consider

one form. The embedded regular ribbon tiling from Fig. 2.18 and the embedding of the

complementary tiling represented in Fig. 2.19 are shown in Fig. 2.20(b,c) respectively.

The interchange of the tile boundary for the medial axis, the axis of points with more than

one closest edge, is apparent. We refer to these embedded tilings by the names ∗246124R

and ∗246124C, symbolising the 124R and 124C tilings embedded in the ∗246 tiling of H2.

The orbifold 2∗23 (group 129) contains a 2–fold cone point (the peak of the hat, as

shown in Fig. 2.2(b)), with the open brim consisting of two mirrors intersecting each other

at two points, one intersection with an angle of π
2 and the other π

3 . A regular ribbon tiling

with a degree–3 vertex and symmetry 2∗23 has an edge passing from the ∗3 site along the

mirror boundary to the ∗2 site. This decoration and information can be represented by a

Delaney–Dress triangulation of the orbifold (Fig. 2.21), and is called 129R. Tiling 129C is

the complement of this tiling, representing an interchanging of the tile boundaries for the
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medial axes. The Delaney–Dress encoding of 129C is shown in Fig. 2.22.

Chamber Class s0 s1 s2 m01 m12
A A B A 3 9
B C A C 3 9
C B C B 3 9

Figure 2.21: The regular ribbon tiling of the 2∗23 orbifold. The decoration passes from the ∗3
site, along the mirror boundary, to the ∗2 site. This tiling is referred to by the label 129R.

Chamber Class s0 s1 s2 m01 m12
A A B A 9 3
B C A C 9 3
C B C B 9 3

Figure 2.22: The complement of the regular ribbon tiling on 2∗23, 129C. The edge passes from
the 2–fold rotation to the mirror boundary, incident at right angles. The edge would continue to a
copy of the 2–fold rotation in the neighbouring domain.

The 2∗23 orbifold embeds uniquely in ∗246 (Fig. 2.23(a)). The automorphism of the

2∗23 orbifold (an abstract mirror symmetry on the axes passing from the∗3vertex to the

2–fold rotation) is a conjugacy of the ∗246 tiling: we need only consider a single automor-

phic embedding of the orbifold. Fig. 2.23(b) and (c) show the embedding of the regular

ribbon tiling with 2∗23 symmetry (Fig. 2.21) and the complementary tiling (Fig. 2.22)

respectively. We call these two embedded tilings ∗246129R and ∗246129C, as they are em-

bedded in the ∗246 tiling of H2.

(a) (b) (c)

Figure 2.23: (a) The unique embedding of the 2∗23 orbifold into the ∗246 tiling of H2. (b) The
embedded regular ribbon tiling with symmetry 2∗23 (Fig. 2.21). (c) The embedded complement
of a regular ribbon tiling with symmetry 2∗23 (Fig. 2.22).
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A regular ribbon tiling is also supported by the 2223 Stellate orbifold (group 118).

The orbifold is decorated by an edge passing from the 3–fold rotation to a 2–fold rotation.

Fig. 2.24 shows the regular ribbon tilings tabular representation along with an image of

the decorated orbifold, cut open to lay (somewhat) flat. This tiling is referred to as 118R.

Fig. 2.25 shows the Delaney–Dress representation of the complementary regular ribbon

tiling with 2223 symmetry, known as 118C.

Chamber Class s0 s1 s2 m01 m12
A D B D 4 6
B C A C 4 6
C B D B 4 6
D A C A 4 6

Figure 2.24: Representation of the regular ribbon tiling on the 2223 orbifold. The 2–folds are at
QA, QB and QC, the 3–fold is at QT . The edge is from QT to QC.

Chamber Class s0 s1 s2 m01 m12
A D B D 6 4
B C A C 6 4
C B D B 6 4
D A C A 6 4

Figure 2.25: Encoding of the complementary regular ribbon tiling on 2223. The 2–folds are at QA,
QB and QC, and the 3–fold is QT . The edge is from QA to QB.

The distinct embeddings of the 2223 Stellate orbifold into the ∗246 chart of H2 dis-

cussed in Section 2.2, decorated by the free tilings given in Fig. 2.24 and Fig. 2.25, produce

distinct embedded decorations of H2. The positions of the reference frame generators QT ,

QA, QB and QC in the ∗246 chart are shown in Fig. 2.26. The full fundamental domain,

as given in the Delaney–Dress representations of the abstract tilings, may be obtained by

doubling the quadrilateral joining the generators across the line joining QT and QC.

Distinct embeddings of the decorated orbifold into ∗246 directly correspond to em-

bedded parallelograms of unit area in the Z×Z discretisation of E2. Fig. 2.27 shows two



§2.3 Embedded tilings commensurate with TPMS 43

Figure 2.26: The locations of the reference frame generators of the 2223 symmetry group in the
∗246 tiling of H2.

decorations resulting from the embedding of the 2223 orbifold corresponding to the unit

area parallelogram with vertex at the origin, {p,q} = {0,1} and {r,s} = {1,0}. Addi-

tional symmetry is induced in the tiling by the embedding: these tilings have symmetry

∗2223, and are equivalent to those constructed on the ∗2223 orbifold (Fig. 2.20), namely

embedded tilings ∗246124R and ∗246124C.

(a) (b) (c)

Figure 2.27: (a) An embedded 2223 fundamental domain into ∗246, where Q′
C and Q′

A are located
at {0,1} and {1,0} respectively (see Fig. 2.14 for coordinate grid). This embedding in analogous to
a parallelogram in E2with {p,q}={0,1} and {r,s}={1,0}. (b) The embedded regular ribbon tiling.
(c) The embedded complementary tiling. Both have increased symmetry of ∗2223, equivalent to
the tilings shown in Fig. 2.20, namely embedded tilings ∗246124R and ∗246124C.

Fig. 2.28 shows the decorations resulting from an embedding of the 2223 orbifold in-

dexed by the E2 parallelogram {p,q} = {1,1} and {r,s} = {1,0}. Additional symmetry

is induced by the embedding, hence these tilings are equivalent to those constructed as

decorations of the 2∗23 orbifold (Figs. 2.23), which are embedded tilings ∗246129R and

∗246129C. Altering the values of r and s for embedded regular ribbon tilings and comple-

ments leaves both of the decorations unchanged.
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(a) (b) (c)

Figure 2.28: (a) An embedding of the 2223 domain into ∗246, where Q′
C and Q′

A are located at
{1,1} and {1,0} respectively. (b) The embedded regular ribbon tiling. (c) The embedded comple-
mentary tiling. This embedding has additional symmetries, equivalent to those constructed on the
orbifold 2∗23 (Fig. 2.23), namely ∗246129R and ∗246129C.

For all other embeddings, 2223 will be the maximal symmetry group of the tiling.

Where the maximal symmetry of the free tiling is 2223, the free tiling is given the name

∗246118R(n) or ∗246118C(n). The variable n ranges from 1 to ∞, and the free tiling is

given a value of n based on its relative edge length in H2: the embedding which has

2223 maximal symmetry and the shortest possible tile edge length of all embeddings will

have n = 1, the second shortest edge length n = 2, et cetera. Fig. 2.29 shows example

decorations from several embeddings of 2223, indexed by distinct parallelograms of E2.

The three parallelograms, as well as the embedded tiling names are:

1. {p,q} = {2,1} and {r,s} = {1,0}: ∗246118R(1) and ∗246118C(1) (Fig. 2.29(b,c))

2. {p,q} = {3,1} and {r,s} = {1,0}: ∗246118R(2) and ∗246118C(2) (Fig. 2.29(e,f))

3. {p,q} = {3,2} and {r,s} = {1,1}: ∗246118R(3) and ∗246118C(3) (Fig. 2.29(h,i))

As the choice of parallelograms become increasingly oblique (i.e. the tiling approaches

∗246118R(∞) and ∗246118C(∞)), the tilings approach a degenerate case of a set of star

graphs with a vertex and three infinite edges in the ribbon tiling case, and a set of asymp-

totic triangles in the complementary tiling case. Some of these embedded free tilings were

studied previously [Hyde 00a]. There are an infinite number of embeddings of the deco-

rated 2223 orbifold into the ∗246 chart of H2, where these may be indexed by embedded

parallelograms of E2. We have shown the three free tilings which result from the three

embeddings with the shortest tile edge lengths in H2, and the methodology presented may

be used to further enumerate all embeddings, if so desired.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.29: Example decorations from several embeddings of 2223. The embedded tiling
names are (b) ∗246118R(1), (c) ∗246118C(1), (e) ∗246118R(2), (f) ∗246118C(2), (h) ∗246118R(3)
and (i) ∗246118C(3).
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The ∗2224 and 2224 symmetry groups permit regular ribbon tilings with degree–4

vertices by a similar construction to the degree–3 tiling case. Regularity and edge–1 tran-

sitivity are ensured by a ∗4 junction or 4–fold rotation at the tile vertex, and vertex–1

transitivity by a ∗2 junction or 2–fold rotation at the edge midpoint. The remaining two ∗2

junctions or 2–fold rotations define the translation symmetry of the infinite ribbon tile.

Consider first the ∗2224 orbifold, or group 123 [Robi 04a]. A regular ribbon tiling dec-

orates the ∗2224 orbifold by an edge passing from the ∗4 site, along the mirror boundary,

to a ∗2 site. These symmetry components are situated on the infinite boundary compo-

nents of the tile. The two remaining ∗2 sites of the orbifold define the translation along the

interior of the infinite tile. This decoration of the ∗2224 orbifold, known as 123R, is shown

in Fig. 2.30 along with a table representing the Delaney–Dress encoding of the decorated

orbifold.

Chamber Class s0 s1 s2 m01 m12
A A B A 4 8
B B A B 4 8

Figure 2.30: Encoding of a regular ribbon tiling on the ∗2224 orbifold, known as 123R. The
decorations passes from the ∗4 site of the orbifold, along the mirror boundary, to a ∗2 site.

Chamber Class s0 s1 s2 m01 m12
A A B A 8 4
B B A B 8 4

Figure 2.31: Encoding of the complement of a regular ribbon tiling on the ∗2224 orbifold, known
as 123C. The 0–vertex and 2–vertex sites have been inverted, as well as the 1–vertex and 1̄–vertex
sites. The decoration now passes from a ∗2 site along a mirror boundary to another ∗2 site.

The complement of a regular ribbon tiling on ∗2224 inverts the 0–vertex and 2–vertex

sites of the Delaney–Dress triangulation, as well as inverting the 1–vertex and 1̄–vertex
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sites. This exchange of vertices interchanges the boundary of the tile with the axis which

is invariant under the internal symmetries of the tile, which is exactly the infinite translation

axis of the tile. The Delaney–Dress encoding of the complementary regular ribbon tiling

of ∗2224, known as the 123C tiling, is shown in Fig. 2.31.

The ∗2224 orbifold may be embedded into the ∗246 chart of the P, D and G sur-

faces [Robi 04a], but is not commensurate with the ∗2226 chart of the H surface [Robi 04b].

In the process of embedding the orbifold, an automorphism of ∗2224 (along the axis from

the ∗4 vertex to the opposite ∗2 vertex) is asymmetrised with respect to the ∗246 tiling.

The symmetry breaking induces two geometrically distinct automorphic free tilings for

each abstract decoration of the orbifold. Fig. 2.32 shows the ∗2224 orbifold embedded in

the ∗246 tiling of H2, as well as two automorphic regular ribbon tilings (represented in

Fig. 2.30), and the two complementary tilings (represented in Fig. 2.31). We label these

embedding ∗246123R(n) and ∗246123C(n), where n takes the value of 1 for the embedding

with the shorter edge length, and 2 for the embedding with the longer edge length.

(a) (b) (c)

(d) (e)

Figure 2.32: (a) Embedding of the ∗2224 orbifold into the ∗246 tiling, where the abstract symmetry
of the orbifold is now asymmetrised. (b,c) Two automorphic regular ribbon tilings (Fig. 2.30),
titled ∗246123R(1) and ∗246123R(2) respectively. (d,e) Two automorphic complementary tilings
(Fig. 2.31), which are known as ∗246123C(1) and ∗246123C(2) respectively.
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We note that the 2∗24 orbifold is not a member of the quotient group ∗246/◦◦◦,

and hence we do not consider regular ribbon tilings or their complements constructed on

this symmetry group. In general, however, this orbifold will support such regular ribbon

tilings, and may be constructed as per the 2∗23 regular ribbon tilings.

A regular ribbon tiling decorates the 2224 orbifold, group 114 [Robi 04a], by an edge

passing from the 4–fold rotation to a 2–fold rotation. Fig. 2.33 shows the tabular repre-

sentation of this decoration, along with a decorated image of the orbifold. This tiling is

known as 114R, as it the regular ribbon tiling of group 114.

Chamber Class s0 s1 s2 m01 m12
A D B D 4 8
B C A C 4 8
C B D B 4 8
D A C A 4 8

Figure 2.33: A regular ribbon tiling on the 2224 orbifold, known as 114R. The decoration passes
from the 4–fold rotation to the 2–fold rotation labelled QC.

Exchanging the tile boundary with the infinite translation axis of the tile gives a com-

plementary free tiling. Fig. 2.25 shows the encoding of this complementary regular ribbon

tiling, the 114C tiling, which has the decorative edge passing between two distinct 2–fold

rotations.

Chamber Class s0 s1 s2 m01 m12
A D B D 8 4
B C A C 8 4
C B D B 8 4
D A C A 8 4

Figure 2.34: The complement to the regular ribbon tiling on the 2224 orbifold domain, also known
as 114C. The decoration passes between the 2–fold rotations labelled QA and QB.

We index H2 embeddings of the 2224 orbifold by embedded parallelograms of E2, as

is the case for all 222k orbifolds. A quadrant of E2 embeds in a π
4 sector of the 2224 dis-

cretisation of H2(Fig. 2.35(a)). The embedded quadrant has both coordinates positive, and
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passing to adjacent π
4 sectors of the 2224 discretisation yields distinctly signed quadrants

of E2.

The reference frame embedding of the generators of the 2224 orbifold into the ∗246

tiling of H2 is set (Fig. 2.35(b)). A fundamental domain (equivalent to that which is shown

in the Delaney–Dress encoding) may be obtained by doubling the quadrilateral formed by

the generating elements across the line joining QT and QC. Distinct free tilings result from

the choice of embedded unit parallelograms in the Z×Z grid of E2.

(a) (b)

Figure 2.35: (a) Coordinates of the grid Z×Z within the 2224 discretisation of H2. (b) The
reference frame generators within the ∗246 tiling of H2.

Mirrors are inherent in the geometry when embedding the parallelograms

{p,q} = {0,1}, {r,s} = {1,0} and {p,q} = {1,0}, {r,s} = {0,1} into the 2224 discreti-

sation of H2. This results in tilings with ∗2224 symmetry, equivalent to the ∗246123R(1),

∗246123R(2), ∗246123C(1) and ∗246123C(2) embedded tilings, as constructed on the ∗2224

orbifold (Fig. 2.32).

The regular ribbon tilings and complementary tilings that result from the embedding

of some Euclidean parallelograms into the 2224 discretisation of H2 are given as exam-

ples (Fig. 2.36). We name these embedded tilings ∗246114R(n) for regular ribbon tilings

and ∗246114C(n) for their complements, where n counts from smallest edge length (by

hyperbolic length) within the embedded fundamental domain upwards through all possi-
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ble embeddings. The Euclidean parallelograms defining the embeddings, as well as their

embedded tiling names, are given by:

1. {p,q} = {1,1} and {r,s} = {1,0}: ∗246114R(1) and ∗246114C(1) (Fig. 2.36(b,c))

2. {p,q} = {1,2} and {r,s} = {1,1}: ∗246114R(2) and ∗246114C(2) (Fig. 2.36(e,f))

3. {p,q} = {2,1} and {r,s} = {1,0}: ∗246114R(3) and ∗246114C(3) (Fig. 2.36(h,i))

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.36: Example decorations from several embeddings of 2224. Their embedded tiling
names are (b ∗246114R(1), (c) ∗246114C(1), (e) ∗246114R(2), (f) ∗246114C(2), (h) ∗246114R(3),
(i) ∗246114C(3).
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Tilings with 5–fold regular symmetry are not compatible with either the ∗246 or the

∗2226 tiling, hence we disregard these cases. Regular ribbon tilings with 6–fold symmetry

at the tile vertex may have symmetry ∗2226, 2∗26, 2226 or 26×. Regular ribbon tilings

on the 26× orbifold always have increased symmetry of 2∗26, hence we disregard decora-

tions of this orbifold. The ∗2226 symmetry group is in the ∗2226/◦◦◦ quotient group, the

2∗26 symmetry group is in the ∗246/◦◦◦ quotient group, and the 2226 symmetry group

is in both of the ∗246/◦◦◦ and ∗2226/◦◦◦ quotient groups.

A regular ribbon tiling reticulates the ∗2226 orbifold, which is group 32 of the

∗2226/◦◦◦ quotient group [Robi 04b], by passing from the ∗6 site, along a mirror bound-

ary, to a ∗2 site (Fig. 2.37). These symmetry elements, to which the decoration is incident,

generate the boundary components of the infinite tile. The set of parallel mirrors contained

within the two remaining ∗2 sites generate the single internal translation of the infinite rib-

bon tile. This tiling is known as 32R, as it is the regular ribbon tiling of group 32 in the

∗2226/◦◦◦ quotient group.

Chamber Class s0 s1 s2 m01 m12
A A B A 4 12
B B A B 4 12

Figure 2.37: A regular ribbon tiling represented as a decoration on the ∗2226 orbifold, passing
from the ∗6 site, along a mirror boundary, to a ∗2 site. This tiling is known as the 32R tiling.

The complement of the regular ribbon tiling exchanges the infinite translation axis of

the infinite ribbon tile with the boundary components of the tile. On the ∗2226 orbifold,

this complementary tiling can be represented by a decorative edge passing from a ∗2 site,

along a mirror boundary, to another ∗2 site of the orbifold. This tiling, known as 32C, is

encoded in Fig. 2.38.

Chamber Class s0 s1 s2 m01 m12
A A B A 12 4
B B A B 12 4

Figure 2.38: The complement to the regular ribbon tiling on the ∗2226 orbifold. The decoration
passes from a ∗2 site, along a mirror boundary, to another ∗2 site. This tiling as known as the 32C
tiling.
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The ∗2226 orbifold is precisely the ∗2226 chart of H2 inherited from the H surface.

The orbifold has an abstract symmetry (automorphism) that swaps the two ∗2 vertices

adjacent to the ∗6 corner. This abstract symmetry is broken by the embedding of the

∗2226 domain into H2 (by the free parameter of the H surface discussed previously), and

hence the automorphic tilings have distinct geometries in the ∗2226 chart. Fig. 2.39 shows

the embedded fundamental domain of the ∗2226 orbifold, along with the four free tilings

of this symmetry group (two automorphic versions of the regular ribbon tiling, and two of

the complementary tiling, all with symmetry ∗2226). These embedded tilings are named

to reflect their embedding into the ∗2226 tiling of H2: hence they are named ∗222632R(1),

∗222632R(2), ∗222632C(1) and ∗222632C(2), where the ‘1’ refers to a shorter edge length

in one asymmetric domain.

(a) (b) (c)

(d) (e)

Figure 2.39: (a) A fundamental domain of the ∗2226 orbifold uniquely embedded into the ∗2226
tiling of H2. (b,c) Two automorphic regular ribbon tilings on the ∗2226 orbifold, known as
∗222632R(1) and ∗222632R(2). (d,e) Two automorphic versions of the complementary tiling on
the ∗2226 orbifold, namely ∗222632C(1) and ∗222632C(2).

We treat the 2∗26 orbifold equivalently to the 2∗23 orbifold considered previously.

We construct two simple orbifold decorations: an edge passing from the ∗6 vertex to

the ∗2 vertex to give the regular ribbon tilings on this orbifold, and the complementary
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tiling having an edge passing from the 2–fold rotation, through a mirror boundary at right

angles, to an image of the same 2–fold rotation. The topology of these two tilings, named

122R and 122C, are abstractly represented by the two Delaney–Dress symbols given in

Figs. 2.40 and 2.41.

Chamber Class s0 s1 s2 m01 m12
A A B A 3 18
B C A C 3 18
C B C B 3 18

Figure 2.40: Encoding of the topology of a regular ribbon tiling on the 2∗26 orbifold: 122R The
decoration consists of an edge passing from the ∗6 site, along the mirror boundary to the ∗2 site.

Chamber Class s0 s1 s2 m01 m12
A A B A 18 3
B C A C 18 3
C B C B 18 3

Figure 2.41: Encoding of the topology of a complementary regular ribbon tiling on the 2∗26
orbifold: 122C. The decoration consists of an edge passing from the 2–fold rotation to an image of
itself through a mirror boundary.

Fig. 2.42(a) shows the unique embedding of the 2∗26 orbifold into the ∗246 chart of

H2. The automorphism of the orbifold 2∗26 is a symmetry line passing from the ∗2 ver-

tex to the 2–fold rotation, mapping the ∗6 site to the other ∗6 site in the embedding. This

symmetry is broken with respect to the ∗246 chart when the orbifold is embedded, hence

we consider both geometries that arise from automorphic embeddings. Fig. 2.42(b,c) show

the two automorphic regular ribbon tilings with distinct geometry that arise from the em-

bedding of the 122R tiling (Fig. 2.40) in the ∗246 chart of H2. These embedded tilings are

symbolised by ∗246122R(1) and ∗246122R(2) respectively, where the former has a shorter

edge length in the asymmetric domain. Fig. 2.42(d,e) also shows the two automorphic

complementary tilings given by the embedding of the 122C tiling (Fig. 2.41). These tilings

are called ∗246122C(1) and ∗246122C(2) respectively.
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(a) (b) (c)

(d) (e)

Figure 2.42: (a) Unique embedding of the 2∗26 orbifold into the ∗246 chart of H2. (b,c) The two
automorphic regular ribbon tilings resulting embedding of the 2∗26 domain, namely ∗246122R(1)
and ∗246122R(2). (d,e) The two automorphic complementary tilings called ∗246122C(1) and
∗246122C(2).
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A regular ribbon tiling is constructed on the 2226 orbifold (group 31 in ∗2226/◦◦◦ or

group 93 in ∗246/◦◦◦ [Robi 04b, Robi 04a]) by an edge passing from the 6–fold rotation

to any 2–fold rotation. Fig. 2.43 shows the Delaney–Dress representation of this decora-

tion, and an image of the decorated orbifold. We call this tiling either 31R where it may

be embedded in the ∗2226 tiling, or 93R for embedding in ∗246. The exchange of the

tile boundary with the medial axis gives the complementary tiling, whose Delaney–Dress

encoding is sown in Fig. 2.44. This tiling is called 31R for ∗2226 embeddings or 93R for

∗246 embeddings.

Chamber Class s0 s1 s2 m01 m12
A D B D 4 12
B C A C 4 12
C B D B 4 12
D A C A 4 12

Figure 2.43: Encoding of the regular ribbon tiling on 2226, having the decoration passing from
the 6–fold rotation to the 2–fold rotation marked QC. We call this tiling either 31R where it may be
embedded in the ∗2226 tiling, or 93R for embedding in ∗246.

Chamber Class s0 s1 s2 m01 m12
A D B D 12 4
B C A C 12 4
C B D B 12 4
D A C A 12 4

Figure 2.44: Encoding of the complement of the regular ribbon tiling on 2226. The decoration
passes between the 2–fold rotations marked QA and QB. This tiling is called 31R for ∗2226 embed-
dings or 93R for ∗246 embeddings.

The 2226 orbifold is commensurate with both of the ∗246 and ∗2226 tilings, and can

be mapped onto the P, D, G and H surfaces. To assign geometry commensurate with the

surfaces, we utilise parallelograms embedded in E2 to embed the orbifold into H2 given a

specific reference frame (Section 2.2). The positions of the reference frame generators for
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the 2226 symmetry group in the ∗2226 and ∗246 tilings are shown in Fig. 2.45.

(a) (b)

Figure 2.45: The reference frame generators for the 2226 symmetry group in the (a) ∗2226 and
(b) ∗246 tilings. To establish an integer grid, QA, QB and QC are located at {0,1}, {1,1} and {1,0}
respectively.

We embed the abstract decorations of 2226, tilings 31R and 31C, into the ∗2226 chart

of H2. This process specifies three generators of the 2226 symmetry group relative to the

reference frame embedding, and the full fundamental domain is found by doubling the

quadrilateral formed across the line connecting QT –QC. To achieve this embedding, we

specify a {p,q} and {r,s} value in Z×Z, where {p,q} designates the position of QC and

{r,s} designates the position of QA. The geometry inherited from embedding the parallelo-

grams {p,q}= {0,1} and {r,s}= {1,0}, as well as {p,q}= {1,0} and {r,s}= {0,1} have

mirror symmetry present, giving a tiling with ∗2226 symmetry. These embedded tilings

are equivalent to those constructed on the ∗2226 orbifold (Fig. 2.39), called ∗222632R(1),

∗222632R(2), ∗222632C(1) and ∗222632C(2).

Fig. 2.46 shows three examples of embedded regular ribbon tilings and complementary

tilings, where the maximal symmetry is 2226. The embedding of the 2226 domain in the

∗2226 tiling of H2 is inherited from parallelograms in E2. We give their parallelogram

coordinates and embedded tiling names:

1. {p,q} = {1,1} and {r,s} = {0,1}: ∗222631R(1) and ∗222631C(1) (Fig. 2.46(b,c))

2. {p,q} = {2,1} and {r,s} = {1,1}: ∗222631R(2) and ∗222631C(2) (Fig. 2.46(e,f))

3. {p,q} = {1,2} and {r,s} = {0,1}: ∗222631R(3) and ∗222631C(3) (Fig. 2.46(h,i))
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.46: Example decorations from embedding 2226 into the ∗2226 chart of H2.
(b) ∗222631R(1), (c) ∗222631C(1), (e) ∗222631R(2), (f) ∗222631C(2), (h) ∗222631R(3),
(i) ∗222631C(3).
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We now consider embeddings of the 93R and 93C into the ∗246 chart of H2. The

embedding associated with {p,q} = {0,1} and {r,s} = {1,0} (recall that {p,q} always

specifies the QC value), as well as the embedding {p,q} = {2,1} and {r,s} = {1,1} will

give an increase of symmetry of the pattern to 2∗26, which are the tilings ∗246122R(1),

∗246122R(2), ∗246122C(1) and ∗246122C(2), as seen in Fig. 2.42.

Fig. 2.47 shows two examples of embedded regular ribbon and complementary tilings

into the ∗246 chart. The embeddings used for these tilings correspond to the parallelo-

grams in E2 with coordinates, and embedded tiling names, as follows:

1. {p,q} = {1,1} and {r,s} = {0,1}: ∗24693R(1) and ∗24693C(1) (Fig. 2.47(b,c))

2. {p,q} = {1,2} and {r,s} = {0,1}: ∗24693R(2) and ∗24693C(2) (Fig. 2.47(e,f))

(a) (b) (c)

(d) (e) (f)

Figure 2.47: Example decorations from several embeddings of 2226 into the ∗246 chart of H2,
indexed by distinct parallelograms (a–c) {p,q} = {1,1} and {r,s} = {0,1}, known as ∗24693R(1)
and ∗24693C(1), (d–f) {p,q} = {1,2} and {r,s} = {0,1}, known as ∗24693R(2) and ∗24693C(2).

These cases cover some examples of the embedding of regular ribbon tilings com-

mensurate with the genus–3 TPMS chosen, the regular ribbon tiling supported only by

orbifolds of the form 222k. We have, however, provided a method for indexing of possible

embeddings of orbifolds of this form (222k), regardless of the orbifold decoration.
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2.4 Lower Order Symmetry Groups

An indexing by Euclidean parallelograms has been possible for all of the embedded orb-

ifolds presented so far. A simple extension of this indexation includes a slightly broader

set of orbifolds: those where we may index embeddings by gluing distinct Euclidean par-

allelograms across an edge. This surgery enables indexation of stellate orbifolds of the

type 2222j. We explain this construction, and then present examples of embedded 22223

orbifolds with a specific decoration.

A 2222j orbifold is double the size of a 222k orbifold for k = 2 j, by the orbifold ‘cost’

formula (Section 2.0.1): 22223 is twice the area of 2226. An embedded 2222j domain

may be constructed by taking a 222k symmetry group and doubling across an edge, where

the k–fold rotation halves (becoming a j–fold rotation), one 2–fold rotation is deleted, and

two copies of the remaining two 2–fold rotations give the four 2–fold rotations of 2222j.

These embedded 2222j domains form a subset of the possible embeddings of the domain,

and we extend here to encompass all possible embedded domains.

To construct a 22222 domain using multiple 2224 domains ( j = 2, k = 2 j = 4), we

begin with a π
4 sector of H2 discretised by 2224 and the Z×Z grid. We then:

1. Set an origin. This will be a 4–fold rotation of 2224, and will end up as a 2–fold

rotation of the 22222 symmetry group.

2. Select Q′
C (or {p,q}) as a coprime in the Z×Z grid.

3. Select any Q′
A ({r1,s1} in this case) such that ps1 − qr1 = 1. The result is a unit

parallelogram that embeds as a 2224 quadrilateral, located on a specific side of Q′
C.

4. Select any Q′′
A (called {r2,s2}) such that ps2−qr2 =−1. This is a quadrilateral that

sits on the opposite side of the Q′
C edge to the first constructed quadrilateral.

5. When the the symmetry element Q′
C is discarded and the symmetry of the 4–fold

rotation is reduced to a 2–fold rotation, the remaining five 2–fold rotations define an

embedded 22222 symmetry group. This process is shown in Fig. 2.48.

When embedding the 22222 domain into ∗246, we are embedding it into the 2224

reference frame. Hence there are three distinct infinite sets of 2–fold rotations, which cor-

respond to the images of each of the three distinct 2–fold rotations of 2224. These three

distinct sets are categorised by the 2–fold rotations which lie at ∗6 sites, ∗4 sites and ∗2
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(a) (b) (c)

Figure 2.48: (a) Q′
C (or {p,q}) is the coprime pair {0,1} in the Z×Z grid, and Q′

A ({r1,s1})
is the point {1,0}, where ps1 − qr1 = (0)− (1) = −1. This parallelogram embeds as a 2224
quadrilateral. (b) Q′′

A ({r2,s2} = {−1,1}) is selected such that ps2− qr2 = (0)− (−1) = 1. This
gives a quadrilateral on the opposite side of Q′

C. (c) When Q′
C is discarded, the 4–fold reduced to a

2–fold, and the remaining 2–fold rotations define 22222.

sites respectively. By choosing Q′
C from a particular set of 2–fold rotations, we desig-

nate which set of 2–fold rotations will not be isometries of the 22222 embedding. Thus

there are three embeddings of the 22222 orbifold with distinct generators, as described

in [Robi 04a].

Chamber Class s0 s1 s2 m01 m12
A A B A 8 4
B C A B 8 4
C B D C 8 6
D D C D 8 6

Figure 2.49: The Delaney–Dress symbol for the ∗22223 orbifold decoration having one edge pass
from the ∗3 vertex along the mirror boundary to a ∗2 vertex, called 26R A visual representation of
the decoration and chambers on the orbifold is also shown.

More generally, the 4–fold vertex in the example that has been constructed may be

any even number of rotations, thus an equivalent construction will work for any 2222j orb-

ifold. The examples we wish to analyse with this construction are the symmetry groups

∗22223 (group 26 in ∗2226/◦◦◦) and 22223 (group 22 in ∗2226/◦◦◦ and group 49 in
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∗246/◦◦◦). Consider free tilings that are regular (1–transitive edges), and the infinite tiles

are branched rather than ribbons. These branched tiles induce vertices in the complemen-

tary tiles, rather than infinite geodesic boundaries in the case of ribbon tilings, and we omit

these complementary tilings. The Delaney–Dress representation of the decoration of the

∗22223 domain is given in Fig. 2.49: as a decoration of the orbifold, this tiling is called

26R.

There is one embedding of this orbifold into the ∗2226 domain that is commensurate

with the translational symmetries of the H surface (◦◦◦) [Robi 04b]. This embedding and

the resulting embedded free tiling is shown in Fig. 2.50. This embedded tiling is called

∗222626R.

(a) (b)

Figure 2.50: (a,b) One embedding of the ∗22223 domain into the ∗2226 tiling of H2, and the
resulting free tiling: ∗222626R.

The only regular free tiling of the 22223 orbifold is shown in Fig. 2.51, having a

single edge passing from the 3–fold rotation to the 2–fold rotation called QE . This abstract

decoration of the orbifold is called 22R as a member of the ∗2226/◦◦◦ quotient group,

and 29R as a member of ∗246/◦◦◦.

To embed this orbifold in the ∗2226 tiling of H2, we select parameters to form two

euclidean parallelograms with a common edge. Set the Z×Z grid to be as located for

the embedding of 2226, which we show again in Fig. 2.52: the point QA is located at the

coordinate {0,1}, QB is at {1,1} and QC is at {1,0}.

The vertex Q′
C (the 2–fold rotation that will not be a generator of 22223) must be

chosen as an image of QC (not an image of QA or QB). This will ensure that the 22223

group constructed will have the correct generators to be a member of ∗2226/◦◦◦. If Q′
C

is chosen to be at an image of QA or QB, this will construct a 22223 group that is not a
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Chamber Class s0 s1 s2 m01 m12
A E B E 8 4
B C A F 8 4
C B D G 8 6
D H C H 8 6
E A F A 8 4
F G E B 8 4
G F H C 8 6
H D G D 8 6

Figure 2.51: The encoding for the 22223 orbifold decoration having one edge pass from the 3–fold
rotation to the 2–fold rotation marked QE . This tiling is called 22R as a member of the ∗2226/◦◦◦
quotient group, or 29R as a member of ∗246/◦◦◦.

Figure 2.52: The reference frame generators for the 2226 symmetry group in the ∗2226 tiling. To
establish an integer grid, QA, QB and QC are located at {0,1}, {1,1} and {1,0} respectively.

member of the ∗2226/◦◦◦ quotient group. To ensure the correct group is obtained, we

restrict the position of Q′
C to be a coprime integer pair {p,q}, where p is even (or 0) and q

is odd (This restriction ensures that the deleted 2–fold rotation is an image of QC).

Fig. 2.53 shows the construction of a fundamental domain of the 22223 symmetry

group by the parameters Q′
C = {0,1} and Q′

A = {−1,0}, where the determinant of the

parallelogram ps1−qr1 = (0)− (−1) = 1 and Q′
E = {1,0}, where the determinant of the

second parallelogram is ps2 − qr2 = (0)− (1) = −1. The geometry resulting from the

embedding has additional symmetry of ∗22223, and the decoration is equivalent to one

constructed on the ∗22223 orbifold, and shown in Fig. 2.50(b).

Consider the decoration of the orbifold shown in Fig. 2.51. The tiling boundary is

composed of a single edge which passes from the 3–fold rotation to Q′
E . Thus the free

tiling depends only on the position of Q′
E , and remains unchanged for distinct choices of

Q′
A, Q′

B and Q′
D. We recall that the point Q′

E may be any coprime pair in the integer grid,
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(a) (b) (c)

Figure 2.53: (a) Q′
C is the point {0,1} in the Z×Z grid. Two quadrilaterals are constructed either

side of this line, with Q′
A = {−1,0} and Q′

E = {1,0}. (b) The resulting 22223 fundamental domain.
(c) The free tiling resulting from the decorated and embedded orbifold, with increased symmetry
of ∗22223.

{r2,s2}, where r2 is odd, hence we need only select the position of Q′
E with this restriction

to completely define the tiling. Further, by conjugacies of the ∗2226 grid, we need only

consider coprime pairs in the positive–positive quadrant of Z×Z.

Fig. 2.54 shows three examples of the decorated and embedded 22223 orbifold in the

∗2226 tiling of H2. The three embeddings are defined by the choice of Q′
E to be the fol-

lowing coordinates in Z×Z: Q′
E = {1,1} (namely ∗222622R(1), shown in Fig. 2.54(a)),

Q′
E = {1,2} (namely ∗222622R(2), shown in Fig. 2.54(b)), and Q′

E = {3,2} (namely

∗222622R(4), Fig. 2.54(c)).

(a) (b) (c)

Figure 2.54: Three embeddings of the decorated 22223 orbifold in the ∗2226 tiling of H2to give
three distinct free tilings. Q′

E is chosen to be (a) {1,1}: ∗222622R(1), (b) {1,2}: ∗222622R(2),
(c) {3,2}: ∗222622R(4).

The symmetry group 22223 is also a subgroup of the ∗246 symmetry group. Hence we

can consider embedding the same decorated orbifold to be commensurate with the ∗246
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tiling. This embedding follows the same process as for the ∗2226 embedding, however

the location of the integer grid in H2 is slightly different (see examples in Fig. 2.47 for

the location of the integer grid with respect to the ∗246 tiling). Fig. 2.55 shows a few

examples, where the location of Q′
E is varied as follows:

1. Q′
E = {1,1}: ∗24649R(1) (Fig. 2.55(a))

2. Q′
E = {1,2}: ∗24649R(2) (Fig. 2.55(b))

3. Q′
E = {3,2}: ∗24649R(3) (Fig. 2.55(c))

(a) (b) (c)

Figure 2.55: Three embeddings of the decorated 22223 orbifold in the ∗246 tiling of H2to give
three distinct free tilings. Q′

E is chosen to be (a) {1,1}: ∗24649R(1), (b) {1,2}: ∗24649R(2),
(c) {3,2}: ∗24649R(3).

This chapter presented a series of simply constructed free tilings. They were con-

structed to be commensurate with the symmetries of the genus–3 TPMS: the P, D, G and

H surfaces. For a decoration of a Stellate orbifold, an infinite number of distinct embed-

dings into the surface charts exists, which all lead to distinct tilings of the surfaces. We

presented the simplest embeddings of such tilings, along with the methodology to con-

struct an infinite series of embedded tilings.

Free tilings are of interest because of the structures that result from their reticulation

over the TPMS. In the case of regular ribbon tilings, the structures that result are the

interpenetration of multiple net components. In the case of the complementary tilings,

the vertex–free geodesic boundaries map to infinite 1–dimensional filaments, which are

woven together in structures of varying complexity. This beautiful set of 3D structures

will be presented in Ch. 3.



Chapter 3

Reticulations of Triply-Periodic
Minimal Surfaces

The free tilings described in Ch. 2 may be reticulated over genus-3 Triply Periodic Min-

imal Surfaces (TPMS): Schwarz’ Primitive (P) surface, Schwarz’ Diamond (D) surface,

Schoen’s Gyroid (G) Surface and Schwarz’ Hexagonal (H) Surface, all shown in Fig. 3.1.

In this chapter, we project regular ribbon tilings of the two-dimensional Hyperbolic plane

(H2) and their complements to each of these surfaces, and examine the structures that

remain in three-dimensional Euclidean space (E3) when the surface scaffold is removed.

The 3D structures which arise from this construction fall into two main genres: if the

free tiling in H2 contains vertices and edges on the tile boundaries, the structure will be the

interpenetration of one or more nets, if the free tiling contains only vertex-free geodesic

tile boundaries, the structure will be a weaving of infinite 1D filaments.

Structures within the first genre, which are composed of multiple nets, have interest-

ing entanglement properties. The tile edges in the reticulation are restricted to be trajec-

tories on the TPMS rather than the more traditional geodesic paths of E3 (straight edges).

Through this extension, we enable edges to curve and tangle around each other, and allow

the construction of structures which belong to a specific ambient isotopy class (as defined

in Ch. 1.1), rather than simply a structure with a prescribed topology. Interesting entangled

structures such as these are directly relevant to synthetic chemistry, where an increasing

library of entangled molecules and structures are being synthesised to give varied material

properties, for example see [Carl 03c].

Structures of the second genre are composed of entangled infinite 1D filaments, where

a specific ambient isotopy class for each structure is inherited from the surface reticulation.

Real structures composed of such filaments include polymer materials, felts, spindles in

actin bundles and others, all of which readily allow bending and weaving of the filaments

65
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(a) (b)

(c) (d)

Figure 3.1: The cubic and hexagonal genus-3 TPMS, (a) P surface (b) D surface (c) G surface
(d) H surface. The P, D and G surfaces are covered by an orientation preserving subgroup of ∗246,
the H surface by an orientation preserving subgroup of ∗2226, see Ch. 2.0.1 for orbifold notation.

as they entangle, making entangled structures such as those constructed on the TPMS

easily realisable.

To date, there is a complete lack of quantitative approaches to enumeration of entan-

gled structures, whether they are composed of single or multiple nets, or infinite filaments.

Here we present a broad range of entangled structures, which inherit their geometry (and

ambient isotopy class) from TPMS.

3.1 From H2 to E3

An analytic construction allows us to go from an asymmetric domain of H2 to a unit cell of

a TPMS, and in turn, the infinite surface. We begin with a domain in the two-dimensional

Hyperbolic plane (H2) and obtain an embedded region of the surface in E3. In-surface

symmetries of the TPMS are utilised to assemble the infinite surface from the asymmetric
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region, via analytic continuation using the Schwarz reflection principle for extensions of

complex functions to the entire complex plane (C2) [Bage 64]. In parallel with this pro-

cess, we transfer decorations (tilings) in H2 to the embedded surfaces to obtain surface

tilings in E3. This section analytically constructs each of the P, D, G and H surfaces.

3.1.1 Triply Periodic Minimal Surfaces

The Gauss map assigns to each point on a surface embedded in E3 a point on the unit

two–dimensional sphere (S2), determined by the (oriented) surface normal orientation at

that point on the surface [Dier 92]. Distinct families of TPMS arise from the relative ori-

entations of the surface normal vectors at singular, isolated flat points where the Gaussian

curvature vanishes. The relative orientations of the flat points manifest as the relative

positions of branch points in the Gauss map [Fogd 92].

The P, D and G surfaces have a common Gauss map (they are isometric TPMS), and

the H surface another. For both families, the Gauss map exhibits in-surface symmetries in

S2 (and is a Coxeter group), where the complete Gauss map in S2 may be generated from

values within a single asymmetric tile bounded by mirrors. Stereographic projections of

the Gauss maps into the complex plane (C2) for these two families of TPMS are shown in

Fig. 3.2 [Fogd 92].

The Gauss maps exhibit ∗234 symmetry in the P/D/G surface family, and ∗223 sym-

metry in the H surface family. The branch points of the Gauss map imply that the intrinsic

surface symmetry of these TPMS in E3 will be ∗246 and ∗2226 respectively: a branch

point of order one at a ∗n symmetry site in the Gauss map gives a ∗2n symmetry site on

the TPMS [Hyde 03b]. More specifically, from the orbifold cost formula given in Ch. 2,

these TPMS surface symmetries are hyperbolic!

The “Weierstrass parameterisation” from C2 into E3 gives an analytical representation

of any minimal surface [Dier 92]. A set of equations specifies the Weierstrass parameteri-

sation, where the Weierstrass-Enneper function R(ω) and the Bonnet angle (θ) are varied

according to the specific TPMS desired [Fogd 92]:

x(ω) = x0 +Re
(

eiθ
Z ω
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(
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)
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(a) (b)

Figure 3.2: Stereographic projection of the Gauss map from S2 to the complex plane, C2, of (a)
the P/D/G surface family, and (b) the H surface family [Fogd 92]. The solid arcs represent mirror
symmetries of the Gauss map in S2, the red circles represent order-1 branch points, and the shaded
region a smallest asymmetric domain. Part (b) also has an order-1 branch point at infinity. The
S2 symmetries of the Gauss maps are (a) ∗234 and (b) ∗223. The positioning of the branch points
in the H surface family (excluding those at symmetry sites, the origin and points at infinity) can be
sited anywhere within the edge of the asymmetric domain. The exact location sets the single free
parameter of the H surface [Fogd 92].

We designate the family of TPMS through the choice of R(ω) in the Weierstrass pa-

rameterisation. Within a family of TPMS, we vary the Bonnet angle (θ) to obtain distinct

embeddings of surfaces sharing the same intrinsic geometry (via their Gauss map). The

P/D/G family of surfaces is constructed using R(ω) with a complex argument (ω) as fol-

lows, where Bonnet angles (θ) of 90◦, 0◦ [Fogd 92] and approximately

38.0147740◦ [Scho 70] designate the P, D and G surfaces respectively:

[
1−14ω4 +ω8]− 1

2

The H surface family is constructed using R(ω) with a complex argument (ω) as fol-

lows, where ‘A’ is the variable in the one parameter family, and 0 < A < 1 [Fogd 92]:

[
ω− (A3 +A−3)ω4 +ω7]− 1

2

The Bonnet angle for the H surface is 90◦, the θ = 0◦ variant (the H’ surface), however, is

a self-intersecting surface [Fogd 92].

The complete construction of the TPMS from H2 involves morphing a smallest asym-
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metric tile in H2 into a tile of S2, which is a conformal transformation everywhere except

at special sites that correspond to flat points on the TPMS [Hyde 03b]. Using conformal

stereographic projection, this spherical tile is mapped to a domain in C2. The Weierstrass

parameterisation maps this tile from C2 to E3 to give a tile of the TPMS [Fogd 92]. In

this thesis, we parameterise the TPMS using path integrals over the asymmetric domain

avoiding the branch points to build the objects in E3.

Once an asymmetric tile of the surface is embedded in E3, the infinite surface may

be assembled using the space group that encapsulates the in-surface symmetries of the

TPMS. These space groups are Im3̄m or Pm3̄m for the unoriented or oriented P sur-

face respectively, Pn3̄m or Fd3̄m (unoriented/oriented) for the D surface, Ia3̄d or I4132

(unoriented/oriented) for the G surface and P63/mmc or P6m2 (unoriented/oriented) for

the H surface [Hyde 97]. The G surface is a special case: it has an asymmetric tile in

E3 which consists of two asymmetric domains of the 2D surface (246 symmetry rather

than ∗246) [Robi 05].

3.1.2 Structures in E3

We consider the vertices and edges of a free tiling contained within one fundamental do-

main in H2. These vertices and edges are transferred to the corresponding patch on the

TPMS. The infinite TPMS tiling is then generated using a space group that encapsulates

the required H2 symmetries on the TPMS in E3. The correspondence between the H2 orb-

ifolds symmetry and their space group manifestations on each of the TPMS will be pub-

lished elsewhere [Hyde 11]. The surface tiling consists of vertices, edges and faces, all

embedded in E3. To obtain a structure in E3, we disregard the faces of these surface

tilings, so as to leave only vertices and edges in E3. This is the final 3-periodic structure

in E3.

To transfer tilings (with TPMS commensurate symmetry) from H2 to the TPMS, we

initially select a fundamental domain of the tiling in H2. Regardless of the freedom for

choosing such a domain, we select exactly one region for each symmetry group of H2, and

identify this region on each of the commensurate TPMS. For example, Fig. 3.3 shows a

2223 fundamental domain in the ∗246 tiling as well as the same region on the P surface.

The exception to this is the G surface, where there are two distinct covering maps of

the surface from ∗246 commensurate tilings in H2 [Robi 05], and hence two distinct con-

jugacy classes of structures arise. Tilings in H2 that are unchanged under any of the ∗246
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(a) (b)

Figure 3.3: A fundamental domain of the 2223 symmetry group (a) in H2, (b) on the P surface.
The choice of domain in both cases has freedom, however, variation of the domain corresponds
to conjugacies of E3. We transfer tilings from H2 to the TPMS on this domain, and assemble the
infinite tiling using a space group corresponding to the symmetry of the tiling.

reflections will render the two conjugacy classes of structures equivalent, and tilings that

do not have this inherent symmetry will have two distinct conjugacy classes of structures

on the G surface. Reflection of a tiling in one set of mirrors of the ∗246 pattern will give

these two distinct structures via the same map from H2 to the G surface.

Many of the structures fabricated in this chapter will contain multiple interpenetrating

nets. There are five so called ‘regular’ Euclidean nets: if we consider a net as the vertices

and edges of a packing of polyhedra, the packing which defines a regular net will have

1-transitive vertices, edges and faces i.e. all vertices, edges and faces are symmetrically

equivalent, and the Delaney-Dress triangulation contains a single flag. The sole regular net

of degree-3 is the srs net, also known as SrSi, Y ∗ or 3/10/c1. There are two regular nets

of degree-4, nbo (also known as NbO, J∗ or 4/6/c2) and dia (also known as Diamond,

D or 4/6/c1). Further, there are two regular nets of degree-6, pcu (also known as Prim-

itive Cubic Lattice, c−6 or 6/4/c1) and bcu (also known as Body Centered Cubic, cI or

8/4/c1) [Delg 02].

Some structures also contain 2-periodic layers, catenated in a way that gives a 3-

periodic structure. The layer graphs which have 1-transitive vertices and edges include

hcb (also known as (6,3), honeycomb, 63 or OKH03) in the case of degree-3 vertices,

sql (also known as Square Lattice, (4,4), 44 or OKH02) in the case of degree-4 vertices

and hxl (also known as Hexagonal Lattice, (3,6), 36 or OKH01) in the case of degree-6

vertices [OKee 08].
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We analyse the structures built in this chapter via the following set of measures:

1. Number of connected components, obtained through TOPOS analysis [Blat 06].

2. Topology of connected components, obtained through TOPOS analysis [Blat 06] or

GAVROG SyStRe analysis [Delg].

3. Symmetry relations between distinct components, as defined in [Carl 03c]. Class I

has only translational relations between components: Ia has one translation and Ib

has two independent translations. Class II has only rotational relations: IIa has one

distinct rotation and IIb has two distinct rotations. Class III has both translational

and rotational relations: IIIa has a single translation and single rotation, IIIb has

multiple translations and a single rotation, IIIc has a single translation and multiple

rotations, and IIId has multiple translation and rotations.

4. TOPOS analysis assesses the interpenetration of the structure through the entangle-

ment of all cycles within the structure [Blat 06]. It considers each distinct type of

ring and analyses the type of link formed with all distinct rings in the structure.

5. The Density-of-Catenation (DoC) is a measure of catenation in a structure: it col-

lates the number of distinct cycles with which a single cycle is threaded [Carl 03c].

6. For nets composed of parallel, 2-periodic layers that catenate to form a 3-periodic

structure, the Index-of-Separation (IoS) ascertains how many components must be

removed for the structure to separate into two [Carl 03c].

7. Where a network is chiral (not superimposable on its mirror image), the handedness

describes which enantiomer of the net is present. As these structures are surface

reticulations, the other enantiomer of the structure may be obtained from a conju-

gacy of the surface, we consider the relative handedness of distinct components: are

all of the components of the same chirality, or different?

There is another mode of entanglement that will occur in the structures in this chap-

ter, namely Borromean entanglement. It is an entanglement analogous to the Borromean

rings, Fig. 3.4, where no two rings are threaded, yet all three are entangled. The term

Brunnian, which is a related phenomenon, refers to the property that the entanglement

completely disintegrates on the removal of a single component. Structures containing nets

entangled in such a way as to have no threaded cycles have been studied and synthe-

sised [Carl 03a, Carl 03c]. There are two modes of entanglement that we call Borromean.
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The first is 2D Borromean, which is a 2-periodic layer composed of three 2-periodic nets,

where there is no threading of cycles. This entanglement is also Brunnian, as no entangle-

ment will remain on removal of a single component. The second is the 3D Borromean

structure, which is a 3-periodic structure composed of 2-periodic layers: there are no

threaded cycles, and the removal of one layer of the structure will cause the structure

to separate in two. This last entanglement is not strictly Brunnian, as some entanglement

remains on the removal of a single component.

Figure 3.4: The Borromean rings, where no two rings are threaded, but all three are entangled.

Some of the free tilings considered are composed of infinite geodesic tile bound-

aries. When reticulated over the TPMS, the resulting structure is a crystalline array of

one-dimensional (1D) filaments. Many of the methods employed in the analysis of inter-

penetrating nets are not applicable in the case of filament weavings. The only measure still

applicable from the list above is the handedness measure, where the filaments are helical

in shape. Measures of these crystalline filament arrays will be presented in Ch. 4.
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3.2 Interpenetrating Nets

We consider the reticulation of the regular ribbon tilings over the TPMS, which give struc-

tures composed of interpenetrating nets in E3. Recall from Ch. 1 that a 3-periodic net in

three-dimensional Euclidean space (E3) is a simple, 3-connected periodic graph, which is

invariant under three independent translations of E3 [Klee 04]. We consider here structures

the contain nets of degree-3, degree-4 and degree-6.

3.2.1 Degree-3 nets: srs, hcb and finite polyhedra

One fundamental domain of the ∗2223, 2∗23 and 2223 symmetry groups each contains

two, two and four ∗246 triangles respectively. The cubic space groups whose isometries

take a single patch of these orbifolds on each of the TPMS and construct the infinite surface

are shown in the table in Fig. 3.5 for each of the P, D and G surfaces [Hyde 11]. The outline

of the 2223 fundamental domain is shown in H2 and on the P, D and G surfaces in Fig. 3.5.

Domains for the ∗2223 and 2∗23 symmetry groups may be inferred from this positioning.

∗2223 2∗23 2223

P Pm3̄m I432 P432

D P4232 Fd3̄m F4132

G - - I4132

(a) (b)

(c) (d)

Figure 3.5: (Left) Space group and hyperbolic orbifold relations. (Right) The 2223 fundamental
domain, shown (a) in H2, (b) on the P surface, (c) on the D surface, and (d) on the G surface.

Regular 2D ribbon tilings with symmetry ∗2223, 2∗23 and 2223, constructed in Ch. 2.3,

have 8 vertices per translational TPMS unit cell (one such unit cell consists of 96 ∗246 tri-
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angles, and the tilings have one vertex per 12 ∗246 triangles [Robi 04a]). These 8 vertices

are equivalent by symmetry (1-transitive vertices), there are 3 edges incident at each vertex

(degree-3) and all edges are related by symmetry (1-transitive edges). Thus the resulting

structures on the TPMS must be embedded graphs of degree-3 with 1-transitive vertices

and edges, which include srs in the 3-periodic case, hcb in the 2-periodic case, or arrays

of finite cubes, tetrahedra, or theta-graphs (two vertices connected by three edges, remi-

niscent of the symbol θ). The structures that result have a range of connected components,

and distinct threading between the components, which indicates that the structures are not

equivalent by ambient isotopy (as defined in Ch. 1.1).

We summarise the results in Table 4.7. The structures are named to reflect the surface

on which it is constructed and the embedded tiling name in H2 (see Ch. 2). For example,

the structure that is the projection of the ∗246118R(1) tiling1 to the P surface is called

P118R(1). For G surface structures, a + or − signifies the two possible covering maps of

the surface [Robi 05]: where this is absent, the two structures from the two covering maps

are equivalent.

Structures P118R(1), D118R(1) and G118R(1) are constructed from equivalent tilings in

H2 (∗246118R(1)), via each of the P, D and G surfaces respectively. Each structure consists

of the inclined catenation of four directions of parallel trivial hcb nets, where the inclined

layers normal vector orientations of [1,1,1], [−1,1,1], [1,−1,1], and [1,1,−1], giving

angles of inclination of 70.5◦. Topos analysis [Blat 06] of P118R(1) identifies 18 Hopf

links: 6 cycles from each of the 3 other directions (4 directions in total) thread a single

cycle. Each edge that threads this cycle will have two associated cycles, hence exactly 3

edges thread the cycle for each unique layer orientation, which gives a DoC of {9,9,9,9}.

The structure D118R(1) has 12 Hopf links and hence has a DoC of {6,6,6,6}. The structure

G+
118(1) G surface reticulation (Example 10) has 30 Hopf links: DoC is {15,15,15,15}.

Each of these structures is the inclined catenation of four directions of hcb. Of note

is a synthesised case of a structure composed of the inclined catenation of four directions

of hcb [Carl 03b]. This synthesised structure, however, has distinct normal vector ori-

entations of the layers to the examples constructed on the TPMS: the synthesised case

has normal vector orientations of [1,0,4], [−1,0,4], [0,−1,4], and [0,1,4], as opposed

to [1,1,1], [−1,1,1], [1,−1,1], and [1,1,−1] in the constructed examples. TOPOS con-

firms that the synthesised structure is not equivalent by ambient isotopy to either P118R(1),

1Recall that group 124 is ∗2223, group 129 is 2∗23 and group 118 is 2223, see Appendix. A.
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Table 3.1: Degree-3 structures. The column “# comp.” refers to the number of connected com-
ponents in the structure. Note that n∗ designates infinitely many 2-periodic layers arranged in n
distinct orientations. For some structures, we state the TOPOS linking signature (e.g. 92 Hopf
links): this is the number of different linked cycles within the structure, all other linked cycles will
be symmetric copies.

Structure Figure # comp. Topology Notes

P124R Fig. 3.6 ∞ cubes Array of isolated graphs

P129R Fig. 3.7(a-c) 8 srs Equivalent handedness, 92 Hopf links

P118R(1) Fig. 3.7(d-f) 4* hcb Normal vector orientations of [1,1,1], [−1,1,1],
[1,−1,1], and [1,1,−1], and DoC {9,9,9,9}

P118R(2) Fig. 3.7(g-i) 8 srs Equivalent handedness, 168 Hopf links and 16
complex links

D124R Fig. 3.8(a-c) 4 srs Equivalent handedness, 36 Hopf links

D129R Fig. 3.8(d-f) ∞ tetrahedra Array of isolated graphs

D118R(1) Fig. 3.8(g-i) 4* hcb Normal vector orientations of [1,1,1], [−1,1,1],
[1,−1,1], and [1,1,−1], and DoC {6,6,6,6}

G124R Fig. 3.9(a-c) 2 srs Same handedness, 18 Hopf links and one complex
link

G129R Fig. 3.9(d-f) 2 srs Same handedness, 23 Hopf links and 3 complex
links

G+
118R(1) Fig. 3.9(g-i) 4* hcb Normal vector orientations of [1,1,1], [−1,1,1],

[1,−1,1], and [1,1,−1], and DoC {15,15,15,15}

D118R(1) or G118R(1).

Structures P129R and P118R(2) each consist of 8 interpenetrating srs nets. In both cases,

the interpenetration belongs to Class IIIb: the 8 nets are related by two independent trans-

lations and a single 2-fold rotation. We may infer that each of the srs components is of

equivalent handedness, as there are no reflection symmetries. P129R contains 92 hopf links

in total. On the other hand, P118R(2) contains 168 Hopf links, and 16 links with higher

crossing numbers. These distinct links are sufficient to demonstrate that these structures

are not equivalent under ambient isotopy, despite their equivalent topology.

The interpenetration of multiple srs nets was first proposed in [Well 77], which de-

scribes the interpenetration of 4 srs nets of equivalent chirality. The structure D124R also

consists of 4 srs components, related by two independent translations, Class Ib, where

all srs components are of the same chirality. The Topos output shows 36 Hopf links are
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present in the structure. The interpenetration of 4 srs nets of equivalent chirality also exists

as a synthetic structure [Kepe 98].

The structures G124R and G129R each contain two srs nets of equivalent handedness,

related by a single translation (Class Ia) in the first case, and a single rotation (Class IIa) in

second case. However, this does not demonstrate that these two structures are of distinct

ambient isotopy classes, as this may be a symptom of the geometric embeddings of the

structure. The G124R structure consists of 18 Hopf links and a single higher order link

and the G129R structure 23 Hopf links and 3 higher order links, hence the two nets are not

equivalent under ambient isotopy. Such a structure, composed of 2 srs nets of equivalent

chirality, is synthesised in [Kepe 00].

(a) (b) (c)

Figure 3.6: The P124R structure is an array of isolated cube edge graphs, constructed via the reticu-
lation of the P surface by the tiling ∗246124R of H2. The three images show the structure as a tiling
of H2, on one unit cell of the P surface and in E3.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.7: (a-c) The P129R structure, built on the P surface from the ∗246129R tiling, is composed
of 8 interpenetrating srs components. (d-f) The P118R(1) structure, constructed on the P surface
from the tiling ∗246118R(1), consists of parallel hcb nets aligned in four directions with surface
normal orientations of [1,1,1], [−1,1,1], [1,−1,1], and [1,1,−1], and a DoC of {9,9,9,9}. (g-
i) The P118R(2) structure contains 8 srs components. A single cycle forms a Hopf link with 168
cycles, and a higher crossing link with 16 cycles. This structure is not equivalent to P129R under
ambient isotopy despite the equivalent topology.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.8: (a-c) The D124R structure contains 4 interpenetrating srs nets, of equivalent handed-
ness. The three images show the structure as a tiling of H2, on one unit cell of the D surface and
in E3. (d-f) D129R is an array of isolated tetrahedron graphs. (g-h) The D118R(1) structure con-
tains four directions of hcb with normal vector orientations of [1,1,1], [−1,1,1], [1,−1,1], and
[1,1,−1], and DoC of {6,6,6,6}.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.9: (a-c) The G124R structure is 2 interpenetrating srs nets, of equivalent handedness. (d-f)
The G129R also consists of 2 interpenetrating srs nets, however this configuration is not equivalent
under ambient isotopy to G124R. (g-i) G118R(1) contains four orientations of (6,3) nets with normal
directions [1,1,1], [−1,1,1], [1,−1,1], and [1,1,−1].
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3.2.2 Degree-4 nets: dia, sql and 4-chains

In H2, the ∗2224 and 2224 symmetry groups consist of 3 and 6 ∗246 triangles respectively,

as may be ascertained by the orbifold cost formula (Ch. 2.0.1). We select a fundamental

domain, which is not unique, for the 2224 symmetry group in the ∗246 tiling of H2, as

outlined in Fig. 3.10. We then assign a corresponding domain on each of the P, D and

G surfaces. The vertices and edges of an H2 tiling within this fundamental domain are

transferred to the domain of each of the surfaces to give surface tilings. The in-surface

symmetries of the 2224 symmetry group (or ∗2224) manifest as tetragonal space group

symmetries in E3 [Hyde 11]: these space groups are shown in Fig. 3.10. The domain for

the ∗2224 symmetry group may be inferred from the Figure (half of the 2224 domain).

∗2224 2224

P I4/mmm P4/nnc

D P42/nnm I41/acd

G - I41/acd

(a) (b)

(c) (d)

Figure 3.10: (Left) Space group and hyperbolic orbifold relations. (Right) The 2224 fundamental
domain, shown (a) in H2, (b) on the P surface, (c) on the D surface, and (d) on the G surface.

Regular ribbon tilings with a degree-4 vertex (symmetry ∗2224 or 2224), which were

constructed in Ch. 2.3, have 4 vertices per translational unit cell of the TPMS: one trans-

lational unit cell consists of 96 ∗246 triangles, and the tilings have one vertex per 24 ∗246

triangles. All vertices and edges are equivalent (1-transitive), hence we can infer possible

resulting nets in E3 from known 1-transitive examples: these include 3-periodic dia com-

ponents, 2-periodic sql components, or arrays of 1-periodic 4-chains (chains of degree-4
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vertices, each connected by 2 edges).

A summary of the nets which result from the reticulation of regular ribbon tilings

with symmetry ∗2224 (group 123) and 2224 (group 114) over the P, D, and G surfaces is

shown in Table 4.8. The structures are named so as to reflect the surface over which the

tiling is reticulated as well as the embedded tiling name in H2 (see Ch. 2). For example,

the structure that comes from the projection of the ∗246114R(1) tiling, over the D surface

will be called D114R(1).

Table 3.2: Degree-4 nets. The column “# comp.” refers to the number of connected components
in the structure. Note that n∗ designates infinitely many 2-periodic layers arranged in n distinct
orientations. For some structures, we state the TOPOS linking signature (e.g. 92 Hopf links):
this is the number of different linked cycles within the structure, all other linked cycles will be
symmetric copies.

Structure Figure # comp. Topology Notes

P123R(1) Fig. 3.11(a-c) 1∗ sql parallel array

P123R(2) Fig. 3.11(d-f) ∞ 4-chains array of parallel 1-periodic degree-4
chains

P114R(1) Fig. 3.12(a-c) 4 dia 18 Hopf links

P114R(4) Fig. 3.12(d-f) 4 dia 59 Hopf links and 3 links with higher
crossing numbers

D123R(1) Fig. 3.13(a-c) 2 dia 6 Hopf links

D114R(1) Fig. 3.13(d-f) 2 dia 6 Hopf links

G123R(1) Fig. 3.14(a,c,e) 2 dia 6 Hopf links

G123R(2) Fig. 3.14(b,d,f) 2 dia 6 Hopf links

We analyse the examples that consist of multiple interpenetrating dia nets by the Topos

program to detect distinct ambient isotopies where possible. The structures P114R(1) and

P114R(4) each have 4 dia components. The relation between distinct components of the

net is Class IIIa in both cases: components are related by both a translation and a 2-fold

rotation. The P114R(1) structure has 18 Hopf links within a distinct cycle. In the P114R(4)

structure, the interpenetration gives 59 Hopf links and 3 links of higher crossing numbers.

This difference in interpenetration is sufficient to show that the two structures are not

equivalent by ambient isotopy.

The structures D123R(1), D114R(1), G123R(1) and G123R(2) are each composed of 2
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disjoint components of dia. To ascertain if the structures belong to an equivalent ambient

isotopy class, we analyse by Topos. In all four cases, the relation between the constituent

components is a single 2-fold rotation (Class IIa), and exactly 6 Hopf links are identified

in the structure. It seems (by visual inspection) that these four structures are equivalent

by ambient isotopy, however the current tools are insufficient to show this categorically.

The tightening algorithm for periodic structures introduced in Ch. 4 may provide further

evidence of equivalence in cases such as these.

(a) (b) (c)

(d) (e) (f)

Figure 3.11: (a-c) The P123R(1) structure, constructed from the reticulation of the ∗246123R(1)
tiling over the P surface, is composed of parallel 2-periodic sql nets. The three images show the
structure as a tiling of H2, on one unit cell of the P surface and in E3. (d-f) The P123R(2) structure,
built from the ∗246123R(2) tiling of H2, is an array of 1-periodic 4-chains.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.12: (a-c) The P114R(1) structure consists of the interpenetration of 4 components of dia.
The three images show the structure as a tiling of H2, on one unit cell of the P surface and in E3.
(d-f) The P114R(4) structure is also contains 4 interpenetrating components of dia. (g,h) A single
adamantane cage of each disjoint component of dia for each of P114R(1) and P114R(4) respectively:
subsequent analysis of these structures show that they are not equivalent under ambient isotopy.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.13: (a-c) The structure D123R(1), constructed on the D surface from the hyperbolic tiling
∗246123R(1), consists of 2 interpenetrating components of dia. The three images show the structure
as a tiling of H2, on one unit cell of the D surface and in E3. (d-f) The structure D114R(1) as also
composed of 2 interpenetrating components of dia. (g,h) A single adamantane cage of each disjoint
component for the two structures. It is likely these structures are equivalent under ambient isotopy.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.14: (a,c,e) The G123R(1) structure, constructed on the G surface, comprises 2 components
of dia. The three images show the structure as a tiling of H2, on one unit cell of the G surface and
in E3. (b,d,f) The G123R(2) structure also consists of 2 interpenetrating components of dia. By
visual inspection, it seems that these two structures are equivalent by ambient isotopy, however the
current tools are insufficient to show this categorically.
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3.2.3 Degree-6 nets: pcu, hxl and 6-chains

Regular ribbon tilings with a degree-6 vertex are candidates for reticulation over each of

the H, P, D, and G surfaces as these tilings have symmetry that belongs to both of the

∗2226/ooo and ∗246/ooo quotient groups. On the H surface, we consider those tilings

with symmetry ∗2226 and 2226 embedded into the ∗2226 chart of H2. A 2226 fundamen-

tal domain is selected on the ∗2226 tiling of H2, as well as a corresponding domain on the

H surface, as shown in Fig. 3.15(e,f). A ∗2226 fundamental domain on the H surface may

be inferred from this image (half of the domain). On the P, D and G surfaces, we consider

tilings with symmetry 2∗26 and 2226 embedded in the ∗246 chart of H2. Fig. 3.15(a-d)

shows a fundamental domain of the 2226 symmetry group in the ∗246 tiling of H2, and

the corresponding domain on each of the P, D and G surfaces. On all surfaces, this patch

builds out to the full surface by the in-surface symmetries of 2226, or equivalently by the

hexagonal and trigonal space groups listed below [Hyde 11]:

H surface P surface D surface G surface

∗2226 P63/mmc - - -

2∗26 - R3̄m R3̄m -

2226 P3̄1c R3̄c R3̄c R3̄c

Regular ribbon tilings with symmetry ∗2226, 2∗26 or 2226, which were constructed

in Ch. 2.3, have exactly 2 vertices per translational unit cell of each of the TPMS. These 2

vertices are equivalent, all of degree-6 with one kind of connecting edge. Possible topology

of the structures in E3 when the surface is removed include 3-periodic pcu components, 2-

periodic hxl components, or arrays of 1-periodic chains of degree-6 vertices (6-chains). A

summary of the nets that arise from the reticulation of the regular ribbon tilings of degree-

6 over the H, P, D and G surfaces is shown in Table 4.9, named by the standard naming

scheme described above.

By inspection, it appears that each of the single component pcu structures (P93R(1),

D93R(1) and G+
93R(1)) are equivalent by ambient isotopy to a barycentric embedding of

pcu, which we call the trivial embedding. Such a trivial embedding is only relevant to

single component nets.

The H31R(1) and H31R(3) structures each contain 3 interpenetrating components of

pcu, where the components are related by a single translation (Class Ia). If we consider

only the rings of the pcu net containing 4 edges (it also has rings of length 6: we call these
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(a) (b)

(c) (d)

(e)

(f)

Figure 3.15: A fundamental domain outline of the 2226 symmetry group (a) in the ∗246 tiling in
H2. This region is shown as a patch of the (b) P surface, (c) D surface, and (d) G surface, where the
black circle indicates the location of the 6-fold rotation. (e) A 2226 fundamental domain shown in
the ∗2226 tiling of H2, (f) this portion of H2 is shown as a patch of the H surface.

4-rings and 6-rings respectively), we find that one 4-ring in H31R(1) has Hopf link inter-

actions with 8 other cycles, yet H31R(3) has Hopf link interactions with 20 other cycles.

This information is sufficient to show that the structures do not belong to the same ambient

isotopy class.

Structures P122R(1), D122R(2) and G122R(1) each contain 2 interpenetrating pcu com-

ponents, where in all cases the 2 components are related by a single rotation (Class IIa).

On examination of linked cycles of the structures, in all cases we find 4 Hopf links be-

tween the 4-rings of the structure, 24 Hopf links between rings of length 4 edges and

rings of length 6 edges, and 40 Hopf links between 6-rings. It is highly likely that these

three structures belong to the same ambient isotopy class, yet the links of the structures

are not sufficient to prove this. Once again, the tight conformations of these structures,

which can be found using the algorithm outlined in Ch. 4 might provide further evidence

of equivalence.

The structures D93R(2) and G122R(2) each contain 4 pcu components, yet the struc-

tures have differing relations between the distinct components: D93R(2) is Class Ib (two

independent translations map between components), and G122R(2) is Class IIIa (one rota-

tion and one translation map between components). In both structures, the linking between
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Table 3.3: Degree-6 nets. The column “# comp.” refers to the number of components, n∗ desig-
nates infinitely many 2-periodic layers arranged in n distinct orientations.

Structure Figure # comp. Topology Notes

H32R(1) Fig. 3.16(a,c,e) ∞ 6-chains array of parallel 1-periodic 6-chains

H32R(2) Fig. 3.16(b,d,f) 1* hxl parallel array

H31R(1) Fig. 3.17(a-c) 3 pcu Interaction of 4-rings: 8 Hopf links

H31R(3) Fig. 3.17(d-f) 3 pcu Interaction of 4-rings: 20 Hopf links

P122R(1) Fig. 3.18(a,c,e) 2 pcu Interaction of 4-rings: 4 Hopf links. Interaction
of 4-rings with 6-rings: 24 Hopf links. Interac-
tion of 6-rings: 40 Hopf links

P93R(1) Fig. 3.18(b,d,f) 1 pcu

D122R(2) Fig. 3.19(a-c) 2 pcu Interaction of 4-rings: 4 Hopf links. Interaction
of 4-rings with 6-rings: 24 Hopf links. Interac-
tion of 6-rings: 40 Hopf links

D93R(1) Fig. 3.19(d-f) 1 pcu

D93R(2) Fig. 3.19(g-i) 4 pcu Interaction of 4-rings: 12 Hopf links. Interaction
of 4-rings with 6-rings: 66 Hopf links. Interac-
tion of 6-rings: 74 Hopf links and 1 higher link.

G122R(1) Fig. 3.20(a-c) 2 pcu Interaction of 4-rings: 4 Hopf links. Interaction
of 4-rings with 6-rings: 24 Hopf links. Interac-
tion of 6-rings: 40 Hopf links

G122R(2) Fig. 3.20(d-f) 4 pcu Interaction of 4-rings: 12 Hopf links. Interaction
of 4-rings with 6-rings: 72 Hopf links. Interac-
tion of 6-rings: 120 Hopf links

G+
93R(1) Fig. 3.20(g-i) 1 pcu

4-rings yields 12 Hopf links, so we must look further afield to ascertain ambient isotopy

classes. The linking between rings where one ring contains 4 edges and the other contains

6 edges gives 66 Hopf links for D93R(2) and 72 Hopf links for G122R(2), which shows that

the structures are not equivalent under ambient isotopy. This is further supported by the

links between 6-rings within the structures: D93R(2) has 74 Hopf links and a single higher

crossing link, and G122R(2) has 120 Hopf links.
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(a) (b) (c)

(d) (e) (f)

Figure 3.16: (a-c) The H32R(1) structure, built on the H surface from the ∗222632R(1) tiling of H2,
consists of parallel 1-periodic 6-chains. (d-f) The H32R(2) structure is comprised of parallel layers
of 2-periodic hxl.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.17: (a-c) The H31R(1) structure shown in H2, on one unit cell of the H surface and in
E3. The structure consists of 3 interpenetrating pcu nets. (d-f) The H31R(3) structure shown in H2,
on the H surface and in E3. This structure also consists of 3 interpenetrating components of pcu.
(g,h) One cubic cage from each component is shown for H31R(1) and H31R(3) respectively: These
structures are not equivalent by ambient isotopy, confirmed by the difference in the TOPOS output.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.18: (a,c,e) The P123R(1) structure shown in H2, on one unit cell of the P surface and in
E3. The structure consists of 2 interpenetrating components of pcu. (b,d,f) The P93R(1) structure
contains a single trivial component of pcu in a deformed symmetry setting.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.19: (a-c) The D122R(2) structure is shown in H2, on the D surface and in E3. The structure
consists of 2 interpenetrating components of pcu. (d-f) The D93R(1) structure is also shown in H2,
on the D surface and in E3. It is composed of a single pcu net. (g-i) The structure D93R(2) contains
4 interpenetrating components of pcu.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.20: (a-c) The G122R(1) structure, shown in H2, on the G surface and in E3. The structure
is the interpenetration of 2 pcu components. (d-f) The structure G122R(2) comprises 4 interpene-
trating components of pcu. (g-i) The structure G+

93R(1) structure, constructed via one covering map
of the G surface, contains a single pcu net.
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3.2.4 Sparse degree-3 nets: hcb and finite θ-graphs

We consider sparse degree-3 nets that are constructed from regular tilings with symmetry

∗22223 or 22223, which were constructed in Ch. 2.3. The 22223 orbifold belongs to both

the ∗246/◦◦◦ (group 49) and ∗2226/◦◦◦ (group 22) quotient groups, but ∗22223 is only

a member of ∗2226/◦◦◦ (group 23). As a finite tile of the P surface, D surface and G

surface, a fundamental domain of the orbifold 22223 builds out to the infinite surfaces by

the 2D isometries of the 22223 symmetry group, or equivalently the space group operations

of the trigonal group R32. Similarly, a fundamental domain of 22223 builds the infinite

H surface by the space group operations of the hexagonal group P312, and ∗22223 by the

hexagonal space group P6̄m2. Corresponding fundamental domain outlines are shown in

H2 and on each of the surfaces in Fig. 3.21.

(a) (b)

(c) (d)

(e)

(f)

Figure 3.21: A fundamental domain outline of the 22223 symmetry group (a) embedded in the
∗246 tiling in H2. This region is shown as a patch of the (b) P surface, (c) D surface, and (d) G
surface, where the back circle gives the location of the 3-fold rotation. (e) A 22223 fundamental
domain shown in the ∗2226 tiling of H2, (f) shown as a patch of the H surface.

On all surfaces considered, one unit cell of the sparse nets considered in Ch. 2.4 will

contain 2 vertices, each of degree-3. This implies that the quotient graph of the structure

resulting from reticulation of the pattern over a minimal surface will be a θ-graph (two

vertices connected by three edges). This, along with the required 3-fold symmetry of the

vertex, dictates that the nets formed will be either arrays of discrete θ-graphs, or parallel
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arrays of (translationally equivalent), 2-periodic hcb nets.

A summary of the structures that result from the reticulation of the regular ribbon

tilings with a degree-3 vertex over each of the H, D, P and G surfaces is shown in Ta-

ble 4.10. The structures are named so as to reflect the original tiling in H2 as well as the

surface over which the tilings were reticulated: the structure H22R(1) is the reticulation of

the ∗222622R(1) tiling (from Ch. 2) over the H surface. We also show the Z×Z coordi-

nates (see Ch. 2 for this construction) of the embedded edge for simplicity in our analysis

of trends later in this section.

Table 3.4: Sparse degree-3 nets, with nomenclature as described previously.

Structure Edge Figure Topology Notes

H23R {1,0} Fig. 3.22(a,b) θ-graph Isolated graphs

H22R(1) {1,1} Fig. 3.22(c-e) hcb 2D Borromean [Carl 03a]

H22R(2) {1,2} Fig. 3.22(f-h) hcb DoC = 6 [Carl 03c], all hopf links, six edges
thread each individual cycle (three from each dis-
tinct component).

H22R(5) {1,3} Fig. 3.23(a-c) θ-graph 0D to 2D catenation of θ-graphs by Hopf links

H22R(3) {3,1} Fig. 3.23(d-h) hcb 2D × 3D Borromean of hcb, no catenation or in-
terpenetration, not Brunnian, yet still entangled,
IoS = 3

D49R(1) {1,1} Fig. 3.24(a,c,e) hcb Trivial, unentangled

D49R(2) {1,2} Fig. 3.24(b,d,f) hcb 4-fold interpenetration, synthesised in [Shar 00,
Doma 05], DoC = 3

D49R(4) {1,3} Fig. 3.25(a,c,e) hcb Self-catenated layers, cycles are trefoil knots

D49R(5) {1,4} Fig. 3.25(b,d,f) hcb Self-catenated layers, cycles are (4,3) torus knots

P49R(4) {1,3} Fig. 3.26(a-c) hcb 3D Borromean structure [Tong 99, Muth 02,
Men 09]

P49R(5) {1,4} Fig. 3.26(d-h) hcb Catenated 2-fold structure

G+
49R(2) {1,2} Fig. 3.27(a-c) hcb 3D Borromean structure [Tong 99, Muth 02,

Men 09]

G+
49R(4) {1,3} Fig. 3.27(d-g) hcb Catenated 2-fold structure

G+
49R(3) {3,2} Fig. 3.28(a-c) hcb 2 × 3D Borromean structure

G−49R(3) {3,1} Fig. 3.28(d-g) hcb 2D to 3D catenation version of the 2D to 2D inter-
penetration in H22R(2).
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The first general trend we consider is for H surface reticulations, where the tiling has

symmetry ∗22223 or 22223, and the edge coordinate is given by {1,n} (the structures

H23R, H22R(1), H22R(2) and H22R(5) are the cases of n = 0,1,2,3 respectively). All struc-

tures are composed of multiple discrete 2-periodic layers, which fall into two genres:

1. n = 0(mod3): the layer consists of infinitely many catenated trivial θ-graphs, and

the nature of the catenation is an (n+2
3 ,2) torus link. For n = 0 (structure H23R), the

catenation is trivial.

2. n = 1,2(mod3): each layer of the structure consists of three interpenetrating compo-

nents, all with the same average plane. The exception to this is the case where n = 1

(structure H22R(1)), which is the 2D Borromean structure and is not interpenetrating.

The 2D Borromean entanglement that arises as H22R(1) is initially described

in [Carl 03a] and further synthesised as metal-organic chemical frameworks in [Lezn 01,

Suh 03, Lian 03, Dobr 05, Lian 06, Lu 06, Zhan 07b, Zhan 07a, Li 07, Byrn 08, Men 09,

Jang 09]. This structure is the entanglement of three hcb components where no cycles are

threaded. It has the property that when one component is removed, the other two are no

longer entangled. The exact reticulation has space group symmetry P312, allowing the

edges to straighten away from the surface increases the symmetry to P3̄1m.

Also constructed on the H surface, H22R(3) yields a structure that is the further entan-

glement of 2D Borromean entangled layers. The nature in which one hcb component of

each 2D Borromean layer entangles with components of adjacent layers is via a 3D Bor-

romean entanglement (see [Carl 03c]). Equivalently, each hcb component within a single

copy of the 3D Borromean entanglement has two additional hcb components associated

by a 2D Borromean entanglement. Fig. 3.23(d-h) shows this structure. The Index-of-

Separation [Carl 03c] (IoS) is 3, where an entire layer of 2D Borromean must be removed

to separate the structure in two.

A trend is also observed for D surface reticulations, where the tiling has symme-

try 22223, and the edge coordinate is given by {1,n} (the structures D49R(1), D49R(2),

D49R(4) and D49R(5) are the cases of n = 1,2,3,4 respectively). These structures are in-

terpenetrating or self catenated disjoint layers of hcb. The structures cycle through three

distinct genres:

1. n = 1(mod3): the structures consist of one connected component in each disjoint

layer. This component is self catenated, where each cycle of the structure is an

(n,3) torus knot (when n = 1, the cycles are trivial loops).
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2. n = 2(mod3): the periodic patterns have four interpenetrating components to each

layer. The individual components of these layers have cycles ambient isotopic to

(n−1,3) torus knots, and the threading between components is by Hopf links.

3. n = 0(mod3): the structure has a single component per layer. The self catenation of

the cycles of these components is such that each cycle is an (n−1,3) torus knots.

In the P49R(4) structure, the parallel hcb form a 3D Borromean entangled structure:

any pair of components are disjoint, but any three adjacent layers are entangled. Note

that this is not Brunnian, as the removal of one component will cause the structure to

separate into two parts, not separate into individual components as required by Brunnian

conditions. This structure has been chemically synthesised [Tong 99, Muth 02, Men 09].

The P49R(5) structure is comprised of 2D hcb components which catenate to give a 3D

structure. The IoS is 2, which indicates the structure is a 2-fold structure where the layers

are catenated i.e. if we select every second component, the structure is still a catenated

3D object, and the P49R(5) structure is composed of two identical copies of this that are

interpenetrating.

The general trend for structures on the P surface originating as 22223 symmetry tilings

with edge coordinate of {1,n} is similar to the trend for the same tilings on the H surface.

The two sets of structures in E3 display a similar entanglement, but the P surface nets are

a catenated 3D nets with adjacent layers being slightly offset, where the H surface nets are

interpenetrating discrete layers. Another similarity between different surface reticulations

is between a set of nets on the G surface and the P surface. We see that a P surface

reticulation with edge coordinate {1,n} will be ambient isotopic to a G surface reticulation

with edge coordinate {1,n− 1}. We can see from these structures that a broad range of

interesting entanglements are possible.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 3.22: (a,b) The H23R structures, shown in H2 and on the H surface, consists of disjoint,
isolated θ-graphs. (c-e) The H22R(1) structure, shown in H2, on the H surface an in E3, is a 2D
Borromean entangled structure [Carl 03a], repeated as disjoint, translated layers in E3. (f-h) The
H22R(2) structure is a repeated, parallel set of interpenetrating layers each with 3 components.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.23: (a-c) The structure H22R(5), shown in H2, on the H surface and in E3, is the 0D to
2D catenation of θ-graphs by Hopf links. (d-f) The structure H22R(3) is a 2D× 3D Borromean
entanglement, which contains no catenation or interpenetration, is not Brunnian, and is still entan-
gled. The image (g) shows one layer (with three hcb components) of the entanglement, which is
2D Borromean entangled. Image (h) shows one component from each of these 2D layers, which
together give a structure which is 3D Borromean entangled.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.24: (a,c,e) The D49R(1) network, shown in H2, on the D surface and in E3, consists
of disjoint, isolated layers of hcb. (b,d,f) The D49R(2) structure, also shown as a surface tiling,
is comprised of disjoint layers with 4-fold interpenetration, observed in synthetic metal-organic
frameworks [Shar 00, Doma 05].
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(a) (b)

(c) (d)

(e) (f)

Figure 3.25: (a,c,e) D49R(4): this net, shown in H2, on the D surface and in E3, is comprised of
disjoint, isolated layers of hcb that are self-catenated, and whose cycles are trefoil knots. (b,d,f) The
D49R(5) structure is also comprised of disjoint, isolated layers of hcb that are self-catenated, yet
here the cycles of the net are (4,3) torus knots.



102 Reticulations of Triply-Periodic Minimal Surfaces

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.26: (a-c) The entangled net P49R(4), shown in H2, on one unit cell of the P surface and
in E3, is a 3D Borromean entanglement of hcb components, as synthesised in [Tong 99, Muth 02,
Men 09]. (d-h) The structure P49R(5) is a 2-fold catenated structure. Image (g) shows two adjacent
layers of this structure are catenated and image (h) shows one constituent net, composed of every
second component layer of the 2-fold structure, which is still a catenated structure.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 3.27: (a-c) The G+
49R(2) structure is shown in H2, on the G surface and in E3. This structure

is a 3D Borromean entanglement of hcb components. (d-g) The G+
49R(4) structure is a 2-fold

catenated structure, equivalent to the structure P49R(5).
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 3.28: (a-c) The structure G+
49R(3), shown in H2, on one unit cell of the G surface and in

E3, contains two copies of a 3D Borromean entanglement of hcb components. (d-g) The G−
49R(3),

built by using other covering map of the G surface to the previous example, is a catenated structure.
The image (g) shows that when the structure is viewed from above, the entanglement is a 2D to 3D
catenation version of the 2D to 2D interpenetration of structure H22R(2).
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3.3 Crystalline filamentous arrays

Packings of infinite 1D filaments, called filamentous arrays, occur naturally and synthet-

ically over many different length scales: rods of strongly bonded atoms within chemical

frameworks, weavings of proteins, DNA entanglements, polymer materials or textile fab-

rics. These filamentous arrays have a common geometric structure. Rod packings (includ-

ing invariant rod packings2), which are a 3-periodic packings of straight, 1D rods, have

been widely used in structural chemistry to describe chemical frameworks composed of

rods of strongly bonded atoms [OKee 05]. The rod packings considered are composed

of filaments which are straight: by generalising to packings of curvilinear filaments, we

obtain broader set of structures.

The entanglement of filaments in these arrays, the way the filaments wrap and tangle

around each other, is an important property: it is the entanglement alone that binds the

structure, as there are no vertices to connect and stabilise. It is the entanglement that gives

filamentous arrays their material properties: filaments which wind around each other are

able to strengthen, pull, stabilise and push their neighbours despite not being connected.

The importance of entanglement is supported by the results of mechanical testing of fi-

bre arrays, where the way contacting fibres interact influences the properties of the soft

material [Kabl 07]. We present an enumeration of entangled filament arrays with varying

levels of entanglement, to bring geometric inspiration to soft fibrous materials of all length

scales.

The initial catalogue of high symmetry hyperbolic free tilings shown in Ch. 2 includes

a second genre of free tilings in addition to conventional tessellations, where the infinite

tile has vertex-free geodesic boundaries. These tilings are complementary to the regular

ribbon tilings. When these tilings are reticulated over TPMS, and the surface subsequently

removed to leave only tile boundaries, we obtain a 3-periodic (crystalline) array of one-

dimensional curves in E3 that we call crystalline filamentous arrays, or weavings.

To describe weavings, we define a basic structural property: each component filament

is linearly approximated by the straight line which minimises the sum of the distances

between points on the filament and the straight line, an average axis. It is akin to straight-

ening a helix along its central axis. The periodicity of the filaments in these cases indicates

2An invariant rod packing is composed of non-intersecting rods (cylinders), which correspond to invariant
line positions of the space groups: rods lie along the directions of nonintersecting symmetry axes [OKee 01].
There are exactly 14 invariant rod packings, of which 6 are cubic [OKee 05].
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that this average axis will be parallel to the filaments axis of translation.

In some cases, the filaments of the weaving are unimpeded by nearby filaments during

the deformation from their initial trajectory to their straight average axis, and thus on

straightening of the filaments, the rod packing that results is equivalent to the weaving

by ambient isotopy. The simplest weavings constructed in this chapter are related to the

invariant cubic rod packings, as defined previously, already known to crystal chemists. In

addition to these cubic packings, the construction technique also gives rise to weavings

which are related to the remaining invariant rod packings, as well as other rod packing

which are not invariant of various symmetries.

A second class includes weavings where the straightening of all filaments to their

straight average axis results in a packing of intersecting rods. Weavings related to these

“intersecting rod packings” form an intermediate category between those weavings related

to rod packings and those that are more tangled. The third class includes weavings where

the filaments are sufficiently tangled so as to impede each other from straightening to their

straight average axis: the straightening of all filaments would require ‘ghost’ moves where

the filaments pass through each other. If we allow these ‘ghost’ moves, and straighten

the filaments in weavings such as these (not preserving equivalence by ambient isotopy),

the filaments align along the rod directions of either invariant rod packings, other more

general rod packings, or intersecting rod packings. We utilise this rod packing to describe

the weaving, yet we note that the weaving is not actually equivalent to the rod packing

by ambient isotopy: weavings such as these are referred to as a “tangled” version of a

rod packing, where the term tangled denotes that the weaving is not equivalent to the rod

packing by ambient isotopy, yet its filaments average axes align to form the rod packing.

We note that analysis techniques for interpenetrating nets are no longer applicable

here: the structures contain an infinite number of components, the topology of each com-

ponent is always a 1D curve, and the absence of cycles prohibits knotting and linking. To

allow comparison of these filament packs, we have developed an alternative approach: the

PB-SONO algorithm, which is introduced in Ch. 4.

Initially, we collate the rich variety of weavings that are constructed from the projec-

tion of complementary regular ribbon tilings of H2 to the P, D, G and H surfaces. For the

first class of weavings, those which are unimpeded by nearby filaments during the defor-

mation from their initial trajectory to their straight average axis, we give the rod packing to

which it is related, which is often among the set of 14 invariant rod packings, as enumer-

ated in [OKee 05]. For the invariant cubic rod packings, we use the names derived from
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a related lattice complex of the space group on which they are constructed: Π+, Π∗, Σ+,

Γ, Ω+, Σ∗, where the + exponent denotes one enantiomer of the packing and the ∗ expo-

nent the inter-growth of both + and − enantiomers [OKee 01]. The other 8 invariant rod

packings are identified by their structure number (#1-#8), as given in [OKee 05]. Where

the weavings are related to other (non–invariant) rod packings, they are given a lable ‘Rod

(tetr.)’ which reflects that they are related to a rod packing with tetragonal space group

symmetry, or ‘Rod (tri.)’ where they have trigonal space group symmetry. Further, weav-

ings whose filaments intersect on straightening (the second class of weavings) are referred

to as simply ‘Intersect’.

Weavings that belong to the third class, those whose filaments are sufficiently tangled

so as to impede each other from straightening to their straight average axis, are described

by the rod packing which aligns with its filaments average axes (as for the first class of

weavings), which may be invariant cubic rod packing, other invariant rod packings, or

other (non invariant) rod packings. The rod packing is then prefaced with the term “tan-

gled” to indicate that it is a sufficiently tangled weaving, which is not equivalent by am-

bient isotopy to the rod packing specified. In a few cases, the filament trajectories of the

TPMS reticulations close back on themselves to form closed loops. These cases form an

interesting set of structures which are the inter-growth of closed loops, sometimes sepa-

rate, sometimes entangled. These cases are referred to by the term “loops”, prefaced by

“Caten.” (catenated) where loops thread through other loops.

Table 3.5 collates the weavings that result from the TPMS reticulation of complemen-

tary regular ribbon tilings with ∗2223 (group124), 2∗23 (group 129) and 2223 (group118)

hyperbolic symmetry. These structures are named to reflect the embedded tiling name in

H2 as well as the surface over which the tiling was reticulated. For example, the hyper-

bolic tiling ∗246118C(1) is the embedding of the complementary regular ribbon tiling with

symmetry 2223 (group118) into the ∗246 tiling of H2, by the simplest embedding (embed-

ding ‘(1)’). The structure G+
118C(1) is the reticulation of the hyperbolic tiling ∗246118C(1)

over the G surface by one covering map. Ch. 2 details the construction and naming of

hyperbolic tilings. This set of structures contains 4 of the 6 invariant cubic rod packings,

as well as some tangled variants of these 4 cubic rod packings. The set also contains three

intersecting rod packings.

The structures that result from the reticulation of complementary regular ribbon tilings

with symmetry ∗2224 (group 123) and 2224 (group 114) over the P, D and G surfaces are

summarised in Table 3.6. The hyperbolic free tilings from which these structures originate
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Table 3.5: Weavings from ∗2223, 2∗23 and 2223 hyperbolic symmetry: nomenclature described
in main text.

Structure Packing Structure Packing Structure Packing Structure Packing

P124C Loops D124C Π∗ G+
124C Helical Π+ G−

124C Helical Π−

P129C Helical Ω+ D129C Loops G+
129C Helical Σ+ G−

129C Helical Σ−

P118C(1) Intersect D118C(1) Intersect G+
118C(1) Intersect G−

118C(1) Loops

P118C(2) Tangled Ω+ D118C(2) Tangled Ω+ G+
118C(2) Tangled 3×Γ G−

118C(2) Tangled Σ+

P118C(4) Caten. Loops D118C(4) Π∗: woven G+
118C(4) Tangled Π+ G−

118C(4) Tangled Π+

P118C(6) Tangled Ω+ D118C(6) Tangled Ω+ G+
118C(6) Tangled 3×Γ G−

118C(6) Tangled Σ+

are built in Ch. 2.3, and these structures are catalogued by the naming convention outlined

above, and established in Ch. 2.3. This set of structures contains a further example of

an invariant cubic rod packing, as well as 2 of the 8 other invariant rod packings. Some

tetragonal (non–invariant) rod packings also arise as structures in this set.

Table 3.6: Weavings from ∗2224 and 2224 hyperbolic symmetry: nomenclature described in main
text.

Structure Packing Structure Packing Structure Packing Structure Packing

P123C(1) Loops D123C(1) #2 G+
123C(1) #2 G−

123C(1) #2

P123C(2) #2 D123C(2) #6 G+
123C(2) Γ G−

123C(2) Γ

P114C(1) Rod (Tetr.) D114C(1) Γ G+
114C(1) #2 G−

114C(1) #6

P114C(2) Intersect D114C(2) #2 G+
114C(2) Rod (Tetr.) G−

114C(2) Γ

P114C(3) Helical 4×#2 D114C(3) Tangled #2 G+
114C(3) Helical 3×#2 G−

114C(3) Tangled #2

P114C(4) Tangled (Tetr.) D114C(4) Rod (Tetr.) G+
114C(4) Intersect G−

114C(4) #2

P114C(5) Rod (Tetr.) D114C(5) Tangled Γ G+
114C(5) Intersect G−

114C(5) Intersect

Table 3.7 summarises the weavings that result from the reticulation of the H surface

by complementary tilings of symmetry ∗2226 (group 32) and 2226 (group 31). This set

of examples includes a further example of a non-cubic invariant rod packing, along with

some non–invariant rod packings of trigonal symmetry.

We may also consider complementary regular ribbon tilings with 2∗26 (group 122)

and 2226 (group 93) symmetry embedded in a ∗246 tiling of H2, enabling reticulation

over the P, D and G surfaces. A summary of the filamentous arrays resulting from the
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Table 3.7: Weavings from ∗2226 and 2226 hyperbolic symmetry on the H surface: nomenclature
described in main text.

Structure Packing

H32C(1) #3

H32C(2) Loops

H31C(1) Rod (Tri.)

H31C(2) Helical 3×#1

H31C(3) Tangled (Tri.)

H31C(4) Rod (Tri.)

H31C(5) Tangled #3

reticulation of these tilings over the P, D and G surfaces is provided in Table 3.8. This

set of structures includes some further examples of non-cubic invariant rod packings, and

some further non–invariant rod packings of trigonal symmetry.

Table 3.8: Weavings with 2∗26 and 2226 symmetry on the P, D, and G surfaces: nomenclature
described in main text.

Structure Packing Structure Packing Structure Packing Structure Packing

P122C(1) #1 D122C(1) Loops G+
122C(1) #1 G−

122C(1) #1

P122C(2) Loops D122C(2) #1 G+
122C(2) Helical 2×#1 G−

122C(2) Helical 2×#1

P93C(1) Π∗ D93C(1) Rod (Tri.) G+
93C(1) #3 G−

93C(1) Rod (Tri.)

P93C(2) #1 D93C(2) Intersect G+
93C(2) Rod (Tri.) G−

93C(2) Rod (Tri.)

The simplest hyperbolic patterns yield a rich variety of structures in E3, from invariant

rod packings, both cubic and non-cubic, to other non-invariant rod packings, packings with

intersecting filament axes, the complex inter-growth of loops and more tangled weavings.

We explore here some of the examples collated in the previous four tables.

3.3.1 Invariant rod packings: non-cubic

There are exactly 8 invariant rod packings that have non–cubic symmetry, as enumerated in

[OKee 05]; four of these are composed solely of parallel rods, and the other four composed

of stacked layers, where rods are parallel within a layer. Four of these rod packings arise

via reticulations of complementary regular ribbon tilings on the P, D, G and H surfaces.
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We describe these reticulations and subsequent weavings here.

The #1 rod packing [OKee 05] consists of parallel rods, whose cross section is the

vertices of a {6,3} tiling. Structures related to this rod packing (those whose filament

average axes align along the rod packing) arise multiple times as reticulations of the P, D

and G surfaces, namely P122C(1), P93C(2), D122C(2) and G+
122C(1). Fig. 3.29(a-c) shows

the construction of the G+
122C(1) structure, which contains helical rods each with a chirality

opposite to its neighbour. The space group of the helical array is the trigonal group R3̄c.

Other variants of this rod packing are the structures H31C(2) and G+
122C(2), which have

triple and double helices along each rod axis respectively.

(a) (b) (c)

(d) (e) (f)

Figure 3.29: (a-c) The structure G+
122C(1), shown as a tiling of H2 and on the G surface, is a helical

version of the #1 rod packing, where neighbouring helices have opposite handedness. (d-f) The
filamentous array P123C(2), shown in H2, on the P surface and in E3, has undulating filaments and
is related to the #2 rod packing.

Parallel rods whose cross section is the vertices of a {4,4} tiling of E2 constitute the #2

rod packing [OKee 05]. Structures that are equivalent to this packing arise as tilings of the

P, D and G surfaces, namely structures P123C(2), D123C(1), D114C(2), G+
123C(1), G+

114C(1)

and G−
114C(4). Fig. 3.29(d-f) shows the construction of the structure P123C(2), consisting of
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undulating rods, on the P surface. The space group of the array with undulating filaments is

the tetragonal group I4/mmm. Another structure, P114C(3), is related to the #2 rod packing

and is composed of quadruple helices along the rod axes. Similarly, the G+
114C(3) structure

has triple helices along the rod axes. Further, tangled versions of the #2 rod packing arise

as structures D114C(3) and G−
114C(3).

The #3 rod packing consists of parallel rods, whose cross section is the vertices of a

trihexagonal (3.6.3.6) tiling. A structure related to this rod packing arises as a reticulation

of both the G surface and H surface: these structures are G93C(1) and H32C(1), both shown

in Fig. 3.30. In both structures, the reticulation has undulating filamentous components.

The space group of the undulating array in both cases is the trigonal group R3̄c. Further, a

tangled version of the #3 rod packing is the H31C(5) structure.

(a) (b) (c)

(d) (e) (f)

Figure 3.30: (a-c) The structure G93C(1), shown in H2, on the G surface and in E3, is related to
the #3 rod packing, and is composed of undulating filaments. (d-f) The structure H32C(1), shown
in H2, on one unit cell of the H surface and in E3, is also related to the #3 rod packing.

Stacked layers of parallel rods where adjacent layers are rotated through a right angle

comprise the #6 rod packing. Structures related to this packing may be constructed as a

tiling of the D and G surfaces, namely the structures D123C(2) and G−
114C(1). Fig. 3.31(a-c)
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shows the construction of the D123C(2) structure. The space group of the array is P42/mmc,

and the filaments are straight.

The #4, #5, #7 and #8 rod packings have not been constructed from complementary

regular ribbon tilings of the symmetry groups considered. However a structure related to

the #5 rod packing, composed of stacked layers where each subsequent layer is rotated

through a right angle (at half the density of the #6 rod packing), arises as a reticulation of

the D surface by a free tiling with 2∗222 symmetry (group 104), a lower order symmetry

group, as shown in Fig. 3.31(d-f). The structure is composed of undulating filamentous

components, and the space group of the structure is the tetragonal I41/amd. The examples

considered form a very small portion of possible weavings which may be constructed by

the method, so the other missing examples may arise on further enumeration of hyperbolic

patterns in other symmetry groups.

(a) (b) (c)

(d) (e) (f)

Figure 3.31: (a-c) The construction of the D123C(2). This structure is the #6 rod packing, consisting
of straight rods in alternating layers. (d-f) The projection of a tiling with 2∗222 symmetry in H2,
on one unit cell of the D surface, and in E3. This structure is an undulating version of the #5 rod
packing.
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3.3.2 Invariant rod packings: cubic

Exactly six invariant rod packings of cubic symmetry are enumerated in [OKee 05]. We

shall see that weavings related to five of these six rod packings arise from the reticulation

of TPMS by free tilings of H2. Further, weavings which are sufficiently tangled to pro-

clude filament straighening, yet these invariant cubic rod packings describe their filaments

average axes arise numerously: we will consider these examples in Section 3.3.6. Here we

will review those weavings from the first class, who equivalent to the invariant cubic rod

packings by ambient isotopy.

(a) (b) (c)

(d) (e) (f)

Figure 3.32: (a-c) The G+
124C structure, shown in H2, on the G surface and in E3, is a helical version

of the Π+ rod packing, where all helices have equivalent handedness. (d-f) The D124C structure,
shown in H2, on the D surface and in E3, is exactly Π∗.

On straightening to their average axis, the filaments of the G+
124C weaving are arranged

in the form of the Π+ rod packing (Fig. 3.32(a-c)). The weaving, as it sits on the G surface,

is composed of perfectly helical filaments, all of equivalent chirality. Also of note is the

G−
124C weaving, which is the reticulation of the same hyperbolic tiling over the G surface by

the other covering map, which gives the Π− enantiomer of the chiral rod packing. Further,
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all filaments in this weaving will have the opposite chirality to the enantiomeric structure.

The D124C structure is composed of straight rods that are arranged in a Π∗ rod packing, as

shown in Fig. 3.32(d-f). This rod packing is the inter-growth of both chiral enantiomers of

the rod packing Π+ and Π−.

A helical variant of the Σ+ rod packing arises as a reticulation of the G surface, namely

G+
129C, as shown in Fig. 3.33(a-c). The geometry inherited from the reticulation of the

surface consists of helical filaments whose axes align along rods, where each of the helices

have equivalent chirality. The G−
129C weaving, obtained through the other covering map of

the G surface, will be related to the Σ− enantiomer. Further, a Γ rod packing composed

of slightly undulating rods is related to the G+
123C(2) structure, as shown in Fig. 3.33(d-f).

This Γ rod packing is also related to the D114C(1) structure, constructed on the D surface.

The P129C structure is related to the Ω+ rod packing. The filament geometry inherited

from the surface reticulation, as seen in Fig. 3.33(g-i), is slightly helical, where the helices

are all of equivalent chirality.

These structures, which are constructed from complementary regular ribbon tilings of

some highest symmetry orbifolds, are related to 5 out of the 6 invariant cubic rod packings

detailed in [OKee 01]. The sixth of these rod packings is the Σ∗ packing, which is an

interwoven variant containing a Σ+ and a Σ− (an enantiomeric pair). As yet, we have not

been able to construct this by the TPMS reticulation method. It is probable, however, that

this structure may occur at another stage of the enumeration process, likely as a free tiling

on a lower symmetry orbifold within the ∗246/◦◦◦ or ∗2226/◦◦◦ quotient groups. In

other words, these structures are a very small subset of the possible reticulations of TPMS,

and hence it is likely that Σ∗ will arise on further enumeration.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.33: (a-c) The G+
129C structure, shown as a tiling in H2, on the G surface and in E3, is

related to the Σ+ rod packing. It is composed of helical filaments, with all helices of equivalent
handedness. (d-f) The G+

123C(2) array, shown in H2, on the G surface and in E3, is related to the Γ
rod packing, and is composed of slightly undulating rods. (g-i) The P129C structure is related to the
Ω+ rod packing. It contains slightly helical rods, all of equivalent handedness.
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3.3.3 Non–invariant rod packings

Within this enumeration of structures, there are 7 structures whose filaments align the rod

directions of non–invariant rod packings on straightening. These weavings have tetragonal

symmetry in some cases, and trigonal symmetry in others. These rod packings have not

been enumerated in [OKee 01, OKee 05], as they are not invariant rod packings: the rods

do not lie along the invariant lines of the space group, they occupy other axes.

The P114C(1) structure is shown in Fig. 3.34(a-c). The filament geometry inherited

from the surface reticulation is straight rods, where the four distinct rod positions within

a unit cube cell are described by the trajectories {u,0, 1
2 + u}, {u, 1

2 ,−u}, {1
2 ,u, 1

2 + u}

and {0,u,−u}. The structure has tetragonal symmetry P4/nnc. A tangled version of this

weaving is also constructed via a TPMS reticulation, namely the P114C(4) array.

(a) (b) (c)

(d) (e) (f)

Figure 3.34: (a-c) The construction via the P surface of the P114C(1) structure, a tetragonal rod
packing composed of straight rods. The structure is shown (a) as a tiling of H2, (b) on one unit
cell of the P surface and (c) in E3. (d-f) The G+

114C(2) filamentous array is a tetragonal rod packing
composed of slightly undulating filament. This structure is shown (a) in H2, (b) on one unit cell of
the G surface and (c) in E3.

The G+
114C(2) weaving, shown in Fig. 3.34(d-f), has tetragonal symmetry (I41/acd)

and the filaments may be straightened to rods which maintaining ambient isotopy. The
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filaments of the structure are slightly undulating, and their four distinct axes within a unit

cube cell are described by the vectors {u,u,−3u}, {−u,u, 1
2 +3u}, {1

2 +u,u, 1
2 +3u} and

{1
2 − u,u,3u}. Another structure that is equivalent to this weaving by ambient isotopy is

the D114C(4) structure.

The filaments of the P114C(5) weaving may also straighten to give a non-invariant rod

packing, which is also of tetragonal symmetry (P4/nnc). The construction of this weaving

is shown in Fig. 3.35. The weaving is composed of slightly undulating filaments, where

the four distinct rod positions within a unit cube cell are described by the vectors {u,0,3u},

{u, 1
2 , 1

2 −3u}, {0,u, 1
2 −3u} and {1

2 ,u,3u}.

(a) (b)

(c) (d)

Figure 3.35: The P114C(5) weaving, whose filaments may straighten to give a non-invariant rod
packing of tetragonal symmetry (P4/nnc). The weaving is composed of undulating filaments along
the rod axes. The weaving is shown (a) as a free tiling of H2, (b) on one unit cell of the P surface,
(c) in E3 and (d) in E3, where the undulating filaments have been straightened to their average axis
to give rods.

The H31C(1) weaving, constructed on the H surface (Fig. 3.36), is a weaving whose

filaments may straighten to their average axis to give a non–invariant rod packing of trig-

onal symmetry. The three distinct straight rod axis positions, given in crystallographic

coordinates for a trigonal unit cell, are described by the vectors {0,u, 1
2 −u}, {1

2 +u,u,u}
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and {u,0,−u}. The filaments have undulating trajectories as a reticulation on the H sur-

face. The structure (with undulating rods) has trigonal symmetry given by the space group

P3̄1c. A tangled version of this weaving may also be constructed on the H surface, and is

the H31C(3) structure.

(a) (b)

(c) (d)

Figure 3.36: The construction of the trigonal rod packing H31C(1) on the H surface. The structure
is shown (a) in H2, (b) on the H surface and (c) in E3. The image (d) shows a view of the rod
packing along a rod axis.

Projection to the H-surface of another complementary regular ribbon tiling, and the

subsequent removal of the surface in E3 gives the H31C(4) weaving, as shown in Fig. 3.37(a-

c). The filaments of this weaving may pull straight to give a rod packing of trigonal sym-

metry. The three distinct rod positions, given in crystallographic coordinates for a trigonal

unit cell, are described by the vectors {0,u,−3u}, {u,u,3u} and {u,0,−3u}. The weaving

has trigonal symmetry P3̄1c.

The filaments of the weaving G+
93C(2) may also pull straight to give a rod packing

with trigonal symmetry R3̄c (Fig. 3.37(d-f)). The three distinct rod positions, described in

a cubic unit cell corresponding to the G surface cubic unit cell, are given by the vectors

{u, 1
2 +3u, 1

2 +u}, {3u,u, 1
2 +u} and {u, 1

2 +u,3u}.
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As a final example, the G−
93C(1) weaving has filament axes along a rod packing of trig-

onal symmetry R3̄c. The G−
93C(2) weaving is also equivalent to this trigonal rod packing

by ambient isotopy. The construction of G−
93C(1) is shown in Fig. 3.37(g-i). The alignment

of the rods in a cubic unit cell, corresponding to the G surface cubic unit cell, is described

by the vectors {−u,u, 1
2 − u}, {u, 1

2 + u, 1
2 − u} and {1

2 − u,u, 1
2 + u}. From a particular

viewing direction, it appears to be a deformation of the Π∗ invariant cubic rod packing.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.37: (a-c) The construction of the H31C(4) structure, which is related to a non–invariant
rod packing of trigonal symmetry. The structure is shown in H2, on one unit cell of the H surface,
and in E3. (d-f) The G+

93C(2) structure, shown in H2, on the G surface and in E3, is also related to
a non–invariant trigonal rod packing. (g-i) The G−

93C(1) structure is also related to a non–invariant
rod packing with trigonal symmetry.
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3.3.4 Weavings with intersecting filament axes

Within our enumeration, some of the weavings have filament axes that are intersecting.

Typically, this scheme of entanglement has been disallowed from enumerations of rod

packings, but the extension to weavings composed of curvilinear filaments counters this.

We examine some of these weavings in further detail, and describe the axes of the filaments

when straightened to their average axis.

(a) (b)

(c) (d)

Figure 3.38: The P118C(1) weaving has intersecting filament axes. (a) The complementary regular
ribbon tiling ∗246118C(1), shown in H2. (b) The tiling shown on the P surface, (c) the weaving
in E3, and (d) The filaments pulled straight. The net which emerges when intersecting points are
changed to vertices is the reo net.

The weaving P118C(1) is constructed on the P surface from a free tiling of H2, as shown

in Fig. 3.38. On straightening the filaments of this weavings, the filament axes intersect.

The six distinct average axes of the filaments, given in a cubic unit cell, are described

by {u, 1
2 ± u,0}, {0,u, 1

2 ± u} and {u,0, 1
2 ± u}. The structure has space group P432 as

a reticulation of the surface. The filament axes are intersecting, thus if we consider the

intersection points of the straight rods to be vertices, we obtain a 3-periodic net on filament
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straightening. In the case of the P118C(1) weaving, this net is the reo (or pcu-e) net, which

has 1-transitive vertices and edges, and 2-transitive faces and tiles [OKee 08].

The weaving D118C(1) is constructed on the D surface from the complementary reg-

ular ribbon tiling ∗246118C(1) (Fig. 3.39). When the filaments of this weaving are pulled

straight, their average axes intersect. The twelve distinct filament axes, given in a cu-

bic unit cell, are described by {u,u, 1
8}, {u, 1

2 + u, 5
8}, {u, 1

8 ,u}, {u, 5
8 , 1

2 + u}, {1
8 ,u,u},

{5
8 ,u, 1

2 + u}, {7
8 ,u,−u}, {3

8 ,u, 1
2 − u}, {u, 7

8 ,−u}, {u, 3
8 , 1

2 − u}, {u,−u, 7
8}

and {u, 1
2 − u, 3

8}. The structure has space group F4132 on the surface. If the intersec-

tion points of the filaments are taken as vertices, the net that defines the structure is the crs

net (also known as dia-e or crystobalite), which has 1-transitive vertices and edges, and

2-transitive faces and tiles.

(a) (b)

(c) (d)

Figure 3.39: The structure D118C(1), shown (a) in H2, (b) on one unit cell of the D surface, and
(c) in E3, is a weaving with intersecting filament axes. (d) On straightening the filaments to their
average axes, they intersect. If these intersections are changed to vertices, the weaving forms a net:
this net is the crs net.

The G+
118C(1) structure, as shown in Fig. 3.40, also has filament axes that are intersect-

ing. The twelve distinct average axes of the filaments, given in a cubic unit cell, are de-
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scribed by the vectors {u, 1
4 −u, 3

8}, {u, 1
4 −u, 7

8}, {3
8 , 1

4 −u,u}, {7
8 , 1

4 −u,u}, {u, 1
4 +u, 1

8},

{u, 1
4 + u, 5

8},{u, 3
8 , 1

4 − u}, {u, 7
8 , 1

4 − u}, {1
8 , 3

4 + u,u}, {5
8 , 3

4 + u,u}, {u, 1
8 , 3

4 + u} and

{u, 5
8 , 3

4 + u}. The weaving has space group I4132 on the surface. If the filaments are

straightened, and the intersection points taken to be vertices, the nets that results is the chi-

ral nfa net, with 1-transitive vertices, 2-transitive edges, 3-transitive faces and 2-transitive

tiles.

(a) (b)

(c) (d)

Figure 3.40: The weaving G+
118C(1), shown (a) in H2, (b) on one unit cell of the G surface, and

(c) in E3. If the filaments of this weaving straightened along their average axes, they become
intersecting trajectories. (d) The net that results if the intersections of the filaments are changed to
be vertices of a net: this net is the chiral nfa net.

The P114C(2) weaving, as shown in Fig. 3.41, is another weaving whose filament axes

are intersecting. The four distinct average axes of the filaments in this weavings, given in

a cubic unit cell, are described by the vectors {u,u,−u}, {u, 1
2 − u, 1

2 + u}, {u,u, 1
2 + u}

and {u, 1
2 −u,−u}. The weaving has space group P4/nnc. If the intersection points of the

straightened filaments are changed to vertices, the net that results is the bcu net (also know

as body centered cubic), which has 1-transitive vertices, edges, faces and tiles, and thus is

a regular net.
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(a) (b)

(c) (d)

Figure 3.41: The P114C(2) weaving, shown (a) in H2, (b) on one unit cell of the P surface, and (c)
in E3, is another weaving whose filament axes are intersecting. (d) If the intersection points of the
straightened filaments are changed to vertices, the net that results is the bcu net.

3.3.5 Complex inter-growth of loops

For some structures, the filament trajectories of the TPMS reticulation form closed loops

in E3. In many cases, these loops are not threaded, and the structure is an array of disjoint

loops. Fig. 3.42 shows two such examples, P123C and G−
118C(1), that lie on the P surface

and G surface respectively, where the two structure have a distinct geometric arrangement

of the loops.

For one structure, P118C(4), the loops of the array are catenated (Fig. 3.42(g-k)). Each

component of the structure catenates by a Hopf link with 16 of its neighbouring closed

components, forming a 3D chain-mail. Within this structure, sheets of doubly-periodic

chain-mail sit in three orthogonal planes in E3, all catenating. The layers have normal

vector orientations of {1,0,0}, {0,1,0} and {0,0,1}.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 3.42: (a-c) The P123C structure is an array of loops that are not threaded. (d-f) The G−
118C(1)

structure, also an array of disjoint loops. (g-k) The inter-growth of closed loops: the P118C(4)
structure. The structure is the interweaving of layers of Hopf link Chain-mail. (j) shows 4 links
within a layer of the Chain-mail, highlighting the Hopf link interactions, and (e) shows the three
distinct layers and how they interact.
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3.3.6 More general weavings

In the third class of weavings, the filaments impede each other from straightening in uni-

son. These are “tangled” structures. The rod axes of these arrays have been identified

computationally by allowing the filaments to pass through each other and straighten to

their average axes. Fig. 3.43 shows two weavings: the first is the D114C(3) structure, a

tangled variant of the parallel square rod packing (#2 rod packing), and the second is the

H31C(3) structure, a tangled version of the non–invariant rod packing with trigonal sym-

metry which arises as the H31C(1) weaving.

(a) (b) (c)

(d) (e) (f)

Figure 3.43: (a-c) The D114C(3) structure, shown in H2, on the D surface and in E3, is a tangled
variant of the #2 rod packing. (d-f) The H31C(3) structure, also shown in H2, on the H surface and
in E3, is a tangled version of the non–invariant rod packing with trigonal symmetry which arises as
the H31C(1) weaving.

The weaving G+
118C(2) is another interesting weaving, shown in Fig. 3.44. If the fil-

aments of the weaving are pulled straight to their average axes, disregarding changes in

equivalence by ambient isotopy, the packing that results is Γ rod packing, with three fil-

aments along each of the rods. The G−
118C(2) weaving is constructed on the G minimal

surface by the same free tiling of H2 as the G+
118C(2) structure, yet by the other covering
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map of the G surface. This structure is a tangled version of the Σ+ rod packing, as shown

in Fig. 3.45. The Σ+ geometry of the weaving may be observed if each filament of the

weaving is allowed to straighten along its axes, passing through other filaments which are

obstructing the straightening.

(a) (b) (c)

Figure 3.44: The G+
118C(2) structure is shown (a) in H2, (b) on one unit cell of the G surface, and

(c) in E3. The structure is a tangled version of the Γ rod packing with 3 filaments along each rod.

(a) (b) (c)

Figure 3.45: The G−
118C(2) structure is shown (a) in H2, (b) on one unit cell of the G surface, and

(c) in E3. The structure is a tangled version of the Σ+ rod packing.

It is apparent that the amount of winding of the weaving may be tuned using the

obliqueness of the embedding in H2. A more oblique embedding of a free tiling with

Stellate symmetry, signified by a higher embedding number in the weaving symbol (the

‘(n)’ at the end of the symbol), will in general give a more woven structure in E3. Since the

obliqueness of a free tiling embedding may have arbitrarily large in H2, this gives scope

for the construction of weavings of arbitrary complexity.
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3.3.7 Realisation of woven structures

Of the set of weavings collated in this section, some arise in the description of chemical

frameworks. In particular, the invariant cubic rod packings are widely identified among

chemical frameworks and synthesised as metal-organic frameworks alike. The Π∗ rod

packing, which may be constructed on the D surface (the D124C structure) is identified as

the Cr3Si structure. Further, the Γ rod packing, which is related to the G+
123C structure, is

the arrangement of rods of atoms in Garnet (Ca3Al2Si3O12). Also, the Σ+ rod packing,

which is related to the G+
129C weaving, details the arrangement of rod of atoms in the SrSi2

structure [OKee 96].

In addition to the cubic structures, the #5 invariant non–cubic rod packing, which was

constructed on the D surface has been identified as the arrangement of rod of strongly

bonded atoms in the structure of the form Hg3−xMF6, where M may be As, Sb, Nb or

Ta [OKee 96]. Many of the invariant cubic and non-cubic rod packings are also readily

synthesised as metal organic frameworks: a summary of many of these examples may

be found in [OKee 05]. Further, the G−
93C(1) weaving, shown in Fig. 3.37(d-f), has been

observed as the structure of a self-assembled chemical structure in [Carl 99].

These weavings are all constructed as reticulations of TPMS, which occur on the

mesoscale as membranes in biological structures [Land 95, Alms 06]. Thus a natural

length scale to probe for such filamentous arrays in biological systems is the mesoscale,

where the arrays may result from templating of a protein on the cubic membrane in much

the same way as these weaving have come from reticulations of TPMS. We will see in

Ch. 5 that one such example of a TPMS reticulation (the G+
129C weaving) may be used

to describe the organisation of keratin in the corneocyte of the outer layer of mammalian

skin.

This chapter has shown the construction of a variety of 3-periodic structures via the

reticulation of several TPMS with high symmetry free tilings of the hyperbolic plane. This

construction has given a large set of examples to analyse in the next chapter, which will

examine the canonical forms of these structures when ‘tightened’, and a conformation of

the structure is found where the length to diameter ratio of the structure is minimised.





Chapter 4

Ideal geometry of branched and
periodic structures

This chapter introduces an algorithm for the tightening of finite, periodic and branched

entanglements to a canonical, least energy form. The algorithm draws inspiration from

the Shrink-On-No-Overlaps (SONO) [Pier 98] algorithm for the tightening of knots and

links: we call it the Periodic-Branched Shrink-On-No-Overlaps (PB-SONO). We will

outline the SONO algorithm, and address the additional processes that are necessary to

extend the algorithm to enable the tightening of both periodic and branched entanglements,

encompassing finite entangled graphs, periodic entangled filaments and periodic entangled

nets.

Initially, we use the new PB-SONO algorithm to tighten knots and examine the ef-

fectiveness of the algorithm as compared to the SONO algorithm: the ideal configura-

tions and L
D energy values can be obtained from the literature [Pier 98]. We then examine

ideal conformations of finite entangled graphs, including θ-graphs consisting of two ver-

tices connected by three edges, and entangled tetrahedron- and cube-graphs. Finally, we

consider ideal conformations of periodic arrangements, including filament weavings and

entangled nets with multiple components.

4.1 Ideal Knots and the SONO algorithm

An ideal knot is a minimal energy conformation of a knot. This representative of the

entanglement may then be used to analyse the entanglement. Some possible energy func-

tionals as candidates for minimisation were detailed in Ch. 1, and include the minimum

distance energy [Simo 94], the symmetric energy [Buck 93, Buck 95], and the conformal

energy [OHa 91, Dioa 98]. A simple measure of energy, which we will use in our analysis,

129
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is the ratio of length to diameter, which we minimise to find the ideal knot conformation.

This gives a quantification of the entanglement of a knot, useful in identifying entangle-

ment that belong to distinct ambient isotopy classes. A trefoil knot for which the ratio of

length to diameter has been minimised is shown in Fig. 4.1.

Figure 4.1: The ideal conformation of a trefoil knot, which minimises the ratio of length to diam-
eter.

The main obstacle to the analysis of knots in their ideal conformations is to find the

minimal energy conformation within the set of possible configurations. It is difficult to

know firstly if a unique best conformation exists, and secondly if an algorithm has reached

that conformation. A fruitful approach to this problem is to computationally relax any con-

figuration to a minimal energy state, as is done by simulated annealing [Kirk 84, Laur 98],

which starts by discretising the knot to a series of vertices and edges, and further defining

an energy functional for the knot. To continue, a random move is applied to a vertex, the

energy recalculated, and the move either accepted if the energy is lower or rejected if the

energy is higher. Through the continued application of this process, an energy minimum

is achieved, which is certainly a local minimum and possibly a global minimum. A similar

approach is given in [Simo 94], which uses random pertubations to decrease the minimum

distance energy. Another process of simulated annealing with some additional measures in

place to kick out of local minima is given in [Grze 97]. An algorithm to relax the energy

of a knot is given in [Kusn 97, Dioa 98]. There is no proof, however, that any of these

simulated annealing algorithms find a global minimum. Further, it is not certain in many

cases that a unique minimum actually exists.

The SONO algorithm uses a repulsion mechanism to push nearby segments of the knot

away, coupled with a shrinking mechanism to tighten the knot. This algorithm is simple

and efficient. This process minimises the ratio of length to radius as the energy. Mech-
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anisms are in place within the algorithm to shake the knot out of local minimum energy

conformations (that are not global energy minima), but a proof that these mechanisms will

always ensure the global minimum is reached is still elusive. It is this SONO algorithm

that we will extend to tighten both 3-periodic knits and nets to ideal forms by minimising

the ratio of length to diameter, and we describe the details of the algorithm here.

Initially, a given configuration of the knot is discretised into a series of ‘nodes’ tracing

around the knot trajectory, connected consecutively by ‘leashes’. The radius of the knot

is simulated by placing a sphere of the same radius at points along the knot trajectory,

where the distance between the points (the leash length) is far smaller than the sphere

radius. The algorithm shrinks the knot trajectory while maintaining this radius. When the

spheres surrounding the points of the discretised knot overlap, they repel until the overlap

is removed, and the shrinking proceeds, eventually giving the ideal L
D . The algorithm can

be broken down into a few simple steps as follows.

Control Leashes

The ‘control leashes’ process ensures that the inter-node distance (length of the leashes)

is kept somewhat equivalent. The leash length is initially chosen to be far smaller than

the radius so as to ensure that the knot remains equivalent under ambient isotopy through-

out the simulation process, and the control leashes procedure also assists in ensuring this

equivalence.

In practice, this is done by testing the distance between neighbouring points at a chosen

region of the knot. If it is longer (or shorter) than the required leash length, the two points

are moved symmetrically towards (or away) from their centre of mass. The continued

application of this process to all pairs of points along the knot controls the variation in the

length of the leashes.

Find Neighbours and Remove Overlaps

This is perhaps the root of the entire algorithm, and involves identifying and removing

overlaps of spheres along the knot trajectory. Initially we must identify neighbouring

spheres that are allowed to overlap: those that are close along the knot trajectory. This is

done by excluding an integer number of neighbouring nodes when searching for overlaps,

approximated by
(πD

2l

)
rounded to the nearest integer (l is the leash length and D is the fil-

ament diameter). This corresponds to the number of neighbours with overlapping spheres
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in the tightest u-turn conformation.

To identify overlapping spheres, we measure the distance between spheres along the

knot. On identifying overlapping spheres (those not neighbouring in the tightest u-turn),

these nodes are symmetrically moved away from their centre of mass until the new sep-

aration distance is twice the radius, plus a small value (δ). The knot conformation will

approach one without overlaps on the continued application of this process to all overlap-

ping nodes in the knot trajectory.

Tightening Process

The continued application of the procedure will result in a knot trajectory in (at least) a

local minimum:

1. The (x,y,z) coordinates of the nodes of a knot are read from a file.

2. The lengths of the leashes are corrected by the ‘control leashes’ process.

3. Overlapping spheres around the nodes are adjusted using the Remove Overlaps pro-

cedure.

4. The knot is tightened: the (x,y,z) coordinates are multiplied by a scaling factor less

than 1, while the sphere diameter is maintained.

The surface of the knot is not smooth due to the discretisation. In order to prevent

the jamming of spheres along the trajectory, an additional process is implemented. This

process, called the ‘shift nodes’ procedure, moves each node a small increment (far less

than the average leash length) towards its neighbouring node. This procedure has the added

bonus of smoothing the knot at the same time.

The repeated application of this algorithm tightens the knot trajectory sufficiently to

an energy minima, however it requires a few additional procedures to assist in shaking

the knot out of local energy minima. The simplest of these is altering the total number

of nodes: either halving or doubling. As another strategy, we may increase the parameter

δ, which controls how far apart the nodes are shifted in the ‘remove overlaps’ procedure.

This temporary increase of δ helps the algorithm to jump out of local energy minima, akin

to increasing the energy in a simulated annealing process.
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4.2 Tightening branched and periodic entanglements

The standard SONO algorithm for tightening knots was insufficient to tighten finite and

branched structures: it was difficult for the algorithm to minimise length around the ver-

tices. The standard SONO algorithm was also insufficient to tighten periodic structures:

scaling the points of the discretised knot to shrink the knot trajectory is invalid in the

periodic sense, as this would only change the repeat length of the periodic boundary con-

ditions, which we wish to remain constant.

As such, to tighten a periodic and (or) branched entanglement to a canonical form,

some adaptions and an additional procedure must be added to the SONO algorithm. These

adaptions and additions apply to both the case of branches in the entanglement and the case

of periodic entanglements. This section discusses the amended algorithm, which we will

call PB-SONO, and its implementation.

Tension

The tension process pulls consecutive points of an entangled structure towards a straight

line, locally straightening each segment of the discretisation. A point of the trajectory,

chosen at random, is moved toward the midpoint of its neighbours. This local straightening

is applied to every point of the entanglement to give a global straightening, or tension of

the structure. Where the chosen point forms part of a vertex of the entanglement, the point

is moved to the barycenter of the neighbouring points along each of the edges incident at

that vertex.

For the structure to maintain equivalence under ambient isotopy throughout the ten-

sion procedure, we prevent points from moving towards the ideal position if this would

introduce an overlap with another sphere: where the desired position of the chosen point

is within D of any other points in the entanglement (excluding neighbouring points), the

point remains in its initial position. In addition to this, we limit the distance that a point

may be shifted in order to ensure the preservation of equivalence under ambient isotopy: a

point which is ‘too far’ from its desired position is shifted a small distance in the direction

of the desired position.

This tension procedure somewhat fulfills the role of the control leashes procedure, so

we now disregard control leashes in the implementation. To ensure that the variation of

leash lengths remains small, we implement the deletion of nodes where the leashes are

too short, and the insertion of nodes where the leashes are too long. A node is deleted
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when the two leashes incident at that node have a combined length less than 1.2 times the

average leash length. A node is inserted at the midpoint of a leash if its length is greater

than 1.3 times the average leash length.

Find Neighbours and Remove Overlaps

This process remains much the same as for the standard SONO algorithm, but for a few

small details. For knots and links, an integer number of neighbours either side of a node

are disregarded as overlapping spheres. This number is selected based on a tightest u-turn

that may be allowed, and is best approximated by the closest integer to
(πD

2l

)
where l is

the average leash length and D is the diameter. Where the structure contains vertices, that

number of neighbouring nodes is best approximated by the integer closest to

(
D

l× sin
(α

2
)
)

where α is the smallest vertex angle for which the edges incident at the vertex will be

straight (edges that pull to a smaller angle in the entanglement will bulge into a curved

arc). This can be seen in Fig. 4.2.

Figure 4.2: The number of skipped nodes around a vertex may be estimated for a configuration
where the minimum vertex angle for which the edges are straight is given by α. For example, in
the ideal unknotted θ-graph, the vertex angle wants to be 0◦ (the 3 edges all wish to trace directly
from one vertex to the other) and hence the edges bulge to curved arcs to keep the vertex to at least
a chosen α. For the ideal unknotted cube graph, α is set below 90◦ and the edges are straight.
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To restrict the computation time when checking for overlaps, a ‘binning’ procedure

is employed. The unit cell is divided into a series of cubic bins, where the size of the

cubic bin is at least the filament diameter. All points within a bin are assigned to that bin,

and a one bin thick layer of bins is created around the unit cell using periodic boundary

conditions. When checking for overlapping spheres around points, one must only check

in a 3x3x3 block of bins surrounding the point, minimising the number of points to check.

This binning procedure is also used for checking for obstructions in the tension procedure.

In order to make the binning process run more smoothly, the periodic unit cell is jus-

tified back to 1x1x1 cube after each relaxation iteration: any points outside the unit cube

(that may have moved there in one of the tightening processes) is moved to its equivalent

position within the unit cube. This is a triviality, but it makes searching neighbouring bins

for overlaps a simpler computation.

Tightening Process

Here is a new algorithm incorporating these new procedures, but with a somewhat equiva-

lent core to the original SONO algorithm. Where the original SONO process follows the

basic procedures of:

1. Remove overlaps

2. Shrink knot

The PB-SONO algorithm proceeds as follows, where there is no net change in the ratio of

filament diameter to unit cell diameter:

1. Shrink filament diameter by a particular fraction (× fshrink)

2. Perform ‘tension’ process multiple times

3. Remove overlaps

4. Increase filament diameter (× 1
fshrink

)

For periodic entanglements, the procedure described above will, after significant rep-

etition, converge to a specific configuration for a given filament diameter. The diameter

can then be incrementally inflated, and the algorithm repeated at each increment. This is

performed until the structure becomes jammed, which can be identified by the inability of
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the ‘remove overlaps’ procedure to reach a configuration without any overlaps (the spheri-

cal nodes vibrate between each other during this process). It will be this conformation that

minimises L
D .

Periodic unit cell

For periodic entanglements, this procedure is performed on a cubic unit cell, which has

lattice parameters (a = b = c = 1; α = β = γ = π
2 ), and with periodic boundary conditions.

It is necessary to search for ideal conformations among many choices of lattice parameters

for the unit cell, similar to deforming the unit cell. The lattice parameters that give the

lowest L
D conformation are accepted.

To emulate alteration of the lattice parameters of the unit cell within the simulation,

we employ the distance metric. This uses the following formula, where the distance from

point (p,q,r) to point (x,y,z), is a unit cell with lattice parameter (a,b,c,α,β,γ) is given by:

√
(p− x)2a2 +(q− y)2b2 +(r− z)2c2 +W

where

W = 2ab(p− x)(q− y)cos(γ)+2bc(q− y)(r− z)cos(α)+2ac(r− z)(p− x)cos(β)

In practice, a full simulation run, which begins from a small filament diameter and

slowly inflates, is performed for distinct sets of lattice parameters. This must be done,

rather than finding an ideal conformation then deforming the unit cell, as the radius in

the deformed unit cell may need to be smaller than in the undeformed unit cell. This

process of alteration of lattice parameters is very time consuming, and some intuition by

the ‘simulator’ is usually needed for timeliness.
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4.3 Results of the PB-SONO algorithm

We implement the PB-SONO algorithm for a variety of examples, firstly to compare with

existing results in the case of finite knots, and secondly to begin to catalogue results where

canonical conformations have not been enumerated previously. We begin this by imple-

menting PB-SONO on a set of finite knots, then on distinct embeddings of finite graphs,

including θ-graphs, tetrahedral graphs and cube graphs. We then tighten a variety of peri-

odic entanglements of filaments and nets.

4.3.1 Knots

The PB-SONO algorithm tightens knots with up to 7 crossings. This process is a test

for how PB-SONO performs in comparison to the SONO algorithm, as documented

in [Stas 98]. These results are shown in Table 4.1.

Table 4.1: L
D for ideal knots

L
D (PB-SONO) L

D (SONO) [Stas 98]

01 3.18 3.14 (π) Fig. 4.3(a)

31 16.38 16.33 Fig. 4.3(b)

41 21.72 20.99 Fig. 4.3(c)

51 23.67 23.55 Fig. 4.3(d)

52 25.05 24.68 Fig. 4.3(e)

61 28.57 28.30 Fig. 4.3(f)

62 29.58 28.47 Fig. 4.3(g)

63 29.95 28.88 Fig. 4.3(h)

71 30.76 30.70 Fig. 4.3(i)

Particularly for the simpler knots, we can see that the algorithm performs well in re-

lation to the SONO algorithm. PB-SONO is slower and seems to have more difficultly

in escaping from local minima, but the process of halving and subsequently doubling the

number of points is enough to get comparable results. The algorithm had some trouble

with the 62 and 63 knots, and the simulated L
D values are somewhat higher than the best

SONO result.
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Fig. 4.3 shows each of the ideal conformations for these knots obtained by the

PB-SONO algorithm. We take these results as sufficient to show the effectiveness of the

PB-SONO algorithm, and proceed to simulate the tightening of finite entangled graphs.

(a) 01: 3.18 (b) 31: 16.38 (c) 41: 21.72

(d) 51: 23.67 (e) 52: 25.05 (f) 61: 28.57

(g) 62: 29.58 (h) 63: 29.95 (i) 71: 30.76

Figure 4.3: Ideal conformations of knots up to seven crossings, as found by an implementation of
the PB-SONO algorithm. The L

D values for these conformations are shown under each image.

4.3.2 Finite graphs

We simulate the tightening of finite entangled graphs using the PB-SONO algorithm. We

choose a variety of embedded (with distinct ambient isotopies) θ-graphs (two vertices

connected by three edges), tetrahedral graphs and cube graphs.

θ-graphs

θ-graphs consist of two vertices connected by three edges. θ-graph embeddings that are

distinct by ambient isotopy have been enumerated up to a given complexity initially by
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Litherland, and more completely by Moriuchi [Mori 04]. The graph diagrams of the em-

beddings considered are given in Fig. 4.4, listed by the title given in the Litherland enumer-

ation, as well as the name derived from the Moriuchi construction, which uses Conway’s

tangle notation [Conw 67]. We consider all embeddings up to the 64 embedding (Lither-

land enumeration), where the embeddings, 51 and 61, are “ravels” [Cast 08].

(a) 01 (b) 31, 11
× 3 (c) 41, 11

× 2 2 (d) 51, 41
∗ 2 0.1.1.1

(e) 52, 41
∗ 2.1.1.1 (f) 53, 11

× 5 (g) 54, 11
× 3,2 (h) 55, 11

× 2 3

(i) 56, 11
× 3 2 (j) 57, 51

∗ 1.1.1.1.2 0 (k) 61, 31
∗ 2.2.−2 (l) 62, 41

∗ 2 1 0.1.1.1

(m) 63, 41
∗ 2.1.1.2 0 (n) 64, 31

∗ 3.2.−1

Figure 4.4: Embedded θ-graphs up to the 64 embedding of the Litherland enumeration. The
names shown are designated in the first case by the Litherland table, and secondly by the Moriuchi
construction and enumeration [Mori 04] which uses Conway tangle notation [Conw 67].

We tightened these θ-graph embeddings algorithmically using the PB-SONO algo-

rithm. The starting configurations of the embeddings were reminiscent of the planar im-

ages shown in Fig. 4.4, with only the crossings deviating from the plane. The choice of

starting formation does not seem to influence the ideal forms of the graph embeddings.

The L
D measurements of the ideal conformations of these graphs are shown in Table 4.2,

where they are ranked from least energy upwards.
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Table 4.2: L
D for ideal entangled θ-graphs

Litherland Moriuchi L
D : PB-SONO

01 Trivial 5.12 Fig. 4.7(a,d)

31 11
× 3 17.44 Fig. 4.7(b,e)

41 11
× 2 2 22.77 Fig. 4.7(c,f)

52 41
∗ 2.1.1.1 24.42 Fig. 4.8(a,d)

53 11
× 5 24.79 Fig. 4.8(b,e)

51 41
∗ 2 0.1.1.1 25.08 Fig. 4.8(c,f)

56 11
× 3 2 26.17 Fig. 4.9(a,d)

57 51
∗ 1.1.1.1.2 0 26.30 Fig. 4.9(b,e)

55 11
× 2 3 26.52 Fig. 4.9(c,f)

54 11
× 3,2 27.98 Fig. 4.10(a,d)

64 31
∗ 3.2.−1 28.33 Fig. 4.10(b,e)

61 31
∗ 2.2.−2 29.05 Fig. 4.10(c,f)

62 41
∗ 2 1 0.1.1.1 30.78 Fig. 4.11(a,c)

63 41
∗ 2.1.1.2 0 34.15 Fig. 4.11(b,d)

Conformations of the unknotted θ-graph vary depending on the smallest vertex angle

allowed. The three edges of the unknotted θ-graph would minimise their length given

a vertex angle of 0◦, where all three edges follow the same direct path from vertex to

vertex. This choice of vertex angle, however, does not produce a stable configuration in

the simulation process: the number of neighbouring points whose spheres are allowed to

overlap with a chosen sphere would be infinite, as

lim
α→0

(
D

l× sin
(α

2
)
)

= ∞

hence all spheres in the entanglement will be allowed to overlap, and the graph will col-

lapse to a single point. This is distinct from the case of the unknotted loop (Fig. 4.3(a)),

where the neighbouring points skipped is such that each point on the loop still repels the

point on the opposite side of the circle, which maintains a stable configuration.

The conformation of the trivial θ-graph where at least some spheres repel (i.e. the

midpoints of each of the edges with each other) will consist of three semi-ellipses con-
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necting the vertices: the principal diameters of the ellipses are D from vertex to vertex and
2D√

3
in the perpendicular orientation. These three edges are not semicircles, as the distance

between their midpoints must be at least D, and hence they must be distance 2D√
3

from the

central axis of the graph. This theoretical conformation, consisting of three semi-ellipses,

has L
D = 5.09 and a vertex angle setting of 105◦. This borderline case lies between a stable

configuration and unstable configuration, and is thus difficult to achieve by simulation. An
L
D value of a stable conformation of the simulation process is 5.12, as shown in Fig. 4.5.

This value is close to the ideal value, and gets as close as possible for the given simulation

process.

(a) (b)

Figure 4.5: The ideal trivial θ-graph, obtained using the PB-SONO algorithm. The L
D value for

this conformation is 5.12, close to the theoretical ideal value of 5.09.

The 31 θ-graph embedding is equivalent by ambient isotopy to a 31 (trefoil) knot with

a connecting edge. The predicted L
D ratio for the ideal configuration is that of the trefoil

plus D units (the length of the extra edge), which translates to L
D = 16.38+1 = 17.38. The

PB-SONO simulated conformation, which has L
D = 17.44, is shown in Fig. 4.6 along with

an ideal trefoil trajectory. This conformation is comparable to what is expected. The L
D

value is most likely a global minimum, yet the exact conformation is not unique: the short

connecting edge may be located at any contact point along the knot, which gives a set of

conformations with equivalent (minimal) L
D .

Similarly, the 41 θ-graph embedding is equivalent by ambient isotopy to the 41 (figure

8) knot with an additional short connecting edge. The ideal conformation, as shown in

Fig. 4.7(a,d), should have L
D = 21.72 + 1 = 22.72 (the L

D ratio of the ideal figure 8 knot

plus one), yet the simulated L
D measure is 22.77. This seems to be within a reasonable

distance to the predicted value, given the computational nature of the process. Once again,

the location of the short connecting edge has some flexibility, giving an array of ideal

configurations all with a minimal L
D measure.
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(a) θ - 31: 17.44 (b) (c)

Figure 4.6: (a) The ideal conformation of the 31 entangled θ-graph, obtained using the PB-SONO
algorithm. The L

D energy obtained for the given conformation is 17.44, which is comparable the
energy for an ideal trefoil plus 1. (b) The radius is decreased such that the short edge may be seen.
(c) The ideal trefoil knot with a decreased radius is shown for comparison.

The 52 θ-graph embedding has the next lowest L
D value when tightened. This graph is

equivalent under ambient isotopy to a trefoil with an additional edge, in a distinct location

to the 31 θ-graph embedding, which was shown in Fig. 4.6. The presence of this additional

edge alters the ideal conformation away from the ideal trefoil embedding, as shown in

Fig. 4.8(a,d). The L
D measurement for this conformation is 24.24. It is likely that this

conformation is a unique optimum.

The ideal conformation of the 53 embedded θ-graph is a cinquefoil knot with an ad-

ditional short connecting edge. The L
D value obtained for the ideal conformation, shown

in Fig. 4.7(c,f), is 24.79. This measure is comparable to the L
D energy of the cinquefoil

(23.67) plus one (for the edge). Slight deviations from the ideal knot trajectory (kinks) are

seen at the vertices of the graph, which induce the difference in the values. These kinks are

an artifact of the computational process and are not necessary to the ideal conformation of

the graph embedding.

The 51 embedding of a θ-graph is Kinoshita’s embedding, also know as a

ravel [Cast 08]. It contains no knotted or linked cycles: all edges are necessary to the

entanglement, as opposed to the other examples we have seen, which are equivalent to a

knot with an additional edge. This specific embedding is the lowest complexity example

of an entanglement of this kind. The ideal conformation has an L
D measurement of 25.08,

and the conformation, shown in Fig. 4.8(d,e), has lovely 3-fold symmetry. A few inter-

mediate configurations are shown in Fig. 4.8(a-c), where the first image shows the starting

configuration. It is clear that the symmetry of the ideal configuration emerges from the

tightening algorithm regardless of the asymmetry of the starting configuration. Further, a

ravelled molecule of this ambient isotopy has been recently synthesised [Li 11].
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(a) θ - 41: 22.77 (b) θ - 52: 24.42 (c) θ - 53: 24.79

(d) θ - 41 (e) θ - 52 (f) θ - 53

Figure 4.7: Ideal conformations, obtained using the PB-SONO algorithm, of three embeddings of
the θ-graph: 41, 52 and 53. The names shown are from the Litherland enumeration of embedded
θ-graphs, and the values shown are the L

D energy obtained for the given conformation.

(a) (b) (c)

(d) θ - 51: 25.08 (e) θ - 51

Figure 4.8: (a-c) Three intermediate configurations in the tightening simulation of the 51 embed-
ding of a θ-graph. (d,e) The ideal configuration of the 51 embedding of a θ-graph, which displays
lovely 3-fold symmetry, an emergent trait of the graph under tightening regardless of the asymme-
try of the starting configuration.
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The ideal conformations of each of the 56, 57, and 55 θ-graph embeddings are shown

in Fig. 4.9. Each of these embeddings resemble the 52 knot (Fig. 4.3(e)), with the addition

of an edge between sections of the knot that are in contact. This additional edge may be

situated in three distinct locations that produce graphs that are distinct by ambient isotopy,

and these three locations are reflected in the three distinct graph embeddings. We expect

the L
D energies of these three conformations to be equivalent (25.05 + 1), but the values

obtained are more variable (26.17, 26.30, and 26.53 respectively). This is most likely due

to the simulation error involved in the implementation of the algorithm, and expect that

with enough repetition of the tightening algorithm, the resulting conformations would be

closer in energy. In particular, there are small kinks in the graph close to the vertices. In the

56 and 55 conformations, the location of the edge has some flexibility, and this gives a set

of conformations all with a minimal energy. The 57 ideal embedding is unique, however,

as the two segments of the knot containing the vertices are only in contact at a single point.

(a) θ - 56: 26.17 (b) θ - 57: 26.30 (c) θ - 55: 26.52

(d) θ - 56 (e) θ - 57 (f) θ - 55

Figure 4.9: Ideal conformations of three embeddings of the θ-graph: 56, 57, and 55, found by the
PB-SONO algorithm. The L

D measurement for each conformation is shown below each image.
Each of these embeddings are equivalent to the 52 knot by ambient isotopy, with the addition of a
short connecting edge in three distinct locations.

The 54 embedding of the θ-graph is equivalent by ambient isotopy to the 51 knot with

an additional long edge. Its ideal conformation is representative of this equivalence, as

shown in Fig. 4.10(a,d). The L
D value obtained for this conformation is 27.98, indicating

that the length of the additional edge wrapping around is approximately 4.3×D units.
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The 64 embedding of the θ-graph is the least energy conformation of the embeddings

with minimal crossing number of 6, among the four that we sampled. The ideal conforma-

tion of this graph embedding, as well as the ideal conformation of the 61 θ-graph embed-

ding are shown in Fig. 4.10. These two configurations have L
D values of 28.33 and 29.05

respectively. The 61 embedding is a ravel, as defined previously (no knotted or linked

cycles) and is most likely the second least–energy ravel amongst all θ-graph embeddings.

(a) θ - 54: 27.98 (b) θ - 64: 28.33 (c) θ - 61: 29.05

(d) θ - 54 (e) θ - 64 (f) θ - 61

Figure 4.10: Ideal conformations of embedded θ-graphs: 54, 64, and 61, obtained using the PB-
SONO algorithm. The L

D measurements are shown below each image.

The ideal conformations of the 62 and 63 embeddings, shown in Fig. 4.11, have the

highest energies of the examples studied. The L
D measurements are 30.78 and 34.15 re-

spectively.

The ideal conformations of these knotted graphs give us insight into their physical

presence. The quantity that we have minimised is the ratio of edge length to edge diameter,

which translates to a most efficient use of material to achieve the desired entanglement.

The L
D measure of an ideal knot has a correlation with the average writhe and average

crossing number of the knot [Stas 98], and this may extend to the case of knotted graphs

also. These physical conformations might also give insight into how isolated entangled

graphs might be arranged in chemical structures, in particular the symmetry that is induced

from an energy minimisation.

Beyond considering knots and links, we have observed a second mode of entanglement



146 Ideal geometry of branched and periodic structures

(a) θ - 62: 30.78 (b) θ - 63: 34.15

(c) θ - 62 (d) θ - 63

Figure 4.11: Ideal conformations of embedded θ-graphs: 62, and 63, obtained using the PB-SONO
algorithm. The L

D measurements are shown below each image.

that is unique to entangled graphs, the ravel. What about entanglement modes that are

beyond θ-graph embeddings, that contain no knots, links or ravels as graph minors? This

is an open question, as detailed in [Cast 11a].

Knotted Tetrahedra

A tetrahedral graph consists of four vertices each of degree three. Equivalently, it is the

complete graph of degree 4 (K4), where vertices connect to each of the other vertices

by a single edge. The simplest non-trivial embeddings of a tetrahedral graph, toroidal

embeddings (or isotopes [Cast 11b]), are the embeddings where the graph edges embed

on the surface of a torus, yet are unable to embed on the surface of a sphere. These edges

and vertices are arranged in the universal cover of the torus (E2, as defined at the start of

Ch. 1), such that the sum Σl2
i over all edge lengths li is minimised: this is the barycentric

placement of the net in E2 [Delg 03b]. An implicit 2D energy measure for toroidal graph

embeddings is thus given by Σl2
i [Cast 11a, Cast 11b]. We consider the trivial tetrahedral

graph plus the five least energy toroidal embeddings as candidates for tightening. These

six graph embeddings are shown as planar diagrams in Fig. 4.12.
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(a) trivial (b) A (c) B

(d) C (e) D (f) E

Figure 4.12: The trivial embedding plus five toroidal embeddings of the tetrahedral
graph [Cast 11b], selected as candidates for the tightening algorithm PB-SONO.

Using the PB-SONO algorithm, the graphs shown in Fig. 4.12 are tightened to an ideal

conformation. The L
D measurements for the ideal conformations are shown in Table. 4.3,

which relate to the conformation of the graph in E3. The table also shows the toroidal

energy of the embedding (Energy), which relates to the embedding of the graph is the

universal cover, E2.

Table 4.3: L
D for ideal entangled tetrahedron graphs

Isotope L
D (3D) Energy (2D)

trivial 6.61 2.35

A 18.54 3.88

B 20.09 4.55

C 25.80 4.79

E 27.42 5.75

D 33.22 5.56

An unknotted tetrahedron graph composed of straight edges would have a total length

of approximately 6.93 diameters: this is achieved where the closest distance between op-

posite edges of the graph (those that do not share a common vertex) is D, hence the edge

length must each be approximately 1.16D. A lower total edge length is realised in a con-

formation where the edges curve, as shown in Fig. 4.13(a,d), which has an L
D value of 6.61.

This conformation is the ideal conformation of the trivial tetrahedron graph. We note that
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the curved geometry of the edges is not an artifact of the allowed vertex angle: it is an

inherent geometry of the ideal structure.

The ideal conformation of Isotope A, as shown in Fig. 4.13(b,e), highlights a particular

knotted cycle of the embedding that is equivalent to a trefoil knot by ambient isotopy. The

full graph embedding is a decoration of this trefoil cycle by two short connecting edges. As

such, the expected value of L
D for this conformation is 16.38 + 2 = 18.38. The simulated

value is 18.54, which is comparable. It seems that a small kink is present at a vertex of this

configuration, which we attribute to experimental uncertainty, and this accounts for the L
D

value that is very slightly higher than expected. This kink should not be present in an ideal

configuration.

Similarly, the ideal conformation of Isotope B has a dominant trefoil knotted cycle. In

this case, however, the structure which attaches to the trefoil knot has an arrangement of

vertices and edges which is distinct to Isotope A. The L
D value for this conformation is

20.09 (Fig. 4.13(c,f)), which indicates that the additional structure of vertices and edges

adds approximately 3.55D units of length to the conformation.

The C and E Isotopes of the tetrahedron graph each have the same dominant knotted

cycle in their ideal conformations. In each isotope, this dominant cycle is a cinquefoil

knot, as shown in Fig. 4.14. As was the case for the trefoil cycles, these two embeddings

differ in the additional edges that are attached: Isotope C has two short connecting edges

and Isotope E contains a more complex structure. This is reflected in the L
D measurements,

which are 25.80 for Isotope C (2.13 more than the cinquefoil value, which is comparable

to 2) and 27.42 for Isotope E (3.85 more than the cinquefoil value).

The highest 3D energy embedding for these 6 simplest tetrahedral entanglements is

Isotope D. This embedding has a dominant cycle that is a seven–crossing torus knot,

reflected in the ideal conformation shown in Fig. 4.14(c,f). The ideal embedding is the

ideal torus knot with the addition of two short connecting edges. This ideal geometry is

reflected in the L
D measurement, which is 33.22: 2.46 more than the value for the ideal

conformation of the torus knot.

The 2D energy for these graph embeddings, calculated in the universal cover of the

torus, gives an ordering of the embeddings from least to greatest energy that differs slightly

from the 3D energy ranking (Table 4.3). This difference indicates that both energy mea-

sures offer alternative gauges of the complexity of embedded tetrahedron graphs.
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(a) Trivial: 6.61 (b) Isotope A: 18.54 (c) Isotope B: 20.09

(d) Trivial (e) Isotope A (f) Isotope B

Figure 4.13: Ideal conformations for some embedded tetrahedral graphs: trivial embedding, Iso-
tope A, and Isotope B. These conformations were obtained using the PB-SONO algorithm for
tightening knotted graphs. The resulting L

D measurement is shown below each image.

(a) Isotope C: 25.80 (b) Isotope E: 27.42 (c) Isotope D: 33.22

(d) Isotope C (e) Isotope E (f) Isotope D

Figure 4.14: Ideal conformations for some embedded tetrahedral graphs: Isotope C, Isotope E,
and Isotope D. These conformations were obtained using the PB-SONO algorithm for tightening
knotted graphs. The L

D measurement of these conformation is shown below each image.
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Knotted Cubes

Five simple embeddings of the cube graph, isotopes A through E, are developed in [Hyde 07].

A further five toroidal embeddings, Isotopes 1 through 5, are taken from [Cast 11b], where

the least 2D energy toroidal embeddings of cube graphs have been enumerated. Each of

these isotopes, along with the trivial embedding of the cube graph, are shown in Fig. 4.15.

(a) trivial (b) A (c) B (d) C

(e) D (f) E (g) 1 (h) 2

(i) 3 (j) 4 (k) 5

Figure 4.15: Embeddings of the cube graph, selected as candidates for the PB-SONO simulation.
The embedding shown in (a) is the trivial embedding, the embeddings shown in (b-f) are Isotopes
A through E, which are enumerated in [Hyde 07], and the embeddings shown in (g-k) are toroidal
Isotopes 1 through 5, constructed in [Cast 11b].

Using the PB-SONO algorithm, the graphs shown in Fig. 4.15 are tightened to an ideal

conformation. The resulting L
D values for these conformations are shown in Table. 4.4. The

2D energy, as defined previously, is also shown in the table and differs from the L
D energy

of a 3-dimensional conformation.

An ideal embedding of a trivial cube graph contains straight edges, each of length

D. This conformation has graph edges that trace along the edges of a highest symmetry

cube. The simulated ideal conformation of the unknotted cube has L
D = 12.04, which is

comparable to the ideal case, and displays the high symmetry of the ideal embedding, see

Fig. 4.16(a,d).
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Table 4.4: L
D for ideal conformations of entangled cube graphs

Isotope L
D : PB-SONO Energy [Cast 11b]

trivial 12.04 0.83

A 16.97 1.33

C 21.04 1.76

1 23.77 2.82

B 24.63 2.20

D 25.21 2.31

5 26.08 3.16

3 26.31 2.98

2 28.51 2.91

4 32.08 3.14

E 34.76 3.53

The Isotope A cube embedding is equivalent by ambient isotopy to a Hopf link with the

addition of four short edges joining the two components of the link at contacts between the

components. The ideal embedding of a Hopf link, without the extra vertices and edges has
L
D = 2π, with πD units around each of the components of the link. In the graph embedding,

whose ideal form is shown in Fig. 4.16(b,e), the cycle around one component of the Hopf

link consists of four edges. The minimum length for any edge in an ideal graph embedding

is D, hence the cycle of a single component of the Hopf link must be at least 4D units,

which is greater than πD. As such, the cycles must deviate significantly from their ideal

trajectory. For this ideal conformation of the Isotope A embedding of the cube graph,
L
D = 16.97.

The next most stable cube embedding via our 3D energy is Isotope C, which is equiva-

lent by ambient isotopy to the 31 (trefoil) knot with four short connecting edges. From this

geometry, we expect L
D = 16.37 + 4 = 20.37, and find that the simulated value is 21.04.

We see that, compared with the Isotope A tetrahedron, increasing the number of additional

edges seems to increase the difference in the expected and simulated values: the addition

of more edges deviates the trefoil knot away from its ideal conformation. In this case, it

seems that the deviation from the expected value is a feature of the ideal conformation,

rather than experimental uncertainty. This ideal conformation is shown in Fig. 4.16(c,f).

Fig. 4.17 shows the next three most stable cube embedding via our 3D energy: Isotope
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(a) Trivial: 12.04 (b) Isotope A: 16.97 (c) Isotope C: 21.04

(d) Trivial (e) Isotope A (f) Isotope C

Figure 4.16: Conformations for ideal embedded cube graphs: trivial embedding, Isotope A, and
Isotope C. The L

D value is shown for each of the configurations, which are found computationally
using the PB-SONO algorithm.

1, Isotope B and Isotope D. These three embeddings have L
D values of 23.77, 24.63 and

25.21 respectively. For Isotope 1 there is a dominant cycle with a trefoil knot, and for

Isotopes B and D, the dominant cycles form a (4,2) (Whitehead) link. Isotopes B and D

differ only in the formation of the additional short connecting edges attached to the (4,2)

link.

Fig. 4.18 includes the next three most stable cube embedding via our 3D energy: Iso-

tope 5, Isotope 3 and Isotope 2. These three embeddings have L
D values of 26.08, 26.31

and 28.51 respectively. Similarly, Fig. 4.19 shows the two embedded cube graphs with

the highest energy from the small sample set chosen: Isotope 4 and Isotope E. These

embeddings have L
D values of 32.08 and 34.76 respectively.

Through the embedded graphs considered, we see that the 2D energy and the 3D en-

ergy of the graph embeddings differ in the relative rankings that they give. The notable

embeddings that disagree are Isotope 1 and Isotope 5, which have a lower 3D energy than

their high 2D energy might imply. Once again, this disagreement gives weight to both

energy measures to give valid rankings of complexity.
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(a) Isotope 1: 23.77 (b) Isotope B: 24.63 (c) Isotope D: 25.21

(d) Isotope 1 (e) Isotope B (f) Isotope D

Figure 4.17: Ideal conformations of embedded cube graphs: Isotope 1, Isotope B, and Isotope D.

(a) Isotope 5: 26.08 (b) Isotope 3: 26.31 (c) Isotope 2: 28.51

(d) Isotope 5 (e) Isotope 3 (f) Isotope 2

Figure 4.18: Ideal conformations of embedded cube graphs: Isotope 5, Isotope 3, and Isotope 2.
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(a) Isotope 4: 32.08 (b) Isotope E: 34.76

(c) Isotope 4 (d) Isotope E

Figure 4.19: Ideal conformations of embedded cube graphs: Isotope 4 and Isotope E.

4.3.3 Periodic entanglement of filaments

An addition to the SONO algorithm is the ability to tighten periodic entanglements. We

consider tightening periodic arrays of filaments, which were constructed as reticulations

of Triply-Periodic Minimal Surfaces (TPMS) in Ch. 3.

The ideal conformation of a periodic array is defined to be the conformation that min-

imises L
D within a unit cell of the structure: L

D is a dimensionless measure of the length per

unit cell standardised by the filament diameter. The L
D measure varies with the choice of

unit cell by which to represent the periodic structure: it is invariant under scaling of the

unit cell, yet the value doubles for a choice of two unit cells, halves for half a unit cell

and so on. The variability of the L
D measure makes it difficult to compare nets using this

measure when testing for equivalence or comparing between nets. Despite this, the ideal

conformation is well defined.

As a comparative tool between distinct entangled structures, LD2

V is another dimension-

less measure, which gauges the packing density. This value is independent of the unit cell

chosen. We note, however, that this value may not be minimised in an ideal conformation,

as we will see in examples in this section.
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Invariant rod packings: non–cubic

Eight distinct invariant rod packing with non-cubic symmetry are enumerated in [OKee 05].

The construction of weaving related to some of these rod packings by the reticulation of

TPMS with hyperbolic free tilings, including helical and undulating filament variations,

were presented in Ch. 3. The weavings constructed via the TPMS are shown in Fig. 4.20.

(a) (b) (c)

(d) (e)

Figure 4.20: The weavings (a) G+
122C(1), (b) P123C(2), (c) G93C(1), (d) D104 and (e) D123C(2).

Packings (a-c) are variants of the invariant non-cubic rod packings #1, #2 and #3, and packings
(d,e) are variants of the invariant non-cubic rod packings #5 and #6.

We consider these filament packings in their ideal conformations, and describe the

two measures of complexity: L
D and LD2

V . First, consider the invariant rod packings of

non–cubic symmetry composed of only parallel rods: packings #1-#4 [OKee 05], or an

equivalent filamentous variant constructed via a TPMS reticulation. On tightening, the dis-

tinct arrangements converge to a common ideal configuration, which is the #4 rod packing

configuration (Fig. 4.21). The convergence of distinct parallel rod packings to a common

conformation seems intuitive: there are no obstructions inhibiting the rods from compact-

ing to the densest state. The initial unit cells for each of these packings have a differing

number of rods, however these rods become symmetrically equivalent on tightening, and

we simplify to a smaller unit cell containing one rod, which realises all possible symme-
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tries of this packing, similar to the ‘maximal symmetry’ barycentric embedding of nets via

found via the SyStRe algorithm [Delg]. For all choices of unit cell, the LD2

V value will be

equivalent (1.15), however the L
D measure will change depending on the unit cell chosen,

and for the smallest unit cell which contains only one rod, L
D = 1.

Now consider the rod packings composed of stacked layers of parallel rods (#5-#8),

or their filamentous variants with helical or undulating filaments. On tightening, all of

these packings also converge to a common ideal conformation, equivalent to the ideal

conformation of the parallel rod packings: the #4 rod packing. This result also seems

intuitive, as each layer of containing rods arranged in a distinct orientation are uninhibited

to rotate during the simulation to the densest conformation. The LD2

V and L
D = 1 values for

this ideal configuration will be equivalent to the parallel rod case.

(a) (b)

Figure 4.21: The ideal configuration for all weavings composed of parallel rods, or alternating
stacked layers of parallel rods. (a) One unit cell, which contains a single rod, has lattice parameters
(1,1,1, π

2 , π
2 , π

3 ). The length of the rod is 1, the diameter is also 1, and the volume of the unit cell is
√

3
2 . Thus L

D = 1 and LD2

V = 1.15. (b) The global arrangement of the packing.

Invariant rod packings: cubic

Six invariant rod packings of cubic symmetry are enumerated in [OKee 05]. The construc-

tion of weavings related to five of these rod packings via the TPMS reticulation method,

which often consist of helical or undulating filaments, was shown in Ch 3. These five

weavings, which inherit the names G+
124C, D124C, G+

129C, G+
123C(2) and P129C from their

construction (see § 3.3.2), are shown in Fig. 4.22.

The PB-SONO algorithm for tightening periodic arrays of filaments is utilised to

tighten each of the filament packings shown in Fig. 4.22. Table 4.5 summarises the L
D

and LD2

V values for their ideal conformations, ordered by their LD2

V values, which is a pre-

ferred comparative tool to the L
D measure.
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(a) (b) (c)

(d) (e)

Figure 4.22: Weavings related to five invariant cubic rod packings, constructed via the TPMS retic-
ulation method of Ch. 3: (a) G+

124C, a helical variant of Π+, (b) D124C, which is exactly equivalent
to Π∗, (c) G+

129C, a helical version of Σ+, (d) G+
123C(2), a Γ rod packing consisting of undulating

filaments, (e) P129C, an Ω+ packing with slightly helical filaments.

Table 4.5: Invariant Cubic Rod Packings: PB-SONO

Structure Related rod packing Form L
D

LD2

V

G+
123C(2) Γ Straight 19.27 0.90

G+
124C Π+ Helical 17.91 0.84

D124C Π∗ Straight 6.00 0.75

P129C Ω+ Helical 22.78 0.57

G+
129C Σ+ Helical 30.21 0.49
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The G+
124C structure, a helical variant of the Π+ rod packing, may be idealised by the

PB-SONO algorithm (Fig. 4.23). The unique ideal conformation is composed of filaments

with helical trajectories, which deviate from their straight trajectory to pack more tightly.

The helical geometry of the filaments is an emergent trait of the specific entanglement,

and is independent of the starting configuration. Further, the helices of the ideal structure

decorate a surface parallel to the G minimal surface such that one channel is slightly de-

flated and the other is enlarged. The geometry that results from idealisation supports the

relevance of the original TPMS geometry. The L
D value for this conformation is 17.91 and

the LD2

V value is 0.84.

(a) (b) (c)

Figure 4.23: The ideal G+
124C structure: a helical variant of the Π+ rod packing. (a) The ideal unit

cell, where L
D = 17.91 and LD2

V = 0.84. (b) The ideal structure. (c) It lies on a surface parallel to
the G surface such that one channel has been deflated and the other enlarged.

The D124C structure lies along the lines of the D surface, and is equivalent to the Π∗

rod packing. The ideal configuration of this structure also consists of straight rods, as can

be seen in Fig. 4.24. For this conformation, L
D = 6 and LD2

V = 0.75.

(a) (b)

Figure 4.24: The ideal D124C structure, equivalent to the Π∗ rod packing. (a) The unit cell, where
L
D = 6 and LD2

V = 0.75. (b) The filaments in the ideal structure are straight.
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In contrast, the G+
129C structure, which is a Σ+ rod packing with helical filaments, has

an ideal form also composed of helical filaments along the axes of the rods (Fig. 4.25).

The helical formation of the filaments is an emergent property, regardless of the starting

configuration. The conformation also has the beautiful property that when the filaments

are maximally inflated, they fill one channel of the G minimal surface. The L
D value for

this conformation is 30.21 and the LD2

V measure is 0.49, making it the least dense ideal

structure of those related to the cubic rod packings.

(a) (b) (c)

Figure 4.25: The ideal G+
129C structure: a helical Σ+. (a) The unit cell, where L

D = 30.21 and
LD2

V = 0.49. (b) The ideal structure fills one channel of the G minimal surface. (c) The extended
ideal structure. This is the least dense ideal structure of those related to the cubic symmetry rod
packings.

The G+
123C(2) structure is a Γ rod packing by undulating filaments. The ideal G+

123C(2),

which minimises L
D within one unit cell, is composed of straight rods, equivalent to the rod

packing geometry (Fig. 4.26). The L
D value for this conformation is 19.27 and the LD2

V

measure is 0.90, making this the densest ideal structure of those related to the cubic rod

packings. This is the only structure related to the cubic rod packing that does not (in an

obvious way) lie on a TPMS (or slightly deformed TPMS) in its ideal form.

For all ideal structures related to the cubic rod packings (except for the ideal G+
123C(2)

or Γ+ rod packing), any deformation of the unit cell in the simulation process both in-

creases L
D and decreases LD2

V , hence the lattice parameters (a = b = c = 1; α = β = γ = π
2 ,

a primitive cubic cell) are the optimum. For the ideal G+
123C(2) structure however, an

increase in the ‘c’ parameter gives a conformation with a higher L
D value, and a higher

LD2

V . Hence we get a denser packing, at the expense of the L to D ratio. By definition,

the primitive cubic configuration for this structure is the ideal (minimises L
D ). For these

other ‘sub-ideal’ configurations (more densely packed yet not minimising L
D ), the rods are
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(a) (b)

Figure 4.26: The ideal G+
123C(2) structure, equivalent to the Γ rod packing. (a) The unit cell, where

L
D = 19.27 and LD2

V = 0.90. (b) The ideal structure has straight filaments.

undulating, where the undulations become more exaggerated with an increase of ‘c’. The

exact G+
123C(2) structure (as it sits on the G surface, not in an ideal form) arises among

these configurations at approximatelyc = 1.6, with L
D = 20.68 and LD2

V = 0.95.

The ideal P129C structure, related to the Ω+ rod packing, has slightly helical filaments.

The ideal geometry matches exactly to the P129C geometry as constructed on the P sur-

face, further supporting the relevance of the geometry prescribed by the TPMS reticulation

method. This ideal structure is shown in Fig. 4.27. The L
D value for this conformation is

24.06 and the LD2

V measure is 0.62.

(a) (b)

Figure 4.27: The ideal P129C structure, related to the Ω+ rod packing. (a) The unit cell: L
D = 24.06

and LD2

V = 0.62. (b) Several unit cells shown with a reduced diameter to highlight the helical
geometry of the rods, which match the structure as it lies on the P surface.

The Σ∗ packing is a rod packing containing the interweaving of a Σ+ and a Σ− (an

enantiomeric pair). The ideal structure related to the Σ∗ rod packing is exactly equivalent

to the interweaving of the ideal G+
129C and G−

129C structures (related to the Σ+ and Σ− pack-
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ings). It is remarkable that the ideal G+
129C structure (or equivalently the G−

129C structure)

leaves precisely the correct vacant space to intercalate the opposite enantiomer, also in its

ideal form. Further, the ideal G+
129C structure fills one channel of the G minimal surface,

and the second ideal enantiomer fills the other channel.

General weavings

In Ch. 3, we constructed a variety of non-cubic, intersecting and woven rod packings via

TPMS reticulations. Here we examine the ideal configurations of some of these general

filament packings, beginning with some non-cubic examples.

The P114C(1) structure, as constructed in Ch. 3, is related to a non-invariant rod packing

with tetragonal symmetry (Fig. 4.28(a)). The ideal conformation of this rod packing, that

which minimises the L
D ratio within one unit cell, sees the filaments deviate slightly from

their rod axes, and become undulating trajectories. The minimum L
D value, 15.95, occurs

with lattice parameters (a = b = 1; c = 0.8; α = β = γ = π
2 ). For this choice of unit cell,

LD2

V = 0.7037. This choice of unit cell does not give a densest packing (LD2

V ), as was the

case for the Γ structure, and the density increases with the value of ‘c’ at the expense of L
D .

(a) (b) (c)

Figure 4.28: The ideal P114C(1) structure, which is the ideal conformation of a non-invariant rod
packing of tetragonal symmetry. (a) The P114C(1) structure as constructed on the P surface. (b)
The unit cell (dimensions 1×1×0.8) of the ideal structure. (c) The ideal structure with a deflated
filament diameter shows the undulating geometry of the rods.

The G−
93C(1) weaving is related to a non-invariant rod packing with trigonal symme-

try, as shown in Fig. 4.29(a). When viewed along a filament axis, the packing appears to

be a deformation of the Π∗ rod packing. In the search for ideal configurations, the unit

cell lattice parameters are altered so as find the least L
D ratio within a unit cell. The ideal

G−
93C(1) structure, as shown in Fig. 4.29(b,c), is precisely the Π∗ cubic rod packing, for

which L
D = 6 and LD2

V = 0.75. Interestingly, the observation of the rod packing in the chem-
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ical framework was of a weaving not in its ideal symmetry setting. This is not surprising

however, given chemical bonding requirements within a chemical framework.

(a) (b) (c)

Figure 4.29: The ideal G−
93C(1) structure. (a) The structure as it lies on the G minimal surface has

undulating rods. (b,c) The ideal structure is equivalent to the Π∗ rod packing.

Two structures with trigonal symmetry, H31C(1) and H31C(3), are constructed on the H

surface in Ch. 3. In the first structure, H31C(1), the filaments may straighten to rods without

a change in ambient isotopy class, yet in the second structure, the filaments are sufficiently

tangled to preclude this. The ideal structures in both cases, shown in Fig. 4.30, are close

to the geometry inherited from the H surface. For the ideal structures L
D = 12.31 and

LD2

V = 0.67 in the first case, and L
D = 25.84 and LD2

V = 0.46 in the second case. The shape

of the unit cell in both cases remains hexagonal, with lattice parameters (a = b = c = 1;

α = β = π
2 ; γ = π

3 )

(a) (b) (c) (d)

Figure 4.30: The ideal conformations of (a,b) the H31C(1) structure and (c,d) the H31C(3) structure,
shown both within one unit cell and globally with a deflated filament diameter. In each of these
ideal structures, the unit cell is hexagonal.

Consider next a further class of weavings, where the filament axes are intersecting on

straightening. One examples is D118C(1), as described in Ch. 3 and shown in Fig. 4.31. In

its ideal form, L
D = 145.28 and LD2

V = 0.40, which indicates that the structure is a very low
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density material in its ideal form. The oscillating filaments of the surface reticulation are

also seen in the ideal form.

(a) (b) (c)

Figure 4.31: The D118C(1) structure. (a) The structure as constructed on the D surface. (b) One unit
cell of the ideal configuration, where L

D = 145.28 and LD2

V = 0.40. (c) The global ideal structure.

Another example of an intersecting rod packing is the G+
118C(1) structure, shown in

Fig. 4.32(a). In its ideal configuration (Fig. 4.32(b,c)), L
D = 123.84 and LD2

V = 0.39, where

once again this gives a very low density structure. The difference between the surface

reticulation and the ideal structure in this case is small, thus the ideal structure lies close

to the G minimal surface.

(a) (b) (c)

Figure 4.32: The G+
118C(1) structure. (a) The structure as it is constructed on the G surface. (b,c)

The ideal structure, shown within one unit cell and globally with a deflated filament diameter.

A more general class of filament packings were considered in Ch. 3, where the fil-

aments impede each other from straightening in unison i.e. the filaments cannot all be

straightened without changing the ambient isotopy type of the weaving. This class per-

mits the entanglement of the filaments to be as complex as desired. Fig. 4.33 shows the

G+
118C(2) structure in both its standard configuration (as it lies on the G minimal surface)

and in its ideal form. This structure is a tangled version of a triple Γ rod packing (a Γ
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rod packing with a triple helix along each rod axis). For this ideal form, L
D = 220.26 and

LD2

V = 0.51.

(a) (b) (c)

Figure 4.33: The G+
118C(2) structure. (a) The array as it lies on the G surface. (b,c) The ideal

configuration of this weaving, shown within one unit cell and globally with a deflated filament
diameter. For this configuration, L

D = 220.26 and LD2

V = 0.51.

Fig. 4.34 shows the G−
118C(2) structure in both its surface reticulation conformation

and in its ideal conformation. This structure is a tangled version of a Σ+ rod packing. For

this ideal conformation, L
D = 70.67 and LD2

V = 0.25, which makes this weaving the least

dense (and most porous) material seen so far in this Chapter.

(a) (b) (c)

Figure 4.34: The G−
118C(2) structure. (a) The array as it lies on the G surface. (b,c) The ideal

configuration of this weaving, shown within one unit cell and globally with a deflated filament
diameter. This weaving is the least dense material of all ideal weavings studied in this chapter.

As a final example, we consider the ideal conformation of the P118C(4) structure, which

is the inter-growth of closed loops on the P surface. As a surface reticulation, this array has

very high 3D space group symmetry (P432). When tightened to an ideal conformation, we

see that a lot of this symmetry is lost (Fig. 4.35). For this ideal configuration, L
D = 85.62

and LD2

V = 0.44. Insight into the loss of symmetry in the idealised structure comes from
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the tightening of a periodic helix composed of 4 strings: when the helix is tightened, an

ideal configuration is obtained when one of the string pulls straight in the middle of the

helix, and the other three wind around in a standard triple helix. We see that this behaviour

occurs locally throughout the weaving, where the filament that eventually pulls straight is

arbitrary. This should lead to a set of ideal configurations, all of which will have equivalent

measurements, reminiscent of the ideal configurations of high complexity torus knots and

links, which lose symmetry on tightening to give a non-unique tight embedding [Pier 98].

(a) (b) (c)

Figure 4.35: The P118C(4) structure, which is the inter-growth of closed loops in a 3-periodic
chain-mail arrangement. (a) The array as it lies on the P surface, which has high 3D symmetry.
(b) One unit cell of the idea conformation. (c) The extended ideal conformation: much of the
symmetry that was present in the surface reticulation is lost in the ideal form, reminiscent of the
loss of symmetry in high complexity torus knots and links.

In summary, the exact geometry (not just topology) inherited from the minimal surface

reticulation seems to have some significance, via a number of particular cases for which

the ideal geometry of the weaving is reminiscent of the TPMS reticulation geometry. We

also saw that in some cases, the ideal conformation of a rod packing contained helical

components rather than straight components. Note also a general trend observed is that

the L
D value gets larger as the array gets more entangled.

4.3.4 Periodic entanglement of nets

Combining the two additional capabilities of the PB-SONO algorithm, branches and peri-

odicity, allows the tightening of a periodic net (as defined in Ch. 1: a simple 3-connected

periodic graph). The SyStRe algorithm[Delg] performs a similar process on a set of nets

known as crystallographic nets. These are nets automorphism groups are isomorphic to

3D crystallographic space groups [Klee 04].

The SyStRe algorithm gives two embeddings of the net: the first is the barycentric
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placement whose form minimises the sum of the edge lengths squared, and the second is an

embedding which favours uniform edge lengths, which we will refer to as the uniform em-

bedding. Despite the success of the SyStRe algorithm, there are nets for which it gives no

canonical form, including those with edge and vertex collisions, where multiple edges or

vertices occupy the same location in the barycentric placement, and non-crystallographic

nets. Additionally, the SyStRe embeddings do not consider the interpenetration of multi-

ple net components. It is these cases, for which there is no canonical embedding, that we

wish to consider in their ideal formation as found by the PB-SONO algorithm.

In Ch. 3, we constructed a set of nets, some with single components and some with

multiple threaded components. These nets may be constructed with arbitrary complexity

and with a variety of different topologies. Here we will consider the ideal conformations of

some of these nets as obtained by the PB-SONO algorithm, to test the algorithm in relation

to finding canonical forms for multiple component nets. We will consider examples from

each of the topologies encountered: srs, dia, pcu and hcb.

Canonical embeddings of single component nets

Initially, we examine the tight configurations of the simplest 3-periodic nets (those that are

edge-1 and vertex-1 transitive), srs, dia and pcu, as well as a simple 2-periodic graph, hcb.

Further, we consider an example with an interesting SyStRe result, the ideal (4,4,8,8) 2-

periodic layer, as well as a net with a vertex collision in the barycentric placement, and

finally a non-crystallographic net.

On tightening the srs, dia and pcu nets, we find that their ideal conformations are

equivalent to both the barycentric embedding and the uniform embedding as given by

SyStRe. These ideal conformations, which realise all possible symmetries of their graph

topologies, are shown in Fig. 4.36.

The values obtained for L
D and LD2

V for these ideal conformations are shown in Ta-

ble. 4.6. For the values obtained, both srs and pcu have a simple cubic unit cell, and dia

has a face centre cubic unit cell. Thus this the primitive unit cells for srs and pcu and the

conventional unit cell for dia, note however that the LD2

V measure is independent of the

unit cell chosen. The measurements show that the pcu net has the least energy (least L
D ) of

the three examples shown, and is also the densest arrangement (greatest LD2

V ). The dia net

is then the second most dense, and srs the least dense.

Two examples of 2-periodic graphs are also tightened to an ideal conformation. The
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(a) (b) (c)

Figure 4.36: Ideal embeddings of the simplest 3-periodic nets: (a) srs, (b) dia, (c) pcu. The
diameter has been decreased to show the ideal form. In all cases, the ideal configuration gives
the same vertex and edge locations as for both the barycentric placement and uniform embedding
given by the SyStRe algorithm.

Table 4.6: Tight 3-periodic nets

Net L
D

LD2

V Lattice parameters of cell

srs 11.88 0.55 (a = b = c = 1; α = β = γ = π
2 )

dia 16.34 1.25 (a = b = c = 1; α = β = γ = π
2 )

pcu 3.00 3.00 (a = b = c = 1; α = β = γ = π
2 )

first of these is a single hcb net: in its ideal form, all edges are of equivalent length

and L
D = 2.89, corresponding to a hexagonal 2-periodic unit cell with lattice parameters

(a = b = 1; γ = π
3 ). The LD2

V measurement is meaningless for 2-periodic structures, and

thus we consider an analogous measure for a 2-periodic structure: LD
A , which measures the

density of a planar projection of the structure within the area of the 2D unit cell. In its

ideal configurations, the hcb graph has LD
A = 1.20. The ideal conformation of this net is

shown in Fig. 4.37(a).

The SyStRe embedding of a net may take two forms: the barycentric embedding or

the uniform embedding. For the (4,4,8,8) 2-periodic graph, these two embeddings are

not equivalent. On tightening by the PB-SONO algorithm, the ideal form is equivalent to

the uniform embedding given by SyStRe, and is distinct from the barycentric embedding.

This ideal configuration is shown in Fig. 4.37(b). In the ideal configuration L
D = 6.05 for

lattice parameters (a = b = 1; γ = π
2 : a square unit cell), and LD

A = 1.01.

A 3-periodic net whose barycentric embedding has a vertex collision is the 2(3,5)2

net, whose labelled quotient graph (defined in Ch. 1 [Chun 84, Eon 05]) is shown in
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(a) (b)

Figure 4.37: Ideal embeddings of (a) hcb, (b) (4,4,8,8). The diameter has been decreased in all
cases to shown the ideal form. The configuration found by PB-SONO is equivalent to the uniform
embedding as computed by the SyStRe algorithm.

(a) (b)

Figure 4.38: (a) The labelled quotient graph of the 2(3,5)2 net: the labels give the translations of
the edges. (b) The ideal embedding for the 2(3,5)2 net, whose vertices collide in the barycentric
placement calculated by the SyStRe algorithm.

Fig. 4.38(a). It is apparent from the quotient graph that the two distinct vertices of the

structure will occupy the same point in a barycentric placement. An alternative embed-

ding for this net is given in [Eon 11], which has the vertices placed at (0,0,0) and (1
3 ,0,0).

Further, the PB-SONO algorithm is able to tighten nets such as this to an ideal confor-

mation. The ideal configuration of the net, is shown in Fig. 4.38(b). This configuration

has a unit cell with lattice parameters (a = b = 1; c = 1
2 ; α = β = γ = π

2 ), and the A and

B vertices are located at (0,0,0) and ( 0.38, 0.38,0) respectively. We see that the lower

restriction on the edge length to be at least D units, discussed in the context of finite graphs

earlier in this chapter, keeps the vertices from occupying the same position in the unit cell.

For this ideal conformation, L
D = 6.22 and LD2

V = 1.56. This embedding is distinct to the

alternative embedding found by in [Eon 11].

The PB-SONO algorithm may also be used to tighten 3-periodic non-crystallographic



§4.3 Results of the PB-SONO algorithm 169

nets. Consider the non-crystallographic net whose quotient graph is shown in Fig. 4.39(a),

this net is non-crystallographic as it may be equivalently represented by multiple quotient

graphs that are not isomorphic [Eon 11]. An alternative embedding of this graph is given

in [Eon 11]. The ideal configuration as found by the PB-SONO algorithm, shown in

Fig. 4.39(b,c), is found with lattice parameters (a = 1; b = c = 2
3 ; α = β = γ = π

2 ), and has
L
D = 12.67 and LD2

V = 1.03. This table shows the vertex positions within the ideal unit cell,

along with the vertex positions in the alternative embedding of [Eon 11]:

PB-SONO

A ( 5
6 , 1

2 , 1
2 )

B ( 1
6 , 1

2 , 1
2 )

C ( 2
3 , 1

2 ,0)

D ( 1
3 , 1

2 ,0)

E (0, 1
2 ,0)

F (0,0,0)

[Eon 11]

A ( 7
8 , 1

2 , 1
2 )

B ( 1
8 , 1

2 , 1
2 )

C ( 3
4 , 1

2 ,0)

D ( 1
4 , 1

2 ,0)

E (0, 1
2 ,0)

F (0,0,0)

The difference in the two embeddings (PB-SONO and [Eon 11]) is not large: the

x coordinate of the B and D vertices (and those related by symmetry) is 1
6 and 1

3 for

PB-SONO and 1
8 and 1

4 for [Eon 11]. If we consider the tightest embedding of the net

within a different unit cell (not the ideal unit cell), namely that with lattice parameters

(a = 1; b = c = 1
2 ; α = β = γ = π

2 ), we find that the locations of the vertices in both styles

of embeddings are equivalent.

(a) (b) (c)

Figure 4.39: (a) The labelled quotient graph that represents the non-crystallographic net, where
the labels specify translations. (b,c) Ideal embedding of this non-crystallographic net, as found by
the PB-SONO algorithm, viewed down the z-axis and y-axis respectively.
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Multiple srs nets

In Ch. 3, we generated a set of interpenetrating, multiple–component srs nets. We will ex-

plore the ideal configurations of these nets: two examples that consist of the interpenetra-

tion of two srs nets, the G+
124R structure and the G+

129R structure which are both constructed

on the G surface, the D124R structure which is an array of four srs components, and the

P129R structure which is composed of eight srs components. A summary of the L
D and LD2

V

measurements for these ideal configurations are shown in Table 4.7. In all cases, the ideal

configuration has a cubic conventional unit cell.

Table 4.7: Ideal multi-srs nets

Structure Topology L
D

LD2

V Lattice parameters

G+
124R 2 × srs 28.15 1.27 (a = b = c = 1; α = β = γ = π

2 )

G+
129R 2 × srs 41.10 0.72 (a = b = c = 1; α = β = γ = π

2 )

D124R 4 × srs 8.49 1.06 (a = b = c = 1; α = β = γ = π
2 )

P129R 8 × srs 28.48 0.77 (a = b = c = 1; α = β = γ = π
2 )

The two structures G+
124R and G+

129R are each composed of two interpenetrating srs

nets, where both of the components in each structure are of the equivalent chirality. The

TOPOS analysis [Blat 06] of these structures in Ch. 3 indicates that these two structures

are not equivalent by ambient isotopy, as they contain a distinct linking signature when

analysed by cycles. On tightening, we find that the G+
124R structure has a significantly lower

L
D energy than the G+

129R structure: 28.1472 in the first case and 41.0965 in the second for

equivalent unit cell sizes. This difference offers further support that the structures are not

equivalent by ambient isotopy despite having equivalent topology, and further, the relative

ranking of the two structures by L
D energy implies that the G+

124R structure is less entangled

than the G+
129R structure. This relative ranking is also offered by the TOPOS analysis,

which identifies less links in the G+
124R structure (18 Hopf links and one more complex

link) as compared to the G+
129R structure (23 Hopf links and 3 more complex links).

The ideal conformations for these two structures are shown in Fig. 4.40. We see that

the two ideal conformations look remarkably distinct within a unit cell. In the ideal G+
124R

structure, the individual srs components each deviate significantly from the ideal form of a

single srs net, and even more so in the G+
129R structure. Interestingly, the crystallographic

data from a synthesised pair of srs with equivalent chirality given in [Kepe 00] gives a
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conformation that matches the ideal form of the G+
124R structure, which suggests that these

ideal conformations are relevant for chemical frameworks.

(a) (b)

(c) (d)

Figure 4.40: The ideal G+
124R and G+

129R structures, which both comprise two srs components of
equivalent chirality. (a) One unit cell of G+

124R. The ideal diameter is decreased to show the edge
geometry. (b) The extended structure. (c) One unit cell of G+

129R. (d) The extended structure. We
can infer from the L

D energy measurements for these ideal conformations that the G+
124R is less

entangled than G+
129R, and the two structures are not equivalent by ambient isotopy.

We now consider the D124R and P129R structures, which are composed of the inter-

penetration of four and eight srs components respectively. In both cases, all srs compo-

nents have equivalent chirality. The ideal conformations of these structures are shown in

Figs. 4.41 and 4.42 respectively. The L
D energies for the ideal conformations of these two

structures are 8.49 and 28.48 respectively. The ideal unit cell of the P129R structure (8 srs)

contains exactly the vertex and edge positions of the D124R structure, plus a second com-

plete D124R structure related by a π
2 rotation. Further, in both cases all srs components are

in an ideal single srs formation. The LD2

V values for the two respective ideal configurations

are 1.06 and 0.77, thus the 4 srs structure packs more densely than the 8 srs structure.

In both cases, all of the edges within the ideal conformation trace a straight line from

vertex to vertex. This is a remarkable property for such complex interpenetrations of

many components. The symmetry of the 4 srs structure is as found in early descriptions
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of interpenetrating nets in [Well 77], as described by the space group P4232. Further,

this ideal configuration adds interest to such structures discussed elsewhere due to their

interesting optical features, in particular the circular dichroism of the 1 srs and 4 srs struc-

tures [Saba 11].

(a) (b) (c)

Figure 4.41: The ideal D124R, which is composed of four srs components of equivalent chiral-
ity. (a) One ideal unit cell with a decreased radius to show the edge geometry. (b) A larger unit
cell is shown which preserves the colouring of components: connected components map to them-
selves under the periodic boundary conditions. (c) The global structure, where the net edges are
maximally inflated.

(a) (b) (c)

Figure 4.42: The ideal P129R structure, which is eight srs components of equivalent chirality. (a)
One ideal unit cell with a decreased radius. (b) A new unit cell, where connected components map
to themselves under the periodic boundary conditions. (c) The full structure with the net edges
maximally inflated.

Multiple dia nets

In Ch. 3, we presented a set of structures that contain multiple–components of dia nets

that are interpenetrating. These were constructed via the TPMS reticulation method. We

consider the tight conformation of two such cases using the PB-SONO algorithm, the
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first is D123R(1) and the second is P114R(1). The resulting L
D and LD2

V measurements for

these ideal configurations are shown in Table 4.8, along with the lattice parameters of the

conventional unit cell.

Table 4.8: Ideal multi-dia nets

Structure Topology L
D

LD2

V Lattice parameters

D123R(1) 2 × dia 4.81 1.80 (a = b = c = 1; α = β = γ = π
2 )

P114R(1) 4 × dia 18.00 1.07 (a = b = c = 1; α = β = γ = π
2 )

The first structure, D123R(1), is composed of two interpenetrating dia networks. The

ideal configuration of this structure is shown in Fig. 4.43. The edges in this configuration

are all straight, and each individual component is equivalent to an ideal embedding of

a single dia component, where they are related by a translation. For this configuration
L
D = 4.81 and LD2

V = 1.80 for a cubic unit cell. Fig. 4.43 shows the unit cell for which

these values are calculated and an additional unit cell where the translations of the periodic

boundary conditions map connected components to themselves.

(a) (b) (c)

Figure 4.43: The ideal D123R(1) structure, composed of two interpenetrating dia networks. (a) One
ideal unit cell, for which the L

D and LD2

V values are calculated. (b) A larger ideal unit cell where
connected (coloured) components map to themselves across the periodic boundary conditions. (c)
The global structure with the radius maximally inflated.

The second structure, P114R(1), is composed of four interpenetrating dia networks.

The ideal configuration of this structure is shown in Fig. 4.44. Once again, the edges

in this configuration are all straight, and each individual component is equivalent to an

ideal embedding of a single dia component, and all four components are translation-

ally equivalent along a single translation direction. For this configuration L
D = 18.00 and
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LD2

V = 1.07 within a cubic unit cell, which gives it a higher L
D energy and lower density

than the 2 dia structure.

(a) (b) (c)

Figure 4.44: The ideal P114R(1) structure, composed of four interpenetrating dia networks. (a)
One unit cell of the ideal structure, for which the L

D and LD2

V values are calculated. (b) A larger unit
cell where coloured components map to themselves across the periodic boundary conditions. (c)
The full structure with the radius maximally inflated.

In both of these examples, the configuration of a component of the structure is equiva-

lent in geometry to the ideal conformation of a single component dia net. From this, it may

be inferred that the interpenetration of these structures is a ‘least entangled’ embedding of

two and four components of dia respectively.

Multiple components of pcu

We now consider the algorithmic tightening of two examples of interpenetrating pcu nets,

generated in Ch. 3. The resulting L
D and LD2

V measurements for the ideal configurations

of these two structures are shown in Table 4.9, along with the lattice parameters of the

conventional unit cell.

Table 4.9: Ideal multi-pcu nets

Structure Topology L
D

LD2

V Lattice parameters

P122R(1) 2 × pcu 12.00 1.50 (a = b = c = 1; α = β = γ = π
2 )

G122R(2) 4 × pcu 40.46 1.09 (a = b = c = 1; α = β = γ = π
2 )

Fig. 4.45 shows the ideal conformation of the P122R(1) structure, which consists of two

interpenetrating pcu components. The edges within the ideal conformation are straight,

and each is the length of one unit cell. In total there are six distinct edges (three within
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each distinct component), and the maximum possible diameter is exactly half the unit cell

edge: this gives a theoretical L
D value of 12, which is exactly replicated by the simulation.

In the ideal form, each of the individual components has geometry equivalent to a single

ideal pcu net. The LD2

V value for this conformation is 1.50.

The ideal conformation of the G122R(2) stucture, composed of four pcu components, is

shown in Fig. 4.46. The edges within the ideal conformation deviate slightly from straight

trajectories to curves: the L
D value for a non-ideal configuration consisting of straight edges

would be 48 (twelve edges each of length 1 and maximum diameter for straight edges is

one quarter), yet the actual L
D value is 40.46. This indicates a larger filament diameter and a

deviation from straight edge components. This deviation to curved filaments is significant,

and is not simply due to numerical uncertainty.

(a) (b)

Figure 4.45: The ideal conformation of the P122R(1) structure, which consists of two interpene-
trating pcu components. (a) One ideal unit cell with a decreased radius to show the edge geometry.
(b) The structure with the net edges maximally inflated.

(a) (b)

Figure 4.46: The ideal G122R(2) stucture, which consists of four interpenetrating pcu components.
(a) One ideal unit cell with a decreased radius to show the edge geometry. (b) The structure with
the net edges maximally inflated. The edges of the ideal structure deviate from straight trajectories,
and are significant enough to not be simply due to numerical uncertainty.
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Multiple components of hcb

In Ch. 3, we constructed some 3-periodic structures that are comprised of parallel discrete

2-periodic layers of interpenetrating hcb. We consider the tight conformations of a single

2-periodic layer of some of these structures, found by the PB-SONO algorithm. The first

structure, D49R(2), consists of four interpenetrating hcb layers, the second is the H22R(1)

structure, which is equivalent to the 2D Borromean entanglement of three hcb layers. The

third structure, H22R(2), is an interpenetrating set of three hcb layers with linked cycles,

and the final structure, H22R(3), is a 2-periodic layer of catenated θ-graphs. The resulting
L
D measurements for the ideal configurations of these structures are shown in Table 4.10.

Table 4.10: Ideal 2-periodic multi-hcb

Structure Topology L
D Lattice parameters

D49R(2) 4 × hcb 11.06 (a = b = 1; γ = π
3 )

H22R(1) 3 × hcb: 2D Borr. 7.11 (a = b = 1; γ = π
3 )

H22R(2) 3 × hcb 14.62 (a = b = 1; γ = π
3 )

H22R(3) θ-graphs: Catenated 23.05 (a = b = 1; γ = π
3 )

Figs. 4.47 and 4.48 show the ideal conformations of these four structures. In all cases,

the 3-fold symmetry inherited from the TPMS reticulation is maintained in their ideal

configurations. If we consider the L
D energy of the four structures, we see that the H22R(1)

structure (2D borromean) has the least energy, followed by the D49R(2) structure (four

hcb components). Further, the distinct 3D energies for the two 3-hcb patterns show their

distinct ambient isotopies.

(a) (b)

Figure 4.47: Ideal conformation of the 2-periodic D49R(2) structure, which is four interpenetrating
hcb nets. The ideal structure is shown with both a maximal and a deflated diameter.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.48: Ideal conformations of three 2-periodic structures: (a,b) H22R(1), (c,d) H22R(2),
(e,f) H22R(3), which each comprise three interpenetrating hcb components. Each ideal structure is
shown with both a maximal and a deflated diameter.
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4.4 Remarks

This chapter has described an extension to the SONO algorithm for tightening knots and

links to the PB-SONO algorithm for the tightening of branched and periodic entangle-

ments. As an initial test of the algorithm, we see that it performs comparably with the

SONO algorithm on the tightening of knots. Further, we have presented tight embeddings

of entangled θ-, tetrahedron- and cube-graphs. These tight embeddings were very accu-

rate for the simplest entanglements (and gave results very close to as expected), yet some

inexactness was present in more complex entanglements, particularly near the vertices of

the graphs, where kinks are sometimes seen. These kinks, however, are only attributed

to inexactness in the θ-graphs and tetrahedron-graphs cases, and are more significant and

necessary in some of the embedded cube-graphs.

We have also shown tight configurations for many periodic nets. The addition of pe-

riodicity yields the uniform embedding as described by the SyStRe algorithm for those

single component nets that are crystallographic and have no vertex or edge collisions. Fur-

ther, the PB-SONO algorithm is able to tighten nets and give canonical embeddings that

have vertex and edge collisions in the SyStRe embedding, as well as non-crystallographic

nets. It seems to handle the interpenetration of multiple component nets in a very intuitive

way. The examples shown are convincing evidence that the tight configuration found by

the PB-SONO algorithm is a very useful tool in analysing geometry and ambient isotopy

class of 3-periodic entangled nets, and is applicable to a larger class of structures than have

been previously analysed. The challenge of the method is the numerical error associated

with finding these ideal configurations.

When periodic packings of filaments are considered in their ideal configurations, we

see the emergence of interesting filament geometries. For many of the packings consid-

ered, the straight geometry of the filaments as part of a rod packing is replaced by a helical

geometry in the ideal configuration, which also retains at least all of the contacts of the

rod packing. In the next chapter, we examine an interesting physical phenomenon of some

tight periodic filament weavings called Dilatancy, which may have large ramifications in

bio-inspired materials research.

Through this investigation, we see that the PB-SONO algorithm allows us to find

canonical embeddings for a variety of new structures. These include multiple interwoven

nets, nets with vertex or edge collisions, and non-crystallographic nets. Further to this, the

PB-SONO algorithm is able to preserve the ambient isotopy of the structure, be it com-
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posed of nets or filaments, through the tightening process. This is a significant result, as

the previous method for finding canonical forms, the SyStRe algorithm, can only do so for

some single component, crystrallographic nets. In support of the PB-SONO algorithm, we

see the ideal form of 2 srs nets of equivalent chirality in a synthesised chemical framework

of this topology [Kepe 00].





Chapter 5

Dilatancy of Woven Filament Arrays

We have developed a technique to generate a variety of close-packed arrays of one dimen-

sional filaments, via projection of free tilings in the two-dimensional Hyperbolic plane

(H2) into three-dimensional Euclidean space (E3), as decribed in Ch. 3. A rich catalogue

of filament are constructed using this technique, with varying degrees of entanglement of

the filaments. In Ch. 4, we have adapted algorithms developed to form canonical ‘ideal’

or ‘tight’ embeddings of knots [Katr 96, Pier 98] to arrive at canonical geometries for our

weavings.

The existence of curvilinear filament geometries in tight weavings has an unexpected

consequence, namely the possibility of 3D weavings that exhibit dilatancy, accompanied

by a lowering of the fibre packing fraction and the formation of a more open weave: the

volume of the weaving may be expanded while maintaining the inter-filament contacts

through filament straightening. Equivalently, an internally driven straightening of the fil-

aments within the tight configuration of a dilatant weaving will result in an expansion of

the material without loss of filament contacts. We see dilatancy as an attractive material

property and dilatant weaving as design target for new materials.

The free volume within a chiral, cubic and finitely dilatant weaving, the ideal con-

formation of the G129C structure, a helical version of the Σ+ rod packing, expands more

than 5-fold on filament straightening. This remarkable three-dimensional weaving allows

variation of packing density without loss of structural rigidity and is an attractive design

target for materials. We propose that the ideal G129C weaving is formed by keratin fibres

in the outermost layer of mammalian skin, likely templated by a folded membrane.

181
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5.1 Dilatant filament weavings

To determine if a 3-periodic weaving is dilatant, end-state configurations of the weaving

under dilation must be prescribed. The initial configuration is the ideal form as determined

by the PB-SONO algorithm described in Ch. 4; this has maximum filament diameter and

a maximum number of inter-filament contacts per filament length (standardised by the fil-

ament diameter). We call the terminal configuration the maximal configuration, realised as

follows. The unit cell is repeatedly subjected to homothetic expansion while maintaining

the filament diameter, and the filaments subsequently tightened within the swollen unit

cell. (This is equivalent to shrinking the filament diameter while maintaining the unit cell

size and subsequently tightening the filaments.) The maximal configuration is reached

when a further unit cell expansion results in a loss of contacts between filaments.

Closer analysis of 3D weavings reveals a rich taxonomy, amongst which we find three

distinct classes. The simplest examples exhibit zero dilatancy. In these cases the ideal con-

figuration and the maximal configuration of the weaving coincide. A second class contains

weavings which dilate to accommodate a finite change in unit cell volume. When fully di-

lated, these finitely dilatant weavings retain all inter-fibre contacts and remain jammed. In

their least dense state, finitely dilatant weavings contain rectilinear fibres and their fibre

packing fraction decreases continuously during dilation, yet remains positive. The third

class comprises infinitely dilatant weavings, characterised by a decrease of fibre packing

fraction to zero. Since this fully dilated state is only realised for fibres of positive diam-

eter by swelling the unit cell without limit, finite volumes of infinitely dilatant weavings

will never realise this limit, since only infinitely long fibres remain jammed. We note

that the hypothetical infinitely dilated configuration may consist of straight or curvilinear

fibres. (In practice, infinitely dilatant weavings expand until they unjam due to loss of

mutual contacts, and this end-state depends on the original fibre length.) Some examples

demonstrate these various weaving classes1.

Numerical tightening of the D124C structure, equivalent to the Π∗ rod packing, revealed

that the ideal structure is composed of straight rods (Fig. 5.1(a)). Inflation of the unit cell

while maintaining the filament diameter induces a reduction in the number of inter-fibre

contacts per unit cell (Fig. 5.1(b)). Hence the tight and maximal configurations of this rod

packing are equivalent, and we can infer that the weaving is not dilatant.

1A further class of finitely dilatant weavings can be imagined for which the maximal configuration contains
curvilinear fibres. To date, however, we have failed to find an example of this class.
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(a) (b)

Figure 5.1: The D124C structure, equivalent to the Π∗ rod packing, has zero dilatancy. (a) The ideal
form of the structure within one unit cell. (b) An expansion of the unit cell immediately results in
the loss of contacts between filaments.

Indeed, any weaving whose ideal configuration contains rectilinear filaments is not

dilatant. However, weavings whose ideal forms display curvilinear filaments need not be

dilatant. Fig. 5.2 shows the ideal D114C(3) structure, which is a tangled version of the #2

rod packing [OKee 05]. This structure is not dilatant, yet the ideal structure is composed of

interwoven helical components. Fig. 5.2 also shows that inflation of the unit cell induces

a loss of many inter-filament contacts.

(a) (b)

Figure 5.2: The ideal D114C(3) structure, which is a tangled version of the #2 rod packing, is not
dilatant. (a) The ideal unit cell, which contains curvilinear fibres. (b) A unit cell inflation induces
the loss of some inter-filament contacts i.e. the red and blue filaments in the top right corner of the
cell are not longer in contact.

Among the 3D weavings generated in Ch. 3, we have found a number of dilatant

examples. Recall from the previous chapter, § 4.3.3, the ideal G124C structure (helical Π+

rod packing) is composed of helical filaments (Fig. 5.3(a)). Successive unit cell expansions
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induce straightening of the helical filaments without loss of inter-filament contacts. This

expansion can be continued until a final state where the filaments are completely straight

and the unit cell is finite, forming the Π+ rod packing. This is the maximal configuration

(Fig. 5.3(b)). The helical filaments of the ideal Π+ packing have length 6.466 within a

(1×1×1) unit cell, and a radius of 0.181: hence the packing fraction is 0.665. On dilation,

the packing fraction decreases to 0.295 in the maximal configuration: the packing fraction

is more than halved on cooperative straightening.

(a) (b)

Figure 5.3: The ideal G124C structure (helical Π+ rod packing) is finitely dilatant. (a) The ideal
unit cell. (b) Consecutive unit cell expansions occur without the loss of inter-filament contacts, and
the maximal configuration is the Π+ rod packing.

A particularly large and finite dilatant behaviour is associated with the ideal form of

the G129C structure, which is a chiral, cubic arrangement equivalent to a helical Σ+ rod

packing. The ideal structure, shown in Fig. 5.4(a), contains helicoidal filaments that lie

almost completely within one channel of the Gyroid surface, as seen in Ch. 4. The maximal

configuration of the structure contains straight rods, and is precisely the Σ+ rod packing

(Fig. 5.4(b)). The helical filaments of the ideal structure have length 7.642 within a (1×

1×1) unit cell, and a radius of 0.127, and hence a packing fraction of 0.387. The packing

fraction of the weaving decreases to 0.075 in the maximal configuration: a 5-fold decrease

in the packing fraction. This weaving thus offers a fascinating target structure for rigid

weavings capable of extreme variations in filament packing densities.

We also observe finitely dilatant behaviour in anisotropic weavings, such as the trig-

onal structure H31C(1), constructed in Ch. 3. The ideal structure has undulating filaments

in a rhombohedral unit cell, as shown in Fig. 5.5(a). The maximal configuration is a trig-

onal rod packing of straight components, as shown in Fig. 5.5(b). In the ideal unit cell,
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(a) (b)

Figure 5.4: The ideal G129C structure, related to the Σ+ rod packing, is finitely dilatant. (a) The
tight unit cell. (b) The maximal state, which has no loss of inter-filament contacts, and is exactly
the Σ+ rod packing.

L = 4.444 and R = 0.181, which gives a packing fraction of 0.525 (for lattice parameters

(a = b = c = 1; α = β = π
2 ; γ = π

3 )). The packing fraction of the weaving decreases to

0.204 in the maximal configuration: more than half of the ideal packing fraction.

(a) (b)

Figure 5.5: The anisotropic trigonal structure H31C(1) is finitely dilatant. (a) The tight unit cell. (b)
A unit cell inflation may be performed without the loss of inter-filament contacts, and the maximal
configuration is composed of straight rods.

Infinitely dilatant weavings necessarily differ from those weavings that are related to

crystallographic rod packings, since in the latter case the (straight) fibres are intersection-

free, inducing a maximal configuration with a finite unit cell. However, weavings whose

filaments intersect on straightening, as constructed in the previous chapter, § 4.3.3, are

infinitely dilatant. In these cases, all inter-filament contacts remain, regardless of the in-

crease in unit cell volume. For example, the weaving G+
118C(1), which has intersecting
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filaments on straightening and whose ideal configuration is shown in Fig. 5.6(a), is in-

finitely dilatant. The images in Fig. 5.6(b,c) demonstrate that regardless of the amplitude

of a unit cell expansion, all inter-filament contacts remain.

(a) (b) (c)

Figure 5.6: The ideal G+
118C(1) weaving is infinitely dilatant. (a) The ideal unit cell. (b) A small

expansion sees all inter-filament contacts remain. (c) A further expansion also sees all contacts
preserved. An infinite expansion see all contacts remain and the packing fraction approach zero.

Infinite dilatancy is also seen for the D118C(1) structure, whose ideal and expanded

configurations are shown in Fig. 5.7, where all possible unit cell expansions see all inter-

filament contacts preserved. It seems, within the limited catalogue of examples constructed

in this thesis, that all weavings whose filaments intersect on straightening to their average

axes are infinitely dilatant.

(a) (b) (c)

Figure 5.7: The D118C(1) structure is infinitely dilatant. (a) The ideal form within one unit cell.
(b) A unit cell expansion sees the filaments remain in contact. (c) A further unit cell expansion also
has all contacts preserved.
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A second genre of infinitely dilatant weaving contains filaments which are sufficiently

tangled to preclude rectification of the filaments without changing ambient isotopy type.

For example, consider the G+
118C(2) structure, which is a tangled version of a packing

which contains a triple helix each rod trajectory of the Γ. The unit cell size can be expanded

without limit, without the loss of any inter-filament contacts, as illustrated in Fig. 5.8, thus

this weaving is infinitely dilatant.

(a) (b) (c)

Figure 5.8: The ideal G+
118C(2) structure is infinitely dilatant. (a) The ideal unit cell. (b) A unit

cell expansion sees the filaments remain in contact. (c) A further unit cell expansion also has all
contacts preserved.

As a further example, consider the ideal G−
118C(2) structure, which is a woven variant

of the Σ+ rod packing. We see from the consecutive unit cell expansions in Fig. 5.9 that all

contacts are preserved through the expansions, and the packing is also infinitely dilatant.

(a) (b) (c)

Figure 5.9: The ideal G−
118C(2) structure, which is a woven Σ+ rod packing, is infinitely dilatant.

(a) The ideal unit cell. (b) A unit cell expansion sees the filaments remain in contact. (c) A further
unit cell expansion also has all contacts preserved.
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A formal definition of the rectification transformation for dilatant weavings runs as

follows. We construct a one-parameter family of embeddings of weavings parametrised

by the variable γ, which describes the fractional dilation. The initial tightest weaving

is associated with γ = 0; the end-state of the dilation process, realised for the maximal

configuration is realised when γ = 1. The magnitude of the dilatancy realised during the

expansion process for a variety of weavings is listed in Table 5.1.

Table 5.1: Structural measurements for various structure, all normalised for unit cells of unit
volume and fibres of radius R. All weavings are cubic, except H31C(1), which has hexagonal lattice
parameters (a = b = c = 1; α = β = π

2 ; γ = π
3 ). L is the total fibre length per unit cell; γ defines the

ideal and maximal states. f (γ) denotes the filament volume fraction. The dilatancy induced by fibre
rectification is quantified by the fractional change in free and total volumes: ∆ f ree (= Vf ree(γmax)

Vf ree(0) )

and ∆tot (= Vtot (γmax)
Vtot (0) ), where Vf ree and Vtot denote the free volume and the total unit cell volume

respectively.

Structure straight? class cubic? γ R(γ) L(γ) f (γ) ∆ f ree ∆tot

G+
123C(2) (Γ)

√
non-dilatant cubic 0 0.177 6.933 0.682 1 1

H31C(1) X (ideal) dilatant (I) trig. 0 0.181 4.444 0.525√
(dilated) 1 0.115 4.243 0.204 4.330 2.581

G124C X (ideal) ” cubic 0 0.181 6.466 0.662
(Π+)

√
(dilated) 1 0.125 6 0.295 4.688 2.247

G129C X (ideal) ” cubic 0 0.127 7.642 0.384
(Σ+)

√
(dilated) 1 0.058 6.927 0.073 7.899 5.429

G+
118C(1) X (ideal) dilatant (II) cubic 0 0.073 18.082 0.303√

(dilated) 1 0 16.965 0 ∞ ∞

D118C(1) X (ideal) ” cubic 0 0.065 19.614 0.260√
(dilated) 1 0 16.971 0 ∞ ∞

G−118C(2) X (ideal) dilatant (III) cubic 0 0.075 10.714 0.189
X (dilated) < 1 0.03 8.006 0.022 ∞ ∞

G+
118C(2) X (ideal) ” cubic 0 0.066 29.074 0.398

X (dilated) < 1 0.02 24.284 0.031 ∞ ∞

We allow only jammed configurations of the weavings during the dilation transfor-

mation, for which the number of inter-fibre contacts per unit cell is conserved. Note,
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however, that if the fibre length per unit cell is reduced during dilation, the density of

inter-fibre contacts per unit cell for outermost fragments of the weaving is reduced, due to

this contraction. This variation leads to softening of the weaving rigidity, due to a dearth

or excess of unsupported fibres in the corona. This effect is difficult to quantify, due to

some flexibility in the fibre arrangement in the (unjammed) corona. A simple gauge is the

number of contacts per unit length of the fibre, measured throughout the dilation process.

Data are normalised against the G124C weaving, that has the largest number of inter-fibre

contacts per unit length of known weavings, whose number of fibre-fibre contacts is scaled

to unity.

Figure 5.10: Plot of number of inter-filament contacts per unit length (for unit diameter bres) as
a function of porosity for a non-dilatant weaving (G123(2)) and some finite and infinitely dilatant
examples. The shaded region indicates the range of porosities found in human corneocytes from
least to most hydrated.

Dilation data for some of the 3D weavings in Table 5.1 are plotted in Fig. 5.10,

which allows comparison of the rate of dilation, along with the range of porosities sus-

tained by various weavings. These data reveal the very distinct character of various weav-

ings. Infinitely dilatant weavings exhibit extraordinary dilation properties, however, this

is achieved at the expense of significant reduction in the density of inter-fibre contacts.

These cases are therefore expected to significantly soften on dilation, and finite volumes

of these weavings are likely to unjam on swelling. It is also worth noting that these ex-
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amples are less dense (for given porosity) than the finitely dilatant weavings, occupying a

significantly larger total volume (for the same total fibre content).

Figure 5.11: Dependence of total weaving volume per unit cell on porosity (where all bres are
normalised to unit diameter) for a non-dilatant weaving (G123(2)) and some finite and infinitely
dilatant examples. The shaded region indicates the range of porosities found in human corneocytes
from least to most hydrated.

Among the finitely dilatant weavings, we find significant variation in the material prop-

erties as a function of dilation. Two distinct regimes emerge, depending on the porosity

of the dilated weavings. If the porosity is less than about 60%, the G124C and H31C(1)

weavings are the most compact, with the highest density of inter-fibre contacts. Above

this porosity value (to ca. 93%, when the weaving is maximally dilated), dilated versions

of the G129C weaving affords the most compact weaving, with the highest density of inter-

fibre contacts.
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5.2 Keratin alignment in corneocytes

Given the remarkable combination of structural rigidity and variable porosity afforded by

the G129C weaving, it is worth looking for traces of the structure in natural materials. One

material that necessarily combines these features is mammalian skin. Among its many

functions is its homeostatic property on exposure to humidity or water: prolonged immer-

sion in the bath will cause our skin to wrinkle due to swelling, yet this organ retains its

structural integrity. The outermost “horny layer” (stratum corneum) of mammalian skin is

composed of corneocytes, whose interior is dominated by the presence of arrays of heli-

cal keratin macrofibres [Brod 59]. On exposure to water, corneocytes can swell to many

times their initial volume without significant degradation of the structural integrity of the

stratum corneum [Norl 97], due to the uptake of bulk water, which occupies the fibre inter-

stices, thereby reducing the fibre volume fraction [Norl 04]. On hydration, the corneocytes

swell with little change in their total fibre content or keratin dimensions, though their he-

lical pitch is likely to vary. In situ measurements of the hydration levels of corneocytes

in human stratum corneum give average values varying between about 0.5 w/w [Casp 01]

and 3 w/w [Bouw 03]. The stratum corneum is predominantly composed of keratin fibres,

water and remnant lipids and various water-soluble substances (or ‘natural moisturising

factors’, NMFs), including inorganics, amino acids, proteins and urea [Zhai 89]. Due

to the water-binding facility of NMFs, and variation in the NMF contents and hydration

within the stratum corneum, estimation of the fraction of keratin fibres within the stratum

cornea is difficult to gauge precisely. Assuming densities of 1 gcm3 for water and NMF

and 1.25 gcm3 for keratin, and a dry mass of about 80% w/w (i.e. NMFs comprise the

other 20%) [Ecke 89], the hydration limits reported in [Casp 01, Bouw 03] correspond to

keratin volume fractions between 15% and 35%.

The keratin fibres in the stratum corneum therefore form an array whose porosity is

capable of varying between 65%-85% without loss of structural rigidity. Comparison of

these data with those deduced for dilatant weavings are shown in Fig. 5.10. Evidently, the

fibre weaving cannot change types during the hydration process, so a single weaving must

span the complete range of porosities. Both the G129C structure (Σ+) and the G+
118C(2)

weavings offer suitable arrangements of keratin fibres with dilatancy squarely within the

estimated porosity range. The structure of the soft keratin Intermediate Filaments (IFs)

that make up the fibrils as a function of hydration remains uncertain. However, dry fibrils

of hard keratins are known to be helical, with pitch 470Å and diameter 74.5Å [Fras 86],
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Figure 5.12: Porosity of the material increases as the filaments straighten cooperatively: A spheri-
cal section of the G129C material in the tight configuration increases in porosity on straightening of
the filaments. The result is the standard configuration of the Σ+ rod packing.

giving a ratio of pitch to diameter of 6.3. Further, the structure of dry soft keratin IFs,

comprising the stratum corneum, is likely to be similar [Fras 86].

The ideal G+
118C(2) weaving contains fibres whose geometry are complex modulated

helices, with a simple axis, contrary to the structure of IFs. In contrast, the ideal G129C

(Σ+) weaving is made of helical filaments (which are slightly triangular when projected

along their axis, rather than the circular sections of ideal helices). Further, in their tightest

configuration, corresponding to the dry state, the ratio of their pitch to fibre diameter is

6.8, close to that proposed by [Fras 86]. (Scaling the (tightest) G129C weaving to give the

measured pitch of 470Å implies a lattice parameter of about 550Å for the weaving.) The

remarkable dilatancy of the G129C weaving, which spans the measured porosity variations

between dry and hydrated corneocytes, coupled with the agreement in helical dimensions

in keratin IFs and the filament shape in the ideal chiral cubic weaving, suggest that keratin

fibrils indeed weave within corneocytes according to the G129C pattern. We suggest that

the one-parameter family of 3D weavings related to the G129C rod packing best describes

the ideal arrangement of keratin fibres within individual corneocytes. Indeed, the G129C

rod packing affords a low density, rigid 3D weaving, whose economy makes it an ideal

geometry for a biomaterial.

A qualitative picture of the hydration process according to this model runs as follows.

Exposure to water induces the keratin fibres to unwind by sliding over each other, without

compromising their structural rigidity imposed by their inter-fibre contacts. The number

of point contacts per unit cell remains fixed, but they move along the fibres, thereby gen-

erating additional free volume accessible to the water. Cooperative unwinding occurs, re-
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Figure 5.13: The ideal configuration of the G129C structure lies to within a good approximation
within a single labyrinth of the gyroid.

sulting in isotropic expansion of the corneocytes. We predict that swelling of corneocytes

beyond the free volume accessible to the straightened rod packing will lead to dramatic

weakening, since further swelling of the pattern can only occur by losing contacts be-

tween fibres, thereby diminishing the structural integrity of the corneocytes. Indeed, there

is a limit to water uptake in skin, beyond which the stratum corneum loses its protective

barrier [Will 73], (see shaded region in Figs. 5.10 and 5.11).

Evidently this Platonic idealisation of the actual process neglects a number of factors

present in the stratum corneum. First, the layer is itself very anisotropic, since it is an-

chored to the next layer (stratum lucidum) on its inner side while its outer face is exposed

to the atmosphere; additional structural anisotropy is caused by the pancake-shaped cor-

neocytes. The overall expansion of the layer is therefore unlikely to be isotropic. Secondly,

the inter-fibre contacts are probably extended over many atoms; nevertheless, it is likely

that in the presence of water keratin fibres slide over each other readily. Finally, since the

length per unit cell of fibres changes with swelling, if the total fibre length is conserved –

as we expect it is – the total number of inter-fibre contacts diminishes on swelling. The

combination of this effect with the changing fibre helicity is expected to induce a measur-

able variation in the rigidity of corneocytes with hydration, though they remain sterically

jammed due to close-packing of the fibres.

It is noteworthy that the G129C weaving is generated by a simple arrangement of

geodesics in the gyroid TPMS, a particularly important structure, found in a variety of

soft condensed materials, including membrane organelles in vivo [Land 95, Alms 06]. Re-

call also that the ideal configuration lies to within a good approximation within a single

labyrinth of the gyroid (see Fig. 5.13). (Indeed, the ideal weaving is sufficiently porous to

allow a second ideal weaving of the opposite hand G−
129C to be threaded within the G+

129C
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patttern.) The relation of this weaving with the gyroid is likely more than coincidental.

In pioneering structural studies of the stratum corneum, Norlén has noted the possible

presence of lipid bilayers folded onto the gyroid surface within individual corneocytes and

suggested that this geometry effectively templates an ordered arrangement of keratin fi-

bres [Norl 04], corresponding to another weaving whose entanglements are those of the

cubic Γ rod packing [OKee 05]. In contrast to the G129C weaving, this pattern is achiral

and relatively dense. The Γ embedding is not dilatant, hence the only route to increase the

available free volume per unit cell is to lose inter-filament contacts which results in a loss

of structural stability. It is noteworthy that despite his discussion of the Γ packing, Norlén

suggested a chiral arrangement [Norl 04], consistent with the super-dilatant G129C pattern.

Our model suggests that the corneocytes are formed in vivo via templating and col-

lapse to one side of a lipid membrane folded into the gyroid, as proposed by Norlén. The

expected lattice parameter for the gyroid, ca. 550Å, is consistent with dimensions of cu-

bic membranes found to date [Alms 06]. Since Nòrlen’s initial proposal, chemical studies

have revealed an identical mechanism for the formation of chiral inorganic networks in

synthetic mesoporous materials [Ryoo 99, Tera 02]. Most recently, the presence of a chi-

ral, cubic photonic crystal composed of chitin has been established in the wing-scales of

certain species of butterflies, leading to structural colour [Mich 08, Sara 10]. Indeed, the

chitin network is very similar to the geometry of the keratin fibres, though chitin forms

a consolidated network (and resists swelling), in contrast to the individual keratin fibres

in the stratum corneum. Prima facie, the structural likeness may suggest evolutionary

convergence. However, it is most likely that the correspondence of morphology between

mammalian skin and butterfly wings is driven by the ubiquity of the gyroid pattern in

folded membranes in vivo, since both materials are likely templated by a lipid membrane.

Can the extraordinary material properties of mammalian skin be mimicked in vitro?

Our understanding of the genesis of skin via lipid membrane templating suggests a route

to formulate synthetic 3D filament weavings at the macromolecular scale, via templating

within bicontinuous molecular mesophases. In addition, the suite of examples of 3D weav-

ings discussed in this paper suggest that this route is a realistic one to generate weavings

of various types, from dilatant examples to their conventional counterparts. Evidently, 3D

weavings of one-dimensional filaments offer a wealth of distinct material responses as a

function of filament geometry.
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Conclusion

In this thesis, we constructed novel, 3-periodic weavings and nets, then tightened them to

an “ideal” shape in order to give geometric inspiration to the many disciplines of science

influenced by structure. We used a set of Triply-Periodic Minimal Surfaces (TPMS) as

a scaffold for their construction. These structures were engineered as tilings of the two

dimensional hyperbolic plane (H2) to harness the simplicity of a two-dimensional surface

as compared with 3D space.

To begin, we have developed a catalogue of simple, high symmetry “free” tilings of

H2, which contains examples with both branched tile edges and infinite geodesic tile edges.

Furthermore, we have embedded these tilings so as to be candidates for reticulation over

the TPMS. For the Stellate orbifolds, we saw that an infinite set of embeddings are pos-

sible for a single free tiling, which leads to an infinite set of structures on each of the

TPMS. As the embeddings in H2 become more oblique in shape, the structures that result

in E3 become more entangled in nature.

Further, we constructed an array of 3-periodic structures relevant to the natural sci-

ences. The nets that we constructed are, in most cases, multiple-component interpenetrat-

ing nets. Such nets arise frequently in synthetic chemical frameworks [Batt 98, OKee 00],

and we generate additional, more complex examples of such nets as possible targets for

synthesis. In the construction process, importance is placed on the edge geometry and

ambient isotopy class of the net, not simply the topology as is the case for other enumer-

ative techniques. Further, the 3-periodic weavings of filaments constructed in this thesis

are, in the simplest cases, well recognised rod packings. Through the TPMS reticulation

method, we are able to generalise the notion of a rod packing to contain curvilinear as

well as rectilinear fibres, which enables the construction of a more complete taxonomy

of 3-periodic weavings. A catalogue of 3-periodic entanglements of infinite filaments is

certainly missing from the current literature, and these new structures may provide insight

195
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into weavings of polymers, proteins and DNA.

This thesis has described an extension of the SONO algorithm for tightening knots and

links: the PB-SONO algorithm tightens branched and periodic entanglements. We saw

that it performs comparably with the SONO algorithm for the tightening of knots. Further,

we tightened entangled θ-, tetrahedron- and cube- graphs, which were very accurate for

the simplest entanglements (and gave results close to as expected).

We saw “tight” configurations for many periodic nets. The addition of periodicity

yielded the uniform embedding as described by the SyStRe algorithm for single compo-

nent nets. Further, the PB-SONO algorithm was able to find a canonical form for nets that

have vertex and edge collisions in the SyStRe embedding, as well as a canonical form for

non-crystallographic nets. The algorithm handles the interpenetration of multiple compo-

nent nets in a very intuitive way. The examples shown are convincing evidence that the

tight configuration found by the PB-SONO algorithm is a very useful tool in analysing

geometry and ambient isotopy class of 3-periodic entangled nets, and is applicable to a

larger class of structures than have been previously analysed. Evidence of the relevance

of the ideal embeddings of nets comes from the ideal structure of two interpenetrating srs

nets of equivalent chirality, which has equivalent geometry to that given by the crystal-

lographic data for a synthesised framework containing these components. Thus the ideal

embedding somehow replicates the conditions within this real chemical framework. The

challenge of this method, however, is the numerical error associated with finding these

ideal configurations.

An interesting consequence of the idealisation of rod packings to optimal configura-

tions is the geometry of the filaments is helical. Often the geometry prescribed by the

idealisation is equivalent to the geometry as the weavings sits on the TPMS, which gives

encouragement to the reticulation method of obtaining filament geometry. The helical ge-

ometry of some some rod packings in their ideal configurations leads to the exotic physical

property of dilatancy.

The consequences of dilatant weavings are immense. These structures are attractive

design targets for new synthetic materials, stemming from the potent increases in the free

volume of the material on straightening of the filaments, while maintaining structural sta-

bility of the material. As a bio-material, this beautiful property in the ideal G129C weaving

gives an explanation for the keratin organisation in the corneocytes of the stratum corneum

layer of the skin. The dilatancy of the keratin matrix allows us to explain the remarkable

structural rigidity of the skin during the uptake of water and subsequent swelling of the
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skin. The ramifications of understanding the keratin organisation are immense: the barrier

properties of the skin are important in many areas of the medical and therapeutic sciences,

and are strongly related to the structural form of the layers within skin.

The scope for further enumeration of more structures of this kind is large. The free

tilings of H2 that have been considered here are a tiny set of the possible tilings of this kind.

Firstly, the tiling considered were all of very high symmetry, thus there is scope to extend

to lower symmetry groups of H2. Further, one may consider more oblique embeddings

of the free tilings when embedding to be commensurate with the TPMS. We may also

generalise further to tilings commensurate with other TPMS of higher genus and also

to free tilings which contain both branched boundary components and infinite geodesic

boundary components, which will give packings of nets and filaments in unison of the

TPMS. In considering only the simplest free tilings on the simplest TPMS, we were able

to identify a wealth of interesting structure, and we predict that many more interesting

structures will come from further enumeration. We saw that the ideal conformation of a

structure often relates to a TPMS reticulation, which gives further encouragement of what

we might find on further enumeration of reticulations of these surfaces.

An obvious application of this work is in new materials made from long tangled fila-

ments. For such materials, the dilatancy property discussed may have significant influence

in material functionality. Further to this, knowledge of these structures may assist in identi-

fying them in naturally occurring settings, particularly in biological systems. Furthermore,

we consider the interesting photonic crystal property of the chitin network in butterfly

wings, which is chiral and fills one channel of the gyroid, as described in [Saba 11]. Per-

haps a similar effect is present in the chiral keratin arrangement in the skin, which also

fills one channel of the gyroid minimal surface. Given a suitable length scale, it may give

a partial reflection of the ultra violet spectrum of light, and further act as a natural sun-

screen? We saw that many of the 3-periodic weavings displayed both chiral and dilatant

properties, which may lead to materials with an interesting fusion of optical and material

properties.
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Appendix A

Commensurate orbifold subgroups

Table A.1: Subgroups of ∗246 commensurate with the P, D and G minimal surfaces [Robi 04a].

Group # Orbifold Index Maximal subgroups

131 ∗246 1 130, 129, 128, 127, 126 125, 124, 123, 122

130 246 2 120, 118, 116, 114, 93
129 2∗23 2 121, 119, 118, 113, 99
128 4∗3 2 121, 117, 116, 110, 98
127 ∗266 2 120, 119, 117, 104, 96
126 6∗2 2 121, 120, 115, 100, 94
125 ∗344 2 119, 116, 115, 107, 95
124 ∗2223 2 118, 117, 115, 102, 97

123 ∗2224 3 114, 113, 112, 111, 110, 109, 108, 107, 106, 105, 104, 103, 102,
101, 100

122 2∗26 4 99, 98, 97, 96, 95, 94, 93, 89
121 23× 4 92, 53, 52
120 266 4 92, 54, 50
119 ∗2323 4 92, 81, 48
118 2223 4 92, 49, 77
117 2∗33 4 92, 65, 47
116 344 4 92, 86, 51
115 3∗22 4 92, 55, 46

114 2224 6 87, 86, 78, 77, 76, 61, 54
113 2∗22 6 81, 80, 79, 77, 75, 56, 53
112 ∗∗2 6 85, 82, 80, 73, 72, 70, 61
111 22∗2 6 85, 79, 76, 68, 67, 66, 58
110 24∗ 6 86, 85, 84, 65, 62, 59, 53
109 24∗ 6 87, 84, 74, 73, 71, 58, 56
108 2∗44 6 84, 82, 78, 75, 69, 66, 64
107 ∗2244 6 86, 81, 74, 70, 68, 64, 55
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212 Commensurate orbifold subgroups

Table A.1: Subgroups of ∗246 commensurate with the P, D and G minimal surfaces [Robi 04a].

Group # Orbifold Index Maximal subgroups

106 4∗22 6 79, 78, 74, 72, 63, 62, 57
105 ∗∗2 6 69, 68, 63, 61, 60, 59, 56
104 2∗222 6 83, 82, 81, 65, 63, 58, 54
103 ∗2244 6 87, 83, 80, 67, 64, 62, 60
102 ∗22222 6 77, 73, 66, 65, 60, 57, 55
101 ∗22222 6 91, 90, 89, 88, 83, 76, 75, 71, 70, 59, 57
100 2∗222 6 72, 71, 69, 67, 55, 54, 53

99 22∗3 8 52, 49, 48, 42
98 ∗3× 8 52, 51, 47, 40
97 22∗3 8 49, 47, 46, 37
96 ∗2626 8 50, 48, 47, 36
95 ∗3× 8 51, 48, 46, 45
94 26× 8 52, 50, 46, 15
93 2226 8 51, 50, 49, 44
92 2323 8 14, 13

91 ∗22∗ 12 43, 42, 40, 39, 38, 34, 30
90 2∗2222 12 44, 39, 36, 35, 34, 33, 23
89 22∗22 12 45, 44, 42, 40, 37, 36, 15
88 2∗∗ 12 45, 43, 38, 37, 35, 33, 31
87 2244 12 27, 18, 17
86 2244 12 21, 17, 14
85 2×× 12 29, 21, 19
84 44× 12 32, 19, 17
83 ∗222222 12 38, 36, 28, 27, 20
82 ∗22× 12 28, 24, 19
81 22∗22 12 28, 26, 14
80 ∗2∗2 12 29, 28, 18
79 222× 12 29, 26, 16
78 2244 12 24, 17, 16
77 22222 12 18, 16, 14
76 22222 12 44, 43, 27, 21, 16
75 22∗22 12 42, 35, 32, 28, 16
74 44∗ 12 26, 22, 17
73 2∗∗ 12 22, 19, 18
72 2∗× 12 41, 31, 29, 24, 22
71 222∗ 12 32, 31, 30, 27, 23, 22, 15
70 ∗∗22 12 45, 39, 28, 22, 21
69 ∗22× 12 41, 32, 30, 25, 24
68 ∗2∗2 12 26, 25, 21
67 22∗22 12 41, 29, 27, 25, 23
66 22∗22 12 25, 19, 16
65 222∗ 12 20, 19, 14



213

Table A.1: Subgroups of ∗246 commensurate with the P, D and G minimal surfaces [Robi 04a].

Group # Orbifold Index Maximal subgroups

64 ∗4444 12 28, 25, 17
63 2∗× 12 26, 24, 20
62 44∗ 12 29, 20 17
61 ◦2 12 24, 21, 18
60 ∗∗22 12 25, 20, 18
59 2∗∗ 12 40, 33, 32, 21, 20
58 222× 12 27, 26, 19
57 2∗2222 12 37, 34, 22, 20, 16
56 2×× 12 32, 26, 18
55 ∗222222 12 25, 22, 14
54 22222 12 27, 24, 14
53 222× 12 32, 29, 14

52 3×× 16 13, 4
51 ◦3 16 13, 12
50 2266 16 13, 2
49 22223 16 13, 11
48 ∗3∗3 16 13, 10
47 ∗3∗3 16 13, 9
46 3×× 16 13, 3

45 ∗×× 24 12, 10, 3
44 222222 24 12, 11, 2
43 ◦22 24 12, 11, 8
42 22∗× 24 11, 10, 4
41 ∗×× 24 8, 6, 5
40 ∗×× 24 12, 9, 4
39 ∗∗× 24 12, 10, 6
38 ∗∗∗ 24 10, 9, 8
37 22∗× 24 11, 9, 3
36 22∗2222 24 10, 9, 2
35 22∗× 24 11, 10, 5
34 ∗2222× 24 11, 9, 6
33 ∗∗× 24 12, 9, 5
32 22×× 24 7, 5, 4
31 ××× 24 8, 5, 3
30 ◦∗ 24 8, 6, 4
29 22×× 24 7, 5
28 ∗22∗22 24 10, 7
27 222222 24 8, 7, 2
26 22×× 24 7
25 ∗22∗22 24 7, 6
24 ◦22 24 8, 7
23 2222∗ 24 6, 5, 2
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Table A.1: Subgroups of ∗246 commensurate with the P, D and G minimal surfaces [Robi 04a].

Group # Orbifold Index Maximal subgroups

22 22∗∗ 24 7, 6, 3
21 ◦22 24 12, 7
20 22∗∗ 24 9, 7
19 22×× 24 7
18 ◦22 24 7
17 4444 24 7
16 222222 24 11, 7
15 2222× 24 4, 3, 2
14 222222 24 7

13 ◦33 32 1

12 ◦◦ 48 1
11 ◦2222 48 1
10 ∗∗×× 48 1
9 ∗∗×× 48 1
8 ◦◦ 48 1
7 ◦2222 48 1
6 ◦∗∗ 48 1
5 ×××× 48 1
4 ×××× 48 1
3 ×××× 48 1
2 22222222 48 1

1 ◦◦◦ 96
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Table A.2: Subgroups of ∗2226 commensurate with the H minimal surface [Robi 04b].

Group # Orbifold Index

32 ∗2226 1

31 2226 2
30 26∗ 2
29 22∗3 2
28 ∗3∗ 2
27 ∗3∗ 2
26 ∗22223 2
25 ∗2266 2

24 2∗2222 3

23 2626 4
22 22223 4
21 3×× 4
20 ◦3 4
19 ∗33∗ 4
18 3∗∗ 4
17 ∗3∗3 4

16 22∗× 6
15 222222 6
14 ∗2222× 6
13 ∗∗× 6
12 ∗∗× 6
11 22∗2222 6
10 2222∗ 6

9 ◦33 8

8 ∗∗×× 12
7 ◦2222 12
6 ◦◦ 12
5 ∗∗×× 12
4 ×××× 12
3 ◦∗∗ 12
2 22222222 12

1 ◦◦◦ 24


