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Chapter 1

Introduction

Three-dimensional entanglement, including knots, periodic arrays of woven filaments

(knits or weavings) and periodic arrays of interpenetrating networks (nets), forms an in-

tegral part of the analysis of structure within the natural science. This thesis constructs

novel, 3-periodic knits and nets, then tightens them to an ‘ideal’ shape in order to give

geometric inspiration to the many disciplines of science influenced by structure.

A 3-periodic net in three-dimensional Euclidean space (E3) is a simple1 3-connected2

graph, which is invariant under three independent translations of E3 [Klee 04]. A

3-periodic weaving in E3 is an arrangement of infinite one-dimensional space curves, also

invariant under three independent translations of E3. Fig. 1.1 shows a portion of both a net

and a weaving: the infinite structure extends infinitely in three directions.

(a) (b)

Figure 1.1: A 3-periodic net and a 3-periodic weaving. The net (a) consists of vertices joined by
edges and the weaving (b) of filaments that are infinite in length.

The scaffold we use for the construction of 3-periodic knits and nets are Triply-Periodic

Minimal Surfaces (TPMS). A minimal surface is a surface with mean curvature of zero: it

is equally concave and convex at every point. Every point on the surface is a saddle point,

1A simple graph is a set of vertices and edges, where each edge connects a distinct pair of vertices.
2A 3-connected graph can have no fewer than 3 vertices (and attendant edges) removed before it forms

two or more disconnected components [Gros 92]
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except at isolated flat points of zero gaussian curvature, hence the surface is hyperbolic.

The term ‘minimal’ refers to the fact that many of these surfaces minimise the surface area

given a set of conditions (boundary constraints, volume constraints, et cetera). A soap

film on a wire loop is a minimal surface given the constraints of the wire [Dier 92]. TPMS

are minimal surfaces that are periodic in three directions: they are invariant under three

independent translation vectors.

The genus of an orientable surface (one which has two distinct sides) is a topological

invariant defined as the largest number of non-intersecting simple closed curves that can

decorate the surface without separating the surface into two distinct components [Stil 87].

Equivalently, the genus of an orientable surface is the number of torus-like handles it

forms: the surface of a sphere has genus 0, the surface of a torus has genus 1. The genus of

a TPMS is defined by taking a translational unit cell (of the oriented surface) and identify-

ing opposite faces by gluing it modulo translations to obtain a compact surface [Hyde 10].

There are most likely only five highest symmetry TPMS for which this compact surface

is genus 3 (a donut with three holes)3. These are Schwarz’ Primitive surface (P surface),

Schwarz’ Diamond surface (D surface), Schoen’s Gyroid Surface (G surface), Schwarz’

Hexagonal Surface (H surface) and Schwarz’ Cross Layer Parallel Surface (CLP sur-

face) [Fogd 92]. In this thesis, we utilise each of the P surface, D surface, G surface and

H surface.

To define the cover of a surface, we consider a cylinder of infinite length. Any infinite

strip of the two-dimensional Euclidean plane (E2) can be wrapped over the cylinder such

that it covers the surface. Thus any infinite strip of E2 is a cover of the infinite cylinder.

The universal cover of a surface is the cover of all possible covers of that surface, for

example the universal cover of the infinite cylinder is E2. More technically, the universal

cover of a topological space Y (such as a TPMS), is a simply connected4 space X , along

with a covering map5 f : X → Y . The universal cover of a TPMS is the two-dimensional

hyperbolic plane (H2), which can be wrapped over the TPMS, in much the same way as

E2 can be wrapped over a cylinder. To harness the simplicity of a two-dimensional surface

as compared with 3D space, tilings of the TPMS are initially constructed as tilings of the

3The completeness of these five genus-3 TPMS is still an open question due to the possibility of ‘gyroid-
like’ intermediate surfaces within other families of TPMS.

4A domain is simply connected if any loop within the domain can be shrunk to a point continuously, i.e.
the area enclosed by a circle is simply connected, the area between two concentric circles is not [Stil 87].

5A covering map, from a topological space (X) to another (Y ), is a surjective map that is locally a
homeomorphism, each point in X has a neighborhood whose image under the covering map in Y is equiv-
alent [Stil 87].
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universal cover of the TPMS: H2. These vertices and edges in H2 are wrapped over the

TPMS, and in turn represent vertices and edges of an array in E3. For example, Fig. 1.2

shows the vertices and edges of a tiling in H2, an equivalent tiling wrapped over the D

minimal surface and the vertices and edges of the tiling that results in E3.

(a) (b) (c)

Figure 1.2: The vertices and edges of a tiling shown (a) in H2, (b) wrapped over the D minimal
surface, and (c) as an entangled structure in E3.

Furthermore, we numerically tighten the entangled flexible structures to an ideal con-

formation that minimises the ratio of edge (or filament) length to diameter, which builds on

a wide body of work containing the numerical tightening of finite knots and links [Katr 96,

Stas 98]. To enable the tightening of periodic entanglements and structures containing ver-

tices, we extend the Shrink-On-No-Overlaps (SONO) algorithm [Pier 98], a simple and

fast algorithm for tightening finite knots and links.

The ideal geometry of weavings exposes an interesting physical property: Dilatancy.

The cooperative straightening of the component filaments of a 3-periodic weaving with a

fixed diameter induces an expansion of the material in conjunction with an increase in the

free volume. We catalogue weavings with varying dilatancy, and predict a dilatant weaving

as the alignment of keratin in the corneocytes of the outer ‘horny’ layer of mammalian skin.

The dilatant property of the matrix allows the skin to maintain structural integrity while

expanding during the uptake of water.

1.1 Historical Context

Soft condensed matter, including gels, foams, polymers, colloids and liquid crystals dis-

play behaviour not necessarily determined by their molecular or atomic structure alone.

Interactions of structure assembled at the mesoscale, an intermediate length scale larger
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than molecules but smaller than the bulk material, can influence macroscopic behaviour of

the material: that which is visible to the naked eye (> 1mm). Particularly influential are

the geometry and topology of mesoscale structures that self assemble from amphiphilic

molecules [Char 85, Hyde 97, Sado 90]. These structures are clearly related to smaller

scale patterns found in molecular and atomic crystals.

To understand the structure of chemical frameworks, we may consider their abstrac-

tion to geometric objects. A simple approach is the use of homogeneous sphere packings,

where atoms are located at sphere centres and bonds at contacts between spheres. Enu-

meration of periodic structures by homogeneous sphere packings, which catalogues peri-

odic nets of edge length 1, is still incomplete, but leads to a relatively manageable set of

physically relevant frameworks [Koch 99, OKee 08]. An extension to this approach is to

pack infinite cylinders, where cylinders represent rods of strongly bonded atoms within a

chemical framework [OKee 01, OKee 05]. These so-called rod packings have structural

stability yet low packing fractions, and are widely identified throughout structural chem-

istry [OKee 96]. An example of such a rod packing, the cubic Γ rod packing, is shown in

Fig. 1.3.

Figure 1.3: Sculpture of the Γ rod packing, located at the Max-Plank-Institut Für Metallforschung,
Stuttgart. Photo courtesy of Vanessa Robins.

As another approach, a periodic structure may be considered as a packing of convex,

closed, finite cells (polyhedra), where the vertices and edges of the cells within the packing

define the net. A simple description of nets constructed in such a way comes from the

component polyhedra: this description is known as a polyhedral description [OKee 96].

This may also be generalised to polyhedra with curved faces, as well as infinite polyhedra.

Details of the use of these packings in new materials can be found in [Lord 06].

Despite these extensive collections of structures, there are still structures that may not
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be described by these methods, particularly those that contain multiple interpenetrating

nets or weavings of infinite filaments. The TPMS reticulation method presented in this

thesis intends to fill these unexplored regions of structure that are not covered by current

enumerative techniques.

The energetically favourable assembly of atoms (and molecules) in crystalline arrange-

ments involves (intrinsic) curvature [Hyde 84]. Hanging structures from a TPMS scaffold

mimics these conditions in crystalline solids such as Zeolites (microporous aluminosilicate

minerals commonly referred to as molecular sieves) and Metal-Organic Frameworks (crys-

talline compounds consisting of metal ions or clusters coordinated to organic molecules to

form porous structures). This curved geometry stems from the diffusion and confinement

of interstitial charges within a charged lattice, or alternatively from templating molecules.

Supporting this hypothesis, the theoretical framework of some (real) Zeolites were found

to reticulate TPMS [Hyde 91, Hyde 93]. Fig. 1.4 shows how the graph of Sodalite, an

aluminosilicate, can be considered as a reticulation of the P minimal surface. We note

that this Sodalite graph also arises as a reticulation of the D minimal surface. Frameworks

derived from TPMS reticulations may consist of multiple interwoven components, as well

as large pore spaces [Chen 01].

(a) (b) (c)

Figure 1.4: The Sodalite structure shown (a) in E3, (b) as a reticulation of the P minimal surface,
and (c) as a tiling commensurate with the ∗246 tiling in the covering space of the surface, H2.
Image courtesy of [Hyde 10].

If we map decorations in the universal covering space of the TPMS (H2) to E3, we

allow complex (3D) euclidean geometry to be reduced to simpler (2D) hyperbolic ge-

ometry. Tiling the universal cover of a TPMS, discretised by the in-surface symmetries

of the surface (rather than E3 symmetries), dates back to the ideas of Sadoc and Char-
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volin [Sado 89]. As candidates for reticulation, decorations of H2 are restricted based

on sub-symmetries and translational symmetries of the TPMS, where the latter restric-

tion guarantees the periodicity of the resulting structures in E3 [Fogd 92]. Each fam-

ily of TPMS has a set of in-surface symmetries that dictate allowed symmetry groups in

H2 [Robi 04a, Robi 04b, Robi 05].

The systematic enumeration of commensurate tilings of H2, those with symmetry that

is a subgroup of the maximal 2D symmetry group of the desired TPMS, calls upon the use

of Delaney-Dress tiling theory. In the 1980’s, Andreas Dress developed a finite symbol

to encode both the topology and symmetry of an infinite periodic tiling (on 2D surfaces

with positive, zero or negative curvature) using the earlier work of Matthew Delaney: the

Delaney-Dress symbol [Dres 87]. The encoding is unique for finite disk-like tiles that fill

any simply connected space. Delgado-Friedrichs and Huson harnessed the uniqueness of

the Delaney-Dress symbol in developing an algorithmic enumeration of periodic tilings of

each of the sphere, plane and hyperbolic plane [Huso 93, Delg 03a].

To obtain an enumeration of such tilings commensurate with the P, D and G surfaces

and their corresponding TPMS reticulations is a complex process. The map from H2 tilings

to TPMS tilings is many-to-many due to complications with group automorphisms and the

multiply-connected nature of the TPMS. An online enumeration of these tilings (in H2 and

on the TPMS) is located at [Hyde 10], and details of the process given in [Hyde 06]. A

complete description of the reticulation of tilings with Kaleidoscopic symmetry is given

in [Rams 09]. This work considers tilings of H2 that are composed entirely of tiles topo-

logically equivalent to a compact disk: this constraint means that all resulting structures in

E3 will be single component, 3-periodic nets. In this thesis, we extend to tilings of H2 by

tiles that are topologically equivalent to infinite ribbons or infinite branched ribbons, free

tilings, which gives two more classes of structures in E3: multiple component nets and

filament weavings.

Examples of the reticulation of some high symmetry free tilings on TPMS have been

published [Hyde 99, Hyde 00a, Hyde 00b, Hyde 00c, Hyde 03a, Hyde 03b, Hyde 03c].

Topology of the vertices and edges remaining in E3 once the surface is dissolved are ex-

amined in these publications, but no approach is detailed as to the analysis of the resulting

structure. This thesis will examine a larger set of examples through the extension of the

Delaney-Dress tiling theory to include free tilings. This enables easy description of free

tilings as well as the scope for an enumeration. We also examine a particular class of these

free tilings where the tile boundaries are infinite and vertex-free, which result in TPMS
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reticulations that are weavings of curvilinear one-dimensional filaments.

Current techniques for analysis of nets in E3 that contain either a single component or

multiple components include three main approaches: quotient graphs, SyStRe analysis and

TOPOS analysis. A few simple methods are also available for the analysis of weavings of

one-dimensional filaments: crossing number, minimal crossing number, average crossing

number among others. We detail these methods here.

Note that a structure is comprised of three elements: the first is its topology, which

refers to the abstract graph connectivity of the structure, the second is ambient isotopy

class, which refers to all structures related to each other by an ambient isotopy6 and the

third is the geometry of the edges of the structure in E3. We consider each of the current

methods in relation to these three elements of structure.

The quotient graph of a periodic network is built from a single representative of each

translationally equivalent vertex and each translationally equivalent edge. A labelled quo-

tient graph labels the edges by their lattice translation vectors in the periodic net [Chun 84].

For example, Fig. 1.5 shows the labelled quotient graph of a periodic graph which follows

the edges of stacked cubes (the pcu net). Quotient graphs encapsulate the topology of

periodic structures. In general however, there is no algorithm for determining when two

quotient graphs represent the same periodic net. Further, the labelled quotient graph gives

no information about the ambient isotopy class or edge geometry of the structure.

(a) (b)

Figure 1.5: (a) The 3-periodic pcu net. (b) The labelled quotient graph of pcu.

The SyStRe algorithm [Delg] provides an equilibrium (barycentric) placement of ver-

tices (crystalline form) within a labelled crystallographic quotient graph. This placement

6An ambient isotopy is a continuous deformation of an embedding space. Two nets are equivalent if there
is an ambient isotopy from one to the other i.e. one net can be deformed into the other without allowing edges
to cross through each other [Crom 04].
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gives a system for comparing the topology of periodic nets [Delg 03b]. This canonical

form for periodic nets, however, does not prescribe the equivalence of nets within an am-

bient isotopy class. Furthermore, the SyStRe algorithm is unable to find an equilibrium

placement for nets where distinct vertices occupy the same location in an equilibrium

placement (vertex collisions) and where distinct edges intersect in the equilibrium place-

ment (edge collisions), and is also unable to relax non-crystallographic nets. Additionally,

the algorithm is only able to find a canonical form for single-component nets.

TOPOS analysis of a net [Blat 06] collates the knots formed by single cycles, and

links found by disjoint pairs of cycles, in the net. This approach is unique in that fact that

it is sensitive to the equivalence of nets by ambient isotopy. An algorithm such as this,

based on analysis of interpenetration of rings, is excellent at identifying when two nets

belong to distinct ambient isotopy classes, but fails to prove two nets belong to equivalent

ambient isotopy classes when their linking signature is equivalent. A further challenge to

analysis methods such as this are entanglements that occur on a scale beyond cycles, such

as the ravel [Cast 08]. These entanglements have no knotted or linked cycles, yet are still

entangled, and hence will be overlooked by the TOPOS analysis. Such an entanglement

has been recently synthesised: a finite molecule that forms a ravel is described in [Li 11].

To encompass more general spatial patterns, in particular those of one-dimensional

(1D) filaments, we delve into an area examined by polymer physicists and mathemati-

cians alike. The Crossing Number of a material is a simple intuitive measure counting the

number of times a filament crosses over itself or another. This measure is also used in

knot theory to analyse knots and links. A related quantity is the Minimal Crossing Num-

ber, where an object is manipulated (within an ambient isotopy class) so as to have the

minimal number of crossing over itself or other objects [Buck].

To obtain a quantity that is independent of the viewing direction, one may consider an

average of the crossing number across all 2D projections of the material (as the crossing

number may vary with the chosen perspective). This value is known as the Average Cross-

ing Number (ACN). Analysis of materials by the ACN is a geometric problem, involving a

specific embedding of a topological object. A quantity associated with the ACN for entan-

gled infinite filaments is how this ACN changes with the increase of the material sample

size [Buck]. Another concept related to the ACN is the temperature of a tangle [Buck 08].

This considers what portion of a filamentous array is visible from a particular view point:

those arrays that are more tangled will have a larger portion of filaments obscured, and

thus a higher temperature.
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We may also consider the shape of individual filaments within an array: restrictions on

the curvature of a filament influences how filaments can tangle together [Buck 07]. This

entanglement measure requires some physical thickness to the filament, and a minimisa-

tion of an energy associated with the curvature of the filament [Buck 98, Simo 09].

These available methods are far from comprehensive in the analysis of 3-periodic

structure, and this is the gap in the literature that we will partially fill with the work in

this thesis. To do this, we extend a technique that has been insightful when analysing

finite knots and links. The idea is intuitive: take a knot, give it thickness and pull it

tight, forming an Ideal Knot. To quantify the entanglement of an ideal knot, one must

first choose a physical quantity associated with this conformation. There are many en-

ergy measures to consider7, which include the minimum distance energy [Simo 94], the

symmetric energy [Buck 93], [Buck 95], and the conformal energy [OHa 91, Dioa 98]. A

simple quantity of the ideal conformation is the ratio of length to radius. This quantifies

the entanglement of a knot, which is useful in identifying distinct conformation which be-

long to the same equivalence class by ambient isotopy. Much intuition has been gained in

knot theory by considering this energy function of ideal knots [Stas 98].

Figure 1.6: The ideal conformation of a trefoil knot.

A different conformation energy is a compactness energy. The minimisation of this

energy in turn minimises the occupied space of the filaments, which represents the struc-

ture in a most compact form. This has been considered elsewhere for a single untangled

filament, where the result is a helical form [Przy 01]. Interestingly, the pitch given by the

compact helix is the same as that of a collagen helix [Mari 00].

For each of these energy quantities, it is difficult to identify the conformation of a knot

7A comprehensive summary of energy measures for finite entanglements pre-1998 can be found
in [Scha 98]
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or link which minimises the energy. A fruitful approach is to computationally tighten any

given configuration of the entanglement to a minimal energy state. One such algorithm

is simulated annealing [Kirk 84, Laur 98]. Initially, the knot is discretised to a series of

vertices and edges, and an energy functional is defined. A random move is applied to any

node of the knot trajectory, the energy recalculated and the move either accepted if the

energy is less or rejected if the energy is greater. Through the continued application of

this process, a local energy minimum is achieved. A similar recipe is given in [Simo 94],

which uses random perturbations to decrease the minimum distance energy. Further to this,

another process of simulated annealing with some additional measures in place to remove

trapping of the structure in local minima is given in [Grze 97]. Finally, an algorithm to

relax the energy of a knot is given in [Kusn 97, Dioa 98]. There is no proof, however, that

any of these simulated annealing algorithms find a global minimum.

The SONO algorithm (Shrink-On-No-Overlaps [Pier 98]) is one approach to the com-

putational tightening of knots and links, which minimises the ratio of length to radius as

the energy function. It uses a repulsion mechanism to push nearby segments of the knot

away, coupled with a shrinking mechanism to tighten the knot. This algorithm is simple

and efficient. Mechanisms are in place within the algorithm to shake the knot out of local

minimum energy conformations (that are not global energy minima), but a proof that these

mechanisms will always ensure the global minimum is reached is still elusive and likely

untrue. In this thesis, we will extend the SONO algorithm to tighten both 3-periodic knits

and nets to optimal forms by minimising the ratio of length to diameter.

We predict that the ideal forms of many of these branched and 3-periodic structures

will realise all possible symmetries of the structures, however we see that previous results

of the SONO algorithm may indicate otherwise. The SONO algorithm shows a symmetry

breaking effect when tightening torus knots with a high crossing number, and also for the

tightening of a periodic double helix [Pier 98], where the ideal form sees one strand of the

helix pull straight and the other wind around the outside. We also note that an optimal

conformation for the double helix while preventing a symmetry breaking event has also

been studied [Olse 10].

1.2 Significant Results

A key body of work to come from this thesis is the construction of an array of structures

with a specific embedding, rather than simply a prescribed topology, which are relevant to
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the natural sciences. The nets that we construct in this thesis are, in most cases, multiple

component interpenetrating nets. Such nets arise frequently in synthetic chemical frame-

works, as seen in Ch. 3, and we generate more complex examples of such nets as possible

targets for synthesis. In the construction process presented in this thesis, all three ele-

ments of the structure are prescribed, including topology, ambient isotopy class and edge

geometry, which is in contrast to previous enumeration techniques. We obtain two such

edge geometries for a net, one is the geometry of the tile edges as they sit on the TPMS,

and the other is the ideal geometry found through simulation. These specific geometries,

that are often distinct from SyStRe barycentric embeddings, may yield important material

properties.

The 3-periodic entanglements of infinite filaments constructed in this thesis are, in the

simplest cases, well recognised rod packings. Through the TPMS reticulation method, we

are able to generalise the notion of a rod packing to contain curvilinear as well as rectilinear

components, and build a more complete taxonomy of 3-periodic weavings. A catalogue

of entanglements of infinite filaments is certainly missing from the current literature, and

these new structures may provide insight into weavings of polymers, proteins and DNA.

An interesting consequence of the idealisation of weavings to optimal configurations

is the geometry of the filaments is often helical. In many cases, the geometry prescribed by

the idealisation is equivalent to that of the weaving as it sits on the TPMS, which implies

relevance for the exact filament geometry obtained from the TPMS. The helical geome-

try of some weavings in their optimal configuration leads to an exotic physical property:

Dilatancy. In addition to this, it is possible that these ideal weavings may display other

interesting physical regimes, such as auxetic behaviour, which is a likely consequence of

dilatancy.

These dilatant weavings are attractive design targets for new synthetic materials, stem-

ming from the potent increases in the free volume of the material on straightening of the

filaments, while maintaining structural stability of the material. As a bio-material, this

beautiful property of the ideal Σ+ rod packing gives an explanation for the keratin organ-

isation in the corneocytes of the stratum corneum layer of the skin. The dilatancy of the

keratin matrix allows us to explain the remarkable structural rigidity of the skin during

the uptake of water and subsequent swelling of the skin. The ramifications of knowledge

of the keratin organisation are immense: the barrier properties of the skin are important

in many areas of the medical and therapeutic sciences, and surely relate to the structural

forms of the skin.
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1.3 Overview of the thesis

We begin in Ch. 2, titled “Free Tilings of the Hyperbolic Plane”, where we extend the

Delaney-Dress encoding of conventional tilings of H2 to include free tilings of H2, which

are tilings by tiles of infinite size. The chapter includes a brief catalogue of such free

tilings, that are regular (1-transitive edges, vertices and tiles) and are composed of infinite

ribbon tiles with high symmetry. We embed these selected, high symmetry free tilings into

either the ∗246 or ∗2226 chart of H2, so as to be commensurate for projection to the P, D

and G surfaces in the former case, and the H surface in the latter. Complications arise in

the embedding of free tilings with Stellate symmetry (to be defined later), for which there

are an infinite number of embeddings commensurate with the TPMS, and we establish

rules to systematically enumerate such embeddings.

Of the free tilings we consider, some have tile boundaries consisting of vertices and

edges and others have tile boundaries that are vertex-free infinite geodesics. In Ch. 3, titled

“Reticulations of Triply-Periodic Minimal Surfaces”, the free tilings containing vertices

and edges along the tile boundaries are reticulated over the TPMS to give a catalogue

of multiple component interpenetrating nets in E3. We analyse these resulting structures

using the standard SyStRe algorithm and TOPOS program to ascertain information about

the structure. Additionally, this chapter contains the reticulation of examples of the other

genre of free tilings, composed of infinite geodesic tile boundaries. These free tilings give

3-periodic knits composed of infinite tangled filaments when reticulated over the TPMS.

We catalogue these structures, and give details about their geometry and entanglement.

Ch. 4, titled “Ideal geometry of branched and periodic structures”, extends the SONO

algorithm to computationally tighten 3-periodic structures and is capable of tightening en-

tanglements that contain vertices. We lay the foundations of this algorithm by considering

tight finite knots, where the tight configuration is previously established in the literature.

Finite knotted graphs are tightened to show the reliability of the algorithm at vertices, and

further obtain measurements of the L
D energy for a variety of graph embeddings. Various

3-periodic entanglements of infinite filaments, constructed in Ch. 3, are computationally

tightened to reveal the geometry of their tight configurations. Finally, we tighten a few

selected single component nets to compare the tight configuration with the SyStRe canon-

ical embedding, and include nets where the SyStRe embedding contains vertex collisions.

We then consider the multiple component nets constructed on the TPMS to ascertain their

ideal geometry.
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The physical property of dilatancy for 3-periodic weavings, where the straightening

of filaments leads to an unprecedented increase in the free volume of the material, is de-

scribed in Ch. 5: “Dilatancy of Woven Filament Arrays” . We show examples of several

genres: zero dilatancy, finite dilatancy and infinite dilatancy. We finally explore the di-

latant weaving Σ+, which we propose as the scheme for keratin organisation within the

corneocytes of the outer layer of mammalian skin. The dilatant property of this matrix al-

lows the swelling of the skin in the presence of water without loss of inter-keratin contacts

with the corneocyte, which preserves structural stability.





Chapter 2

Free Tilings of the Hyperbolic Plane

A tiling is the faces, edges and vertices of a 2D tessellation of a surface, where tiles only

intersect along their boundaries and the tiles cover the whole of the surface. A reticulation

of a Triply-Periodic Minimal Surface (TPMS) is the edges and vertices (not faces) of a

tessellation on the surface: these vertices and edges in three-dimensional Euclidean space

(E3), define a structure. Tilings of the covering space of these intrinsically hyperbolic

TPMS, i.e. tilings of the two-dimensional Hyperbolic plane (H2), mimic direct tilings

of the TPMS when they adhere to a compatible set of isometries of the chosen surface:

in-surface symmetries of the TPMS are represented by symmetries of H2. Tilings that

consist of finite tiles with Coxeter symmetry, corresponding to Coxeter discrete groups

which contain only mirror symmetries, have been previously explored in detail [Rams 09].

(a) (b) (c)

Figure 2.1: (a) A free tiling with symmetry ∗2223 in H2. (b) The tiling shown on one unit cell of
the Gyroid surface. (c) The structure remaining in E3 is two interpenetrating srs networks.

This chapter explores tilings of H2 by tiles of infinite size with an infinite translation

as an internal symmetry (free tilings). Free tilings are of interest for their form as tilings of

TPMS: regular tilings give a single component net in E3, whereas free tilings give multiple

disconnected components in E3 that are interpenetrating [Hyde 03a, Hyde 00a, Hyde 00c].

For example, Fig. 2.1 shows a free tiling with symmetry ∗2223 in H2, as a surface tiling of

17
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the Gyroid minimal surface, and as a structure in E3: two interwoven srs nets of equivalent

chirality. Further, this chapter extends beyond Coxeter tilings to those with rotational

symmetry elements.

This is done by an extension to the Delaney-Dress method for encoding the abstract

topology of tilings, which represents the abstract topology of free tilings. In addition, we

embed these free tilings firstly into H2, where an ordering is borrowed from the Euclidean

plane, and further into tilings commensurate with the TPMS. To begin, we introduce both

orbifolds and the Poincaré Disc model of H2.

2.0.1 Conceptual Detour: Orbifolds and The Poincaré Disc model

An orbifold is the quotient of a manifold by a discrete group of isometries of the man-

ifold [Thur 80]. An orbifold represents a single asymmetric domain of an infinitely re-

peating pattern along with its symmetry information. More specifically, it is a topological

structure where all copies of the repeating pattern are “glued” under appropriate sym-

metries, such that “unrolling” the orbifold into any covering space results in a repeating

pattern. The corner and cone points of this single unit combined with its topology (details

of the symmetries of the pattern) gives the orbifold [Conw 92, Conw 02].

A two–dimensional orbifold encodes an infinite pattern on any two–dimensional sur-

face, be it intrinsically Spherical (S2), Euclidean (E2) or Hyperbolic (H2). The isometries

of two–dimensional space encoded by such orbifolds are [Conw 92]:

1. Reflections in a line, represented by the orbifold boundary and corner points. A

vertex may have n mirror lines incident, denoted by Conway symbol ∗n. Simply-

connected orbifolds containing only reflections are denoted ∗ab...c and are called

Coxeter orbifolds.

2. Rotations, represented by a cone point, denoted by Conway symbol N denoting a

2π/N rotation.

3. Translations: the identification of two pair of edges is denoted by ◦ (handle), two

directions of translational copies symmetry. Topologically, ◦ adds a handle to the

orbifold, adding to the genus.

4. Glide reflections, involving a reflection and a translation of the motif along the mir-

ror line, denoted by Conway symbol ×. Topologically, a × adds a non–orientable

cross–cap structure to the orbifold [Fran 99].
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The terminology of orbifolds is combined to form a string of the relevant symmetries

of the form AB...C∗ab...c× ...◦ .... An arbitrary Conway symbol encodes a realisable

orbifold and discrete group, except for the cases ∗mn and mn where (m %= n), and also the

specific case of ∗m and M, (m,M > 1). These are the only orbifold symbols that do not

represent groups [Conw 02].

The combinations of topological features within an orbifold give rise to eight distinct

categories, classified by the orientability of simply – or multiply – connected orbifolds,

with or without boundaries [Hyde 11]. We describe three of these categories, to be con-

sidered later in this chapter. The first is the Coxeter orbifolds, which contain only mirror

symmetries and correspond to Coxeter groups (Fig. 2.2(a)). This orbifold is a polygonal

section of the plane (be it Spherical, Euclidean or Hyperbolic) bounded by mirror bound-

aries. The second category is the Hat orbifolds, which consist of rotational symmetries

with a single mirror boundary. The rotational symmetries define the cone points and the

mirrors define the boundary (Fig. 2.2(b)). Finally, the Stellate orbifolds contain only rota-

tional symmetries, and resemble a pillow punctuated by distinct cone points (Fig. 2.2(c)).

(a) ∗abcd (b) A∗ab (c) ABCD

Figure 2.2: (a) A Coxeter orbifold: it is bounded by mirror boundaries and corner points. (b) A
Hat orbifold, it has a single mirror boundary and rotational symmetry. This consists of a cone
point bounded by the mirror lines. (c) A Stellate orbifold: it has purely rotational symmetry. The
orbifold is a pillow punctuated by each of the distinct cone points.

The neat orbifold notation of Conway described above allows us to find directly the

cost (C) of the orbifold, which is identical to both its Euler–Poincaré characteristic and

the area of the orbifold [Conw 92]. The global Gauss–Bonnet formula gives a relationship

between the Gaussian curvature of a surface (K) and the Euler–Poincaré Characteristic

(χ) [Spiv 79]. More precisely, where A is the given area:

2πχ =
Z Z

K dA
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Thus where the Gaussian curvature of the surface is constant, or the area is taken in the

universal cover of the surface, the sign of the Euler–Poincaré characteristic gives the sign

of the Gaussian curvature of the surface by:

K =
2πχ
A

The cost, C, of the orbifold (and in turn the mean Gaussian curvature) is calculated by:

C = 2−∑
i

di

The following table shows the value of each di.

Symmetry Element Symbol di

Mirror ∗ 1

Glide Reflection × 1

n–fold rotation centre N N−1
N

Mirror Intersection (angle π
n ) n n−1

2n

Translation (handle) ◦ 2

The hyperbolic plane, H2, has constant negative Gaussian curvature, denying it the

luxury of embedding in E3 without singularities. These singularities manifest as ob-

structions in the visual representation of H2in our Euclidean world: immersing H2 in

E3 with singularities may result in the singularities acting as obstructions to the paths

of geodesics [Hilb 52]. This is not ideal for our purposes, and in turn we are led to the

Poincaré Disc model of the H2 [Hilb 52, Coxe 47a, Bear 95].

Figure 2.3: The Poincaré Disc: a conformal representation of the H2. Geodesic paths passing
through the centre of the circle, such as m, are represented by straight lines. All other geodesic
paths, such as l and n, are represented by circular arcs that intersect the boundary at right angles.
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The Poincaré Disc model represents H2 as the interior of a circle, where H2 approaches

infinity at the boundary of the circle. A geodesic is an arc of the circle that is incident at

right angles to the boundary of the circle, as shown in Figure 2.3. Defining the interior of

the Poincaré Disc by {z ∈ C : |z| < 1}, the metric for this model is given by

ds =
2|dz|

1−|z|2

The Poincaré Disc model is a conformal model: Euclidean angles on the disc corre-

spond to angles in H2. Parallel lines, or “equidistant” lines, in the hyperbolic plane are sig-

nified by lines that meet at the disc boundary, e.g lines ‘l’ and ‘m’ in Fig. 2.3 [Coxe 47a].

“Hyperparallel” lines are represented by non–intersecting lines, e.g lines ‘m’ and ‘n’ in

Fig. 2.3. Fig. 2.4 shows a regular hexagon in both the two–dimensional Euclidean plane

(E2) and H2, where the Poincaré Disc model is used to represent H2.

(a) (b)

Figure 2.4: (a) A regular hexagon in E2. (b) A regular hexagon in H2, shown on the Poincaré Disc
model of H2. It has angles less that 120◦.

2.1 Abstract topology of tilings: Delaney–Dress

Conventional tilings

To encode conventional tilings of H2 (those which are topologically equivalent to a disk),

we consider the Schläfli symbol. The Schläfli symbol is of the form {p,q,r, ...}, and

encodes regular polytopes and tessellations [Coxe 47b]: a symbol {p} encodes a regular

(‘Platonic’) polygon with p sides, a symbol {p,q} encodes the tessellation of q regular

p–sided polygons around each vertex. Where this tessellation may be embedded in S2, the

symbol defines the polyhedron enclosed by the tiling.

Where the Schläfli symbol encodes only the topology of the tiling, the so–called
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Delaney–Dress symbol encodes more information: for any periodic tiling of a

two–dimensional plane by tiles of finite size it gives a canonical and finite encoding of the

topology and symmetry of the tiling [Dres 87]. Conversely, the Delaney–Dress symbols

can be used to build tilings of a given symmetry and topology. The symbol triangulates

each tile of the periodic tiling into a series of chambers, where the three vertices of the

chamber lie at a vertex, edge and face of the tiling respectively. Tilings with the following

properties have canonical encodings [Dres 87, Rams 09]:

1. Each tile is topologically equivalent to a disk (they are closed).

2. Tiles only intersect along their boundaries.

3. The size of the tiles is uniformly bounded.

4. Tiles cover the whole of the plane (be it S2, E2 or H2).

Given a tiling of any two–dimensional plane, the construction of the triangulation for

the purposes of encoding the topology of the tiling follows a specific recipe:

1. At the barycentre of each tile (the ge-

ometric centroid of masses placed at

each vertex of the tile), place a vertex

denoted ‘2’.

2. At the midpoint of each edge, place

a vertex denoted ‘1’.

3. At each vertex of the tiling, place a

vertex denoted ‘0’.

4. The domain is triangulated by con-

necting vertices as shown to the

right.

5. ‘Colour’ the chambers such that

those related by isometries of the

tiling are the same colour.

For example, the triangulation of a portion of a tiling of H2 is constructed using this

prescription in Fig. 2.5. A smallest asymmetric unit of the tiling contains two triangular
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regions, one shown in red and the other in blue, these two regions represent the two dis-

tinct tiles of the tiling. When encoding the tiling, we consider only the chambers within

an asymmetric domain: all copies of these chambers are encoded through the adjacency

relation information.

(a) (b)

Figure 2.5: (a) A tiling of H2 by two distinct tiles. (b) A triangulation of an area of the tiling. The
triangulation is composed of vertices placed at each of the tile faces, tile vertices and tile edges.
This example has two distinct chambers within a asymmetric domain, one shown in red and one
shown in blue [Hyde 10].

The ‘adjacency map’ of each chamber encodes which chambers are adjacent to a se-

lected chamber on each of its boundaries. The term s0 denotes the neighbouring chamber

across the 0–edge, s1 across the 1–edge, and s2 across the 2–edge. To encode the topology,

we consider the orbits around each of the vertices for each distinct chamber. Around the

2–vertex (the vertex in the centre of the face), we consider how many sets of 0–edges (the

edge opposite the 0–vertex) and 1–edges (the edge opposite the 1–vertex) are incident to

that 2–vertex. The order of this orbit is denoted m01. In general, m01 corresponds to the

number of edges of a tile. For example, in Fig. 2.5, m01 for the red chamber is 6, and

m01 for the blue chamber is 4. Similarly, we require the order of the 0–vertex orbit, m12.

For each distinct chambers in Fig. 2.5, m12 is of order four. The 1–vertex orbit (m02) is

always two, by the prescribed construction of triangulation. The full encoding of the tiling

shown in Fig. 2.5 is given by the following table:

Chamber Class s0 s1 s2 m01 m12

Red Red Red Blue 6 4

Blue Blue Blue Red 4 4
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A unique ordering of complexity may be obtained from Delaney–Dress encodings, and

in turn these tilings are enumerable up to a given complexity [Delg 03a]. Another approach

to encoding the equivalent information is the Generalised Schläfli Symbol [Conw 08].

This is an extension of the Schläfli symbol as it defines a tessellation together with its

symmetries, as opposed to an abstract polyhedron. This encoding gives a good visual

representation of the tiling. Within this section, however, we use only the Delaney–Dress

encoding for tilings of H2.

Free tilings

To construct and encode tilings of H2 by tiles of infinite size, termed free tilings, we delete

edges from a conventional tiling while preserving the original Delaney–Dress triangula-

tion. The term free tiling (Vanessa Robins, private communication) is due to the internal

symmetry elements of the resulting infinite tile being a free group. These free tilings are

denoted by the original Delaney–Dress encoding with an additional signifier, namely a

1̄–vertex rather than the standard 1–vertex, on the chambers that now contain a ‘ghosted’

edge. By associating each free tiling with a conventional tiling, free tilings inherit the

enumerable structure of Delaney–Dress symbols.

This encoding is complicated by the fact that most free tilings may be constructed from

multiple distinct conventional tilings: if two conventional tilings differ only by a single

edge (and have different Delaney–Dress encodings), and this particular edge is ghosted, the

same free tiling will result and will be classified by two distinct encodings. For example,

Fig. 2.6 shows the ghosting of two conventional tilings, where the result is equivalent free

tilings.

The unique encoding of a free tiling is chosen to be the simplest among all possible en-

codings, as defined by the number of chambers within the triangulation of a single orbifold

domain. Where there exist multiple simplest encodings of a single free tiling, the unique

encoding is chosen to be that which has come from the least complexity Delaney–Dress

encoding (Delaney–Dress encodings may be uniquely ordered [Delg 03a]). For example,

the encoding of the free tiling shown in Fig. 2.6 part (b) is simpler than that which is shown

in part (d).

Two issues arise in finding a unique encoding of a free tiling. Given two distinct

encodings, how do we determine if they represent the same free tiling? To find the unique

encoding of a free tiling, how do I first enumerate all possible encodings from which to
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(a) (b)

(c) (d)

Figure 2.6: (a) A conventional tiling of H2 shown with its Delaney–Dress encoding. (b) By
ghosting a single edge of the conventional tiling shown in part (a), a free tiling of H2 results, which
inherits the Delaney–Dress encoding. (c) A conventional tiling of H2, which is different from that
shown in part (a), shown with its encoding. (d) The ghosting of an edge gives a free tiling which is
equivalent to that shown in part (b), yet it inherits a distinct encoding.

choose the simplest? We address these issues through a set of rules that construct the

unique encoding of a free tiling from the tile vertices and edges of the free tiling, without

information about the conventional tiling from which it originated.

A necessary restriction for the uniqueness of the encoding obtained from this construc-

tion process is that we only remove edges from a conventional tiling that leave at least two

edges incident at each of its vertices (i.e. the removal of an edge does not remove all edges

incident at a vertex), and only remove edges which begin and end at symmetry sites of the

orbifold. The completeness of the set of free tilings enumerated with these restrictions is

not yet proven, nevertheless this lies outside the scope of this thesis.

We proceed with the construction algorithm. The notation 1̄ is added to the encoding to

represent edges that are present in the conventional tiling but not in the free tiling (ghosted).
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We begin with a parent symbol, constructed as follows:

1. Identify an asymmetric orbifold domain of the free tiling; this is the domain for

triangulation.

2. All symmetry ‘corners’ of the tile boundary (intersection points of mirror lines or

rotation centres) are occupied by 0–vertices. These locations are the only locations

where vertices may have been present in the conventional tiling, given the restric-

tions placed on where edges may be removed from conventional tilings.

3. A 1–vertex is placed at the mid–point of all tile edge segments which connect

0–vertices.

4. All symmetry ‘corners’ in the interior of the tile with order > 2 are occupied by

2–vertices.

5. All other symmetry ‘corners’ in the interior of the tile (those with order ≤ 2) are

occupied by 1̄–vertices. This defines all locations where edges may have been re-

moved.

6. A 2–vertex is placed at the mid–point of all orbifold boundary segments in the inte-

rior of the tile which connect two 1̄–vertices.

7. The domain is triangulated where each triangle has a 0–vertex, a 2–vertex and either

a 1–vertex or a 1̄–vertex.

For example, Fig. 2.7 part (a) shows a free tiling of H2 and part (b) shows the parent

symbol of one asymmetric orbifold domain: this triangulation has two 0–vertices at the

∗3 and ∗2 mirror intersections on the tile boundary with a 1–vertex between, and two

1̄–vertices at each of the ∗2 mirror intersections in the interior of the tile and a 2–vertex

between. The triangulation in the example exactly covers a single orbifold domain.

A further process must now take place to find the unique encoding, which is the sim-

plest symbol related to the parent symbol. A simplification may be performed by removing

chambers of the encoding (where possible). We then permute through all possible simplifi-

cations to find the simplest (and unique) encoding. As simplifications, we wish to remove

chambers of the symbol such that we no longer have 0–vertices which are of degree–2

(those which do not lie at actual vertices of the free tiling), and also delete chambers such

that we remove as many 1̄–vertices as possible.
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(a) (b)

Figure 2.7: (a) A free tiling of H2. (b) The construction recipe dictates the placement of the
vertices and chambers of the parent triangulation, where both 1̄–vertices are superfluous.

A 1̄–vertex is a candidate for removal when it is of degree–4 in the full triangulation

of H2 or equivalently of degree-2 in the triangulation of a single orbifold domain, and

it is neighboured by a 2–vertex that is not at a symmetry corner. For example, each of

the 1̄–vertices in the parent symbol shown in Fig. 2.7 are candidates for removal. After

the removal of a 1̄–vertex (and its associated edges), the neighbouring 2–vertex slides to

the location of the past 1̄–vertex, and maintains all other connections. This decreases the

number of chambers within the symbol by 1, yet the topology and symmetry of the free

tiling which it describes is equivalent.

In a similar process, a 0–vertex that lies on an edge of the tiling and is not at a vertex

of the tiling is a candidate for removal when it is neighboured by a 1–vertex not at a

symmetry corner, and it is also of degree–4 in the full triangulation of H2 or equivalently

of degree–2 in the triangulation of a single orbifold domain. The 0–vertex in the parent

symbol shown in Fig. 2.7 is not a candidate for removal as it is of degree–3 in one orbifold

domain of the triangulation. After the removal of a 0–vertex (and its associated edges), the

neighbouring 1–vertex slides to the location of the past 0–vertex, and maintains all other

connections. This process also decreases the number of chambers within the symbol by 1,

yet the topology and symmetry of free tiling which it describes is equivalent.

These chamber removals are performed until there are no longer any candidate cham-

bers for removal. It is at this stage that a unique simplest encoding is found. For example,

consider the parent symbol shown in Fig. 2.7. Each of the 1̄–vertices of the encoding are

candidates for removal: we note however, that once one is removed, the other is no longer

suitable for removal, as its neighbouring 2–vertex will now be on a symmetry corner. We

remove each of the 1̄–vertices, and examine the resulting encodings, as shown in Fig. 2.8.
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After the initial chamber removal, the upper encoding in Fig. 2.8 has no further cham-

bers which are suitable for removal. In the lower encoding, however, the 0–vertex of

degree–2 is now a candidate for removal. The removal of this chamber, and the subse-

quent sliding of the 1–vertex gives a simpler encoding of the free tiling. This is the unique

encoding of the free tiling.

Figure 2.8: The parent symbol of a free tiling in H2 may be simplified in two ways, which give two
distinct encodings. The upper encoding may not be simplified any further, yet the lower encoding
may be further simplified by the removal of the 0–vertex of degree 2. This simplification leads to
the unique encoding of the free tiling.

We document the encoding from the neighbour maps, as well as the orbits of the

0–vertices and 2–vertices of the chambers. To encode the missing edge, we must note

the chamber with the ‘ghost’ edge. We do this by denoting all chambers with a real (not

ghosted) edge in bold and the ghosted edge 1̄. Denote the chamber shown in blue ‘A’

and that shown in red ‘B’ to obtain the following tabular representation of the simplest

encoding of the free tiling shown in Fig. 2.8:

Chamber Class s0 s1 s2 m01 m12

A A B A 4 6

B B A B 4 6
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2.2 Embedding orbifolds in the universal cover space

The Delaney–Dress symbol is an encoding of the topology and symmetry of a tiling, but

not the geometry, for both conventional tilings and free tilings. This encoding is a decora-

tion of an orbifold. An embedding of an orbifold assigns a presentation of the symmetry

group encompassed by the orbifold in its universal cover, where a presentation is a way

to define a group by listing a specific set of elements which generate the group plus a

set of relations between the generators. It is trivial to interchange between orbifolds and

symmetry groups by choosing a set of generators.

We explore the embedding of orbifolds of the form ∗222k, 2∗2k and 222k in their

universal cover. For Coxeter orbifolds, the orbifold is (by definition) bounded by mirrors.

When embedded in the covering plane, the positions of the generators (the distinct mir-

rors) are set uniquely relative to each other as bounding an asymmetric patch. For “hat”

orbifolds (with the form 2∗2k), the relative positions of the generators are uniquely set,

which gives a unique embedding into the covering space. The uniqueness of this embed-

ding is obvious if you consider the domain of two orbifolds doubled around the 2–fold

rotation: this is a ∗2k2k (Coxeter) domain, which we know uniquely embeds.

Stellate orbifolds have infinite freedom in the relative positions of the generators (rota-

tions) in the covering plane (i.e. infinite scope in the presentation of the group). We wish to

systematically generate all distinct presentations of the 222k group, so as to specify all dis-

tinct embeddings of the orbifold into the covering plane. We begin with the 2222 orbifold,

which embeds in E2 by the orbifold cost formula: C = 2−∑i di = 2−
( 1

2 + 1
2 + 1

2 + 1
2
)
= 0.

Embedding the 2222 orbifold into E2 requires nominating four generating 2–fold ro-

tation sites. Fig. 2.9(a) shows an embedding, where the generators are at the positions

{0,0}, {1,0}, {1,1} and {0,1} of E2. This results in the set of all elements (not just the

generators) of the infinite group being grid points in Z×Z (the two–dimensional integer

grid: elements are represented by a couple {x,y} where x and y are integers).

Given the reference frame established by the embedding in Fig. 2.9(a), distinct presen-

tations of the same group may be obtained by expressing the generators as other elements

of the group (i.e. other points in the plane) [Coxe 72]. Labelling the 2–fold rotations lo-

cated at {0,0}, {1,0}, {1,1} and {0,1} as QT , QA, QB and QC respectively, presentation

of the group given by the reference frame is

< {QT ,QA,QB,QC} : (QA)2 = (QB)2 = (QC)2 = (QT )2 = I,QT = QAQBQC >
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(a) (b)

Figure 2.9: (a) An embedding of the 2222 orbifold in E2. The corners of the square coincide with
the points {0,0}, {1,0}, {1,1} and {0,1}, establishing a reference frame of Z×Z for subsequent
embeddings (b) Another embedding of 2222 relative to the established reference frame.

A new presentation of the same symmetry group specifies generators Q′
T , Q′

A, Q′
B and

Q′
C with respect to the reference frame such that the group relations are preserved. Thus

we express the generators in terms of the original QT , QA, QB and QC.

The set of possible presentations may be represented through parallelograms on

Z×Z. To reduce duplication of embeddings, we begin by considering only one quad-

rant of E2 and we pin the 2–fold rotation QT in place, so as to eliminate the possibility of

constructing a domain of equivalent shape translated by some vector. We require that the

only isometries of the parallelograms are the 2–fold rotations at the corners and that the

enclosed area must be 1 (area equivalent to the square in the reference frame embedding),

as all cuttings of the orbifold must span the same area. These restrictions are equivalent to

satisfying the group relations for a presentation. Note also that this domain is the area en-

closed by the four distinct 2–fold rotations, and that a full 2222 symmetry group is double

this quadrilateral over any of its edges, where this full domain has area exactly 2 units.

As an example, Fig. 2.9(b) shows a unit area parallelogram on Z×Z with corners

{0,0}, {r,s}, {p + r,q + s} and {p,q}. Each grid point in the plane represents elements

of the infinite group, hence we may express the corner points of the parallelogram (with

respect to the reference frame) as:

Q′
A = QBQCQB

Q′
B = QBQCQBQAQBQCQB

Q′
C = QB

Q′
T = QT

It is simple to show that the group relations (Q′
A)2 = (Q′

B)2 = (Q′
C)2 = (Q′

T )2 = I are
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satisfied for these new generators. The other group relation, where Q′
AQ′

BQ′
C must be equal

to Q′
T , is also satisfied by these elements (working shown below), hence the generators

Q′
T , Q′

A, Q′
B and Q′

C are a presentation of the symmetry group of the 2222 orbifold.

Q′
AQ′

BQ′
C = QBQC(QBQB)QCQBQAQBQC(QBQB)

= QB(QCQC)QBQAQBQC using (QB)2 = I

= (QBQB)QAQBQC using (QC)2 = I

= QAQBQC using (QB)2 = I

= QT

= Q′
T

Enumeration of all such embeddings of parallelograms of unit area in Z×Z may be

thought of as a 3–parameter family: the 5 parameters {p,q}, {r′,s′} and k, reduce to 3

when the area of the parallelogram is expressed as ps′ − r′q = 1. To ensure that no ad-

ditional symmetry points are located on the boundary of the parallelogram, the {p,q} (or

Q′
C) corner of the parallelogram is chosen such that {p,q} are coprime. One solution of

the other corner of the parallelogram, {r′,s′} (or Q′
A) is chosen such that the parallelo-

gram has unit area. For a given {p,q}, the full set of solutions for the other corner is

{r,s} = {r′,s′}+ k{p,q}. This 3–parameter family describes all embeddings of 2222 into

a discretised E2.

The orbifold 2223 has H2 as the universal cover, as given by the cost formula:

C = 2−∑
i

di = 2−
(

1
2

+
1
2

+
1
2

+
2
3

)
=−1

6

Begin by choosing an embedding of the orbifold to be a reference frame in H2, nominating

four generators to present the symmetry group: QT , QA, QB and QC. Consider the quadri-

lateral formed by connecting the four generating elements of the group (Fig. 2.10(a)),

establishing a reference frame and discrete infinite grid.

The group relations for the 2223 symmetry group are given by

< {QT ,QA,QB,QC} : (QA)2 = (QB)2 = (QC)2 = (QT )3 = I,QT = QAQBQC >

Fig. 2.10(b) shows a quadrilateral whose four corner points are elements of the infinite

group 2223. To establish if the corner points represent generators of the group, and hence
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if the quadrilateral is a valid presentation of the group, we consider the group relations.

The corner points of the quadrilateral may be expressed as:

Q′
T = QT

Q′
A = QBQCQB

Q′
B = QBQCQBQAQBQCQB

Q′
C = QB

(a) (b)

Figure 2.10: (a) An embedding of the 2223 orbifold into H2. The corners of the quadrilateral are a
reference frame grid for other embeddings. (b) A subsequent embedding of the 2223 orbifold into
H2 relative to the reference frame established previously.

It is straightforward to see that the group relations (Q′
A)2 = (Q′

B)2 = (Q′
C)2 = (Q′

T )3 = I

are satisfied for these elements. The other group relation, where Q′
AQ′

BQ′
C must be equal

to Q′
T , is also satisfied, with working shown below, and hence the quadrilateral shown is a

valid embedding of the 2223 orbifold in H2 given the reference frame.

Q′
AQ′

BQ′
C = QBQC(QBQB)QCQBQAQBQC(QBQB)

= QB(QCQC)QBQAQBQC using (QB)2 = I

= (QBQB)QAQBQC using (QC)2 = I

= QAQBQC using (QB)2 = I

= QT

= Q′
T



§2.2 Embedding orbifolds in the universal cover space 33

To enumerate possible embeddings, we determine possible locations of the Q′
C gener-

ator with respect to the reference frame: the analogue of finding the coprime {p,q} vertex

of the parallelogram. We fix the QT generator as an origin, and consider a π
3 sector of the

plane, as all others will be equivalent by symmetry (as was the case for the π
2 sector of

2222 in E2). The edge from the origin to Q′
C must not intersect any image of itself.

Consider a 3–fold rotation site, !0 , in Fig. 2.11(a) to be at the origin, along with an

image of the origin by a 2–fold operation, shown as the 3–fold rotation site !1 . Any

geodesic ray from the origin (whose end will be the location of Q′
C) will have exactly three

copies radiate from !1 , one in each of the sectors W1, W2 and W3. If Q′
C (the end of the

geodesic ray) is placed in the sector W3, as shown by the blue geodesic in Fig. 2.11(b), it

certainly intersects an image of itself radiating from !1. This prohibits the placement of

Q′
C in the sector W3.

(a) (b)

Figure 2.11: (a) The configuration of the 3–fold rotation at the origin (!0) and an image (!1),
where !1 divides H2into three sectors, W1, W2 and W3. (b) If Q′

C (the end of the blue geodesic) is
located in the W3 sector, the edge from the origin to Q′

C (the blue geodesic) will certainly intersect
an image of itself, as shown by the red geodesic.

(a) (b)

Figure 2.12: (a) The sector W3 can be excised and the boundary sewn together to form a bound-
ary free plane. (b) The result is a line of 2–fold rotations, terminating at a new 3–fold rotation.
Repeating the cutting process further removes territory from where Q′

C is prohibited.

We then remove this prohibited sector (to infinity) from H2. Fig. 2.12(a) shows how
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we may then sew up the remaining boundary to make the space boundary free once again.

The result is shown in Fig. 2.12(b), the 3–fold rotation !1 has now become a 2–fold

rotation, and the 3–fold rotations !2 and !3 have been joined. By use of the same

argument on this new configuration, further W3 sectors of the plane can excised and the

boundary sewn, resulting in an infinite line of 2–fold rotations on a boundary free plane.

These prohibited sectors are shown on the 2223 discretisation of H2 in Fig. 2.13.

Figure 2.13: Prohibited sectors of the 2223 discretisation of H2 are shown. There are infinitely
many prohibited sectors, located at every 3–fold rotation of the discretisation, where only three
such sectors are shown here. The remaining ‘allowed” section is a Euclidean subdomain of H2.

Reducing every 3–fold rotation of the discretisation of H2 to a 2–fold rotation trans-

forms the discretisation to exactly the 2222 symmetry group, hence, by the orbifold cost

formula, we are left with a discretisation of E2. The removal of sectors of the Hyperbolic

plane and subsequent sewing of the boundaries has resulted in exactly a boundary free

Euclidean plane.

By only removing territory in which the Q′
C location is prohibited, we have shown

that the scope of possible locations of Q′
C are in a Euclidean subset of H2, discretised by

exactly Z×Z. The same geometric argument may be used to show that the edge from the

origin to Q′
A is also limited to also lie within E2 discretised by Z×Z. The location of Q′

B

is then completely determined by Q′
A and Q′

C.

As a result of this ordered Euclidean subdomain of H2, we may index all possible
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quadrilateral domains of the 2223 orbifold exactly by embeddings of parallelograms of

unit area in Z×Z. Fig. 2.14 shows the Z×Z grid within a π
3 sector of the discretisation of

H2 by the 2223 reference frame embedding.

Figure 2.14: The positioning of the grid points of Z×Z in a π
3 sector of 2223 discretisation of H2.

An equivalent process may be applied to any 222k discretisation of H2. The rotational

symmetry at each k–fold vertex always restricts the location of the Q′
C generator to be

within the adjacent sector, and hence any 222k discretisation of H2 has an allowed sub-

domain for the embedding of the orbifold that is equivalent to the 2222 discretisation of

E2 within a 2π
k sector.

2.3 Embedded tilings commensurate with TPMS

Reticulation patterns of a TPMS must be commensurate with the sub–symmetries of the

chosen surface. The 2D asymmetric patch of each of the P, D and G surfaces is a triangle

bounded by in–surface mirrors meeting at angles of π/2, π/4 and π/6 at the corners of

the patch. The asymmetric patch corresponds to a single ∗246 triangle uniquely embedded

in H2, whose generators are mirrors R1, R2 and R3: the reflection R1 maps across the line

passing from ∗6 though ∗2 vertices, R2 from ∗2 through ∗4 vertices and R3 from ∗6 through

∗4 vertices [Robi 04a, Moln 02]. The infinite ∗246 pattern is shown in Fig. 2.15(a). Sim-

ilarly for the H surface, the smallest asymmetric patch of the surface is a quadrilateral

bounded by in–surface mirrors meeting at angles of π/6, π/2, π/2 and π/2 at each of the



36 Free Tilings of the Hyperbolic Plane

corners [Robi 04b]. This has hyperbolic orbifold ∗2226, and one example of this orbifold

is shown in the universal cover of the H surface (H2) in Fig. 2.15(b).

(a) (b)

Figure 2.15: ∗246 and ∗2226 tilings represented on the Poincaré Disc model of H2. The tilings
are coloured by an orientation preserving subgroup.

The H surface has a degree of freedom corresponding to a deformation of the surface

along the z–axis (variation of the ratio of a to c in the lattice parameters) [Hyde 03b]. This

gives a degree of freedom in the asymmetric patch, and a degree of freedom in the ∗2226

tiling of H2. The ∗2226 tile in H2 can be divided into two triangles, with the first having

angles π/6, α and β, and the second having angles π/2−α, π/2−β and π/2. The angles

α and β are related using hyperbolic trigonometric identities to give:

cos(α)cos(β)+ cos(π/6)
sin(α)sin(β)

=
sin(α)sin(β)
cos(α)cos(β)

This results in a one–parameter family of asymmetric domains for ∗2226 [Hyde 03b],

given by the following association:

cos(α) =
√

1− 13
16

cos2(β)−
√

3
4

cos(β)

Surface reticulations are also chosen adhere to the translational symmetries of the

TPMS: “◦◦◦” (in Conway’s notation), as one primitive unit cell of the oriented (coloured)

TPMS has integral curvature −8π, which corresponds to genus–3 with gluings. In doing

so, we ensure that reticulations are continuous over the primitive unit cell boundaries, and

also display all translations of the TPMS [Rams 09, Robi 04a, Robi 04b].

The combination of these symmetry requirements restricts possible reticulations of
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the surfaces to come from particular decorated orbifolds. Specifically, reticulation of the

P, D and G surfaces must have decorated orbifolds within the quotient group ∗246/◦◦◦:

the orbifold must be a subgroup of ∗246, yet always contain ◦◦◦ symmetries. The 131

possible orbifolds has been enumerated [Robi 04a], and this list of numbered groups are

presented in Appendix A. Likewise, reticulations of the H surface must have decorated

orbifolds within the quotient group ∗2226/◦◦◦: the orbifold must be a subgroup of ∗2226,

yet always contain ◦◦◦ symmetry. The 32 possible orbifolds commensurate with the

H surface are also enumerated [Robi 04b], and this numbered list is also presented in

Appendix A.

Before embedding with a commensurate symmetry, we must consider our final goal:

structures in E3. Where two reticulations of a single TPMS are related by an intrinsic sur-

face symmetry which lifts to a Euclidean isometry of 3D space, they are called conjugates,

and we wish to consider only one representative within a conjugacy class. In hyperbolic

terms, this indicates that tilings of H2 that are related by a symmetry of the underlying

surface tiling (∗246 or ∗2226) are considered within the same conjugacy class. An exam-

ple of two tilings of H2 that are related by a symmetry of ∗246, and will give equivalent

surface frameworks, is shown in Fig. 2.16.

(a) (b)

Figure 2.16: Two free tilings with symmetry ∗2223 (group 124 [Robi 04a]) that are related by a
reflection of the ∗246 tiling shown behind the tiling. These tilings fall within the same conjugacy
class, and they give equivalent frameworks on the TPMS.

The embedding into ∗246 or ∗2226 requires us to express the reference frame genera-

tors of the group in terms of the generators of the underlying tiling. For Coxeter and Hat

orbifolds, we must take into account automorphic embeddings of the orbifold. An auto-

morphism of an orbifold is an abstract symmetry of the orbifold. Where the automorphism

of an embedded orbifold is not a symmetry within the underlying tiling, automorphic em-
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beddings of a tiling, which are images of each other through the abstract symmetry, will

give distinct surface patterns. An example of two automorphic embeddings of the ∗2224

orbifold, which gives two distinct tilings not related by a symmetry of ∗246, is shown in

Fig. 2.17. For Stellates, enumeration of embedded parallelograms into the reference frame

accounts for all automorphic embeddings.

(a) (b) (c)

Figure 2.17: (a) Unique embedding of the ∗2224 (group 123 [Robi 04a]) orbifold into the ∗246
tiling, where the abstract symmetry of the orbifold is now asymmetrised. (b,c) Two regular ribbon
tilings related by an automorphism of ∗2224.

Regular ribbon tilings and their complements

A regular ribbon tiling is a tiling by infinite ribbons that has 1–transitive edges (one type

of tile edge), 1–transitive vertices (one type of tile vertex) and 1–transitive tiles (one type

of tile face). A complementary tiling, related to a regular ribbon tiling, has tile vertices and

faces interchanged, and edges interchanged with ghosted edges. Complementary tilings

are equivalent to regular, dense forests in alternative nomenclature [Hyde 00a]1. This ter-

minology is compatible with that for standard tilings.

In a regular ribbon tiling, 1–transitive edges imply that the degree–3 vertex of the

tile boundary must have either 3–fold symmetry or ∗3 symmetry. Further, 1–transitive

vertices indicate that an edge must have a midpoint at either a 2–fold rotation or ∗2 site.

The translation within a tile may be defined by some combination of ∗2 symmetries, 2–

fold rotations, ‘◦’ or ‘×’. Of the groups within the ∗246/◦◦◦ quotient group, 4 groups fit

these criteria: ∗2223 (group 124), 2∗23 (group 129), 2223 (group 118), and 23× (group

121). We find that simple decorations, such as regular ribbon tilings, on the 23× orbifold

1Regularity is an equivalent term in the two schema: i.e. in a dense forest, the tile between neighbouring
trees is a ribbon.
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has increased symmetry of 2∗23 (a supergroup of 23×), thus we disregard decorations

of this orbifold. We consider regular ribbon tilings and their complements on the three

remaining orbifolds, and their embedding into the ∗246 chart of H2.

The abstract orbifold ∗2223 supports a regular ribbon tiling with a decorative edge

passing from the ∗3 location along the mirror boundary to a ∗2 site. The decoration has

boundary vertices at the ∗3 corner, edge midpoints at the ∗2 corner, and an infinite transla-

tion generated by the parallel mirrors of the remaining two ∗2 corners. This decoration is

shown in Fig. 2.18 along with a table representing its Delaney–Dress encoding. We refer

to this tiling by the name 124R: the Regular ribbon tiling of group 124.

Chamber Class s0 s1 s2 m01 m12
A A B A 4 6
B B A B 4 6

Figure 2.18: The Delaney–Dress representation of a regular ribbon tiling on the ∗2223 orbifold:
124R. The edge passes along the mirror boundary from the ∗3 site to the ∗2 site.

The complement of the regular ribbon tiling on ∗2223 interchanges the 0–vertex and

2–vertex sites of the triangulation as well as the 1–vertex and 1̄–vertex sites. This pro-

cess swaps the boundaries of the tiles with the infinite translation axes of the tiles. The

Delaney–Dress encoding of the complementary regular ribbon tiling of ∗2223 is shown in

Fig. 2.19. We call this tiling 124C: the Complementary tiling of group 124.

Chamber Class s0 s1 s2 m01 m12
A A B A 6 4
B B A B 6 4

Figure 2.19: The Delaney–Dress coding of the complementary tiling on the ∗2223 orbifold: 124C.
It is obtained by interchanging the 0–vertex and 2–vertex sites and the 1–vertex and 1̄–vertex sites
of the regular ribbon tiling.

The ∗2223 orbifold has a unique embedding into the ∗246 chart of the P, D and G sur-



40 Free Tilings of the Hyperbolic Plane

faces [Robi 04a], but is not commensurate with the ∗2226 chart of the H surface [Robi 04b].

This embedded orbifold is composed of exactly two ∗246 triangles, glued along R3 (the

mirror passing from ∗6 to ∗4). This amalgamated domain has two ∗2 vertices from the

original two triangles, an additional ∗2 vertex from a gluing of two ∗4 vertices, and a ∗3

vertex from a gluing of two ∗6 vertices. One fundamental domain of the ∗2223 orbifold

embedded in the ∗246 is shown in Fig. 2.20(a).

(a) (b) (c)

Figure 2.20: (a) The embedding of the ∗2223 orbifold in the ∗246 tiling of H2: two ∗246 tri-
angles fused along an R3 boundary. (b) ∗246124R, the embedded regular ribbon tiling of ∗2223.
(c) ∗246124C, the embedding of the complementary regular ribbon tiling on ∗2223.

The ∗2223 orbifold has an abstract symmetry (automorphism) along the axis passing

from the ∗3 vertex to the opposite ∗2 vertex. Once the orbifold is embedded, however,

this abstract symmetry aligns with the R3 reflection of the ∗246 chart: the automorphism

of the orbifold corresponds to a conjugacy of the ∗246 map, so we need only consider

one form. The embedded regular ribbon tiling from Fig. 2.18 and the embedding of the

complementary tiling represented in Fig. 2.19 are shown in Fig. 2.20(b,c) respectively.

The interchange of the tile boundary for the medial axis, the axis of points with more than

one closest edge, is apparent. We refer to these embedded tilings by the names ∗246124R

and ∗246124C, symbolising the 124R and 124C tilings embedded in the ∗246 tiling of H2.

The orbifold 2∗23 (group 129) contains a 2–fold cone point (the peak of the hat, as

shown in Fig. 2.2(b)), with the open brim consisting of two mirrors intersecting each other

at two points, one intersection with an angle of π
2 and the other π

3 . A regular ribbon tiling

with a degree–3 vertex and symmetry 2∗23 has an edge passing from the ∗3 site along the

mirror boundary to the ∗2 site. This decoration and information can be represented by a

Delaney–Dress triangulation of the orbifold (Fig. 2.21), and is called 129R. Tiling 129C is

the complement of this tiling, representing an interchanging of the tile boundaries for the
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medial axes. The Delaney–Dress encoding of 129C is shown in Fig. 2.22.

Chamber Class s0 s1 s2 m01 m12
A A B A 3 9
B C A C 3 9
C B C B 3 9

Figure 2.21: The regular ribbon tiling of the 2∗23 orbifold. The decoration passes from the ∗3
site, along the mirror boundary, to the ∗2 site. This tiling is referred to by the label 129R.

Chamber Class s0 s1 s2 m01 m12
A A B A 9 3
B C A C 9 3
C B C B 9 3

Figure 2.22: The complement of the regular ribbon tiling on 2∗23, 129C. The edge passes from
the 2–fold rotation to the mirror boundary, incident at right angles. The edge would continue to a
copy of the 2–fold rotation in the neighbouring domain.

The 2∗23 orbifold embeds uniquely in ∗246 (Fig. 2.23(a)). The automorphism of the

2∗23 orbifold (an abstract mirror symmetry on the axes passing from the∗3vertex to the

2–fold rotation) is a conjugacy of the ∗246 tiling: we need only consider a single automor-

phic embedding of the orbifold. Fig. 2.23(b) and (c) show the embedding of the regular

ribbon tiling with 2∗23 symmetry (Fig. 2.21) and the complementary tiling (Fig. 2.22)

respectively. We call these two embedded tilings ∗246129R and ∗246129C, as they are em-

bedded in the ∗246 tiling of H2.

(a) (b) (c)

Figure 2.23: (a) The unique embedding of the 2∗23 orbifold into the ∗246 tiling of H2. (b) The
embedded regular ribbon tiling with symmetry 2∗23 (Fig. 2.21). (c) The embedded complement
of a regular ribbon tiling with symmetry 2∗23 (Fig. 2.22).
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A regular ribbon tiling is also supported by the 2223 Stellate orbifold (group 118).

The orbifold is decorated by an edge passing from the 3–fold rotation to a 2–fold rotation.

Fig. 2.24 shows the regular ribbon tilings tabular representation along with an image of

the decorated orbifold, cut open to lay (somewhat) flat. This tiling is referred to as 118R.

Fig. 2.25 shows the Delaney–Dress representation of the complementary regular ribbon

tiling with 2223 symmetry, known as 118C.

Chamber Class s0 s1 s2 m01 m12
A D B D 4 6
B C A C 4 6
C B D B 4 6
D A C A 4 6

Figure 2.24: Representation of the regular ribbon tiling on the 2223 orbifold. The 2–folds are at
QA, QB and QC, the 3–fold is at QT . The edge is from QT to QC.

Chamber Class s0 s1 s2 m01 m12
A D B D 6 4
B C A C 6 4
C B D B 6 4
D A C A 6 4

Figure 2.25: Encoding of the complementary regular ribbon tiling on 2223. The 2–folds are at QA,
QB and QC, and the 3–fold is QT . The edge is from QA to QB.

The distinct embeddings of the 2223 Stellate orbifold into the ∗246 chart of H2 dis-

cussed in Section 2.2, decorated by the free tilings given in Fig. 2.24 and Fig. 2.25, produce

distinct embedded decorations of H2. The positions of the reference frame generators QT ,

QA, QB and QC in the ∗246 chart are shown in Fig. 2.26. The full fundamental domain,

as given in the Delaney–Dress representations of the abstract tilings, may be obtained by

doubling the quadrilateral joining the generators across the line joining QT and QC.

Distinct embeddings of the decorated orbifold into ∗246 directly correspond to em-

bedded parallelograms of unit area in the Z×Z discretisation of E2. Fig. 2.27 shows two
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Figure 2.26: The locations of the reference frame generators of the 2223 symmetry group in the
∗246 tiling of H2.

decorations resulting from the embedding of the 2223 orbifold corresponding to the unit

area parallelogram with vertex at the origin, {p,q} = {0,1} and {r,s} = {1,0}. Addi-

tional symmetry is induced in the tiling by the embedding: these tilings have symmetry

∗2223, and are equivalent to those constructed on the ∗2223 orbifold (Fig. 2.20), namely

embedded tilings ∗246124R and ∗246124C.

(a) (b) (c)

Figure 2.27: (a) An embedded 2223 fundamental domain into ∗246, where Q′
C and Q′

A are located
at {0,1} and {1,0} respectively (see Fig. 2.14 for coordinate grid). This embedding in analogous to
a parallelogram in E2with {p,q}={0,1} and {r,s}={1,0}. (b) The embedded regular ribbon tiling.
(c) The embedded complementary tiling. Both have increased symmetry of ∗2223, equivalent to
the tilings shown in Fig. 2.20, namely embedded tilings ∗246124R and ∗246124C.

Fig. 2.28 shows the decorations resulting from an embedding of the 2223 orbifold in-

dexed by the E2 parallelogram {p,q} = {1,1} and {r,s} = {1,0}. Additional symmetry

is induced by the embedding, hence these tilings are equivalent to those constructed as

decorations of the 2∗23 orbifold (Figs. 2.23), which are embedded tilings ∗246129R and

∗246129C. Altering the values of r and s for embedded regular ribbon tilings and comple-

ments leaves both of the decorations unchanged.
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(a) (b) (c)

Figure 2.28: (a) An embedding of the 2223 domain into ∗246, where Q′
C and Q′

A are located at
{1,1} and {1,0} respectively. (b) The embedded regular ribbon tiling. (c) The embedded comple-
mentary tiling. This embedding has additional symmetries, equivalent to those constructed on the
orbifold 2∗23 (Fig. 2.23), namely ∗246129R and ∗246129C.

For all other embeddings, 2223 will be the maximal symmetry group of the tiling.

Where the maximal symmetry of the free tiling is 2223, the free tiling is given the name

∗246118R(n) or ∗246118C(n). The variable n ranges from 1 to ∞, and the free tiling is

given a value of n based on its relative edge length in H2: the embedding which has

2223 maximal symmetry and the shortest possible tile edge length of all embeddings will

have n = 1, the second shortest edge length n = 2, et cetera. Fig. 2.29 shows example

decorations from several embeddings of 2223, indexed by distinct parallelograms of E2.

The three parallelograms, as well as the embedded tiling names are:

1. {p,q} = {2,1} and {r,s} = {1,0}: ∗246118R(1) and ∗246118C(1) (Fig. 2.29(b,c))

2. {p,q} = {3,1} and {r,s} = {1,0}: ∗246118R(2) and ∗246118C(2) (Fig. 2.29(e,f))

3. {p,q} = {3,2} and {r,s} = {1,1}: ∗246118R(3) and ∗246118C(3) (Fig. 2.29(h,i))

As the choice of parallelograms become increasingly oblique (i.e. the tiling approaches

∗246118R(∞) and ∗246118C(∞)), the tilings approach a degenerate case of a set of star

graphs with a vertex and three infinite edges in the ribbon tiling case, and a set of asymp-

totic triangles in the complementary tiling case. Some of these embedded free tilings were

studied previously [Hyde 00a]. There are an infinite number of embeddings of the deco-

rated 2223 orbifold into the ∗246 chart of H2, where these may be indexed by embedded

parallelograms of E2. We have shown the three free tilings which result from the three

embeddings with the shortest tile edge lengths in H2, and the methodology presented may

be used to further enumerate all embeddings, if so desired.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.29: Example decorations from several embeddings of 2223. The embedded tiling
names are (b) ∗246118R(1), (c) ∗246118C(1), (e) ∗246118R(2), (f) ∗246118C(2), (h) ∗246118R(3)
and (i) ∗246118C(3).
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The ∗2224 and 2224 symmetry groups permit regular ribbon tilings with degree–4

vertices by a similar construction to the degree–3 tiling case. Regularity and edge–1 tran-

sitivity are ensured by a ∗4 junction or 4–fold rotation at the tile vertex, and vertex–1

transitivity by a ∗2 junction or 2–fold rotation at the edge midpoint. The remaining two ∗2

junctions or 2–fold rotations define the translation symmetry of the infinite ribbon tile.

Consider first the ∗2224 orbifold, or group 123 [Robi 04a]. A regular ribbon tiling dec-

orates the ∗2224 orbifold by an edge passing from the ∗4 site, along the mirror boundary,

to a ∗2 site. These symmetry components are situated on the infinite boundary compo-

nents of the tile. The two remaining ∗2 sites of the orbifold define the translation along the

interior of the infinite tile. This decoration of the ∗2224 orbifold, known as 123R, is shown

in Fig. 2.30 along with a table representing the Delaney–Dress encoding of the decorated

orbifold.

Chamber Class s0 s1 s2 m01 m12
A A B A 4 8
B B A B 4 8

Figure 2.30: Encoding of a regular ribbon tiling on the ∗2224 orbifold, known as 123R. The
decorations passes from the ∗4 site of the orbifold, along the mirror boundary, to a ∗2 site.

Chamber Class s0 s1 s2 m01 m12
A A B A 8 4
B B A B 8 4

Figure 2.31: Encoding of the complement of a regular ribbon tiling on the ∗2224 orbifold, known
as 123C. The 0–vertex and 2–vertex sites have been inverted, as well as the 1–vertex and 1̄–vertex
sites. The decoration now passes from a ∗2 site along a mirror boundary to another ∗2 site.

The complement of a regular ribbon tiling on ∗2224 inverts the 0–vertex and 2–vertex

sites of the Delaney–Dress triangulation, as well as inverting the 1–vertex and 1̄–vertex



§2.3 Embedded tilings commensurate with TPMS 47

sites. This exchange of vertices interchanges the boundary of the tile with the axis which

is invariant under the internal symmetries of the tile, which is exactly the infinite translation

axis of the tile. The Delaney–Dress encoding of the complementary regular ribbon tiling

of ∗2224, known as the 123C tiling, is shown in Fig. 2.31.

The ∗2224 orbifold may be embedded into the ∗246 chart of the P, D and G sur-

faces [Robi 04a], but is not commensurate with the ∗2226 chart of the H surface [Robi 04b].

In the process of embedding the orbifold, an automorphism of ∗2224 (along the axis from

the ∗4 vertex to the opposite ∗2 vertex) is asymmetrised with respect to the ∗246 tiling.

The symmetry breaking induces two geometrically distinct automorphic free tilings for

each abstract decoration of the orbifold. Fig. 2.32 shows the ∗2224 orbifold embedded in

the ∗246 tiling of H2, as well as two automorphic regular ribbon tilings (represented in

Fig. 2.30), and the two complementary tilings (represented in Fig. 2.31). We label these

embedding ∗246123R(n) and ∗246123C(n), where n takes the value of 1 for the embedding

with the shorter edge length, and 2 for the embedding with the longer edge length.

(a) (b) (c)

(d) (e)

Figure 2.32: (a) Embedding of the ∗2224 orbifold into the ∗246 tiling, where the abstract symmetry
of the orbifold is now asymmetrised. (b,c) Two automorphic regular ribbon tilings (Fig. 2.30),
titled ∗246123R(1) and ∗246123R(2) respectively. (d,e) Two automorphic complementary tilings
(Fig. 2.31), which are known as ∗246123C(1) and ∗246123C(2) respectively.
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We note that the 2∗24 orbifold is not a member of the quotient group ∗246/◦◦◦,

and hence we do not consider regular ribbon tilings or their complements constructed on

this symmetry group. In general, however, this orbifold will support such regular ribbon

tilings, and may be constructed as per the 2∗23 regular ribbon tilings.

A regular ribbon tiling decorates the 2224 orbifold, group 114 [Robi 04a], by an edge

passing from the 4–fold rotation to a 2–fold rotation. Fig. 2.33 shows the tabular repre-

sentation of this decoration, along with a decorated image of the orbifold. This tiling is

known as 114R, as it the regular ribbon tiling of group 114.

Chamber Class s0 s1 s2 m01 m12
A D B D 4 8
B C A C 4 8
C B D B 4 8
D A C A 4 8

Figure 2.33: A regular ribbon tiling on the 2224 orbifold, known as 114R. The decoration passes
from the 4–fold rotation to the 2–fold rotation labelled QC.

Exchanging the tile boundary with the infinite translation axis of the tile gives a com-

plementary free tiling. Fig. 2.25 shows the encoding of this complementary regular ribbon

tiling, the 114C tiling, which has the decorative edge passing between two distinct 2–fold

rotations.

Chamber Class s0 s1 s2 m01 m12
A D B D 8 4
B C A C 8 4
C B D B 8 4
D A C A 8 4

Figure 2.34: The complement to the regular ribbon tiling on the 2224 orbifold domain, also known
as 114C. The decoration passes between the 2–fold rotations labelled QA and QB.

We index H2 embeddings of the 2224 orbifold by embedded parallelograms of E2, as

is the case for all 222k orbifolds. A quadrant of E2 embeds in a π
4 sector of the 2224 dis-

cretisation of H2(Fig. 2.35(a)). The embedded quadrant has both coordinates positive, and
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passing to adjacent π
4 sectors of the 2224 discretisation yields distinctly signed quadrants

of E2.

The reference frame embedding of the generators of the 2224 orbifold into the ∗246

tiling of H2 is set (Fig. 2.35(b)). A fundamental domain (equivalent to that which is shown

in the Delaney–Dress encoding) may be obtained by doubling the quadrilateral formed by

the generating elements across the line joining QT and QC. Distinct free tilings result from

the choice of embedded unit parallelograms in the Z×Z grid of E2.

(a) (b)

Figure 2.35: (a) Coordinates of the grid Z×Z within the 2224 discretisation of H2. (b) The
reference frame generators within the ∗246 tiling of H2.

Mirrors are inherent in the geometry when embedding the parallelograms

{p,q} = {0,1}, {r,s} = {1,0} and {p,q} = {1,0}, {r,s} = {0,1} into the 2224 discreti-

sation of H2. This results in tilings with ∗2224 symmetry, equivalent to the ∗246123R(1),

∗246123R(2), ∗246123C(1) and ∗246123C(2) embedded tilings, as constructed on the ∗2224

orbifold (Fig. 2.32).

The regular ribbon tilings and complementary tilings that result from the embedding

of some Euclidean parallelograms into the 2224 discretisation of H2 are given as exam-

ples (Fig. 2.36). We name these embedded tilings ∗246114R(n) for regular ribbon tilings

and ∗246114C(n) for their complements, where n counts from smallest edge length (by

hyperbolic length) within the embedded fundamental domain upwards through all possi-
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ble embeddings. The Euclidean parallelograms defining the embeddings, as well as their

embedded tiling names, are given by:

1. {p,q} = {1,1} and {r,s} = {1,0}: ∗246114R(1) and ∗246114C(1) (Fig. 2.36(b,c))

2. {p,q} = {1,2} and {r,s} = {1,1}: ∗246114R(2) and ∗246114C(2) (Fig. 2.36(e,f))

3. {p,q} = {2,1} and {r,s} = {1,0}: ∗246114R(3) and ∗246114C(3) (Fig. 2.36(h,i))

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.36: Example decorations from several embeddings of 2224. Their embedded tiling
names are (b ∗246114R(1), (c) ∗246114C(1), (e) ∗246114R(2), (f) ∗246114C(2), (h) ∗246114R(3),
(i) ∗246114C(3).
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Tilings with 5–fold regular symmetry are not compatible with either the ∗246 or the

∗2226 tiling, hence we disregard these cases. Regular ribbon tilings with 6–fold symmetry

at the tile vertex may have symmetry ∗2226, 2∗26, 2226 or 26×. Regular ribbon tilings

on the 26× orbifold always have increased symmetry of 2∗26, hence we disregard decora-

tions of this orbifold. The ∗2226 symmetry group is in the ∗2226/◦◦◦ quotient group, the

2∗26 symmetry group is in the ∗246/◦◦◦ quotient group, and the 2226 symmetry group

is in both of the ∗246/◦◦◦ and ∗2226/◦◦◦ quotient groups.

A regular ribbon tiling reticulates the ∗2226 orbifold, which is group 32 of the

∗2226/◦◦◦ quotient group [Robi 04b], by passing from the ∗6 site, along a mirror bound-

ary, to a ∗2 site (Fig. 2.37). These symmetry elements, to which the decoration is incident,

generate the boundary components of the infinite tile. The set of parallel mirrors contained

within the two remaining ∗2 sites generate the single internal translation of the infinite rib-

bon tile. This tiling is known as 32R, as it is the regular ribbon tiling of group 32 in the

∗2226/◦◦◦ quotient group.

Chamber Class s0 s1 s2 m01 m12
A A B A 4 12
B B A B 4 12

Figure 2.37: A regular ribbon tiling represented as a decoration on the ∗2226 orbifold, passing
from the ∗6 site, along a mirror boundary, to a ∗2 site. This tiling is known as the 32R tiling.

The complement of the regular ribbon tiling exchanges the infinite translation axis of

the infinite ribbon tile with the boundary components of the tile. On the ∗2226 orbifold,

this complementary tiling can be represented by a decorative edge passing from a ∗2 site,

along a mirror boundary, to another ∗2 site of the orbifold. This tiling, known as 32C, is

encoded in Fig. 2.38.

Chamber Class s0 s1 s2 m01 m12
A A B A 12 4
B B A B 12 4

Figure 2.38: The complement to the regular ribbon tiling on the ∗2226 orbifold. The decoration
passes from a ∗2 site, along a mirror boundary, to another ∗2 site. This tiling as known as the 32C
tiling.



52 Free Tilings of the Hyperbolic Plane

The ∗2226 orbifold is precisely the ∗2226 chart of H2 inherited from the H surface.

The orbifold has an abstract symmetry (automorphism) that swaps the two ∗2 vertices

adjacent to the ∗6 corner. This abstract symmetry is broken by the embedding of the

∗2226 domain into H2 (by the free parameter of the H surface discussed previously), and

hence the automorphic tilings have distinct geometries in the ∗2226 chart. Fig. 2.39 shows

the embedded fundamental domain of the ∗2226 orbifold, along with the four free tilings

of this symmetry group (two automorphic versions of the regular ribbon tiling, and two of

the complementary tiling, all with symmetry ∗2226). These embedded tilings are named

to reflect their embedding into the ∗2226 tiling of H2: hence they are named ∗222632R(1),

∗222632R(2), ∗222632C(1) and ∗222632C(2), where the ‘1’ refers to a shorter edge length

in one asymmetric domain.

(a) (b) (c)

(d) (e)

Figure 2.39: (a) A fundamental domain of the ∗2226 orbifold uniquely embedded into the ∗2226
tiling of H2. (b,c) Two automorphic regular ribbon tilings on the ∗2226 orbifold, known as
∗222632R(1) and ∗222632R(2). (d,e) Two automorphic versions of the complementary tiling on
the ∗2226 orbifold, namely ∗222632C(1) and ∗222632C(2).

We treat the 2∗26 orbifold equivalently to the 2∗23 orbifold considered previously.

We construct two simple orbifold decorations: an edge passing from the ∗6 vertex to

the ∗2 vertex to give the regular ribbon tilings on this orbifold, and the complementary
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tiling having an edge passing from the 2–fold rotation, through a mirror boundary at right

angles, to an image of the same 2–fold rotation. The topology of these two tilings, named

122R and 122C, are abstractly represented by the two Delaney–Dress symbols given in

Figs. 2.40 and 2.41.

Chamber Class s0 s1 s2 m01 m12
A A B A 3 18
B C A C 3 18
C B C B 3 18

Figure 2.40: Encoding of the topology of a regular ribbon tiling on the 2∗26 orbifold: 122R The
decoration consists of an edge passing from the ∗6 site, along the mirror boundary to the ∗2 site.

Chamber Class s0 s1 s2 m01 m12
A A B A 18 3
B C A C 18 3
C B C B 18 3

Figure 2.41: Encoding of the topology of a complementary regular ribbon tiling on the 2∗26
orbifold: 122C. The decoration consists of an edge passing from the 2–fold rotation to an image of
itself through a mirror boundary.

Fig. 2.42(a) shows the unique embedding of the 2∗26 orbifold into the ∗246 chart of

H2. The automorphism of the orbifold 2∗26 is a symmetry line passing from the ∗2 ver-

tex to the 2–fold rotation, mapping the ∗6 site to the other ∗6 site in the embedding. This

symmetry is broken with respect to the ∗246 chart when the orbifold is embedded, hence

we consider both geometries that arise from automorphic embeddings. Fig. 2.42(b,c) show

the two automorphic regular ribbon tilings with distinct geometry that arise from the em-

bedding of the 122R tiling (Fig. 2.40) in the ∗246 chart of H2. These embedded tilings are

symbolised by ∗246122R(1) and ∗246122R(2) respectively, where the former has a shorter

edge length in the asymmetric domain. Fig. 2.42(d,e) also shows the two automorphic

complementary tilings given by the embedding of the 122C tiling (Fig. 2.41). These tilings

are called ∗246122C(1) and ∗246122C(2) respectively.
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(a) (b) (c)

(d) (e)

Figure 2.42: (a) Unique embedding of the 2∗26 orbifold into the ∗246 chart of H2. (b,c) The two
automorphic regular ribbon tilings resulting embedding of the 2∗26 domain, namely ∗246122R(1)
and ∗246122R(2). (d,e) The two automorphic complementary tilings called ∗246122C(1) and
∗246122C(2).
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A regular ribbon tiling is constructed on the 2226 orbifold (group 31 in ∗2226/◦◦◦ or

group 93 in ∗246/◦◦◦ [Robi 04b, Robi 04a]) by an edge passing from the 6–fold rotation

to any 2–fold rotation. Fig. 2.43 shows the Delaney–Dress representation of this decora-

tion, and an image of the decorated orbifold. We call this tiling either 31R where it may

be embedded in the ∗2226 tiling, or 93R for embedding in ∗246. The exchange of the

tile boundary with the medial axis gives the complementary tiling, whose Delaney–Dress

encoding is sown in Fig. 2.44. This tiling is called 31R for ∗2226 embeddings or 93R for

∗246 embeddings.

Chamber Class s0 s1 s2 m01 m12
A D B D 4 12
B C A C 4 12
C B D B 4 12
D A C A 4 12

Figure 2.43: Encoding of the regular ribbon tiling on 2226, having the decoration passing from
the 6–fold rotation to the 2–fold rotation marked QC. We call this tiling either 31R where it may be
embedded in the ∗2226 tiling, or 93R for embedding in ∗246.

Chamber Class s0 s1 s2 m01 m12
A D B D 12 4
B C A C 12 4
C B D B 12 4
D A C A 12 4

Figure 2.44: Encoding of the complement of the regular ribbon tiling on 2226. The decoration
passes between the 2–fold rotations marked QA and QB. This tiling is called 31R for ∗2226 embed-
dings or 93R for ∗246 embeddings.

The 2226 orbifold is commensurate with both of the ∗246 and ∗2226 tilings, and can

be mapped onto the P, D, G and H surfaces. To assign geometry commensurate with the

surfaces, we utilise parallelograms embedded in E2 to embed the orbifold into H2 given a

specific reference frame (Section 2.2). The positions of the reference frame generators for
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the 2226 symmetry group in the ∗2226 and ∗246 tilings are shown in Fig. 2.45.

(a) (b)

Figure 2.45: The reference frame generators for the 2226 symmetry group in the (a) ∗2226 and
(b) ∗246 tilings. To establish an integer grid, QA, QB and QC are located at {0,1}, {1,1} and {1,0}
respectively.

We embed the abstract decorations of 2226, tilings 31R and 31C, into the ∗2226 chart

of H2. This process specifies three generators of the 2226 symmetry group relative to the

reference frame embedding, and the full fundamental domain is found by doubling the

quadrilateral formed across the line connecting QT –QC. To achieve this embedding, we

specify a {p,q} and {r,s} value in Z×Z, where {p,q} designates the position of QC and

{r,s} designates the position of QA. The geometry inherited from embedding the parallelo-

grams {p,q}= {0,1} and {r,s}= {1,0}, as well as {p,q}= {1,0} and {r,s}= {0,1} have

mirror symmetry present, giving a tiling with ∗2226 symmetry. These embedded tilings

are equivalent to those constructed on the ∗2226 orbifold (Fig. 2.39), called ∗222632R(1),

∗222632R(2), ∗222632C(1) and ∗222632C(2).

Fig. 2.46 shows three examples of embedded regular ribbon tilings and complementary

tilings, where the maximal symmetry is 2226. The embedding of the 2226 domain in the

∗2226 tiling of H2 is inherited from parallelograms in E2. We give their parallelogram

coordinates and embedded tiling names:

1. {p,q} = {1,1} and {r,s} = {0,1}: ∗222631R(1) and ∗222631C(1) (Fig. 2.46(b,c))

2. {p,q} = {2,1} and {r,s} = {1,1}: ∗222631R(2) and ∗222631C(2) (Fig. 2.46(e,f))

3. {p,q} = {1,2} and {r,s} = {0,1}: ∗222631R(3) and ∗222631C(3) (Fig. 2.46(h,i))
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.46: Example decorations from embedding 2226 into the ∗2226 chart of H2.
(b) ∗222631R(1), (c) ∗222631C(1), (e) ∗222631R(2), (f) ∗222631C(2), (h) ∗222631R(3),
(i) ∗222631C(3).
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We now consider embeddings of the 93R and 93C into the ∗246 chart of H2. The

embedding associated with {p,q} = {0,1} and {r,s} = {1,0} (recall that {p,q} always

specifies the QC value), as well as the embedding {p,q} = {2,1} and {r,s} = {1,1} will

give an increase of symmetry of the pattern to 2∗26, which are the tilings ∗246122R(1),

∗246122R(2), ∗246122C(1) and ∗246122C(2), as seen in Fig. 2.42.

Fig. 2.47 shows two examples of embedded regular ribbon and complementary tilings

into the ∗246 chart. The embeddings used for these tilings correspond to the parallelo-

grams in E2 with coordinates, and embedded tiling names, as follows:

1. {p,q} = {1,1} and {r,s} = {0,1}: ∗24693R(1) and ∗24693C(1) (Fig. 2.47(b,c))

2. {p,q} = {1,2} and {r,s} = {0,1}: ∗24693R(2) and ∗24693C(2) (Fig. 2.47(e,f))

(a) (b) (c)

(d) (e) (f)

Figure 2.47: Example decorations from several embeddings of 2226 into the ∗246 chart of H2,
indexed by distinct parallelograms (a–c) {p,q} = {1,1} and {r,s} = {0,1}, known as ∗24693R(1)
and ∗24693C(1), (d–f) {p,q} = {1,2} and {r,s} = {0,1}, known as ∗24693R(2) and ∗24693C(2).

These cases cover some examples of the embedding of regular ribbon tilings com-

mensurate with the genus–3 TPMS chosen, the regular ribbon tiling supported only by

orbifolds of the form 222k. We have, however, provided a method for indexing of possible

embeddings of orbifolds of this form (222k), regardless of the orbifold decoration.
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2.4 Lower Order Symmetry Groups

An indexing by Euclidean parallelograms has been possible for all of the embedded orb-

ifolds presented so far. A simple extension of this indexation includes a slightly broader

set of orbifolds: those where we may index embeddings by gluing distinct Euclidean par-

allelograms across an edge. This surgery enables indexation of stellate orbifolds of the

type 2222j. We explain this construction, and then present examples of embedded 22223

orbifolds with a specific decoration.

A 2222j orbifold is double the size of a 222k orbifold for k = 2 j, by the orbifold ‘cost’

formula (Section 2.0.1): 22223 is twice the area of 2226. An embedded 2222j domain

may be constructed by taking a 222k symmetry group and doubling across an edge, where

the k–fold rotation halves (becoming a j–fold rotation), one 2–fold rotation is deleted, and

two copies of the remaining two 2–fold rotations give the four 2–fold rotations of 2222j.

These embedded 2222j domains form a subset of the possible embeddings of the domain,

and we extend here to encompass all possible embedded domains.

To construct a 22222 domain using multiple 2224 domains ( j = 2, k = 2 j = 4), we

begin with a π
4 sector of H2 discretised by 2224 and the Z×Z grid. We then:

1. Set an origin. This will be a 4–fold rotation of 2224, and will end up as a 2–fold

rotation of the 22222 symmetry group.

2. Select Q′
C (or {p,q}) as a coprime in the Z×Z grid.

3. Select any Q′
A ({r1,s1} in this case) such that ps1 − qr1 = 1. The result is a unit

parallelogram that embeds as a 2224 quadrilateral, located on a specific side of Q′
C.

4. Select any Q′′
A (called {r2,s2}) such that ps2−qr2 =−1. This is a quadrilateral that

sits on the opposite side of the Q′
C edge to the first constructed quadrilateral.

5. When the the symmetry element Q′
C is discarded and the symmetry of the 4–fold

rotation is reduced to a 2–fold rotation, the remaining five 2–fold rotations define an

embedded 22222 symmetry group. This process is shown in Fig. 2.48.

When embedding the 22222 domain into ∗246, we are embedding it into the 2224

reference frame. Hence there are three distinct infinite sets of 2–fold rotations, which cor-

respond to the images of each of the three distinct 2–fold rotations of 2224. These three

distinct sets are categorised by the 2–fold rotations which lie at ∗6 sites, ∗4 sites and ∗2
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(a) (b) (c)

Figure 2.48: (a) Q′
C (or {p,q}) is the coprime pair {0,1} in the Z×Z grid, and Q′

A ({r1,s1})
is the point {1,0}, where ps1 − qr1 = (0)− (1) = −1. This parallelogram embeds as a 2224
quadrilateral. (b) Q′′

A ({r2,s2} = {−1,1}) is selected such that ps2− qr2 = (0)− (−1) = 1. This
gives a quadrilateral on the opposite side of Q′

C. (c) When Q′
C is discarded, the 4–fold reduced to a

2–fold, and the remaining 2–fold rotations define 22222.

sites respectively. By choosing Q′
C from a particular set of 2–fold rotations, we desig-

nate which set of 2–fold rotations will not be isometries of the 22222 embedding. Thus

there are three embeddings of the 22222 orbifold with distinct generators, as described

in [Robi 04a].

Chamber Class s0 s1 s2 m01 m12
A A B A 8 4
B C A B 8 4
C B D C 8 6
D D C D 8 6

Figure 2.49: The Delaney–Dress symbol for the ∗22223 orbifold decoration having one edge pass
from the ∗3 vertex along the mirror boundary to a ∗2 vertex, called 26R A visual representation of
the decoration and chambers on the orbifold is also shown.

More generally, the 4–fold vertex in the example that has been constructed may be

any even number of rotations, thus an equivalent construction will work for any 2222j orb-

ifold. The examples we wish to analyse with this construction are the symmetry groups

∗22223 (group 26 in ∗2226/◦◦◦) and 22223 (group 22 in ∗2226/◦◦◦ and group 49 in
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∗246/◦◦◦). Consider free tilings that are regular (1–transitive edges), and the infinite tiles

are branched rather than ribbons. These branched tiles induce vertices in the complemen-

tary tiles, rather than infinite geodesic boundaries in the case of ribbon tilings, and we omit

these complementary tilings. The Delaney–Dress representation of the decoration of the

∗22223 domain is given in Fig. 2.49: as a decoration of the orbifold, this tiling is called

26R.

There is one embedding of this orbifold into the ∗2226 domain that is commensurate

with the translational symmetries of the H surface (◦◦◦) [Robi 04b]. This embedding and

the resulting embedded free tiling is shown in Fig. 2.50. This embedded tiling is called

∗222626R.

(a) (b)

Figure 2.50: (a,b) One embedding of the ∗22223 domain into the ∗2226 tiling of H2, and the
resulting free tiling: ∗222626R.

The only regular free tiling of the 22223 orbifold is shown in Fig. 2.51, having a

single edge passing from the 3–fold rotation to the 2–fold rotation called QE . This abstract

decoration of the orbifold is called 22R as a member of the ∗2226/◦◦◦ quotient group,

and 29R as a member of ∗246/◦◦◦.

To embed this orbifold in the ∗2226 tiling of H2, we select parameters to form two

euclidean parallelograms with a common edge. Set the Z×Z grid to be as located for

the embedding of 2226, which we show again in Fig. 2.52: the point QA is located at the

coordinate {0,1}, QB is at {1,1} and QC is at {1,0}.

The vertex Q′
C (the 2–fold rotation that will not be a generator of 22223) must be

chosen as an image of QC (not an image of QA or QB). This will ensure that the 22223

group constructed will have the correct generators to be a member of ∗2226/◦◦◦. If Q′
C

is chosen to be at an image of QA or QB, this will construct a 22223 group that is not a
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Chamber Class s0 s1 s2 m01 m12
A E B E 8 4
B C A F 8 4
C B D G 8 6
D H C H 8 6
E A F A 8 4
F G E B 8 4
G F H C 8 6
H D G D 8 6

Figure 2.51: The encoding for the 22223 orbifold decoration having one edge pass from the 3–fold
rotation to the 2–fold rotation marked QE . This tiling is called 22R as a member of the ∗2226/◦◦◦
quotient group, or 29R as a member of ∗246/◦◦◦.

Figure 2.52: The reference frame generators for the 2226 symmetry group in the ∗2226 tiling. To
establish an integer grid, QA, QB and QC are located at {0,1}, {1,1} and {1,0} respectively.

member of the ∗2226/◦◦◦ quotient group. To ensure the correct group is obtained, we

restrict the position of Q′
C to be a coprime integer pair {p,q}, where p is even (or 0) and q

is odd (This restriction ensures that the deleted 2–fold rotation is an image of QC).

Fig. 2.53 shows the construction of a fundamental domain of the 22223 symmetry

group by the parameters Q′
C = {0,1} and Q′

A = {−1,0}, where the determinant of the

parallelogram ps1−qr1 = (0)− (−1) = 1 and Q′
E = {1,0}, where the determinant of the

second parallelogram is ps2 − qr2 = (0)− (1) = −1. The geometry resulting from the

embedding has additional symmetry of ∗22223, and the decoration is equivalent to one

constructed on the ∗22223 orbifold, and shown in Fig. 2.50(b).

Consider the decoration of the orbifold shown in Fig. 2.51. The tiling boundary is

composed of a single edge which passes from the 3–fold rotation to Q′
E . Thus the free

tiling depends only on the position of Q′
E , and remains unchanged for distinct choices of

Q′
A, Q′

B and Q′
D. We recall that the point Q′

E may be any coprime pair in the integer grid,
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(a) (b) (c)

Figure 2.53: (a) Q′
C is the point {0,1} in the Z×Z grid. Two quadrilaterals are constructed either

side of this line, with Q′
A = {−1,0} and Q′

E = {1,0}. (b) The resulting 22223 fundamental domain.
(c) The free tiling resulting from the decorated and embedded orbifold, with increased symmetry
of ∗22223.

{r2,s2}, where r2 is odd, hence we need only select the position of Q′
E with this restriction

to completely define the tiling. Further, by conjugacies of the ∗2226 grid, we need only

consider coprime pairs in the positive–positive quadrant of Z×Z.

Fig. 2.54 shows three examples of the decorated and embedded 22223 orbifold in the

∗2226 tiling of H2. The three embeddings are defined by the choice of Q′
E to be the fol-

lowing coordinates in Z×Z: Q′
E = {1,1} (namely ∗222622R(1), shown in Fig. 2.54(a)),

Q′
E = {1,2} (namely ∗222622R(2), shown in Fig. 2.54(b)), and Q′

E = {3,2} (namely

∗222622R(4), Fig. 2.54(c)).

(a) (b) (c)

Figure 2.54: Three embeddings of the decorated 22223 orbifold in the ∗2226 tiling of H2to give
three distinct free tilings. Q′

E is chosen to be (a) {1,1}: ∗222622R(1), (b) {1,2}: ∗222622R(2),
(c) {3,2}: ∗222622R(4).

The symmetry group 22223 is also a subgroup of the ∗246 symmetry group. Hence we

can consider embedding the same decorated orbifold to be commensurate with the ∗246
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tiling. This embedding follows the same process as for the ∗2226 embedding, however

the location of the integer grid in H2 is slightly different (see examples in Fig. 2.47 for

the location of the integer grid with respect to the ∗246 tiling). Fig. 2.55 shows a few

examples, where the location of Q′
E is varied as follows:

1. Q′
E = {1,1}: ∗24649R(1) (Fig. 2.55(a))

2. Q′
E = {1,2}: ∗24649R(2) (Fig. 2.55(b))

3. Q′
E = {3,2}: ∗24649R(3) (Fig. 2.55(c))

(a) (b) (c)

Figure 2.55: Three embeddings of the decorated 22223 orbifold in the ∗246 tiling of H2to give
three distinct free tilings. Q′

E is chosen to be (a) {1,1}: ∗24649R(1), (b) {1,2}: ∗24649R(2),
(c) {3,2}: ∗24649R(3).

This chapter presented a series of simply constructed free tilings. They were con-

structed to be commensurate with the symmetries of the genus–3 TPMS: the P, D, G and

H surfaces. For a decoration of a Stellate orbifold, an infinite number of distinct embed-

dings into the surface charts exists, which all lead to distinct tilings of the surfaces. We

presented the simplest embeddings of such tilings, along with the methodology to con-

struct an infinite series of embedded tilings.

Free tilings are of interest because of the structures that result from their reticulation

over the TPMS. In the case of regular ribbon tilings, the structures that result are the

interpenetration of multiple net components. In the case of the complementary tilings,

the vertex–free geodesic boundaries map to infinite 1–dimensional filaments, which are

woven together in structures of varying complexity. This beautiful set of 3D structures

will be presented in Ch. 3.


