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Chapter 5

Dilatancy of Woven Filament Arrays

We have developed a technique to generate a variety of close-packed arrays of one dimen-

sional filaments, via projection of free tilings in the two-dimensional Hyperbolic plane

(H2) into three-dimensional Euclidean space (E3), as decribed in Ch. 3. A rich catalogue

of filament are constructed using this technique, with varying degrees of entanglement of

the filaments. In Ch. 4, we have adapted algorithms developed to form canonical ‘ideal’

or ‘tight’ embeddings of knots [Katr 96, Pier 98] to arrive at canonical geometries for our

weavings.

The existence of curvilinear filament geometries in tight weavings has an unexpected

consequence, namely the possibility of 3D weavings that exhibit dilatancy, accompanied

by a lowering of the fibre packing fraction and the formation of a more open weave: the

volume of the weaving may be expanded while maintaining the inter-filament contacts

through filament straightening. Equivalently, an internally driven straightening of the fil-

aments within the tight configuration of a dilatant weaving will result in an expansion of

the material without loss of filament contacts. We see dilatancy as an attractive material

property and dilatant weaving as design target for new materials.

The free volume within a chiral, cubic and finitely dilatant weaving, the ideal con-

formation of the G129C structure, a helical version of the Σ+ rod packing, expands more

than 5-fold on filament straightening. This remarkable three-dimensional weaving allows

variation of packing density without loss of structural rigidity and is an attractive design

target for materials. We propose that the ideal G129C weaving is formed by keratin fibres

in the outermost layer of mammalian skin, likely templated by a folded membrane.
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182 Dilatancy of Woven Filament Arrays

5.1 Dilatant filament weavings

To determine if a 3-periodic weaving is dilatant, end-state configurations of the weaving

under dilation must be prescribed. The initial configuration is the ideal form as determined

by the PB-SONO algorithm described in Ch. 4; this has maximum filament diameter and

a maximum number of inter-filament contacts per filament length (standardised by the fil-

ament diameter). We call the terminal configuration the maximal configuration, realised as

follows. The unit cell is repeatedly subjected to homothetic expansion while maintaining

the filament diameter, and the filaments subsequently tightened within the swollen unit

cell. (This is equivalent to shrinking the filament diameter while maintaining the unit cell

size and subsequently tightening the filaments.) The maximal configuration is reached

when a further unit cell expansion results in a loss of contacts between filaments.

Closer analysis of 3D weavings reveals a rich taxonomy, amongst which we find three

distinct classes. The simplest examples exhibit zero dilatancy. In these cases the ideal con-

figuration and the maximal configuration of the weaving coincide. A second class contains

weavings which dilate to accommodate a finite change in unit cell volume. When fully di-

lated, these finitely dilatant weavings retain all inter-fibre contacts and remain jammed. In

their least dense state, finitely dilatant weavings contain rectilinear fibres and their fibre

packing fraction decreases continuously during dilation, yet remains positive. The third

class comprises infinitely dilatant weavings, characterised by a decrease of fibre packing

fraction to zero. Since this fully dilated state is only realised for fibres of positive diam-

eter by swelling the unit cell without limit, finite volumes of infinitely dilatant weavings

will never realise this limit, since only infinitely long fibres remain jammed. We note

that the hypothetical infinitely dilated configuration may consist of straight or curvilinear

fibres. (In practice, infinitely dilatant weavings expand until they unjam due to loss of

mutual contacts, and this end-state depends on the original fibre length.) Some examples

demonstrate these various weaving classes1.

Numerical tightening of the D124C structure, equivalent to the Π∗ rod packing, revealed

that the ideal structure is composed of straight rods (Fig. 5.1(a)). Inflation of the unit cell

while maintaining the filament diameter induces a reduction in the number of inter-fibre

contacts per unit cell (Fig. 5.1(b)). Hence the tight and maximal configurations of this rod

packing are equivalent, and we can infer that the weaving is not dilatant.

1A further class of finitely dilatant weavings can be imagined for which the maximal configuration contains
curvilinear fibres. To date, however, we have failed to find an example of this class.
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(a) (b)

Figure 5.1: The D124C structure, equivalent to the Π∗ rod packing, has zero dilatancy. (a) The ideal
form of the structure within one unit cell. (b) An expansion of the unit cell immediately results in
the loss of contacts between filaments.

Indeed, any weaving whose ideal configuration contains rectilinear filaments is not

dilatant. However, weavings whose ideal forms display curvilinear filaments need not be

dilatant. Fig. 5.2 shows the ideal D114C(3) structure, which is a tangled version of the #2

rod packing [OKee 05]. This structure is not dilatant, yet the ideal structure is composed of

interwoven helical components. Fig. 5.2 also shows that inflation of the unit cell induces

a loss of many inter-filament contacts.

(a) (b)

Figure 5.2: The ideal D114C(3) structure, which is a tangled version of the #2 rod packing, is not
dilatant. (a) The ideal unit cell, which contains curvilinear fibres. (b) A unit cell inflation induces
the loss of some inter-filament contacts i.e. the red and blue filaments in the top right corner of the
cell are not longer in contact.

Among the 3D weavings generated in Ch. 3, we have found a number of dilatant

examples. Recall from the previous chapter, § 4.3.3, the ideal G124C structure (helical Π+

rod packing) is composed of helical filaments (Fig. 5.3(a)). Successive unit cell expansions
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induce straightening of the helical filaments without loss of inter-filament contacts. This

expansion can be continued until a final state where the filaments are completely straight

and the unit cell is finite, forming the Π+ rod packing. This is the maximal configuration

(Fig. 5.3(b)). The helical filaments of the ideal Π+ packing have length 6.466 within a

(1×1×1) unit cell, and a radius of 0.181: hence the packing fraction is 0.665. On dilation,

the packing fraction decreases to 0.295 in the maximal configuration: the packing fraction

is more than halved on cooperative straightening.

(a) (b)

Figure 5.3: The ideal G124C structure (helical Π+ rod packing) is finitely dilatant. (a) The ideal
unit cell. (b) Consecutive unit cell expansions occur without the loss of inter-filament contacts, and
the maximal configuration is the Π+ rod packing.

A particularly large and finite dilatant behaviour is associated with the ideal form of

the G129C structure, which is a chiral, cubic arrangement equivalent to a helical Σ+ rod

packing. The ideal structure, shown in Fig. 5.4(a), contains helicoidal filaments that lie

almost completely within one channel of the Gyroid surface, as seen in Ch. 4. The maximal

configuration of the structure contains straight rods, and is precisely the Σ+ rod packing

(Fig. 5.4(b)). The helical filaments of the ideal structure have length 7.642 within a (1×

1×1) unit cell, and a radius of 0.127, and hence a packing fraction of 0.387. The packing

fraction of the weaving decreases to 0.075 in the maximal configuration: a 5-fold decrease

in the packing fraction. This weaving thus offers a fascinating target structure for rigid

weavings capable of extreme variations in filament packing densities.

We also observe finitely dilatant behaviour in anisotropic weavings, such as the trig-

onal structure H31C(1), constructed in Ch. 3. The ideal structure has undulating filaments

in a rhombohedral unit cell, as shown in Fig. 5.5(a). The maximal configuration is a trig-

onal rod packing of straight components, as shown in Fig. 5.5(b). In the ideal unit cell,
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(a) (b)

Figure 5.4: The ideal G129C structure, related to the Σ+ rod packing, is finitely dilatant. (a) The
tight unit cell. (b) The maximal state, which has no loss of inter-filament contacts, and is exactly
the Σ+ rod packing.

L = 4.444 and R = 0.181, which gives a packing fraction of 0.525 (for lattice parameters

(a = b = c = 1; α = β = π
2 ; γ = π

3 )). The packing fraction of the weaving decreases to

0.204 in the maximal configuration: more than half of the ideal packing fraction.

(a) (b)

Figure 5.5: The anisotropic trigonal structure H31C(1) is finitely dilatant. (a) The tight unit cell. (b)
A unit cell inflation may be performed without the loss of inter-filament contacts, and the maximal
configuration is composed of straight rods.

Infinitely dilatant weavings necessarily differ from those weavings that are related to

crystallographic rod packings, since in the latter case the (straight) fibres are intersection-

free, inducing a maximal configuration with a finite unit cell. However, weavings whose

filaments intersect on straightening, as constructed in the previous chapter, § 4.3.3, are

infinitely dilatant. In these cases, all inter-filament contacts remain, regardless of the in-

crease in unit cell volume. For example, the weaving G+
118C(1), which has intersecting
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filaments on straightening and whose ideal configuration is shown in Fig. 5.6(a), is in-

finitely dilatant. The images in Fig. 5.6(b,c) demonstrate that regardless of the amplitude

of a unit cell expansion, all inter-filament contacts remain.

(a) (b) (c)

Figure 5.6: The ideal G+
118C(1) weaving is infinitely dilatant. (a) The ideal unit cell. (b) A small

expansion sees all inter-filament contacts remain. (c) A further expansion also sees all contacts
preserved. An infinite expansion see all contacts remain and the packing fraction approach zero.

Infinite dilatancy is also seen for the D118C(1) structure, whose ideal and expanded

configurations are shown in Fig. 5.7, where all possible unit cell expansions see all inter-

filament contacts preserved. It seems, within the limited catalogue of examples constructed

in this thesis, that all weavings whose filaments intersect on straightening to their average

axes are infinitely dilatant.

(a) (b) (c)

Figure 5.7: The D118C(1) structure is infinitely dilatant. (a) The ideal form within one unit cell.
(b) A unit cell expansion sees the filaments remain in contact. (c) A further unit cell expansion also
has all contacts preserved.
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A second genre of infinitely dilatant weaving contains filaments which are sufficiently

tangled to preclude rectification of the filaments without changing ambient isotopy type.

For example, consider the G+
118C(2) structure, which is a tangled version of a packing

which contains a triple helix each rod trajectory of the Γ. The unit cell size can be expanded

without limit, without the loss of any inter-filament contacts, as illustrated in Fig. 5.8, thus

this weaving is infinitely dilatant.

(a) (b) (c)

Figure 5.8: The ideal G+
118C(2) structure is infinitely dilatant. (a) The ideal unit cell. (b) A unit

cell expansion sees the filaments remain in contact. (c) A further unit cell expansion also has all
contacts preserved.

As a further example, consider the ideal G−
118C(2) structure, which is a woven variant

of the Σ+ rod packing. We see from the consecutive unit cell expansions in Fig. 5.9 that all

contacts are preserved through the expansions, and the packing is also infinitely dilatant.

(a) (b) (c)

Figure 5.9: The ideal G−
118C(2) structure, which is a woven Σ+ rod packing, is infinitely dilatant.

(a) The ideal unit cell. (b) A unit cell expansion sees the filaments remain in contact. (c) A further
unit cell expansion also has all contacts preserved.
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A formal definition of the rectification transformation for dilatant weavings runs as

follows. We construct a one-parameter family of embeddings of weavings parametrised

by the variable γ, which describes the fractional dilation. The initial tightest weaving

is associated with γ = 0; the end-state of the dilation process, realised for the maximal

configuration is realised when γ = 1. The magnitude of the dilatancy realised during the

expansion process for a variety of weavings is listed in Table 5.1.

Table 5.1: Structural measurements for various structure, all normalised for unit cells of unit
volume and fibres of radius R. All weavings are cubic, except H31C(1), which has hexagonal lattice
parameters (a = b = c = 1; α = β = π

2 ; γ = π
3 ). L is the total fibre length per unit cell; γ defines the

ideal and maximal states. f (γ) denotes the filament volume fraction. The dilatancy induced by fibre
rectification is quantified by the fractional change in free and total volumes: ∆ f ree (= Vf ree(γmax)

Vf ree(0) )

and ∆tot (= Vtot (γmax)
Vtot (0) ), where Vf ree and Vtot denote the free volume and the total unit cell volume

respectively.

Structure straight? class cubic? γ R(γ) L(γ) f (γ) ∆ f ree ∆tot

G+
123C(2) (Γ)

√
non-dilatant cubic 0 0.177 6.933 0.682 1 1

H31C(1) X (ideal) dilatant (I) trig. 0 0.181 4.444 0.525√
(dilated) 1 0.115 4.243 0.204 4.330 2.581

G124C X (ideal) ” cubic 0 0.181 6.466 0.662
(Π+)

√
(dilated) 1 0.125 6 0.295 4.688 2.247

G129C X (ideal) ” cubic 0 0.127 7.642 0.384
(Σ+)

√
(dilated) 1 0.058 6.927 0.073 7.899 5.429

G+
118C(1) X (ideal) dilatant (II) cubic 0 0.073 18.082 0.303√

(dilated) 1 0 16.965 0 ∞ ∞

D118C(1) X (ideal) ” cubic 0 0.065 19.614 0.260√
(dilated) 1 0 16.971 0 ∞ ∞

G−118C(2) X (ideal) dilatant (III) cubic 0 0.075 10.714 0.189
X (dilated) < 1 0.03 8.006 0.022 ∞ ∞

G+
118C(2) X (ideal) ” cubic 0 0.066 29.074 0.398

X (dilated) < 1 0.02 24.284 0.031 ∞ ∞

We allow only jammed configurations of the weavings during the dilation transfor-

mation, for which the number of inter-fibre contacts per unit cell is conserved. Note,
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however, that if the fibre length per unit cell is reduced during dilation, the density of

inter-fibre contacts per unit cell for outermost fragments of the weaving is reduced, due to

this contraction. This variation leads to softening of the weaving rigidity, due to a dearth

or excess of unsupported fibres in the corona. This effect is difficult to quantify, due to

some flexibility in the fibre arrangement in the (unjammed) corona. A simple gauge is the

number of contacts per unit length of the fibre, measured throughout the dilation process.

Data are normalised against the G124C weaving, that has the largest number of inter-fibre

contacts per unit length of known weavings, whose number of fibre-fibre contacts is scaled

to unity.

Figure 5.10: Plot of number of inter-filament contacts per unit length (for unit diameter bres) as
a function of porosity for a non-dilatant weaving (G123(2)) and some finite and infinitely dilatant
examples. The shaded region indicates the range of porosities found in human corneocytes from
least to most hydrated.

Dilation data for some of the 3D weavings in Table 5.1 are plotted in Fig. 5.10,

which allows comparison of the rate of dilation, along with the range of porosities sus-

tained by various weavings. These data reveal the very distinct character of various weav-

ings. Infinitely dilatant weavings exhibit extraordinary dilation properties, however, this

is achieved at the expense of significant reduction in the density of inter-fibre contacts.

These cases are therefore expected to significantly soften on dilation, and finite volumes

of these weavings are likely to unjam on swelling. It is also worth noting that these ex-
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amples are less dense (for given porosity) than the finitely dilatant weavings, occupying a

significantly larger total volume (for the same total fibre content).

Figure 5.11: Dependence of total weaving volume per unit cell on porosity (where all bres are
normalised to unit diameter) for a non-dilatant weaving (G123(2)) and some finite and infinitely
dilatant examples. The shaded region indicates the range of porosities found in human corneocytes
from least to most hydrated.

Among the finitely dilatant weavings, we find significant variation in the material prop-

erties as a function of dilation. Two distinct regimes emerge, depending on the porosity

of the dilated weavings. If the porosity is less than about 60%, the G124C and H31C(1)

weavings are the most compact, with the highest density of inter-fibre contacts. Above

this porosity value (to ca. 93%, when the weaving is maximally dilated), dilated versions

of the G129C weaving affords the most compact weaving, with the highest density of inter-

fibre contacts.
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5.2 Keratin alignment in corneocytes

Given the remarkable combination of structural rigidity and variable porosity afforded by

the G129C weaving, it is worth looking for traces of the structure in natural materials. One

material that necessarily combines these features is mammalian skin. Among its many

functions is its homeostatic property on exposure to humidity or water: prolonged immer-

sion in the bath will cause our skin to wrinkle due to swelling, yet this organ retains its

structural integrity. The outermost “horny layer” (stratum corneum) of mammalian skin is

composed of corneocytes, whose interior is dominated by the presence of arrays of heli-

cal keratin macrofibres [Brod 59]. On exposure to water, corneocytes can swell to many

times their initial volume without significant degradation of the structural integrity of the

stratum corneum [Norl 97], due to the uptake of bulk water, which occupies the fibre inter-

stices, thereby reducing the fibre volume fraction [Norl 04]. On hydration, the corneocytes

swell with little change in their total fibre content or keratin dimensions, though their he-

lical pitch is likely to vary. In situ measurements of the hydration levels of corneocytes

in human stratum corneum give average values varying between about 0.5 w/w [Casp 01]

and 3 w/w [Bouw 03]. The stratum corneum is predominantly composed of keratin fibres,

water and remnant lipids and various water-soluble substances (or ‘natural moisturising

factors’, NMFs), including inorganics, amino acids, proteins and urea [Zhai 89]. Due

to the water-binding facility of NMFs, and variation in the NMF contents and hydration

within the stratum corneum, estimation of the fraction of keratin fibres within the stratum

cornea is difficult to gauge precisely. Assuming densities of 1 gcm3 for water and NMF

and 1.25 gcm3 for keratin, and a dry mass of about 80% w/w (i.e. NMFs comprise the

other 20%) [Ecke 89], the hydration limits reported in [Casp 01, Bouw 03] correspond to

keratin volume fractions between 15% and 35%.

The keratin fibres in the stratum corneum therefore form an array whose porosity is

capable of varying between 65%-85% without loss of structural rigidity. Comparison of

these data with those deduced for dilatant weavings are shown in Fig. 5.10. Evidently, the

fibre weaving cannot change types during the hydration process, so a single weaving must

span the complete range of porosities. Both the G129C structure (Σ+) and the G+
118C(2)

weavings offer suitable arrangements of keratin fibres with dilatancy squarely within the

estimated porosity range. The structure of the soft keratin Intermediate Filaments (IFs)

that make up the fibrils as a function of hydration remains uncertain. However, dry fibrils

of hard keratins are known to be helical, with pitch 470Å and diameter 74.5Å [Fras 86],
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Figure 5.12: Porosity of the material increases as the filaments straighten cooperatively: A spheri-
cal section of the G129C material in the tight configuration increases in porosity on straightening of
the filaments. The result is the standard configuration of the Σ+ rod packing.

giving a ratio of pitch to diameter of 6.3. Further, the structure of dry soft keratin IFs,

comprising the stratum corneum, is likely to be similar [Fras 86].

The ideal G+
118C(2) weaving contains fibres whose geometry are complex modulated

helices, with a simple axis, contrary to the structure of IFs. In contrast, the ideal G129C

(Σ+) weaving is made of helical filaments (which are slightly triangular when projected

along their axis, rather than the circular sections of ideal helices). Further, in their tightest

configuration, corresponding to the dry state, the ratio of their pitch to fibre diameter is

6.8, close to that proposed by [Fras 86]. (Scaling the (tightest) G129C weaving to give the

measured pitch of 470Å implies a lattice parameter of about 550Å for the weaving.) The

remarkable dilatancy of the G129C weaving, which spans the measured porosity variations

between dry and hydrated corneocytes, coupled with the agreement in helical dimensions

in keratin IFs and the filament shape in the ideal chiral cubic weaving, suggest that keratin

fibrils indeed weave within corneocytes according to the G129C pattern. We suggest that

the one-parameter family of 3D weavings related to the G129C rod packing best describes

the ideal arrangement of keratin fibres within individual corneocytes. Indeed, the G129C

rod packing affords a low density, rigid 3D weaving, whose economy makes it an ideal

geometry for a biomaterial.

A qualitative picture of the hydration process according to this model runs as follows.

Exposure to water induces the keratin fibres to unwind by sliding over each other, without

compromising their structural rigidity imposed by their inter-fibre contacts. The number

of point contacts per unit cell remains fixed, but they move along the fibres, thereby gen-

erating additional free volume accessible to the water. Cooperative unwinding occurs, re-



§5.2 Keratin alignment in corneocytes 193

Figure 5.13: The ideal configuration of the G129C structure lies to within a good approximation
within a single labyrinth of the gyroid.

sulting in isotropic expansion of the corneocytes. We predict that swelling of corneocytes

beyond the free volume accessible to the straightened rod packing will lead to dramatic

weakening, since further swelling of the pattern can only occur by losing contacts be-

tween fibres, thereby diminishing the structural integrity of the corneocytes. Indeed, there

is a limit to water uptake in skin, beyond which the stratum corneum loses its protective

barrier [Will 73], (see shaded region in Figs. 5.10 and 5.11).

Evidently this Platonic idealisation of the actual process neglects a number of factors

present in the stratum corneum. First, the layer is itself very anisotropic, since it is an-

chored to the next layer (stratum lucidum) on its inner side while its outer face is exposed

to the atmosphere; additional structural anisotropy is caused by the pancake-shaped cor-

neocytes. The overall expansion of the layer is therefore unlikely to be isotropic. Secondly,

the inter-fibre contacts are probably extended over many atoms; nevertheless, it is likely

that in the presence of water keratin fibres slide over each other readily. Finally, since the

length per unit cell of fibres changes with swelling, if the total fibre length is conserved –

as we expect it is – the total number of inter-fibre contacts diminishes on swelling. The

combination of this effect with the changing fibre helicity is expected to induce a measur-

able variation in the rigidity of corneocytes with hydration, though they remain sterically

jammed due to close-packing of the fibres.

It is noteworthy that the G129C weaving is generated by a simple arrangement of

geodesics in the gyroid TPMS, a particularly important structure, found in a variety of

soft condensed materials, including membrane organelles in vivo [Land 95, Alms 06]. Re-

call also that the ideal configuration lies to within a good approximation within a single

labyrinth of the gyroid (see Fig. 5.13). (Indeed, the ideal weaving is sufficiently porous to

allow a second ideal weaving of the opposite hand G−
129C to be threaded within the G+

129C
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patttern.) The relation of this weaving with the gyroid is likely more than coincidental.

In pioneering structural studies of the stratum corneum, Norlén has noted the possible

presence of lipid bilayers folded onto the gyroid surface within individual corneocytes and

suggested that this geometry effectively templates an ordered arrangement of keratin fi-

bres [Norl 04], corresponding to another weaving whose entanglements are those of the

cubic Γ rod packing [OKee 05]. In contrast to the G129C weaving, this pattern is achiral

and relatively dense. The Γ embedding is not dilatant, hence the only route to increase the

available free volume per unit cell is to lose inter-filament contacts which results in a loss

of structural stability. It is noteworthy that despite his discussion of the Γ packing, Norlén

suggested a chiral arrangement [Norl 04], consistent with the super-dilatant G129C pattern.

Our model suggests that the corneocytes are formed in vivo via templating and col-

lapse to one side of a lipid membrane folded into the gyroid, as proposed by Norlén. The

expected lattice parameter for the gyroid, ca. 550Å, is consistent with dimensions of cu-

bic membranes found to date [Alms 06]. Since Nòrlen’s initial proposal, chemical studies

have revealed an identical mechanism for the formation of chiral inorganic networks in

synthetic mesoporous materials [Ryoo 99, Tera 02]. Most recently, the presence of a chi-

ral, cubic photonic crystal composed of chitin has been established in the wing-scales of

certain species of butterflies, leading to structural colour [Mich 08, Sara 10]. Indeed, the

chitin network is very similar to the geometry of the keratin fibres, though chitin forms

a consolidated network (and resists swelling), in contrast to the individual keratin fibres

in the stratum corneum. Prima facie, the structural likeness may suggest evolutionary

convergence. However, it is most likely that the correspondence of morphology between

mammalian skin and butterfly wings is driven by the ubiquity of the gyroid pattern in

folded membranes in vivo, since both materials are likely templated by a lipid membrane.

Can the extraordinary material properties of mammalian skin be mimicked in vitro?

Our understanding of the genesis of skin via lipid membrane templating suggests a route

to formulate synthetic 3D filament weavings at the macromolecular scale, via templating

within bicontinuous molecular mesophases. In addition, the suite of examples of 3D weav-

ings discussed in this paper suggest that this route is a realistic one to generate weavings

of various types, from dilatant examples to their conventional counterparts. Evidently, 3D

weavings of one-dimensional filaments offer a wealth of distinct material responses as a

function of filament geometry.
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Conclusion

In this thesis, we constructed novel, 3-periodic weavings and nets, then tightened them to

an “ideal” shape in order to give geometric inspiration to the many disciplines of science

influenced by structure. We used a set of Triply-Periodic Minimal Surfaces (TPMS) as

a scaffold for their construction. These structures were engineered as tilings of the two

dimensional hyperbolic plane (H2) to harness the simplicity of a two-dimensional surface

as compared with 3D space.

To begin, we have developed a catalogue of simple, high symmetry “free” tilings of

H2, which contains examples with both branched tile edges and infinite geodesic tile edges.

Furthermore, we have embedded these tilings so as to be candidates for reticulation over

the TPMS. For the Stellate orbifolds, we saw that an infinite set of embeddings are pos-

sible for a single free tiling, which leads to an infinite set of structures on each of the

TPMS. As the embeddings in H2 become more oblique in shape, the structures that result

in E3 become more entangled in nature.

Further, we constructed an array of 3-periodic structures relevant to the natural sci-

ences. The nets that we constructed are, in most cases, multiple-component interpenetrat-

ing nets. Such nets arise frequently in synthetic chemical frameworks [Batt 98, OKee 00],

and we generate additional, more complex examples of such nets as possible targets for

synthesis. In the construction process, importance is placed on the edge geometry and

ambient isotopy class of the net, not simply the topology as is the case for other enumer-

ative techniques. Further, the 3-periodic weavings of filaments constructed in this thesis

are, in the simplest cases, well recognised rod packings. Through the TPMS reticulation

method, we are able to generalise the notion of a rod packing to contain curvilinear as

well as rectilinear fibres, which enables the construction of a more complete taxonomy

of 3-periodic weavings. A catalogue of 3-periodic entanglements of infinite filaments is

certainly missing from the current literature, and these new structures may provide insight

195
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into weavings of polymers, proteins and DNA.

This thesis has described an extension of the SONO algorithm for tightening knots and

links: the PB-SONO algorithm tightens branched and periodic entanglements. We saw

that it performs comparably with the SONO algorithm for the tightening of knots. Further,

we tightened entangled θ-, tetrahedron- and cube- graphs, which were very accurate for

the simplest entanglements (and gave results close to as expected).

We saw “tight” configurations for many periodic nets. The addition of periodicity

yielded the uniform embedding as described by the SyStRe algorithm for single compo-

nent nets. Further, the PB-SONO algorithm was able to find a canonical form for nets that

have vertex and edge collisions in the SyStRe embedding, as well as a canonical form for

non-crystallographic nets. The algorithm handles the interpenetration of multiple compo-

nent nets in a very intuitive way. The examples shown are convincing evidence that the

tight configuration found by the PB-SONO algorithm is a very useful tool in analysing

geometry and ambient isotopy class of 3-periodic entangled nets, and is applicable to a

larger class of structures than have been previously analysed. Evidence of the relevance

of the ideal embeddings of nets comes from the ideal structure of two interpenetrating srs

nets of equivalent chirality, which has equivalent geometry to that given by the crystal-

lographic data for a synthesised framework containing these components. Thus the ideal

embedding somehow replicates the conditions within this real chemical framework. The

challenge of this method, however, is the numerical error associated with finding these

ideal configurations.

An interesting consequence of the idealisation of rod packings to optimal configura-

tions is the geometry of the filaments is helical. Often the geometry prescribed by the

idealisation is equivalent to the geometry as the weavings sits on the TPMS, which gives

encouragement to the reticulation method of obtaining filament geometry. The helical ge-

ometry of some some rod packings in their ideal configurations leads to the exotic physical

property of dilatancy.

The consequences of dilatant weavings are immense. These structures are attractive

design targets for new synthetic materials, stemming from the potent increases in the free

volume of the material on straightening of the filaments, while maintaining structural sta-

bility of the material. As a bio-material, this beautiful property in the ideal G129C weaving

gives an explanation for the keratin organisation in the corneocytes of the stratum corneum

layer of the skin. The dilatancy of the keratin matrix allows us to explain the remarkable

structural rigidity of the skin during the uptake of water and subsequent swelling of the
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skin. The ramifications of understanding the keratin organisation are immense: the barrier

properties of the skin are important in many areas of the medical and therapeutic sciences,

and are strongly related to the structural form of the layers within skin.

The scope for further enumeration of more structures of this kind is large. The free

tilings of H2 that have been considered here are a tiny set of the possible tilings of this kind.

Firstly, the tiling considered were all of very high symmetry, thus there is scope to extend

to lower symmetry groups of H2. Further, one may consider more oblique embeddings

of the free tilings when embedding to be commensurate with the TPMS. We may also

generalise further to tilings commensurate with other TPMS of higher genus and also

to free tilings which contain both branched boundary components and infinite geodesic

boundary components, which will give packings of nets and filaments in unison of the

TPMS. In considering only the simplest free tilings on the simplest TPMS, we were able

to identify a wealth of interesting structure, and we predict that many more interesting

structures will come from further enumeration. We saw that the ideal conformation of a

structure often relates to a TPMS reticulation, which gives further encouragement of what

we might find on further enumeration of reticulations of these surfaces.

An obvious application of this work is in new materials made from long tangled fila-

ments. For such materials, the dilatancy property discussed may have significant influence

in material functionality. Further to this, knowledge of these structures may assist in identi-

fying them in naturally occurring settings, particularly in biological systems. Furthermore,

we consider the interesting photonic crystal property of the chitin network in butterfly

wings, which is chiral and fills one channel of the gyroid, as described in [Saba 11]. Per-

haps a similar effect is present in the chiral keratin arrangement in the skin, which also

fills one channel of the gyroid minimal surface. Given a suitable length scale, it may give

a partial reflection of the ultra violet spectrum of light, and further act as a natural sun-

screen? We saw that many of the 3-periodic weavings displayed both chiral and dilatant

properties, which may lead to materials with an interesting fusion of optical and material

properties.
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Appendix A

Commensurate orbifold subgroups

Table A.1: Subgroups of ∗246 commensurate with the P, D and G minimal surfaces [Robi 04a].

Group # Orbifold Index Maximal subgroups

131 ∗246 1 130, 129, 128, 127, 126 125, 124, 123, 122

130 246 2 120, 118, 116, 114, 93
129 2∗23 2 121, 119, 118, 113, 99
128 4∗3 2 121, 117, 116, 110, 98
127 ∗266 2 120, 119, 117, 104, 96
126 6∗2 2 121, 120, 115, 100, 94
125 ∗344 2 119, 116, 115, 107, 95
124 ∗2223 2 118, 117, 115, 102, 97

123 ∗2224 3 114, 113, 112, 111, 110, 109, 108, 107, 106, 105, 104, 103, 102,
101, 100

122 2∗26 4 99, 98, 97, 96, 95, 94, 93, 89
121 23× 4 92, 53, 52
120 266 4 92, 54, 50
119 ∗2323 4 92, 81, 48
118 2223 4 92, 49, 77
117 2∗33 4 92, 65, 47
116 344 4 92, 86, 51
115 3∗22 4 92, 55, 46

114 2224 6 87, 86, 78, 77, 76, 61, 54
113 2∗22 6 81, 80, 79, 77, 75, 56, 53
112 ∗∗2 6 85, 82, 80, 73, 72, 70, 61
111 22∗2 6 85, 79, 76, 68, 67, 66, 58
110 24∗ 6 86, 85, 84, 65, 62, 59, 53
109 24∗ 6 87, 84, 74, 73, 71, 58, 56
108 2∗44 6 84, 82, 78, 75, 69, 66, 64
107 ∗2244 6 86, 81, 74, 70, 68, 64, 55

211



212 Commensurate orbifold subgroups

Table A.1: Subgroups of ∗246 commensurate with the P, D and G minimal surfaces [Robi 04a].

Group # Orbifold Index Maximal subgroups

106 4∗22 6 79, 78, 74, 72, 63, 62, 57
105 ∗∗2 6 69, 68, 63, 61, 60, 59, 56
104 2∗222 6 83, 82, 81, 65, 63, 58, 54
103 ∗2244 6 87, 83, 80, 67, 64, 62, 60
102 ∗22222 6 77, 73, 66, 65, 60, 57, 55
101 ∗22222 6 91, 90, 89, 88, 83, 76, 75, 71, 70, 59, 57
100 2∗222 6 72, 71, 69, 67, 55, 54, 53

99 22∗3 8 52, 49, 48, 42
98 ∗3× 8 52, 51, 47, 40
97 22∗3 8 49, 47, 46, 37
96 ∗2626 8 50, 48, 47, 36
95 ∗3× 8 51, 48, 46, 45
94 26× 8 52, 50, 46, 15
93 2226 8 51, 50, 49, 44
92 2323 8 14, 13

91 ∗22∗ 12 43, 42, 40, 39, 38, 34, 30
90 2∗2222 12 44, 39, 36, 35, 34, 33, 23
89 22∗22 12 45, 44, 42, 40, 37, 36, 15
88 2∗∗ 12 45, 43, 38, 37, 35, 33, 31
87 2244 12 27, 18, 17
86 2244 12 21, 17, 14
85 2×× 12 29, 21, 19
84 44× 12 32, 19, 17
83 ∗222222 12 38, 36, 28, 27, 20
82 ∗22× 12 28, 24, 19
81 22∗22 12 28, 26, 14
80 ∗2∗2 12 29, 28, 18
79 222× 12 29, 26, 16
78 2244 12 24, 17, 16
77 22222 12 18, 16, 14
76 22222 12 44, 43, 27, 21, 16
75 22∗22 12 42, 35, 32, 28, 16
74 44∗ 12 26, 22, 17
73 2∗∗ 12 22, 19, 18
72 2∗× 12 41, 31, 29, 24, 22
71 222∗ 12 32, 31, 30, 27, 23, 22, 15
70 ∗∗22 12 45, 39, 28, 22, 21
69 ∗22× 12 41, 32, 30, 25, 24
68 ∗2∗2 12 26, 25, 21
67 22∗22 12 41, 29, 27, 25, 23
66 22∗22 12 25, 19, 16
65 222∗ 12 20, 19, 14



213

Table A.1: Subgroups of ∗246 commensurate with the P, D and G minimal surfaces [Robi 04a].

Group # Orbifold Index Maximal subgroups

64 ∗4444 12 28, 25, 17
63 2∗× 12 26, 24, 20
62 44∗ 12 29, 20 17
61 ◦2 12 24, 21, 18
60 ∗∗22 12 25, 20, 18
59 2∗∗ 12 40, 33, 32, 21, 20
58 222× 12 27, 26, 19
57 2∗2222 12 37, 34, 22, 20, 16
56 2×× 12 32, 26, 18
55 ∗222222 12 25, 22, 14
54 22222 12 27, 24, 14
53 222× 12 32, 29, 14

52 3×× 16 13, 4
51 ◦3 16 13, 12
50 2266 16 13, 2
49 22223 16 13, 11
48 ∗3∗3 16 13, 10
47 ∗3∗3 16 13, 9
46 3×× 16 13, 3

45 ∗×× 24 12, 10, 3
44 222222 24 12, 11, 2
43 ◦22 24 12, 11, 8
42 22∗× 24 11, 10, 4
41 ∗×× 24 8, 6, 5
40 ∗×× 24 12, 9, 4
39 ∗∗× 24 12, 10, 6
38 ∗∗∗ 24 10, 9, 8
37 22∗× 24 11, 9, 3
36 22∗2222 24 10, 9, 2
35 22∗× 24 11, 10, 5
34 ∗2222× 24 11, 9, 6
33 ∗∗× 24 12, 9, 5
32 22×× 24 7, 5, 4
31 ××× 24 8, 5, 3
30 ◦∗ 24 8, 6, 4
29 22×× 24 7, 5
28 ∗22∗22 24 10, 7
27 222222 24 8, 7, 2
26 22×× 24 7
25 ∗22∗22 24 7, 6
24 ◦22 24 8, 7
23 2222∗ 24 6, 5, 2



214 Commensurate orbifold subgroups

Table A.1: Subgroups of ∗246 commensurate with the P, D and G minimal surfaces [Robi 04a].

Group # Orbifold Index Maximal subgroups

22 22∗∗ 24 7, 6, 3
21 ◦22 24 12, 7
20 22∗∗ 24 9, 7
19 22×× 24 7
18 ◦22 24 7
17 4444 24 7
16 222222 24 11, 7
15 2222× 24 4, 3, 2
14 222222 24 7

13 ◦33 32 1

12 ◦◦ 48 1
11 ◦2222 48 1
10 ∗∗×× 48 1
9 ∗∗×× 48 1
8 ◦◦ 48 1
7 ◦2222 48 1
6 ◦∗∗ 48 1
5 ×××× 48 1
4 ×××× 48 1
3 ×××× 48 1
2 22222222 48 1

1 ◦◦◦ 96
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Table A.2: Subgroups of ∗2226 commensurate with the H minimal surface [Robi 04b].

Group # Orbifold Index

32 ∗2226 1

31 2226 2
30 26∗ 2
29 22∗3 2
28 ∗3∗ 2
27 ∗3∗ 2
26 ∗22223 2
25 ∗2266 2

24 2∗2222 3

23 2626 4
22 22223 4
21 3×× 4
20 ◦3 4
19 ∗33∗ 4
18 3∗∗ 4
17 ∗3∗3 4

16 22∗× 6
15 222222 6
14 ∗2222× 6
13 ∗∗× 6
12 ∗∗× 6
11 22∗2222 6
10 2222∗ 6

9 ◦33 8

8 ∗∗×× 12
7 ◦2222 12
6 ◦◦ 12
5 ∗∗×× 12
4 ×××× 12
3 ◦∗∗ 12
2 22222222 12

1 ◦◦◦ 24


