USE OF THESE

This copy is supplied for purposes of private study and research only. Passages from the thesis may not be copied or closely paraphrased without the written consent of the author.
HIGHLAND NEW GUINEA
HUNTER-GATHERERS:
THE EVIDENCE OF
NOMBE ROCKSHELTER, SIMBU
WITH EMPHASIS ON THE
PLEISTOCENE

by
Mary-Jane Mountain

A thesis submitted for the Degree of Doctor of Philosophy
of the
Australian National University

July 1991
Declaration

Unless otherwise indicated, this thesis represents the original work of the author.

Mary-Jane Mountain
Nombe rockshelter was excavated by M-J. Mountain between 1971 and 1980. Human activity is first documented at the site at about 25,000 bp and continues through to the present. Four extinct Pleistocene herbivores, *Protemnodon nombe*, *Protemnodon tumbuna*, *Dendrolagus noibano* and a diprotodontid, occur in late Pleistocene strata together with human artefacts. Large quantities of animal bone were recovered and the analysis of these supplies the major data for the research.

Three main issues are addressed:
1. The nature of the relationship between the early humans and their environment through the period that covers the late glacial maximum at about 18,000 bp.
2. The relationship between humans and the extinct species, including the thylacine, *Thylacinus cynocephalus*, which was a major predator at the site, contributing bone to the deposits during the Pleistocene.
3. The use of faunal evidence as an indicator of economic and subsistence activities as well as local environmental changes.

The data show that the human activity during the late Pleistocene at Nombe was sporadic over the period from about 25,000 bp to about 15,000 bp. Hunters were probably targeting the large herbivores living in high altitude forest and other species adapted to high altitude cold environments. Humans and large herbivores coexisted for about 10,000 years before the animals disappeared from the record. This coexistence does not suggest a rapid demise through human overkill.

Palynological evidence suggests that people were deliberately firing small patches of highland forest as early as 30,000 bp. Such clearing could have been used to promote forest-edge plants especially *Pandanus*, which has rich oily nuts. These small clearings could also have been used as an aid to hunting.

By the end of the Pleistocene, human hunting had switched to emphasise medium and smaller forest animals, especially fruit bats, macropodids, phalangers and possums. Bat hunting was especially important at Nombe, which is in a limestone area with many caves.

In the early Holocene the temperatures rose and sub-alpine grasslands were greatly reduced as forest spread to higher altitudes. The archaeological evidence shows that more sites were occupied by 10,000 bp than before and the faunal
data at Nombe indicate a steep rise in the grassland wallaby, *Thylogale brunii*. This species adapts easily to forest disturbance and may indicate that forest clearance was increasing in the locality. The early Holocene was the period of intense human settlement of the site.

The faunal analysis employed in this study is designed to test the broad questions about human-environment relationships rather than to supply detailed information about the size and sex representation in the species present. Species are often dealt with as a group and no individual bone measurements have been taken. The computer database has been designed to produce a flexible data set that can easily be adapted to taxonomic change. The success of the approach suggests that faunal evidence can be a sensitive indicator of environmental change and can be used to examine human predation strategies and changes in economic subsistence.
NOTES

This thesis is in two volumes:

Volume 1 contains the text of the thesis and all supporting material.

Volume 2 comprises the site profiles.

References in the text to the site profiles such as:

"... Dasyurid bones occur P_2, P_4...

refer the reader to site profiles 2 *(P2)* and 4 *(P4)* in Volume 2.

Unless otherwise stated, all data in this thesis relate to excavated material from the site of Nombe, Simbu Province, Papua New Guinea. Unless tables and figures specify otherwise, they refer to the site of Nombe or data from that site.

Figures 2.1, 2.2, 2.3, 2.4, 2.6, 3.2, 3.3, 3.4 and 3.5 were drawn by Winifred Mumford from site drawings prepared by the author. Figures 2.5 and 3.1 were prepared by Barry Shaw from original drawings by David Gillieson. Uncited photographs were taken by Barry Shaw.

"New Guinea" is used to refer to the island of New Guinea which today includes "mainland" Papua New Guinea and the Indonesian Province of Irian Jaya. "Papua New Guinea" refers to the country of Papua New Guinea. The "highlands" refers to the highland region (over about 1300 m above sea level) of the island of New Guinea and includes Irian Jaya.

Totals in the data were originally added to one more significant place than is shown in the text or tables. However the nature of the samples and the accuracy of excavation does not justify such detail so the data and totals were then reduced by one significant place to avoid spurious accuracy. This may result in totals differing slightly in the final digit. In addition, some data is presented as <1, meaning "present", but less than one. Where <1 appears several times in a sum, the resultant total may differ even more. Nevertheless, data totals are correct.

All excavated materials from Nombe and other sites, which are at present housed in the Department of Archaeology and Anthropology at the Australian National University, are the property of the National Museum of Papua New Guinea and will be returned there on completion of analyses together with the site documentation.

All radiocarbon dating results are expressed in conventional radiocarbon ages (BP) with the statistical error range (t) supplied with the date (Stuiver and Polach 1977).
Abbreviations:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>asi</td>
<td>Above sea level</td>
</tr>
<tr>
<td>ANU</td>
<td>Australian National University</td>
</tr>
<tr>
<td>ESR</td>
<td>Electron spin resonance</td>
</tr>
<tr>
<td>MNI</td>
<td>Minimum number of individual animals</td>
</tr>
<tr>
<td>PNG</td>
<td>Papua New Guinea</td>
</tr>
<tr>
<td>NISP</td>
<td>Number of identified specimens</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

This thesis is the product of twenty years of research and there are many people, both in Papua New Guinea and Australia, to whom I am most grateful.

I received an Australian National University scholarship which enabled me to leave the University of Papua New Guinea to pursue this research full time; earlier field work was financed by the University of Papua New Guinea. I thank both institutions for their support.

I also thank the Department of Prehistory and Anthropology, the Faculties, Australian National University, for appointing me as Visiting Fellow during 1991 and supplying me with room to work in an already overcrowded Department.

My supervisor, Professor Jack Golson, Department of Prehistory, Research School of Pacific Studies, has been tireless, as ever, in commenting on drafts and encouraging me over many years to complete the task. My work was vastly improved through his high and rigorous standards of interpretation. It was at his suggestion that I made my first visit to Nombe in 1971 for a short (initially 3 months) project that was to become a twenty year project.

Other staff, both past and present, at the Australian National University have encouraged me, especially in the last six months of almost full time analysis and writing. Several people were extremely helpful with advice and encouragement, especially Professor Isabel McBryde, Wilfred Shawcross, Ian Farrington and Nancy Sharp, while at an earlier stage of research I received assistance from Dr Jenny Hope, Dr Phil Hughes, Dr Bryant Allen, Dr Robin Hide, Professor Jim Allen and Dragi Markovic. I am most grateful to all of them.

The secretarial staff of both departments have always been most willing to help, especially Helen Nicol and Debbie McGrath. The staff of the Radiocarbon Dating Research Laboratory, at the Australian National University worked extremely hard on difficult samples and produced many results that enabled a useful chronology to be established for the complexities of Nombe's stratigraphy.

Dave Gillieson also contributed a great deal to this thesis in the early 1980s with his enthusiastic analysis of the sediments. Win Mumford produced superb drawings to guide the reader through the intricacy of Nombe stratigraphy and I am more than grateful for the time and care she has spent in her productions.
Several people assisted me in the lengthy tasks of washing, sorting and cleaning the materials and later identification and weighing of bone. I am grateful to Prue Gaffey, Richard Mulvaney, Alan Lance and others.

Several others assisted in faunal identifications, among whom I especially thank Dr Tim Flannery, Dr Ken Aplin, Dr Colin Pardoe, Dr Jerry Van Tets and Mrs Diane Foley.

While I was in Papua New Guinea, both at the Department of Anthropology and Sociology at the University of Papua New Guinea and in the villages and settlements of the Simbu Province, I received a great deal of practical assistance, personal kindness and help in various ways. I would particularly like to thank Mark Rosen, Headmaster of Chuave High School for the friendship that he generously extended to Barry, Emma and myself. It was always a pleasure to see students from the school at the site and the school was most helpful to the project. There were other highland residents such as Mr and Mrs Brown, Mr and Mrs Lapthorne, Mr and Mrs Bourke and others who most generously extended hospitality and assistance over the several visits made from 1971 to 1980.

To Ian Saem Majnep I owe a great deal, since he was my field assistant and friend throughout our early highland excavations. He was most tolerant and understanding towards an outsider who knew very little about the culture of the highlands and I am grateful for his quiet tuition and support in the field. Subsequently I have benefited even more through his writing.

In the villages of Pila, Nola and especially Nongefaro, we were welcomed and accepted. I must thank all the men, women and children who assisted with the excavations, sorting and cleaning materials, looking after Emma and provided us with vegetables and fruit, often at times when they had little themselves. Special thanks must go to Papa Noibano, traditional owner of the site and his son, Waivo and other family members. Other dedicated field assistants and baby minders were Grace, Catrina, Noibano, Afika, John, Papa Kamba, Mondu, Keage, Kapia, Simon, Council Nomane, Peter, Lucas and, from Pila, Council Nomane, Timothy, David and the school master and his wife.

I also thank Peter White for allowing me the privilege of working at the site that he had already excavated. Hopefully, between us, we have made some sense out of it.

Recently I have had tremendous support from a number friends especially Doreen Bowdery and Chris, Hamish and Rowan McMurray, John and Margaret Tuckwell and Sarah and John Titchen and from all the friends especially the Pike/Fitzpatricks, the Byrnes and Carol Behm who looked after Emma so many times so that I could get on with the task.
I thank Emma for being so patient and helpful while I was 'doing the thesis'. Most of all I have to thank Barry for long tedious hours and sweated labour over the computing, formatting, production and photos. But much more for his many years of help and assistance in so many ways in getting the thesis completed!

Mary-Jane Mountain
TABLE OF CONTENTS

Volume 1

1 Introduction
- 1.1 **RATIONALE** 1.1
- 1.2 **THE RESEARCH PROJECT** 1.2
- 1.3 **AIMS** 1.3
- 1.4 **METHODS** 1.5
- 1.5 **LIMITATIONS** 1.6
- 1.6 **POSITIVES** 1.7

2 Locality and Archaeological Excavation
- 2.1 **BRIEF DESCRIPTION OF LOCALITY AND SITE** 2.1
 - 2.1.1 Topography and altitude 2.1
 - 2.1.2 Local geology 2.1
 - 2.1.3 Local drainage 2.4
 - 2.1.4 Local soils 2.7
 - 2.1.5 Site of Nombe 2.8
- 2.2 **METHODS EMPLOYED DURING ARCHAEOLOGICAL WORK AT SITE** 2.8
 - 2.2.1 Areas excavated and techniques used from 1964 to 1975 2.10
- 2.3 **DESIGNATION OF AREAS AND EXCAVATION UNITS AT NOMBE** 2.11
 - 2.3.1 Designation of squares 2.12
 - 2.3.2 Designation of spits 2.12
 - 2.3.3 Designation of small wet-sieved units in 1979/80 2.12
- 2.4 **TECHNIQUES OF 1979-80 EXCAVATIONS AT NOMBE** 2.13

3 Stratigraphy and a Model of Sediment Deposition at Nombe
- 3.1 **STRATIGRAPHY AT NOMBE** 3.1
 - 3.1.1 Perceived stratigraphy 3.2
 - 3.1.2 Mixing of deposits 3.2
- 3.2 **DETAILED DESCRIPTION OF SEDIMENTS IN EACH STRATUM** 3.3
 - 3.2.1 Stratum A: the top deposits 3.3
 - 3.2.2 Stratum B: the bone stratum 3.3
 - 3.2.3 Stratum C: various deposits 3.5
 - 3.2.4 Stratum D: redbrown clays 3.6
 - 3.2.5 Other components of the stratigraphy and site 3.7
- 3.3 **PROGRAM OF SEDIMENT ANALYSIS** 3.8
 - 3.3.1 Sediment analysis 3.8
 - 3.3.2 Summary of sediment groups in relation to perceived strata 3.11
- 3.4 **DATING** 3.11
 - 3.4.1 Interpretation of laboratory dates 3.12
- 3.5 **MODEL OF SEDIMENT DEPOSITION AT NOMBE ROCKSHELTER** 3.16
 - 3.5.1 Introduction 3.16
 - 3.5.2 Stage 1 3.18
 - 3.5.3 Stage 2 3.21
 - 3.5.4 Stage 3 3.22
 - 3.5.5 Stage 4 3.26
 - 3.5.6 Stage 5 3.28
 - 3.5.7 Stage 6 3.30
4 Human Activity at Nombe: the Evidence

4.1 INTRODUCTION

4.1.1 Indicators of human activity

4.2 SAMPLING PROCEDURES FOR ANALYSIS

4.2.1 Choice of squares for analysis

4.2.2 Choice of archaeological units

4.3 COMPARISON BETWEEN NON WET-SIEVED UNITS AND WET-SIEVED UNITS

4.4 APPROPRIATE ANALYTICAL STRATIGRAPHICAL DIVISIONS

4.5 DENSITY LEVELS

4.6 INTRA-SITE DENSITY COMPARISONS

4.6.1 Stratum A

4.6.2 Stratum B

4.6.3 Stratum C

4.6.4 Strata D1 and D5

4.6.5 Strata D2, D3 and D4

4.6.6 Summary of densities

4.7 CHEMICAL ANALYSES ON SEDIMENT SAMPLES

4.8 SUMMARY OF EVIDENCE FOR HUMAN ACTIVITY AT NOMBE

5 Comparisons with other Archaeological Data from the New Guinea Highlands

5.1 DISCUSSION

5.2 CONCLUSIONS

6 Taphonomy at Nombe

6.1 INTRODUCTION

6.2 AGENTS OF DEPOSITION IDENTIFIED AT NOMBE

6.2.1 Materials manufactured or altered by human agents

6.2.2 Materials introduced by animal agents other than human

6.2.3 Materials introduced by geomorphic agents

6.3 AGENTS OF Attrition AND POST-DEPOSITIONAL CHANGE IDENTIFIED AT NOMBE

6.3.1 Human activity

6.3.2 Animal activity

6.3.3 Geomorphic activity

6.3.4 Chemical/biological decay

6.4 THE NOMBE EVIDENCE AND THE ROLE OF DEPOSITIONAL AGENTS

6.4.1 Stone artefacts

6.4.2 Charcoal

6.4.3 Shell

6.4.4 Modern materials

6.4.5 Vegetable matter

6.4.6 Bone and other organic substances from animals (teeth, carapace, claw)

6.5 TAPHONOMIC PROBLEMS OF THE BONE ASSEMBLAGE AT NOMBE

6.5.1 Introduction

6.5.2 The relationship between the sample assemblage and the fossil assemblage at Nombe

6.5.3 Physical properties of the sample assemblage

6.5.4 Factors involved in the physical variation in the Nombe bone

6.6 IDENTIFICATION OF PREDATOR ACTIVITY AND BONE ACCUMULATION

6.6.1 Predators identified at Nombe

6.6.2 Identification of predator species through bone characteristics

6.7 CONCLUSIONS
7 Faunal Analysis

7.1 INTRODUCTION

7.1.1 Aims of the faunal analysis

7.2 TECHNIQUES EMPLOYED IN THE FIELD AND LABORATORY

7.2.1 Field recovery techniques

7.2.2 Laboratory techniques

7.2.3 Classification of 'burnt' bone

7.2.4 The level of identification of taxon

7.3 CLASSIFICATION OF FAUNAL DATA

7.3.1 Problems of Linnaean classifications in archaeology.

7.3.2 Faunal size categories and Linnaean classifications

7.3.3 Computation of faunal data

7.4 PRESENTATION OF WET-SIEVED AND NON WET-SIEVED RESULTS

7.5 RELATIVE ABUNDANCE OF SPECIES

7.5.1 Measures employed to represent relative abundance and diversity of species

7.5.2 Animal body-size classification

7.5.3 Abundance of species throughout the site

7.5.4 Conclusions

8 Environmental Evidence from the Faunal Data

8.1 INTRODUCTION

8.2 ENVIRONMENTAL AND ECOLOGICAL INFORMATION ON ALL TAXA PRESENT IN THE SAMPLE BONE ASSEMBLAGE

8.2.1 Discussion

8.2.2 Introduced species

8.2.3 Endemic and indigenous species

8.3 ENVIRONMENTAL IMPLICATIONS OF FAUNAL ANALYSIS FROM PLEISTOCENE AND EARLY HOLOCENE STRATA

8.3.1 Possums and cuscus

8.3.2 Macropodids

8.3.3 Large and Medium murids

8.4 CONCLUSION

9 Extinctions and Hunting at Nombe in the Late Pleistocene and Early Holocene

9.1 INTRODUCTION

9.2 EXTINCTION OF SPECIES AT NOMBE

9.2.1 Four large Pleistocene species

9.2.2 Comparable data for large Pleistocene species

9.2.3 Date of extinction of four Pleistocene species at Nombe

9.2.4 Presence and extinction of the thylacine

9.3 PREDATION STRATEGIES DURING THE LATE PLEISTOCENE AND EARLY HOLOCENE PERIODS AT NOMBE

9.3.1 Research into hunting strategies in highland New Guinea

9.3.2 Modern hunting strategies

9.3.3 Prehistoric hunting strategies

9.3.4 Human hunting strategies from Nombe
Human Impact on the New Guinea Highlands in the Pleistocene

INTRODUCTION
ISSUE 1: THE HUMAN-ENVIRONMENT INTERACTION IN THE HIGHLANDS DURING THE PLEISTOCENE
ISSUE 2: EXTINCTIONS
ISSUE 3: EARLY HOLOCENE ADAPTATIONS AND THE TRANSITION TO HORTICULTURE
THE FUTURE

Appendices
Appendix 1 Radiocarbon age determinations of Nombe samples. Radiocarbon Dating Research Laboratory, Australian National University
Appendix 2 Computing and analysis. Barry Shaw

Volume 2: Site Profiles

SITE PROFILES 1 - 11

Plates

Plate 1 Waivo, son of Papa Noibano the traditional owner of Nombe, against the strike ridge above Nombe 1
Plate 2 View of the site of Nombe in 1971 showing the main walking track along the cliff base to the south of the site 1
Plate 3 Excavations in progress during 1979 2
Plate 4 Blocks of tephra sandwiched between sheets of flowstone December 1979 2
Plate 5 East face of square X3 3
Plate 6 Close up of edge ground axe from Stratum D1/5 3
Plate 7 Local villagers with David Gillieson and Mary-Jane Mountain at the Nombe excavations, November 1979. 4
Plate 8 Excavations before the Consolidated Block was removed in 1979. 4
Plate 9 Profile A5-A6 5
Plate 10 Tephra block in A5 6
Plate 11 Vertical view of flowstones in squares B4 and C4 from above and showing rim of gour pool 6
Plate 12 Close-up of gour pool rim on flowstones in square B4 7
Plate 13 Archaeological debris cemented onto the top of the fallen limestone block in the Trial Trench area 8
Plate 14 Edge-ground axe from Stratum D1/5 8
Plate 15 Waisted artefact from Stratum D1/5 (Photo: D. Markovic) 9
Plate 16 Drying wet-sieved material at Nongefaro Village. 9
Plate 17 Sorting wet-sieved material 10
Plate 18 Site survey on Mount Elimbari, 1979. 10
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>14C dates from Nombe sediments and incorporated materials as originally laid down</td>
<td>3.12</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>δ^{13}C values for 14C bone samples</td>
<td>3.13</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Radiocarbon dating from snail samples at Nombe</td>
<td>3.14</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Radiocarbon dating from flowstone and calcite samples at Nombe</td>
<td>3.15</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>14C results from Nombe in stratigraphic sequence</td>
<td>3.17</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Quantities of material recovered from squares included in analysis.</td>
<td>4.4</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Breakdown of units within chosen squares by sieving technique and stratum</td>
<td>4.4</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Comparison between recovery rates from wet-sieved and non wet-sieved units</td>
<td>4.5</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Stratigraphical units chosen for analysis of indicators of human activity</td>
<td>4.6</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Density of major components of Stratum A units</td>
<td>4.9</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Density of major components of Stratum B units (top level)</td>
<td>4.11</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Density of major components of Stratum B units (centre level)</td>
<td>4.11</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Density of major components of Stratum B units (base level)</td>
<td>4.11</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Summary of density of major components of Stratum B units</td>
<td>4.13</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>Density of material from Stratum C units</td>
<td>4.13</td>
</tr>
<tr>
<td>Table 4.11</td>
<td>Density of material from Stratum D1 and D5 units</td>
<td>4.15</td>
</tr>
<tr>
<td>Table 4.12</td>
<td>Density of material from Strata D2, D3 and D4 units.</td>
<td>4.16</td>
</tr>
<tr>
<td>Table 4.13</td>
<td>Summary table of density of materials recovered</td>
<td>4.17</td>
</tr>
<tr>
<td>Table 4.14</td>
<td>Chemical analyses from Nombe sediments by Stratum group</td>
<td>4.19</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Quantities of archaeological material excavated from Kafavana and Batarri cave sites, Eastern Highlands Province, Papua New Guinea</td>
<td>5.2</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Quantities of archaeological material recovered from Manim (2) rockshelter, Western Highlands Province, Papua New Guinea</td>
<td>5.3</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Quantities of archaeological evidence recovered from Kambakok rockshelter, Western Highlands Province, Papua New Guinea</td>
<td>5.3</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Numbers of artefacts recorded from Kiowa rockshelter, Simbu Province, Papua New Guinea</td>
<td>5.4</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Numbers of artefacts recorded from Yuku Cave, Western Highlands Province, Papua New Guinea.</td>
<td>5.5</td>
</tr>
<tr>
<td>Table 5.6</td>
<td>Pleistocene radiocarbon dates from Wanlel, Madang Province</td>
<td>5.5</td>
</tr>
<tr>
<td>Table 5.7</td>
<td>Radiocarbon dates from NFB and NFX open sites in the Eastern Highlands Province, Papua New Guinea</td>
<td>5.6</td>
</tr>
<tr>
<td>Table 5.8</td>
<td>Summary of main periods of human activity at Nombe</td>
<td>5.8</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Bone from squares used for analysis at Nombe grouped by stratum and sieving technique</td>
<td>6.10</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Physical variations between bone from Strata A/B and Strata D</td>
<td>6.11</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Variation in the weight of bone fragments from one square (M71)</td>
<td>6.12</td>
</tr>
<tr>
<td>Table 6.4*</td>
<td>Chemical tests in bone samples from Nombe</td>
<td>6.13</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>Burnt and calcined bone at Kambakok Cave, Western Highlands, Papua New Guinea</td>
<td>6.14</td>
</tr>
<tr>
<td>Table 6.6</td>
<td>Burnt and unidentifiable bone from Nombe</td>
<td>6.15</td>
</tr>
<tr>
<td>Table 6.7</td>
<td>Variations in physical state of bone from Nombe Strata B by sediment groups</td>
<td>6.16</td>
</tr>
<tr>
<td>Table 6.8</td>
<td>Variation of burning and brittleness of bone in the top strata of Nombe (Strata A and B)</td>
<td>6.17</td>
</tr>
<tr>
<td>Table 6.9</td>
<td>Predators at Nombe identified from faunal evidence</td>
<td>6.18</td>
</tr>
<tr>
<td>Table 6.10</td>
<td>Body parts of Zaglossus, Large macropod (Dendrolagus spp.) and cassowary from Strata B and D1/S</td>
<td>6.22</td>
</tr>
<tr>
<td>Table 6.11</td>
<td>Bone from owl pellets (Schrader ranges, 2400 m)</td>
<td>6.24</td>
</tr>
<tr>
<td>Table 6.12</td>
<td>Bones from owl pellets 1,600-1,800 m in the Kalam area.</td>
<td>6.24</td>
</tr>
<tr>
<td>Table 6.13</td>
<td>Comparison of bone from Stratum A in square C3 with bone from Strata A in square B71</td>
<td>6.25</td>
</tr>
<tr>
<td>Table 6.14</td>
<td>Proportion of 'very small species' in the entire faunal evidence</td>
<td>6.26</td>
</tr>
<tr>
<td>Table 6.15</td>
<td>Proportion of 'very small species' to total bone (Wet-sieved Strip)</td>
<td>6.27</td>
</tr>
</tbody>
</table>
Tables (continued)

Table 7.1 Estimated quantities of bone recovered from excavations at Nombe 7.2
Table 7.2 Taxa classification for Nombe data . 7.9
Table 7.3 List of body parts and codes. 7.13
Table 7.4 Quantity and percentage of sediment processed by different sieving techniques by stratigraphical levels of Nombe 7.14
Table 7.5 Abundance of faunal classes over entire site 7.14
Table 7.6 Classification of species present in the Nombe data by body size 7.17
Table 7.7 Relative abundance of Large animals (over c. 5kg adult body weight) by stratum 7.19
Table 7.8 Relative abundance of Medium animals (c. 1 - 5 kg adult body weight) by stratum 7.20
Table 7.9 Relative abundance of Small animals (c.300 g - 1kg adult body weight) by stratum 7.21
Table 7.10 Relative abundance of Very Small animals (less than c.300 g adult body weight) by stratum 7.22
Table 7.11 Summary of faunal data by animal body size and strata 7.27
Table 7.12 Density of bone by body size and strata 7.29
Table 8.1 Environmental and ecological information on Nombe species and their stratigraphical occurrence 8.31
Table 8.2 Abundance of cuscus and possum species from Pleistocene and early Holocene strata 8.34
Table 8.3 Abundance of macropods at Nombe in Pleistocene and early Holocene strata 8.36
Table 8.4 Abundance of Large and Medium Sized Murids (MURL and MURM) in Pleistocene and early Holocene strata 8.38
Table 9.1 Analysis of terrestrial and arboreal species (mainly Small and Medium body size) in the five main Nombe strata 9.14

Figures

Figure 2.1 Locality map of Papua New Guinea highlands, showing Nombe and other highlands archaeological sites 2.2
Figure 2.2 Detailed locality map of Nombe 2.3
Figure 2.3 Geology of Nombe region 2.5
Figure 2.4 Drainage map of Nombe region 2.6
Figure 2.5 Plan of High Cave 2.7
Figure 2.6 Plans of the excavations at Nombe 2.9
Figure 3.1 Plot of normalised varimax factor scores for Nombe sediments 3.9
Figure 3.2 Nombe: plan of excavation squares 3.18
Figure 3.3 Detailed plan of central area of the site at completion of excavation and after removal of flowstones 3.20
Figure 3.4 Detailed plan of excavation of central area before removal of flowstones 3.23
Figure 3.5 Nombe rockshelter wet/damp areas as recorded in 1979 3.32
Figure 7.1 Relative abundance of Large animals by NISP (over c 5 kg adult body weight) by stratum 7.23
Figure 7.2 Relative abundance of Medium animals by NISP (c.1 - 5 kg adult body weight) by stratum 7.23
Figure 7.3 Relative abundance of Small animals by NISP (c.300 g - 1 kg adult body weight) by stratum 7.24
Figure 7.4 Relative abundance of Very Small animals by NISP (less than c.300 g adult body weight) by stratum 7.24