DEPARTIENT OF COHPUTER SCIEWCE

AUSTRALIAN WATIOHAL UWIVERSITY

REFERENCES AND/OR EFFICIENCY

IN HIGH-LEVEL LANGUAGES

BY

C.W. Johnson

TR-CS=78-02

REFERENCES AND/OR EFFICIENCY IN HIGH-LEVEL LANGUAGES

C.w.Johnson,

Department of Computer Science,
School of General Studies,
Australian National University,
P.0.Box 4, Canberra, A.C.T. 2604

The role of reference variables in
producing efficient but insecure data
structure spaghetti 1is similar to that

played by GOTOs in un-Structured
Programming. Secure programming
language constructs are suggested to
replace various identified uses of
references. Efficiency of program
implementation is maintained by

allowing specifications of the desired
representation method to be added to
the abstract data structure definitions.

Key words: references, pointers, data
abstractions, data representation
specifiers, abstract data types,
programming languages.

CR Categories: 4.12, 4.26, 4.22, 4.34.

Paper submitted to
Eighth Australian Computer Conference
Canberra August 1978

INTRODUCTION

Our concern is with the data structuring facilities in
general purpose algorithmic languages, their impact on reliable
programming, and the efficient implementation of the resulting
Proygrams. By high-level languages we mean the line of
development of algoritnmic languages including Algol 66, PL/I,
Pascal, Algol 68, Simula 67, CLU, etc. We take an object-
oriented view of computation, in which an object is an instance
of a data type, that is an unstructured or structured variable,
and a structured obbject has a number of discrete components
that constitute its walue, each one of which may be a structured
or unstructured variable. We shall be considering abstract
programs and their implementations on general-purpose
computers, referred to as "machines": the abstract
program is an algorithmic specification (in a language for which
an acceptor does not necessarily exist) of some computation,
its implementation an eguivalent program at machine level. The
abstract program uses abstract data structures with no necessary
relation to actual machines, while the implementation of the

program consists of representations of its abstract data
structures and algorithm in machine-level data and control
structures. The abstract notion of an object described as a

list or tree is a single object, though it may be represented by
a number of linked objects at machine level. The efficiency of
an implementation is a measure combining machine space and
time taken to run the machine program, i.e. to perform the
computation spccified by both machine and abstract programs.
Reliability of representation 1is the extent to which the
machine prograin which purports to represent the abstract
program actually does so.

The refevence, or pointer, in high-level langquages is a
very powerful feature. It extends the power to manipulate the
values of simple and compos it variables to the
manipulation of objects of wvariable and cowplex forms. It 1is,
however, almost unchanged from the wmachine-level concept of a
stored address and bringing it into a nigh-level language
hag some grave disadvantages:

- the very power and generality of t=2ferences (inherited
from machine addresses) makes them a very dangerous tool.
Compile-time undetectable errors in using them can break the
type-security system that the high-level language otherwise
provides. Other mistakes in pointer manipulation can have
far-reaching effectk and unobvious program origin (e.g.
accidentally establishing cycles in a structure where none 1is
intended, no error being detected until a procedure that
assumes no cycles exist attempts to Lraverse the structure)
because there is littie ~-lear correcpondence between the forms
in the program text and the abstractions of the intended
computation.

- a large collection of pointer-using techniques is known,
but only wvery informally. Each programmer must be taught
these or re-invent them to be able to implement a range
of date structures. References fill many different roles in
these iaplementations: the appearance of a reference in a
program does not carcy with 1t any information about its
intended functioen. It 2 therefore not easily seen from the

program which abstract structure 1is being implemented, nor
whether it is being implemented correctly.

Some of these probleims have been reduced by the
restriction of reference variables to point to objects of
a single specified type, and the (expensive) removal of any
explicit release of the storage of 2 referenced cbject, which
together prevent any violations of the type security system and
make program correctness proofs possible. References still
model the machine's structures and not any abstract notion of
computation, and the use of references in a high-level language
leads to violations of the "structured" principles of «clarity
and safety of programs which high-level 1languages seek
to maintain. The problem has recently been addressed by
several workers, e.g. Hoare (1975), Berry et al (1976), Kieburtz
(1976), Dembinski and Schwartz (1977).

References are necessary at some level in the
implementation of high-level languages because desirable
abstract data spaces cannot be model led on conventional
machines without them, but this alone does not justify their
inclusion in high-level languages where they are an
inappropriate concept for the programmer to work with. Their
presence is supported on the grounds of efficiency of
implementation (Berry et al): by placing references where
he/she desires, or explicitly choosing among alternative data
structures while describing an abstract program in the
high-level language (e.qg. copying objects that would
otherwise be shared; providing expansion space in a vector for
a size-changing sequence or regular tree; placing
notionally distinct but related objects in adjacent
locations), the programmer can achieve an efficient realization
of the abstract program.

However, the reference concept is poorly integrated into
higher-level languages and may introduce some possibly major
inefficiencies beyond the programmer's control:

- the general wuse of the accompanying dynanic storage
allocator (for all structures in Simula 67, all those with
pointers to them in Pascal and derivatives, HEAP store in
Algol 68) is very expensive, either in time for garbage

collection or sufficient space to avoid it. The alternatives
to this are explicit de-allocation of objects, with

asgocliated dangers to type security, and/or the programmer
providing specialized storage allocators, which is cxpensive and
unreliable.

- the ise of a stored machine address to encode
structure makes communication of structured data between
programs impossibles without re-encoding the address for the
particular storage device used (to aveid this, Algol 68
transput, Pazcal and Simula 67 i/o handle nothing but

groups of elementary wvalues).

- the programmer cannot control placement of references
with respect to machine page boundaries, thus risking page
thrashing and/or pipeline/ cache under- utilization.

The notion of record AREAs has been suggested to reduce
the paging and garbage collection problem (Baecker 1975) (and to
increase clarity, as shown by ease of correctness prcof: e.qg.

Euclid's collecticns and zcnes) but has no effect on pipelining,
nor on paging large collections of objects.

wWe first <consider the uses of references and why they
arise, and then suggest the elements of an abstract data
structure manipulation Janguage with a separate
representation specifying facility.

THE USES OF REFERENCES

The general power provided by freely manipulable
references 1is that of modelling dynanic binding of objects

to names and as components of other objects. Linear uniform
to names and as components of other objects. Linear uniform
storage may be used for representing objects and their bindings
where these have invariant form and are static. Thirs

requires mapping the objects onto machine addresses (actual or
virtual), an address space which is quite inflexible, permitting

no squeezing in or removal of elements. The mapping from
program text to address is non-dynsmic. Hence to bind, share
and unbind dynamically a dynaanic re-mapping of binding is

needed, which 1is provided by addresses as the values of
reference variables.

The uses of references in implementing and within
high-level languages can be grouped as follows.

(a) References are onse method of implementing
structures that are wider or deeper than the storage provides
directly, or have variable width (size) or depth (levels of
structure). There are the alternatives of mapping excess
(invariant) depth of structure onto elements at the one level
(e.g. the standard representation of the fields of a Cobol
record); and the provision of extra space for limited expansion
within a fixed containing object (e.g. the standard
size-limited stack representation). But the choice of a
stored reference implementation 1is necessary for more general
variability of size in structures, which 1if invariant could be
represented directly, because of the inflexibility of the
storage medium.

(b) They allow the dynamically variable binding of names to

objects. This makes block-structured environments with
logically separate wmultiple instances of che One local
environment rossible, and also the traversal of composite
structured objects by reference wariables ranging dynamically
over their elements. (FLEX atrcays ard "variable length"”

arrays fall into this category and not, as thelr namz sugyests,
arrays fall inte this category and net, as their name suggests,
into (a) above: they allow the binding of one name te Jogically
distinct objects ol dilferent sizes, put not &ny variaticn in
size of the particular object so bound).

(¢) ‘'hey wenable the lack of 2oy bLinding of a name as a

special case of variable binding to be represented by using
a particular reference value, usually denoted by NIL.

{(d) References allow the shared binding of more than
one name to an object at the one time, while allowing these
bindings to be separately established and broken.
Structures with shared substructures, cyclic structures,
"by reference" parameters, traversing variables ((b), above) are
instances of this.

(e) The general modelling of dynamically variable directed
graphs is done with objects as the nodes and references to
represent the arcs between them. The relations represented by
the arcs can then be dynamically variable, many to one
(shareable) and non-existent (by NILs).

DEALING WITH REFERENCES

The abstractions of variable binding, form and size can
be well defined without recourse to a particular implementation
description using pointers. This tells us little about how to
integrate these abstractions into a programming language because
at the same time we cannot afford to ignore the economics of
storage space occupied and tinme taken by the running of an
implemented program: the efficiency of the concrete
representation matters. The specification of abstract
program and of its implementation must however be kept as
Separate as possible. This allows the program to express the
programmer's actual intentions without the distortion of
implementation peculiarities. Changing representation choices,
or tuning the program for specific data values or machines,
are easy without major changes to 1its fabric.

One stream of thought (e.g. Schwartz 1975) takes the
separation of programming language from machine structure as far
as providing only abstract structures, possible representations
being only discovered by quite sophisticated analysis of the
program. One objection to Very High Level Languages is that the
abstractions provided are inappropriate to describe the
abstractions of object- oriented programming; another 1is the
difficulty of obtaining an efficient implementation. At almost
the opposite end of the spectrum it is argued that hiding either
GOTOs (Knuth 1974) or pointers (Berry et al 1976) from
the programmer 1leads to presently unavoidable inefficiencies of
implementation. The suggested solution for pointers (Berry et
al 1976, Shaw 1976) is to restrict their use to inside
protectively sheathed modules each of which describes both
the meaning and the implementation of a single data structure
abstraction (CLU clusters, Alphard forms). Berry et al claim
that this provides the implementation efficiency desired along
with the reliability implied by the ability to then do formal

proofs: the prootfs are demonstrated but the efficiencies
assumed. In particular, the modules describing data
structures ("clusters": the base language is CLU) may be

freely shared {(the standard assignment mechanism is by binding,
alias "reference agssignment" in Simula 67's terms): the hiding

(o)

of pointers within clusters may help with implementing the
internal low-level detail of separate data abstractions
but not with the varicus binding abstractions basic to the
language. A cluster is both the definition and implementation
of a data structure abstraction; hence while a
representation may easily be altered hecause its details are
all within the one cluster, there 1s nc wiy to protect thz
meaning of the cluster (i.e. the abstraction it defines) when
changing its representation.

We hope to demonstrate that separating the various
notions of binding and variability from each other and from the
implementation— level reference concept allows more transparent
programming, less tied to the machine. This requires refining
the notion of data type as applied to variables to 1include an
indication of the kind of bindingy the wvariable may have to
objects of "its" type. Efficient representation methods for
the objects and bindings specified in the abstract program can
then be chosen and specified without affecting its clarity.

THE REFERENCELESS LANGUAGE

Consider a mini-language in which a program characterizes

an abstract machine, by defining its data structures and
its instructions (as procedures). The language expresses

abstract data types as distinct capsules in terms of other
abstract and elementary types using the basic structuring
methods of named parts, simple ordering, and regular recursion.
This "clump" encapsulation follows CLU, Alphard, Euclid etc.,
and hence we believe powerfully and manageably expresses the
concept of "data type" for algorithmic languages. The data type
constructors provide objects with more flexibility than do
these languages, matched with declarative forms to specify
where this flexibility is made use of. Assignment is by binding
and by copying, and the abolition of bindings 1is possible.
CLUMPs describe data objects by their internal =tate and the
operations that may be applinsd to that state. Object instances
may be bound to variables of the same type, or into other
objects as components (of the same type also), and may be
explicitly or implicitly <created. Neither procedures nor
particular instances of them may be bound dynamically to names
or as object components. There are no restrictions on data
types being recursive.

A caveat: the range of data structuring facilities
described in the mini- language and accompanying
representations 1s limited by the space available here.
Specific forms for regular recursive types (2.g. binary trees)
and their representation other than as reference- linked
discrete records therefore are not described.

An example portion of a program follows, cocncerned with
describing a simple mocdel of persons, their spouses, cars and
favourite drinks.

PROGRAM EXAAMPLE
1: CLUMP automobile = (
2 STATE: STRUCT(year: int; value: real;
3 POSSIBLY motor: posint) ;
4: hidecapacity = PROC: BEGIN motor <- NONEX END ;
5:)
6: CLUMP person = (
7 STATE: STRUCT (bankac: real;
8 POSSIBLY prefdrink: drink ;

9: POSSIBLY spouse : person ;
10: car : automobile) ;
11: buycar = PROC (newie: automobile) ;

12: BEGIN

13: bankac := bankac + car . value ;

14: car <- newie ;

15: bankac := bankac - car . value ;
1l6: WITH hw = spouse
17: WHEN EXISTS DO

18: hw . changecar (car) ;

19: END ;

20 changecar = PROC (newie: automobile) ;
21: BEGIN car <- newie END ;
22: findpref = PROC (pub: hotel) ;
23: BEGIN

24 WITH glass = prefdrink

25: WHEN EXISTS DO (*nothing¥)
26 OTHERWISE
27 FOR try : OVER pub.drinks DO
28: WITH bestyet = prefdrink

29: WHEN EXISTS DO
30: IF try.taste > bestyet.taste THEN
31: prefdrink := try
32: OTHERWISE prefdrink <- COPY (try);
33: END

34:)

35: CLUMP drink = (STATE: ANYNUMBER OF ingredient ORDERED;
36: taste = FUNC: int; BEGIN ... END;

37: addone = PROC (newingr : ingredient);
38: BEGIN
39: GROW AT 1 WITH COPY(newingr)
40 : END)

41: SHAREABLE (person.spouse, electoroll.ALL) ;

42: SHAREABLE (person.car, person.buycar .newie

43: person.changecar .newie) ;

A CLUMP (line 1) encapsulates an abstract data

type, by the possible states of an object and the applicable
operations. A STATE (lines 2-3) is either a STRUCT, of
parts with names and tvpes each of which may be marked as
POSSIBLY unbound (line 3, 8, 9) {and is otherwise always bound
to some objeckt); or an ordered collection of either fixed,
limited or unlimited size (<integer> OF <type>; UPTO
{integer> OF <type>; ANYNUMBER OF <type>) of objects of the one
type (line 35). The operations follow the STATE declaration as
procedure (PROC) zand function (FUNC) declarations. They are
called remotely by dot notation (line 18) or locally by their

simple name (no example here) . Calling by dot gives the
procedure access to the state of the particular object specified
ahead of it in the dot expression (as in Simula 67). Objects’

states may not be remotely wupdated, but may be remotely
accessed (line 13).

Two assignment opecrators are used: one (:=) to copy a
value (simple or structured) into an existing object (line 13,
31), the other (<-) to rebind the left hand name or component to

a different object or to none (line 4, 14). The
corresponding comparators are = (equals) and <~-> (sameas).
NONEX denotes non- existence, or no binding: the construct
"WITH <{name> = <object> WHEN EXISTS DO {statement>

{OTHERWISE <statement>}" (line 16, 28) is a discriminator on the
existence of a binding with obvious meaning.

New objects are explicitly created by the object

expressions "NEW <type> (<component 1list>)" (no example here)
and "COPY (<Kexpression>)" (line 32). An ordered object may
be changed in size by shrinkage or growth (line 39) within
'the continuity of current elements. "GROW AT n WITH

<object>" makes that object become the nth component of the
owner (the containing object's state), the previous nth, if
any, becoming the (n+l)th and lower—- ordered components
than n (if any) being unaffected.

The declarations of component, variable or function
names that may be bound to shared objects are written as type
and operation names with dots followed by component or parameter
name (lines 41 & 42) in a SHAREABLE declaration. The
name "ALL" is used here to denote the components of an ordered
structure. The various instances of a single sharelist name may
be bound to common objects (e.g. person.car, line 42), as well

as the other names in the list. SHAREABLE lists must all be
disjoint; the names in any one list must be of the same type,

but there may be more than one 1list of the same type.
Parameter passing and component binding on creation of an object
are done by the same binding mechanism as the rebinds
operator. Parameters that might be passed by reference in a

simpler language are shared with the actual parameter; 1if not
shared, an actual parameter expression must be “COPY...".

traverger variable (line 27) 1s restricted to traversing
over the elements of objects denoted by a single identifier of
ordered type. It nead not appear on & sharelist for those

elements: it is part of the articulation mechanism of the
ordering, rather than simply a variable. Onc=
initialized, the traverser is confined to 2 single object
until re- initialized. The operations on a traverser are to
inivialize it to the start of a particular object, step it on
to the next element from its current position, check
whether any elements remain to be traversed, grow and shrink

the ordered object at the traverser's current position, and
access the current element (by wusing the traverser variable
in a context where an object expression is expected - line
39 . Some of these operations, and the declaration of the
traverser variable, are collapsed into the form

"FOR <traverser>» : OVER <object> DO Jstatement>"

with the obvious meaning. Indexing ordered structures may be
used as well as traversing.

Recursive types are made little use of here (e.g. person).
They have provision for expressing whether cycles or
convergences (sharing of branches) are possible, and their
own class of traverser variables, with a wider range of
operations than those for simple ordered structures.

\

The specific uses for reference variables in high-level

languages listed above are here expressed by:

(a) variable width: allowing ordered objects to be of
possibly unlimited size, and to grow and shrink at any place at
will.

(b) dynamic rebinding (which provides variable depth): the
rebinds operator (<-).

(c) non-existent binding: marking a name with PGSSIBLY to
indicate that there 1is only possibly a bound object, while
allowing the apparent re- binding to NONEX to denote the loss of
any binding, and the existence discriminator "WITH..." for
protected ccomputing with possibly non- existent bindings.

{d) shared binding: defining SHAREABLE 1lists of names and
components that may simultaneously be bound to shared
objects, by using rebinds assignment, and the provision of
distinct traverser variables which are constrained to operate
in the composite object corresponding to a single
abstract object.

(e) genearal directed graphs: the STRUCT and ORDERED
state mechanisms, which are unrestricted in their recursive

abilities (but POSSIBLY should be used for STRUCTs), are able to
define the element data structures of graphs, with sharing and
variability of form as above (b, ¢, and d).

These notione expand the vocabulary of programming and
hence enable programs to be constructed more easily and
reliably, and to be obvious in intent. Such a language proposal
is however only a small advance unless the implementation
of a program can be Dbetter than the pessimistic automatic
method of merely representing each shareable, possible or re-
binding by a reference variable, and variable ordered structures
by reference- linked linear lists. To implement efficiently,
we must consider the alternative representations available: we

shall define names to specify the representation methods as we
go.

for the notion of "possibly no binding" (marked by
POSSIBLY) the alternative to substituting a reference whose
range of wvalues includes a NIL value is to extend the range of
the possible component itself, to include a value that will
represent nonexistence of the binding. Elementary types
(including reference) may have some value(s) from tLheir range

g —

10

taken to mean non- existence. This value extension is denoted
by "EXTEND ELEMENTARY". A non- elementary type can have 1its
range of wvalues extended only by introducing an extra
Boolean component whose value by itself indicates the existence
of any binding to 1its owner. For each binding to a shared
object to have separate 1indication of existence, there must
be a separate existénce component for each possible owner.,
"EXTEND" denotes this form of extension which may also be
applied to components of elementary types.

The wuse of a reference for any purpose, including the

representation of possible bindings, sharing, or dynamic
bindings, we denote by "REF OUT" - because the reference
displaces the object it refers to. . The alternative to
references for dynamically sharing a common object is to

maintain separate copies of the object, denoted by "MULTICOPY".
This representation is only reasonably simple when no selective
changes are applied to the copied object, since these must be
reflected in every copy. For dynamic rebinding we provide
no representation other than "REF OUT" and “"MULTICOPY",but note
that in limited cases it may be implemented by value copying.

The default representation of ordered and part- named
structures of elementary components is by direct mapping onto
adjacent machine storage locations. "Storage location®
normally means "smallest addressable unit" (i.e. word or byte) -
adjacent bit-fields (loose packing) can also be specified,
at some cost. This representaticn is the only one that may
be specified separately from the notion of type 1in any of the
Algol-based languages - Pascal. We also denote it by "PACKED".
A non- elementary component may either use "REFOUT", or
integrate the components of that component with those of the
owner. This destroys the separate identity of the component,
and hence this method (denoted by "INCORPORATE") is forbidden
when that component may be shared.

An ordered structure may be represented by:
- a simple vector, which iz allowed only for a
fixed- size structure (default). '

- a fixed- size record consisting of a fixed vector of the
structure's maximum size plus one or two integer (subrange)
index wvariables, which i1s the conventional representation of a
limited-size stack or Qqueue. This can only apply 1if the
structure has a known maximum size. It is denoted by "CONTAIN";
the "used" part of the containing vector may be either at the
"top" or "bottem" (needing only one index variable: e.q.
conventional stack) or be anywhere within the “wrapped around"
vector, using two indices for its start and finish (2.9. queue).
These are denoted by "CONTAIN AT 10", ".. AT BOTTOM", and
" JWITHIN",

(Note that changes of size of the contained object away

from the "ends" do not require these representations, but
non-c¢nd changes are more expensive);
- a reference- linked 1list of records, each with an

element of the ordered structure and a reference to the next
such record (NIL for the last) - denoted by "REFLINK".

11

The representation of a corresponding traverser variable and

its operations differ for each of these. For "REFLINK" it
is a reference variable, including NIL in its range, otherwise
being an index variable ranging over the vector.

These representation specifiers are to be added to a
program text to turn it from the specification of a
purely abstract program to that of a concrete, machine-
acceptable one. Working in the program text domain (and wishing
to avoid interpreting representations at runtime), we
cannot specify the representation of individual objects.
However, we wish to avoid having a single representation for all
objects of one type: the representation often exaggerates small
differences of behaviour ignored when abstracting a data type.
Program textual «correspondence requires that each owner of a
shared object see it represented identically, but allows change

of representation when object values are copied. Representation
specifiers are therefore attached to component (and
variable) type specifiers, whether applying to the binding
(REFOUT, MULTICOPY, EXTEND - which have no effect on the
component's representation - and INCORPORATE and EXTEND
ELEMENTARY, which do affect it), or the objects bound (CONTAIN,
PACKED, and REFLINK) . Two convenient shorthands: all

instances of a type may be represented alike, by specifying it
at the clump's declaration; and the gingle representation of a
shared object may be specified at the sharelist.

A non- structural specifier "MAX <integer>" allows an
implementation 1limit to be imposed on a clump with state
"ANYNUMBER OF <type> ORDERED". 1In itself this implies no
particular representation, but allows a choice between REFLINK
and CONTAIN to be made for ANYNUMBER in the abstract.

EXAMPLES OF REPRESENTATION SPECIFICATION

(a) The representation of an "automobile", and in particular
its binding to the "motor" component.
CLUMP automobile = (STATE:STRUCT
(...POSSIBLY motor:posint...)...)
POSSIBLY cannot be represented by the default
implementation, which requires that a component be permanently
present. The usual representations are

— to make a separate object for the "posint" which may be
bound here, and represent the binding by a component of
reference type extended to include NIL to denote the lack of any
posint.

(1) .. .POSSIBLY motor:posint REFOUT & EXTEND ELEMENTARY. ..

12

(an automobile)

3
motor OR
\'\

=

motor
NIL

WA NN,

posint

- to make a scparate object which has two components: one
indicating the logical presence of the binding, the other
being a posint variable that is only looked at when the first
cemponent is true.

(2) ...POSSIBLY motor:posint EXTEND...

There are two ways of represcenting the resulting 2-level
structure: either to suck up both components among those
of automobile

(3) ...POSSIBLY motor:posint EXTEND & INCORPORATE...

{an automobile)

bool posint

AN
WMAMAMY

— s
v

motor

or to refer to a distinct object that consists of the two
(4) ...POSSIBLY motor:posint EXTEND & REFQUT...

motor %

—

\

RAAAA A~

™| bool |posint

In this case the reference need not be extended with a NIL
value because the possibility of logical non-existence has been
absorbed by the extension with an extra component. ‘

13

- to extend the range of values of a motor component in
place, assuming it is an elementary type
(5) ...POSSIBLY motor:posint EXTEND ELEMENTARY...

+ 1 value

; posint
Z

motor

(b) The representation of every instance of a drink.

CLUMP drink = (STATE:ANYNUMBER OF ingredient ORDERED;...
Without any limit on size, the only representation that can be
used is a linked list of dynamically allocated elements
(1) STATE:ANYNUMBER OF ingredient ORDERED REFLINK;

{a drink)

s ingred.
>

iy 5 aenn /

(The empty drink must be distinguished from the non- existent -
hence the "header" element). All references in the reflinked
representation are EXTENDED ELEMENTARYs with NIL in their range
of values).

(The representation of the binding to the component
ingredients will not be pursued here.)

Once a limit is placed on the extent of the sequence,
other representations become possible, but REFLINK is not
excluded.

(2) STATE:ANYNUMBER OF ingredient ORDERED MAX 5

may be represented by containment

(3) STATE:ANYNUMBER OF ingredient ORDERED MAX 5 & CONTAIN
AT TOP;

This is strictly incomplete, since there are now 2 components,
an index wvariable and a vector of 5 ingredients. By default
the eclements of the vector will be incorporated into the
representation of the drink, giving us

' (8..5) ::%:::///:EE;EEEE:::/// - ingred.| ingred.
: //T::;EEZ<:>/::25///’

\

which represents a drink with 2 ingredients.

& vector of references to ingredients, rather than the
ingredients themselves, may be specified by
(4) STATE: ANYNUMBER OF ingredient REFOUT ORDERED MAX 5 &
CONTAIN AT TOP

14

(0..5)
. “ p -
ingred. ingred.
(c) All instances of automobile may be shared, and so any
representation specification at one of the owners must also be

at each of the others. The representation of the shared binding
may differ at each owner, however, and if copying is used to
represent shared binding by MULTICOPY then the copies so
obtained may be differently represented.
(1) SHAREABLE (person.car, person.buycar.newie,
person.changecar.newie) REFOUT;

represents all these bindings by a reference variable.
(2) CLUMP person = (STATE:STRUCT

(...car:automobile MULTICOPY...)...)
gives each instance of person a separate i ance of an

nst
automobile, and we might extend this representation further
to

(3) car:automobile MULTICOPY & INCORPORATE & PACKED
(person)
g spouse year value ‘g
N V ~
car

DISCUSSION

The representation specifiers described here can
be applied in ordered combination to produce a wide range of
data structure representations. They are the elements of a

sub- language for data representation, used applicatively on
the data definitions of the abstract program and on the results
of previous applications to specify structurally related data
types with equivalent behaviour to the originals'. They are
only a partial solution to the problem (of which implementing
particular programs on particular machines 1is itself only a
part) of describing Programs of all kinds powerfully

enoughn to capture their equivalences and differences, i.e. a
Theory of Programs. These data structure representation
specifiers have a structural basis which makes them a
contribution to the theory, although they are 1limited to
programs which make clear the somewhat arbitrary
distinction between data and algorithm components, and
further restricted to applying only to individuals among the
data structure definitions and not at all to the control
structures. Given these limitations, specifying

representations by adding specifiers to abstract program text

15

can be judged on four grounds: the ability to describe a
range of representations; the extent to which implementation
efficiency can be improved over a default representation; the
ease with which the representation can be developed from the
abstract program; and the reliability of the development.

While a careful, clever Programmer starting from the same
abstract program could produce a possibly better implementation,
the result produced by specifiers is more reliable, being
Certainly equivalent to the abstract program. Because clump
definition and representation are expressed separately,
representation choices can be made (and altered) with no risk
that the meaning of the program might be changed by the process
of representing it. This method of applying representation
specifiers t.o the data structure abstractions of 3
high-level language is therefore a tool that advances our
abilities to do high-level programming at low cost.

The only storage structure considered here is a very
generalized one, of 1linear coordinates and fixed size {(word/
byte) elements. A more complete treatment would require a
general descriptive method for the “target" storage medium (or
media), but handling vari~ or richly- structured targets is
much more difficult than representing even very rich abstract
objects on a simple target machine. Representations involving
major structural changes perform adequately, however, with
this simplifieq storage model. Non- uniform timing
characteristics of storage have also been ignored. While the
storage medium is uniform space/ time tradeoffs can be left to
the representer's own management, but in multi-level
stores placement of data and timing tradeoffs because of
placement of references become more critically interdependent.
Simple, independent data representation specifiers may not be
adequate to describe the desired implementation, and are of
little help in handling the complexities of the process of
designing it.

Apart from coping with such refined models of the machine,
nearly all the texztbook representations can be described with

the addition of a faw more representation specifiers., More
efficient represcntation can be had by extending the range of
representations within the same framework. Some examples for

future consideration are:

= with exte2nsions of these methods we would expect to
be able to specify local storage allocators for particular

data types or particular variables. The "CONTAIN"
representation is only one example of a representation including
storage allocation and de-allocation that is tailored to

particular patterns of storage usage and hence may be much
more efficient than making usc of the global allocator and
garbage collector for certain objects. The range of similar
methods is unknown.

T

he independence of representation specifications
from each other and from all but one data type in the abstract

16

program 1is an advantage in constructing the program by allowing
attention to be narrowly focussed, but it means that some quite

desirable implementations of the whole program are
unreachable. For instance, reorganizing the algorithms
used (e.g. from repeated ‘"production" and "consumption" of
single data items to "produce all; consume all") and changing
the intermediate data structures to match may be a better
implementation for the abstract program. The initial

factoring of program into data and algorithmic components makes
such notions difficult to pursue.

The specifiers are not easy to use for program
development. Some of the examples above need three or four
specifiers to describe the representation of a single clump,
and after even only two or three specifiers it is often not

clear (even to the practised user) what further specifications
must be made to achieve a program that 1is acceptably close
tc machine structures. The effects on the algorithms that

operate on the altered data structures can only be imagined
with difficulty, and no assistance is given towards designing
an economical space/ time tradeoff. While a program that
includes representation specifiers is a good textual
description of an implementation of an abstract program, the
representation specifiers are not a good tool for deriving it.
The difficulty arises because although each specifier captures a
structural equivalence of data structure or binding, the

expression of this equivalence in the program surface text is
not simple.

In this form, representation specifiers are 1limited.
However, they suggest a basis for a Program Construction
system, or mechanical programming assistant, that will aid 1in
the process of developing programs from abstractions to
concretions. The specifiers may be seen as applying
transformations to the textual definition of the program, the
effect of each being localized to the state and operations of
one data type. Several successive transformations of a data
type definition may be needed, but only the end result need be
close enough to machine structures to be a "representation" of
thhe data structure. (See Loveman (1977) and Kibler et al (1977)
for an initial look at mechanically assisted program
transformation). The text of the program and estimates of
relative time and space requirements could be held and produced
by the programming assistant system for the programmar to
develop a "“"best" implementation, the effect of each data
structure transformation being reflected in the current program
text. The original text remains the abstract program
definition, with well- defined semantics; the final result of
all transformations is only of interest as input to an automatic
compiler, to take it down to actuaal object code. The
transforming operators, their points and orders of
application to the original text give a notation for
specifying representations allowing notions of representations
to be discussed clearly and precisely in the abstract.

17

BIBLIOGRAPHY

ALPHARD: Wulf,W.A., London,R.L., Shaw,M. (1976): "Abstraction
Verification in Alphard: Introduction to Language and
Methodology",

University of Southern California, 1Information Sciences
Institute, 1976.

BAECKER,H.D. (1975): "Areas and Record-classes",

Comp.J., vol 18, no 3 (Aug 1975) pp 223-226.

BERRY,D.M., ERLICH,Z., LUCENA,C.J. (1976): "Correctness of Data
Representations: Pointers in High Level languages",

Proc. Conf. on Data: Abstraction, Definition and Structure
(SIGPLAN Notices , vol 11 (1976), special issue) jo)s)
115-119.

CLU: Liskov,B., Snyder ,A., Atkinson,R. (1977): ™"Abstraction
Methods in CLU",

C.ACM, vol 20, no 8 (Aug 1977) pp 564-576.

DEMBINSKI,P., SCHWARTZ,R. (1977): "The Taming of the Pointer",

SIGPLAN Notices, vol 12, no 7 (July 1977) pp 64-74.

EUCLID: Lampson,B.W., Horning,J.J., London,R.L., Mitchell,J.G.,

Popek,G. L. {1977): "Report on The Programming Language
EUCLID",
SIGPLAN Notices, vol 12, no 2 (Feb 1977) complete issue.
HOARE,C.A.R. (1972) : "Proof of Correctness of Data

Representations”,
Acta Informatica, vol 1, no 4 (1972) pp 271-281.
HOARE,C.A.R. (1975): "Recursive Data Structures”,
Internat. J. Computer and Info. Sciences, vol 4, no 2 (1975)
pp 105-132.
KIBLER,D.F., NEIGHBORS,J.M., STANDISH,T.A. (1977) : “"Program
Manipulation via an Efficient Production System",
Proc. Symp. on AI and PLs (SIGPLAN Notices, vol 12, no 8, Aug
1977) pp 163-173.
KIEBURTZ,R.B. (1976): "Programming Without Pointer Variables",
Proc. Conf. on Data: Abstraction, Definition and Structure
(3IGPLAN Notices, vol 11 (1976), special issue) PP 95-1487.
KNUTH,D.E. (1974) . "Structured Programming with GOTO
Statements®,
Comp. Surv., vol 6, no 4 (Dec 1974) pp 261-301.
LOVEMAN,D.B. (1977): "Program Improvement by Source-to-Source
Transformation",
J.ACM, vol 24, no 1 (Jan 1977) pp 121-145.
SCHWARTZ ,J.T. (1975) : "Automatic Data Structure Choice in a
Language of Very High Level",
C.ACM, vol 18, no 12 (Dec 1975) pp 722-728.
SHAW, M. (1976) "Research Diresctions in Abstract Data
Structures",
Proc. Conf. on Data: Abstracticn, Definition and Structure
(SIGPLAN Notices, vol 11 (1976), special issue) pp 66-68.

