

The Run~Time Structure of Simula 67

C.W. Jchnson Computer Science Department
27.2,77 Australian National University

The control structures of Simula 67 are described
in terms of their effects on 2 branéhing stack of
ciass, procedure and block activation records.
fhe description is intended as an aid to under-
standing the capabilities of Simula 67 and the
structure.of a Simula 67 virtual machine implem-
entation. Storage allocation for this implement-

ation is also discussed.

§1, Simula 67 Semantic Possibilities

Simula 67 is a general purpose and simulation language, based
on Algol 60. The simulation capabilities are defined in terms of the
general laa~uage featureé, so only the general purpose features will

be describud here.

Simula.contains nearly all of 21gol aé a subset#*, Added to
Algol is a new kind of program component, the class, éomewhat resemb-
ling both the procedure and the record structure of Pascal and Hoare.
Multiple instances of any class may exist at any time. Unlike a
- procedure, which can also have multiple instances in existence, the
instances of a class can "know about" and cormunicate with each
other and instances of other classes, and control can pass between
them as coroutines. Parameters may be oprovided in generating a class
instance: these parameters and varlables declared in the class body
(znown collectively as "attributes" of the class instance) are read-
2nd write-accessible from outside the class instance. Different
instances of a class are different entities and have their own copies
of the attributes of the class. (As different instances of the oﬁe
procedure have their owvm paramete?s and iocal variables.) The
cdrdutining ability means that any class instance can suspend its cwn
execution at any stage, some other class instance carrying on from
.the>point at which it was last suspend2d itself. (See Wegner §4.10.3

for a seneral discussion on coroutines.)

* Unless otherwise made explicit, Simula 67 wi-l be referred to as

Simula, Algol 60 as Algol.

A new type of varisble is also introduced to allow reference

' " to be made to instances of a class. A direct pointer to an instance,

with more restrictions on use than the Algol 68 'ref amode", is used.

ref 1s used as the corresponding mode constructor (cf array) and any

ref declaration is qualified with the name of some class. A ref

variable with a narticular qualification cannot refer to an instance

of any other class, which constitutes a very powerful security feature,
e.g. ref (point) pl, p2;

declares pl and p2 co'be ref variables that may refer only to instances

of the class point. The operationé of accessing and changing the

attributes‘of a class instance and passing control to it are exprested

using references and reference expressions ylelding references. A dot

notation accesses attributes — it may be read as 's. E.g. FRED.AGE

is the atgribute AGE of the class instance currently referenced by

FRED, or FRED's AGE.

Control 1s passed by "resume (class instance reference)".
e.g. a:= pl.firstpara:
p2.second:= atb;
p2:-pl;
resume (p2);

("Denotes" (:-)»is used to assign references to reference variables.)

"An instance of a class is generated by means of the construct
new; '"new classid (actual parameters)" is a reference expression
ylelding a reference to a new and unique instance of the class "classid".

It would normally be used as the right hand side of a denotation state-

ment:
e.g. begin
" class A (x,y); integer x,Y3
begin .
comment body of A
end;

ref (A) aninstance;
aninstance :- new A(3,17%27);

which leaves aninstance denoting the new instance of class A, having

the values 3 and 17x27 for its inteoer attributes X and y.

-When a class instance 1s generated it is in an "attached"
state; and can be regarded as similar to an untyped procedure in its
behaviour. It is not yet a detached object in its own right, and
shoqu it execute a "resume" this 1is regarded as originating from
within the generating class instance or prefixed block, to which the
new class instance 1s attached. It becomes a detached object when it
first executes a "detach" (formally, a procedure with no parameters).
Control then returmnsto the object generator (i.e. part of the function
of "detach" is as an explicit return) and the new class instance now

has existence independent of the block that generated it.

§1.1 Control structure - general

A group of class Instances can operate as coroutines using the
"resume" construct. Resume is syntactically a typeless procedure with
a single parameter that is of "type" ref (anythingj. This parameter
must refer to some detached class instance. The execution of a resume
statement will cause the position of the next statement to be saved as
resumption point for whateuer object (ﬁain program or claes instance)
is active, and control to pass to the previously similarly saved
resumption point of the object referenced by the parameter.

e.g. begin ref (A) B;
class A
begin ...~
detach:
cuttext ("bah"): outimage:
end:’ .

comment generate an instance of A, by:
B:—~ nev Aj
resume (B):

The resume wil; pass control to the statement fo}lowing the detach
(wvhich was the point er which control lert previously) in the instance
of A referred to by B and "bah" will be printed. The object that is
active at the time of the resume, in this case, 1s the main program,

which betaves like a detached object in many respects.

If two class instances (of the same oOF different claases) each
contain resume statements with a reference to the other as oarameter,
- then full corcutining can occur:

begin
ref (C) consumer- ref (P) producer;

class Cs
begin _ »
detach : comment do nothing when created;
while true do
begin
consume buffer:
resume (prcducer)

end
end;
class P;
begin
detach;
"while moreinput do
T begin.
“£111 buffer:
resume (consumer)
end '

end;

producer:- new P: consumer:- new C:

resume (producer), o

terminal.processino

end;
This will have the effect of generating one instance of each class, and
then starting up loops that will pass control back and forth between
the two instances until "moreinput" becomes false. Each time control
returns to the instance of C referred to by consumer, it takes up

vhere it last left off. The same would be true in a program in which

many objects had control in the meantime.

What will ﬁappén Lere when "moreinput" is false? Control will
then reach the terminal end of the only instance of P we have created.
In a normal Algol procedure this would signify that control passes
back to the point of call: but returnirg to the initizl generating
expression (for the second time - return has been made there previously,
on executing "detach" during generation), or the most recent object
(consumer) that resumed this P, wiil not allow us ever to get out of
our system of coroqtines (except with great difficulty and unobvious
global variable setting and testing). Instead, a return is made to the
main program - in particular, to the resumptinn point that was saved
1 r the main program when it did 'resume (producer)” to start the
coroutines operating. An exactly similar return to the main-program
can be had in another way; by an alrgady detached class instance

" saves the

executing another "detach" statement. Such a "detac
resumption point and the class instance can later be resumed at that
point.* Once its terminal end has been passed, however, a class instance

has no resumption point and may not be resumed, Its attributes remain

accessible.

YThen one class declaration is embedded in another then we might
expect either of two things tec happen with instances of the tws classes.
Either there is a sinide "main program" (Ehg_mainAprogram) to which a
detach from an already detached oﬁject will return control: or "main"
programs, like many other Algol/Simula concepts, canlbe nested; and a
"detach" will return control to the most immediately enclosing "main"

program. Simula provides for such nesting to take place, and the "most

* The two uses of "detach', from an attached and from an already detached
class instance, arzs entirely separate operations and only have in common

the saving of the resumption point for the class instance.

6.

immediately enclosing" main pfogram is decided from the form of the
program text,: A construct known as a prefixed block (which is an
Algol-like block whose begin is preceded by some class idéntifier)
allows the choice of positioning of "main prograqs" in the program
structur= - each prefixed block is a "main program", An easier view
may be that a "detach" from an already detached glass instance will
return control to the smalle;t enclosing prefixed block, and the main

program 1s a prefixed block with an invisible prefix.*

Another part of the meéning attached to resumptidn points
complicates the mafter further, and also provides extra motivation for
the prefixed block coﬁcept. With no prefixed blocks appearing in a
program, all class iﬁstances in that program are, for most purposes,
operating ca a siﬁéle'level. The& are all coroutineslto each other: -
each has its own, diéﬁiﬁct, resumption point, and a detach from any"
one of them will return control to the same point in the main program,
The nesting of class declarations is not sufficient fa the nesting of
systemglof coroutines unless prefixéd'blocks are used. There will bg
access (visibility) differences between the objects, because of scoping

rules, but otherwise no differences in their control environmments.

We have here a flét'picturé of control transfers - as 1f we
were working in the (control only) equivﬁlent of a main program and
subroutines in FORTRAN., Each detached objecﬁ, 1ike a2 subroutine, can
contain no control detail, and cannot, for instéﬂce, consist of an
inner syétem of coroutiﬂes.' If prefixed blocks are included, this

picture acquires depth, and we gain the ability to nest systems of

* Note that the operation of "detach" in Dahl and Hoare 1is not the

same.as in Simula 67.

coroutines within the objects that constitute components of coroutine

systems themselves - as would be expected in the spirit of Algol.

The additional concept that causes such a system to behave
as a complete unit within another system is that each system unit is
perceived, from outside that unit, as containing a single resumption
point. The resumption point of such a unit system is that of the most
recently active object that caused control to leave this unit system by
resuming.some object outside it. A class instance can only contain
a sub-system of coroutines by embedding their class declaration(s) in a
prefixed block within its body. The scoping rules ensure that the
resumption point of the instance must be within this prefixed block
for any instances of the embedded classes to exist, On resumption of
this class instance the most recently active part of the system
consisting of this prefixed block and its enclosed class instances
regains control. This most recently active part must be that which
caused control to leave this same system previously. Consequently, an
attempt to resume the embedding class instance from within one of the
embedded instances will behave as a null (skip) operation: it resumes
the whole sub-system at its most recently active point, which is just
that "resume'" being executed. To resume execution of the embedding class
instance a '"detach" from within the sub-system will suffice: the prefixed
block to which this returns control is also the resumption point of that

class instance.

§1,2 Control Structure - details

Straight and Branching Stacks

The operation of a group of detached class instances and prefixed
blocks can be described as follows, as a variation on the stack of activation

records of Algol.

Instead of a single stack of activation records Simula needs a stack
that can sprout branch stacks, from points-in the stack below 1its current
top. Each branch can grow and branch in the same way as the main stack.
Cnly one branch of the whole tree can be operating at any time, ‘the "active"
activ. tion record being on the tip of this branch, and control may pass

‘among the branches without destroying them.,

Whén a new object is created, it beﬁaves, for control purposes, as
if it were attached to the currently active branch of the stack. ("Attached"
here has the obvious meaning which coincides with my previous uvse.) For
data access purposes it will behave as i1f it belongs in the tree on a nevw
branch that originates at the level in the stack where its class declaration
occurs. Once the object executes a "detach" it is pulled back to this point

for control purposes as well.

Compare this with an Algol procedure activation. Vhen an instance
of the procedure is generated (by caelling the procedure) an activation record
is put on top of the active branch (there is only cne) of the stack. For
data access, however, the procedure must be thought of as an appendage to
this straight stack at the level the procedure was declared. Because the
procedure activation disappears once control returns to the generating block,
there is no need to grow an explicit branch from iower down in the stack -
space allocated at the top of the stack for the procedure activation record
ma§ be recovered before the generating block has 0pportuﬁity to create any

further block instances. The conceptually branching tree of data access paths

in Algol can therefore be realized within a striet stack discipline:
Simula must have something more than a stack to allow the preservation and

resumption of exited class instances.

° The branching stack reflects the textual organization of the Simula
program, nodes of the tree being activation records of block instances
containing class declarations. The semantics of the sequencing control

transfer statements can be demonstrated on this branching stack.

A simple tree model

As a simplification, let us assume that the branching points, or
no&ec_ of the branching stack tree can be only at prefixed block activaticn
records (including the main program block). This implies that class
declaratioﬁs can cnly appear immediately in such blocks, At any ncde there
will be a number of branchigg substacks. Ong substack will te the
“continuing "main program"{ épnfainiﬁg the aétiv#tion records for the
prefixed block and igé sub-blpcks: the othex will each be an instance of za
class declared withintthe'pref;xed block and its sub—blocks; Procedure
activaticns and attached élas; instan?es form part of the sub-stack to

which they are attached.

AJust as the operating block instance will be at the top of some

: sub—braﬁéh of the tree, so the resumption point of any branch stack (for each
branch is a detached object, and has a resumption point) must be at the top
of its sub~-stack (a branch cannot grow while .control is not in it). The
main pfogram branch at any node also has a resumption point, reached by a
"détach" from one of the other branéhes at that node as discussed at the

end of §1.1,

Control transfers around the tree are limited by the scoping rules,

Each branch (except a "main program" branch) must have a reference that

10,

identifies itr because thc class declaration for‘this branch appears in the
prefixed block that is the node, the only references to it must be within
the branches (and their sub-branches) at this node. Hence a "regume" can
only reference a class instance that emanates directly from some node that
supports (i.e., has a chain of branch, sub-branches etc. leading upwards to)

the current operating point.

If a branch does bave a numbcr of sub-branchesngrowing from 1t, thcn
one of these will contain the "life" of the branch , the others being "dormant"
as far as the parent.branch is concerned. The resumption point of the branch
is the*® of this live sub-branch - which may be either a "main program" or
class instance sub=-branch. This live sub-branch is the most recently active

sub-branch from the node.

(To re—itcratc' a branch is a class instance or the main progranm,
znd its associaced normal blocks, procedure activations callcd from it, and
etill attached class instances, branches ‘come from nodes, which are instances
of prefixed blocks or the miin program. Derached class instances with
declarations appearing in a particular preFixed block are branches from the
node that is that prefixed block's activation record., The prefixed block
nodes occur nithin the stack branch of class instances that textually enclose
them. There is one privileged branch at any node that is the_continuation of
the prefixed block (as if no class declarations had appeared to nake the
stack branch many times at that- point) which can have .no reference nade to it;
all other bramches, i.e. all class instances, must be roeferenced to then
from somewhere. A reference to some class instance includes the vhole
gsystem of detached class inatances whose declaraticms it contains, and their
containec class instances, and so on. The complete subtree system is an

"object")

11.

Transfers of Control

If control is passed to some point in this tree (by a "resume
(reference to a branch/class instance)") then that branch is followed upwards.
If a node is encountered, then the "live' sub-branch is followed similarly.
Vhen a tip of the tree is reached (i.e. the top of some sub-gtack) the
activation record at its tip contains the resumption point for the object
referenced by the resume statement, It mav be a2 elass instance branch or a
Ymain progran" branch, and many nodes may be traversed along either kind of

branch before the tip is reached,

All the part of the tree that supports this.newly reached tip may
be regarded as "active". It is composed of instances of blocks, prefixed
blocks and classes that are glcbal to the newly operating block iustance and
hence can be thuught of as containing the operating point. This should be
amended to "dynemically containing", perhaps, since procedure calls and
attached ciass instances may form part of this chain out of their purely
textual positions.. Should a transfer of control take place by the operating
object's resuming some other object, or executing a detach, then some new
1ine of activation records from the hase of the tree to another tip will
start operating in the same way. The old operating chain branches will
remain the "live" branches from their nodes, except the node that eupports
both the 0ld and new operating lines. At this node the newly active branch
holds the 1ife of the node's supporting branch, because it is more recently

active than the branch system that just relinquished control.

That there must be some such tghared node in the o0ld and new
operating paths of activation records frem base to a tip is obvious - for
all branches ultimately must spring from the lowest node in the tree. But
also because of the scoping rules governing visibility of class declarations

the active instance is urable to "look iInside'" non-~active branches of the

12,

tres, and can only "see" its own, operating, nodes. The qnlylbranches that

can be named, by the scopiné tules,‘are those that come out of an operating -
noda - and this node is the one that 1s shared by the old and new operating
chains. The “main ﬁrégraﬁ" branch that can be "detached" to from a detached
class instance branch shares a comon node with that branch - the prefixed
tlock that is the base o'f the "main program" branch, containing the declarétion

of the class instance.

Growth and decay of the tree stack

Each branch of the stack will grow and shrink much liké an Algol stack:
New branches at nodes lower in the tree than the operating tip-stack can be
created, however: and the effect of shrinking a branching stack must be
determined. Once the shrinkage of a tip-stack uncovers a nodé, then the
action depends on the type of branch that is operating., If it is the main
program sub-stack,'then uncovering the ncde means we aie'lea§ing the prefixed -
block (at the node) that contains the declarations of the classes whose
ingtances are the othéf branches. The scoping rules ensure that oncé we
leave this.declaring block, no references to these class instances can exist.
Without an& referenéé to it a class instance can disappear, and so as we delete
the activation record at the branching point, we can delete all the branches -

as well, No branch is left in mid-air with no eupport.’

If we were on a class.instance gub-branch then the effect is quite
different. Passing through the terminal end of a class instance, vhich is
what we are doing to uncover the activatiogg;ecord at the supporting ﬁode,
does not mean the class instance ceaaes'to-éxist, only that it 1s no longer
active or capsble of'being reactivated, = Reaching the end is treatad as an
jmplicit "detach" - control passes to the resumpticn point in the main
prograﬁ branch, its "14ve" sub-branches being followed Fo'a tip that can

operate.

13.

Unrestricted placing of class declarations

This branching stack explanation was based on the assumption that éhe
branching nodes could only be at the activation records of prefixed blocks.
However, class declarations can appear in blocks of any kind, and some
refinement i3 necessary to explain the action of a program without this
restriction. Statically, for identifiler access, the stack-tree cﬁn be
pictured in exactly the same way, wiﬁh branching nodes appearing at the
declaration points, which are ndw any blnck'é ackivatiﬁn record. The
dynamic stack tree looks slightly different, and coﬁtrol transfers will
behave as if the tree branched only at the prefixed block points nearest
belo the points of actual declaration in the static tree. Thus we have
a plcture of two trees overlaid on fhe same block activation records, each
of slightly different Lranching patterns (but not radically enough to cause
any reversal of the “gupports" relationship between two blocks in the tree).
A highly confusing picture, indeed. This separation of the static and
dynamic trees makes a general Simula program very hard to describe, and my
examples will be limited to a single level of class declarations, immediately
within each prefixed block. TFor these xamples the two tree structures
coincide exactly. More gereral declaration structures are left as an exercis

for eager readers only. i

Comparison with Simula Common Base Terminology

The Simula Common Base Langusge definition uses "quasi-parallel
systen" to refer to what has been mentioned here as "subtfeé", and uses the
concept of quasi~parallel systems being contained in other quasi-parallel
systems, as we have subtrees as branches of lower level subtrees. The "main
program” of a quasi-parallel system is our "main program sub-branch'.

Attached and detached class instances have the saue meanings.

14,

§1.3 Program example - with no prefixed blocks

begin
Boolean procedure finished;

begin comment what you will; ... end;

procedure move (vnotb) : Boolean wnotb; - :
begin comment generate and perform a move for "if vnotb then white

elge black": cecoes

end;

class player (colour) Booleen colour;
" begin ref (player) opponent;
detach ; « ; ccmment do nothing when generated'
vhile not finished do
T benin integer pdummy
move (colour),
resume (opponent)
end; :
outtext (if opponent, colour then "whitewon elqe "black won");
detach; comment stop the game;
end of a player;

ref (player) black, white;
while moregimestoplay do
begin integer dummy
black :- new player (false): white :- new player (true);
black.opponent :- white; white.opponent :— black;
coment set up. initial positions on board; e....
resume (white); corment start the game;
display finel position' comment come back here at end of game;
end '
end

This program establishes a quasi-parallel sgystem (group of sub-branches) of

two instances of "player”, with the main program acting as supporting breanch
of the eystem. The two instances of the class player are raferenced by "black"
and "white" in the main program, and as "opponent" in the other. Whea ocne
player has "moved", using sonre eopropriate global procedure, it resumes the
operatiou ‘of the other player - and so on until the game is "finished" The
initial "detach" within the body of player detaches the object from its
oenerating block instance (in this case, the main program gh}lg_block) and

its dynemic and statictree positions become the same (in this case, a branch
at the main program level), control return*no to the generating block instance.
Resuming "white" then passes control back to that referenced instance of

player. The main program gsub-branch of the only node we have here includes

15.

two activation records - that of the main prdgram,'which is at the node,

and its contained "main program" continuation, which is the while block.

At present, the other two branches are each a stack of one activation record:
when "white" is resumed, control enters its inner while block and its branch
grows to a stack of two. Once '"black" is resumed (as white's opponent) it
does likewise and these two branches continue to have two activation records
in each (except when '"finished" is active, when there are three) (fig. 1

shows the activation records at this point) until external reference to

them is lost (when "white" and "black" refer to new players) and they cease
to exist. The main program sub-branch is returned to only when one player
detects-that the game is "finished" - and hence (we assume) its "opponent"
has won. A further "detach" effects the transfer, and control leaves the
quasi-parallel system of the two players. The variables of the two

players are still accessible via dot-notation, and the quasi-parallel

system is still restartable, at this stage. We could add more code to

detect an illegal position, for instance, and leave the code to correct

such a position in the main program, then resuming the quasi-parallel

layers' system with the corrected position.
P y

white sub-branch black sub-branch
‘A . . /A\
white black
internal .. _main program branch internal
while ' while
block . ‘A\A block
while
block
player ' player
while black
main
program

fig.1l. Branching stack of activation records for a simple
coroutine program.

16,

§2. Terminology

Many of the terms used in §1 are standard Simula usage - but, since
some are not, the language of the Simula Common Base Language is covered
here. Some additional semantics and the effects of certain constructions

are also mentioned,

An instance of a cleas, while under the influence of the generator
new, is said to be "attached", and remains so until it executes a "detach".
Until this time it behaves exactly like a pure procedure (with parameters
called by value). A further detach will have the result of passing control
to th- "main program" of this ''quasi-parallel system", while the "object"

" remains "detached", as it was before. Once control passes through the fingl
end of an object, or leaves via a go to, that object is "terminated" and a
resume with it as dest;nation is illegal: control can never return to iﬁ.
Passing through the final end has thé effec; of an implicit detach. Thus.;
cless declaration with no statements in its body takes its parameter values
on generation and then immediately becomes "detached" and "fefminated", its
Mattributes" (formal parsmeters and outermost body~block-declared variables)
accessible but resumption of control not possible.' This use of a class is
very similar to a pure data structure definition - a record (Hoare) or struct
(algol 68). ' |

An inactive but non-terminated cless instance is "suspended".

A "quasi-parallel system" consists of a number of detached class
instances that are textually contained ("enclosed" - but this term is not
used consistently) in a single "prefixed block”. This prefixed block 1s the
node, fmain program”, of the quasi-parallel system. A prefixed block is an
Algol block, exzcept that it is "prefixed" by the name of some class (e.g.
player begin ... end), It behaves as a non-referenceable detached object,

in that it may have a resumption point of its own, and has the attributes of

17,

the class named in the prefix available within it. (Normally tae useful

attributes are in the form of procedures and class declarations.) A class

declaration may also be prefixed by the name of some other clags: the
attributes of the prefix class become concatenated with those declared for
the new class, enabling the creation of hierarchical data definitionms.
Reference variables "qualified" by the prefix class may also refer to
instances of the prefixed class. . This concept 1s carefully hedged with a
nunber of restrictions designed to remove ambiguity and simplify the run-time

structure.

Because these prefixing features are dealt with mainly at compile

time, they will not be considered here, except briefly in §5.

§3. Run-time S;stem'

§3.1 Description

Simula does not perﬁit the strict stack-based run-time structure that
can be used for Algol. In Algol, block instanees are created and deleted by
a strict "last-created 1s first-deleted" rule. Scopes of identifiers are
strictly nested and no identlfier or block instance coming into ekistence
because of the dynamic entry of some scope has any meaning or existence once
that sc0pe has been left. This allowe a2 stack of activation records to be

used.

Simvla however allows the creation of block instances which '"belong"
further down the stack and may continue to exist when the current scope has
been left. A stack discipline is therefore not possible for Simula. A branch-
ing stack muat be used, which cannot be directly represented in linear storage.
Exp;icit pointers for down-stack identifier references and up-stack "1live"
control references must be used. Tracing chains of pointers between activation

records will be the equivalent of travereing the tree of branching stacks,

18.

§3,2 Components

The imblementation described by Simula's designers (in Simula
Izplementation Guide) is based on a driver technique. A single copy of the
code for eack block exists - the "prototype"”. A block instance is represented
by two parts, containing a reference to the prototype: a driver, known as
a '"notice", and a data area, known (somewhat confusingly) as an "object™..

The notice contains all the information needed by the run-time system for inter-
block control flow and data access - i.e., a description of both static and
dynamic environment of the block instance - and an identification of the kind

of binck (detached, prefixed, etc.) the nogice corresponds to, None of this
information 1s necessary once a blﬁck instancé terminaﬁes, as no furtﬁer
execution of code in this activation of the block can be performed; and hence

no outgoing control or data access from it.

The attributes of the ;nstance'arg.still.accessible, via dot
notation, but these are stored in a separate.data afea, the oﬁject. All
notices are the same size = any block instance mﬁst have linkage inforﬁaﬁion
and identification: objects vary in size, depending on thg nuﬁﬁer and type
of declarations in the block., A tgrmingted insténce will in generél posgsess
no notice, while %t may possess an objecﬁ, If the two types of items are
kept in separate areas, a simpler storage allocation scheme can be uﬁed.for
the higher turnover equi-sized notices, and a more complex fragment colleéting
scheme used for the varied-size objects, less frequently. The driver is
sufficient to show the control espects and later diagrams will show only

drivers in the Branching stack,

In Algol 60 the information in an activation record that is needed
to allow access to non-local variables and actual parameters, and to

transfer control to and from procedures and enclosing blocks may be expressed

19,

in two pointers to other activation records. A static link is necessary tc
reflect the textual structure of the program, allowing non-local variables
to be accessed: and a dynamic link to reflect the structuring of the program

in operation, allowing parameter access and control transfers.

The static chain may be implemented as an inverted index to the
activation records (a."display?) - this may also be done in Simula 67. Most
of thé discussion in the Implementa;ion Guide is based cn an actual chain,
though many of the programs there concentrate on a display index - the two

representations are equivalent, and chain concepts will be shown here,

§3,3 Implementation

The driver for a block instance of any kind in Simula contains the
static and dynamic links as for Algol. A detached object needs no dynamic
“return" link, however, once it has beccme-detéched from its creating block
instance. All paraméters of a g}égg insténce are passed by value or refer-
ence, which removes the other reason for a dynamic pointer into the creating
environment, The dynamic link of a detached class instance is therefore
able to be used for a conceptually distinct purpose, never needad in an
attached instance: it points up-tree, indicating the live sub-branch forming
part of a chain to the live tip activation record. The dymamic link of an
ective detached block instance is effectively none - any live sub-branch
above it must also be active, and there is no need for the up—tfee 1link.

That of a suspended class instance indicates the base of some higher sub-tree
(enclosed class instance) - which is live ~ or some block instance at a tip
of the tree. This block instance contains the resumption point of the
.suspended object. Sub-blocks and other attached biock instances have normal

Algol-like dynamic links to their creating block inetance.

20.

| Each driver also contains a restart pcint, and identification of
kind of block. A sub-block's driver does not ever use its restart point -
the resumpticn point for its parent detached block instance is held in that
block instance's ofiQer. (This-means thag‘fhe restart point stored in a

driver need aot necessarily indicate a point in this block's code prototype.)

The program example following {(Partprogram) 11lustrates some simple
run—time structures. Not all "objects" (corresponding to data areas) are
shown - inessen?ial detail in the drivers and their links is suppressed.

The program declares two ref(A) variables and a class A with a single
parameter, Note that labels in this progrem serve to identify the blocks

that follow, and are not used for transfer of control.

example: Partorcaoran

bezin oomment main program, which behaves like
a prefixed block;
ref (A) %, ¥3
clzss A (other); ref(A) other;
. begin

Vel detach;
/ .

\2) :

B: begin

: o K]
‘l/ oo
F
(1]
[y
=]

esume (other);-

(o

‘-

..
M eoe tt

=]
[~
(]

|

m KX

end B
end of A's

bodys

comment generate two A 'gy
/;\\% .. Xi= new A (none);
-

A new A X

= , .X.other:-y;

R ~_ resume (y); comment start the X + ¥.q.p.system;
/S “and main program;

21.

4Ar Current Driver

P— (executing)
Ar’*_/. ynamic data area for main program
none restart| (y-C) '
river y X
static [B [| E

|~ dynamic
none

Lr

] restart (y-B)
[static
\\\;l l' 1} \L
none ' dynamic |_+ dynamic (
x—
none restart (y~classbody) () <—1— Testart classbody)
4 static {} _l—* static
R;¥ object ¢
—* dynamic
@ &—1+— restart ’
static
‘ conceptual
branching
Il (main program) stack

fig. 2. Before '"resume (other);" in y.

> .
[[ey dynamic

none restart | (y-C)

driver] vy X
i static [/
¥
. dynamic
none restart (y-B)
static
\ v Y
Lg* d 1 none dynamic{ (x-
YIEae Al classbody)
i

——4 restart none restart
+HH

{ static [(y-classbody) 4—""””"' B EatiE

J{ objects
-dynamic x
“— restart
(:> — . Current Driver
\ static
(main program)
changes
et

fig. 3. Immediately after x has resumed.

22,

The body of the declaration of A has en immediate detach, and two
nested sub-blocks B and C. The innermost, C, has a resume with the class
parameter as desfination. The main progranm oenerates two instances of A,
which are referred to by x and y. Each instance of A executes its detach,
i.e. suspends itself, becomes'detached, end returns to the generating state-
ment. The two instances are set up here so that "other" of each refers to
the other. none ig a reference constant, that may be assigned to any refer-
ence varisble (regardless of its qualification). -The instance of A referred
to by y (or, loosely, "y") is resumed by the main pregram. It restarts after
the detach statement, enters sub-block B - creating an instance of that sub-
block - then sub-block C, and executes tregume (other)" - equivalent to
"regume (x)". The situation is shown just before that "resume" is encountered

(fig. 2), and again after X has resumed execution (fig. 3).

In this simple case the main program block fulfils several duties
because there is no extended hierarchy of quasi-parallel systems in which the
dynanic pointer of the main program block would not necessarily be affécted
by such a "resume", as.we have here. In all cases, however, the pointers in
the glggg_bodies' drivers and sub-blocks' drivers have some general propertie
For a class body driver, while attached, the dynamic pointer is to the driver
of the generating block instance, and 1its restart point is to the generating
statement in that instance. When detached, the dynamic pointer is always
to the innermost block instance of this class instance =~ the live sub-branch
or top pf a tip-stack contgining the restart point. The restart point of
any sub-block is always none, and of a Eroce&ure boéy i1t is the calling
statement in the calling block instance, which its dynamic link will

indicate.

23.

§3,4 Maintenance of the implementation structure .

The dynaﬁic link of a detached object 1is csed to indicate the
dynamically innermost block {nstance cf that cbject, i.e. the block instance,
containing the object's resumption pcint, that willAbecome the Current Driﬁer
1f a resume is effected with this object.as destination, The block instance
to be reactivated lies at the tip of some branch of the stack-tree, reached
by & chain of dynamic linka paa51ng through each detached object supporting
it. This chain need only pass through class inatance and scme prefixed
blocks, avoiding sub-blocks and indicating only the base of each branch that
ig live. The last link in the chain indicates the block instance to be the

new Current Driver - which can be a sub~block.

This chain 1s maintained in the following way by new, detach and
resume,
new:
The newly generated class instance-ie connected es 1f 1t were a procedure
activation. The dynamic link is to the dtiver of the block instance con-
teining the new: the restart noint is the succeeding statement in that
hlock's code., The currentlv active driver 1s that of the new class
inStance. |

detach from an attached claes in tanece:

Control will return to the block instance indicated by the eynamic 1link,
at the point ihdicated by the.restart point in the detaching class
instance. Before control 15 transferred the class instance must have 1its
resumption point saved: since it ﬁay contain no active sub;blocks, the
dynamic link is aet to point to the driver itself; the.testart pointer

to the point in its code follcwing the detach statement (fig. 4).

24.

"309[qo payoell® UB WOIF ,Yo®IIP, 3O IDSIJO [eIsULH ‘4 *JI

—t>

O2T3®lS h OT3E38 h
jIB3S9x ouou 303fqo
ire3sax euou) 7 payoe3sp
OTweukp DFweudp B
_ a/ \ﬁ (30alqo 3o
oT3BlS _ SERS 30 OT3els _ UOTIBRIBTOAP
20 ie3isex ouoy] ! oamw . . iejsol duou Surureluod)
A00Tq (3 4 4 Rt yoo1q poxtIead
xRy dTweul 3auoul PoUSTTqEISS dTWwRUL 3UOU |
¥ P — LTmau v P <
THES : syoorq || A
"“ “ se10 8utusaaasjut "" |
N qoeasp A stqrssod 4y !
9AT3I0® | DIIE®IS _ oT3EBIS h
faot — 2 suou
103e15usg | FAEISOL BuoU Jaelsaa 0
aouejsur
JTweudp auoyl JTweudp auou ’
¥o019
\KRW Surjeasus8
I9ATIQ
Juaxan)
309lqo 309lqo
paydE3ap 3ae3s) L Uoeiep,, poyoelie| OTIEIS /
durmoTT03
jaeisoaa 1+iwwumﬁmumum F Jjaejlsaax
oTweulp Q oTweukp ~
=t sasjutod pagueyo P
: I9ATI(Q 3Ud1aIn)

qoels
Suryouexq Tenidaduod

jutod
uInlal =
A... glﬁv
Jjuswalels
Sutjeisusl

.

25,

resume:

The structure of the language place= restrictions-oe the claqsns v151b1e
from any block, by restricting tne possibilities Eor using prcfiyed cla
delaratione (sece §5). The result which is inportant herz is that in the
hierarchy of quasx—paralleL bystnms there is an Operatlng Chain, which 1s
a chain of drivers (at most one to each quasi—parﬂllel system), starting
from the Main Pro*ram and cohﬂected 1'~y dvnemic links: and that the dynan-
ically innermost (active) block instance is at the end of this chain: and
that that block instance has visiﬁie to it only those class instances that
are in quasi—paraile; sY3 tems mhich have‘en oaerating block instance (a
member of the Cperatlng Chain) as a member. This implies that a "resume”
tnat hes a noe—member of the operating chain as destination has to make

at most one linkage change in that chain to'main:ain the discipline, and

that change will be in the class instance Just one level up from that

destination class instance. (See fig. S)

(1) The offect of a resume is firsely to save tﬁe resumptinn ppint cf the
current object. This aobject is the sﬁalles (dynarically) enclosing
detached cbject or prefixed blnck and is found by following dynamic links
until a driver of the right kind is met. The resumption point is saved in
this driver by setting its dynamic pointer to the current block instance

driver, end its restart point to the ccde after the resume statcment.

(ii) The object raferred to in the resume statement is used as the first

in a chain of dynamic pointers that is follecwed up through nested quasi-

" parallel systems (which corresponds to taking the "live" branch at

successive nodes upwards through the tree) until a driver with a stored

restert point that is rnot ﬁggg.is reached (which is the base of a sub-branch
that branches no further). Its dynamic link indicates the driver that is to
he re-activated (at the tip of this branch) and the restart point 1s 2 poirnt

in that driver's code.

26,

begin comment main program;
begin class Aj beoin,..end;
A heein comment outer prorixed bloc&,
cless B; begin
clnss C; besin...end:
ref (B) tother;
detach‘
C begin comment inner prefixed blocks
rof (D) dome, dtwo;
class D3 begin .
rei (B) getout;
Cetach;
begin
resume (getout);
end; -
class Dj

begin comment sub of pre efixed block;
done.getout = tother;
resume (tcther);
resume (done);
end;
Egg.prefixed klock C;
end class B;
bene = new B; btwo :- now Bj
hone.tother :- btwo; btwo,tother :- bone}
berin corment sub-block:
resume (bong):
end;
ené outer pre afixed block A;
end subblociks

fir, 5(a). Code fragment to demonstrate "resune™,

(&4

27.

P933Two sasjurtod jaelsax

MUTT OTweudp -

JUIT 2I3elIS - jE3s

<

tumoys Yoe3js

o813 Zutyoueaq Tenideouod

omiq
urt
omap

omiq

om3q ut
3}P01q poxTyaid-)

\

1eas w
UAD o

N

*.(In0398) swnsex, 3ISatI
ufp
00T q 3ISOWIaIIN0 Jels
wex8oad urew
ukp o
[l
1e3ls
qo019-qns VAP o
__ A
MooT1q poxryead-y _—_
\\ .C%Hu
Jjels. 7 . h jels
udp Ne ufp

1

1e3s ﬁf

szv\\\

810394 “(9)S "3T¥F.:

A90Tq-qns

_S.q//r

/C\ f\uoiups&

om3iq Jo youeiq-qns
yueigoxd urew,,

] omiq
Je3ls : l Jeas ay
ufp ¢ ukp | duop
ﬁuw b Jels
~o uAp
auop uf

,C A207q-qng

/

Ly

!

r jels

ulp

suoq ut

Il 1

}00Tq pexXTFaad-)

|

auoq

je3s
ﬁ\\\\\\\l. ulp I
I
mcmn S] SERE ! l je3s
osuw ufkp O ulp ¢ ufp ‘suot
c 001q-qn : M I
jels
~e ULp

\\
I9ATIQ 3ULAIN)

auoq
ur
auop

suop
ut
J201q
-qng

28.

.:Ausoummv swnsax,, 1913V ° (2)6 ‘313

—+4—— saa3utod polueyo ,O
wex3oxd uyeuw Ie3s ™
A d .—Hhﬁﬁu
&
Ad2019-qns s ¢
UAp o .
A~ o
NooTq pexrIdad~y 3838
£ udp 9§
1818 o jels . 1els
omiyq < ak suoq ~ <
PN yporg-qns | P PN
% L
N00Tq paxTyaad-) AEIS NooTq paxijeoad-n 1E3s g
ufp / / Eﬁu\
T __— N
jels _ iels w Jels umumH e3s w _. Jels
om3p et : omap » suop
ufp uhp o auou ufp ubp o ukp o Uufp e
C , N 6 N20Tq-qgns \\I,
¢ 3e3s Jeas qo01q
™~ ufp N~ ufp S

I9ATIJ 3U21In)

29.

(1i1) To maintain the cperatine chain from the main progran tree-base to

this point, the static link of detached class instances and the dynamic

links of other blocks are followad frcm the object named in the resume
statement to the cbject which contains its quasi;parallel system. The
scoping rulas ensure that this object (which is that detached chject conteain-
ing a prefixed tlcck containing the referenced object) is the one whose
dynamic pointer needs alteration to maintain the operating chain. It is
reset to the object referenced in the resume statement. Contral is then

passed to the chject found in part (ii). (fin. 5)

detach from a detached eclass instence:

The static link is fellowed from the Curremt Driver (which must be that of
the detached class instance itself, nnt one cf its sub-blocks, according

to the Common Base) and static links fnllowed until a prefixed block is
found. This is the smallest enclosing prefixed block. The resumption point
is savecd in the Current Driver, and dynemic links followed from the block
statically outside the prefixed hinck te find the detached shject or prefixed
Slock at the base of the branch suzporting this node. Its dynamic pointer

is reset to the prefixed block, showing which sub-biranch is “alive", and the
dynanic poirnter in the prefiged block followed to find its resumptiocn point -

as in the second part of the operation of "resume™, above. (fig. 6)

30.

"309[qo payoezop ® woay , yoe3aq, ‘g 813

/
,ﬁ A
}
oT13EelS H OoTae3s h
jae3lsax ouoy —
199040 Jae3sex suou
oTweudp 1 payoe3sp |oTweulp ollllllllllllllllllllllll
F | _ A _
7 yoelop 2pod
ST3Eas S,Y20Tq-qns
b ut jutod > oT3IBIS
auou 3JIe3lsadl uorjdunsoi€—— 3jae3sox - |
\\\\\\\\8 d1meudp A90Tq paxtyaad L~ oTweulp
| . [[
" | | [}
" .ﬁ v
DT3EelS o3®e3s h 9I3BlS _ 2T31E1S
4 <
2UoU 1aIB3ISIX 1ir3Sax sfes 1 UOFI2D,, | Suou jae3sal suou 3Jae3lSal
8utmoTTO3J
e oTweuk b} Ap o Hot 5
d T P Tweudp ek 2 | ~~a dTweudp 19900 auou oTweukp

‘ . yo0oTG-qns payoelop hv
: youriq-qns /(\
I9ATAQ JUSIIN) . Wueidoad urew,,

I2ATAJ Juaxan)

31.

§4, Storage Allocztion

Block prototypes (executable code) are stored once and always in a
fixed.area and make no storage allocation difficulties. The flexible part
of stdrageiis divided into two areas - one containing items all of equal
size, for drivers: the other containing the varied-sized objects (data
arcas). Two differcnt systems for storage contrcl of thecse areas are
suggested in the Implementation Guide: one cf these is in great detail,.
with description of the garbage collection algorithms in slightly extended

inula 67,.and'that scheme will be roughly described here.

Iq‘thc drivcr portion of storage frece space is chaineé in driver-
sized blocks., Whencver a_drivgr_is deleted.(on exit frem & sub-block,
procedure, prefixed block, class body containing no local class declaraticns:
when following s nom-local go to; on completion of evaluation of a formal
paramete;) its storage is returned to the free chain. This process allows
complete recovery of such discarded space, but not all deletable drivers
fall into these classes., On exit frem a prefized block, for instance, all
instances of classes declared within that block can also be deleted -~ no
possible references to them can exist. These instances are not traceable
from the'brefixed block's driver, and must be detccted by scarching through
211l drivers (and objeéts) to deternmine those drivers and objects that are
still referenceable. This process is quite time-consuming, and is only

performed when space in either the driver or object arca is cxhausted - it

is the full garbage collection trace and mark process.

Objects are assigned space in the second area on an increasing
address basis - no attempt is made to recover released space until all the

storage has been allocated.

Garbage collcction is done Ly a multi-pass algorithm whenever
storage in elther area is- exhausted, Items that must ba saved are those
that arc refcrenced from the current driver and its associated object, and
anv object or driver refercnced.(by dynamic or static eavironment links or
Zgﬁ_variablcﬂ) by any driver or object that must be saved. All other objec;s
and drivers are discarded and thelr space recovered. . Object space is packed
to leave all objects together at the "hottom" of storage and tﬁe naximum
amount of contipuous storage above, Driver-tlocks are moved.around in
the driver arsza, but I am unable to discover why: free storage in this
srea is chainad and no fragmentation can occur, and there is no displaccuent
of th~ boundaryAbetween the two areas that would meke such mcvement necessary.
Garbage collection is done in several stages to maintain correctness of

references hetween the two areas.

§5, Lanpuage Restrictions
2 22

Varicus restricticms have been imposed cn the languape to make the
run-+ime procedures simpler and eliminate mearly all run~time mode- and
refarence-checking. The philosophy applied has apparently placad hea
cmphasis on security with run-time efficiency and many ncecessary security

checks can be made at compilation time.

The validity of a referenca (i.e. whether the referenced object
exists, and Whethér‘it possesses a quantity és named in a dot expression)'
is established in nearly all cages at compile time. By requiring refs to
be qualified, and restricting the qualification to a class that is visihle
at the level the ref is declared, it is made impossible to have a ref
pointing into lirbo (a dangling referé;ce) when the range of the class
declaration has been left. If the variahble has nct yet been assizned a

value, it has a default of none - and this ccndition may be determined with

33.

a very simple check on every ref expression at run-timc.

The existence of a named quantity within the referenced obiect is
alsc ascertainable at compile time, because althouzh a Egg_qualifiéd by any
prafix of e class may be used to refer to instances df that class, the only
attributes of the instance zccessible vie dot-notation with that ref are
these that belongs to the qualifying prefix class declaration and its prefizxes,
etc. To access any other attribute, or to make a reference assipgnment tc &
Egéhvariable nf lower gqualification in the prefix hierarchy, aa explicit
connection clause S ggé_constructinn {"instantanenus qualification") rust
be used. These constructions insert an explicit run~time check for the
mode of the actual cbject, and allow no illegal references to be made:
qua gives a run-time error, ccnnection providing an otherwise branch, if

the refersnce i3 not to an object of the desired cless.

4 restriction that gets further from the textual sccpine concepts

’

of Algol 60 is that classes may only be used as prefixes at the tleck level
at which they are declared -~ not any inner block level. This restricticn
ensurss that the "resume' srccedure at run-time will work réasonably siamply -
this restriction impiying the visihility restricions mentioned in §3.4 that
moke maintenance cf the operating chain a simple process. It alsc mainteins
the validity of references via class prefixes - the range of a class declar-
ation cannot possibly be left before the range of 2 ref variable qualified
by that declaration or one of its prefixes., It also removes possible aiffic-

ulties with the environment of a prefixed class.

Another restriction remrving the need for class checks {s: quantiti
in classes containing local class declarations may not he accessed by dot-

notation (see Commen Base Language, PP. 55 and 20; Implementation Guide, 2.

34,

This restriction also makes the exporting of references from cut of their
intended context illegal, mnintaining thz branching stack discipline, and
helps ensure that the inner class instance may not still he referenceable

when the outer has bteen lost.

A restriction on the cccurrence of "detac " tr the cutermost
block of a class bedy only is a very broad restriction aimed at preventing
the use of "detach" in procedures, which could lead te scme unclear
situations (as, for instance, when a procedure called as part of an
actual parameter expression to a new class instance contains a detach -

the class instence can detach before all parameters have been copicdi, etc.).

35.

§6. Bibliography

Dahl, 0.-J. and Myhrhaug, B.

Simula Implementation Guide

' Norwegian Computing Centre S47, Oslo (1973).

Contains descriptions of compiler requirements and run-time
techniques, in (slightly extended) Simula 67 notation. Has
a few errors, and is not easy to understand - no discussion
of the basic language and implementation design philosophy

is presented.

Dahl, 0.-J. Myhrhaug, B., and Nygaard, K.

Common Base Language

Norwegian Computing Centre S22, Oslo (1970).
A formal description of the standard Simula 67, in syntax
(BNF) and semantics (English narrative). Not good as an
introduction, but the final appeal for reference. The
descriptions of the actions of sequencing statements are
difficult to follow in this work.

Dahl, 0.-J. and Hoare, C.A.R.

Hierarchical Program Structures
in Structured Programming; Dahl, Dijkstra and Hoare,
Academic Press, London & New York (1972).

Some features of Simula 67, in examples and description -

a high level introduction, assuming knowledge of Algol 60.

Some examples do not correspond to the definition of Simula 67.

Birtwistle, G.M., Dahl, 0.-J., Myhrhaug, B. and Nygaard, K.
Simula Begin
Studentlitteratur, Lund,Sweden/Auerbach/Philadelphia,Pa.
(1973).
Very informal, elementary introduction to Simula 67 as a
first programming language. Does not cover a lot of the
language features to a useful level of detail.

Wegner, P.

Programming Languages, Information Structures, and Machine
Organization

McGraw-Hill, New York (1968).
§4.10.3 for coroutines, §4.6 for the Algol run-time stack.

Lindsey, C.H. and van der Meulen, S.G.
Informal Introduction to ALGOL 68
(Revised Reprint 1973) North Holland/Elsevier/Amsterdam/
London/New York.
Hoare, C.A.R.
Record Handling
in Genuys: Programming Languages, Academic Press (1968).
Jensen, K. and Wirth, N.

Pascal User Manual and Report
Springer-Verlag, New York (2nd ed. 1975).

