THE GEOLOGY AND GEOCHEMISTRY OF THE
GUNUNG PANI GOLD PROSPECT, NORTH SULAWESI,
INDONESIA

by

Imants Kavalieris

A thesis submitted as the requirement
for admission to the
Degree of Master of Science at the
Australian National University

October 1984
VI. DISCUSSION

Although a comprehensive picture has been developed in preceding sections in terms of description and models of geological setting, alteration and nature of mineralisation at the Gunung Pani prospect, little that is conclusive can be said about the chemistry of gold transport and mechanism of deposition.

In typical epithermal deposits (disseminated and vein) this may be partly due to the fact that the nature of fluids (undersaturated weak saline solutions) that are normally accepted to transport gold leave little trace of possible gold complexing agents, since the concentration of all components and gold they carry is very low (in the order of a few ppb for gold). Consequently large volumes of fluid are necessary in these systems to form an economic deposit.

The absence of evidence for large volumes of fluids, or extensive acid alteration typical of disseminated epithermal mineralisation presents an enigma at Gunung Pani, considering that a large area is anomalous in gold. Exactly what is the associated alteration signature for mineralisation remains fairly obscure, since the obvious silicification can also be related to deuteric alteration upon emplacement and cooling of silicic rocks, and as shown at Gunung Baganite is not necessarily related to mineralisation at depth. Nor, as has been shown, can chlorite alteration be
simply related to gold mineralisation, although it is ubiquitous in the Pani prospect. Gold mineralisation and intensity of sericite alteration, which in any case is weak, do not correlate, and quartz veins are largely absent on Pani ridge where the most important mineralisation occurs.

The best correlation to gold mineralisation is the rock-type itself, the most differentiated and silicic quartz-biotite-sanidine porphyritic rhyodacites of TpI. The alteration can be explained mainly as a consequence of their emplacement. A difficulty is that all rocks in the Pani Volcanic complex are porphyritic rhyodacites and are minerallogically similar. Nevertheless apart from the effects of alteration the geochemistry suggests the mineralised and silicified porphyritic rhyodacites are the most chemically evolved. This relationship is not to specifically suggest silicic differentiates belonging to the Pani Volcanics are primarily enriched in gold, or that gold is of magmatic origin. However the mineralising fluids are closely linked to the intrusives and a magmatic component may be present. Minor early formed pyrite, galena, sphalerite and chalcopyrite, largely preceding gold, may be genetically related to the rhyodacites.

It is thought that the generation of the mineralising fluids is closely linked to emplacement and degassing of the rhyolitic bodies, which may be flows or intrusives. How they have focussed the mineralisation is not clear.
As already noted silicic phenocryst-rich lavas and shallow porphyritic intrusives are rare in environments other than those characterised by major rhyolitic ash-flow magmatism. Silicic porphyritic rhyodacite lava domes with phenocryst contents of 50% or more are to the author's knowledge unrecorded in the literature. Their emplacement requires exceptional conditions that may be limited to volcanic vents, involving early loss of magmatic volatiles and high temperatures to maintain low enough viscosity to reach near surface levels. Sheared and streaked out phenocrysts, cataclastic layers and autobreccias on all scales, which characterise the porphyritic rhyodacite lavas on Pani ridge, are attributable to high viscosities and high pressures, and may be a consequence of this emplacement. Since fabric elements show no evidence of strain deformation petrographically (undulose extinction in quartz, deformation lamellae in plagioclase) it can be argued that emplacement was at high temperature, and these effects are lost, due to annealing.

The volatile history, during crystallisation and emplacement, of these magmas can only be speculated upon, but may have special implications for gold mineralisation. Since no major acid alteration attributable to a high level geothermal system is evident at Gunung Pani, it is thought mineralisation occurred from a small volume of fluids from deep sources of unknown
origin that were capable of carrying higher concentrations of gold.

Consistent with conditions under which phenocryst-rich rhyodacite magmas could be passively extruded as lavas and breccias, it is inferred that the associated fluids were relatively hot.

Studies of the degassing of rhyolite domes (Taylor et al., 1983) indicate magmatic volatiles are lost progressively, and upon emplacement the rhyolites are relatively anhydrous. An initial high volatile content of the rhyodacite magma is evident from abundant fluid inclusions in phenocrysts of quartz and at grain boundaries of composite crystals, and a late stage volatile content is evident from small vesicular cavities along flow banding and vuggy fracturing. In addition the turbid heterogeneous groundmass in intensely flow banded phenocryst-rich rhyodacites may be explicable in terms of sub-microscopic volatile exsolution cavities.

Early loss of considerable primary magmatic volatiles probably accompanied crystallisation. Advanced crystallisation, and a long rest time in the magma chamber, is suggested by the textures of phenocrysts, particularly of composite crystals.

During emplacement from depths of at least several kilometres relatively anhydrous phenocryst-rich magma may have interacted with deep fluids which facilitated intrusion, as well as introduced the gold mineralisation. How these hypothetical mineralising solutions were introduced is not clear, but it is almost certain from
field evidence that the solutions did not simply follow
along structures or contacts.

A possibility is that the small vesicles
along flow banding are due to secondary volatiles that
carried the gold mineralisation. This would help explain
the apparent association of gold with vuggy fracturing
of the rhyodacites on Pani ridge and the disseminated
style of gold in the Baganite rhyodacite. The strongest
mineralisation in GPD4 occurs at the base of the
rhyodacite intrusive, which is characterised by an unusual
'globular' or quartz-filled (?) vesicular groundmass
texture. It can be interpreted as a volatile-rich zone.
This model of gold mineralisation, whereby gold is
introduced by secondary volatile content of rhyolite magma,
is illustrated in Fig. 28, but remains a very tentative
hypothesis.

The concept that felsic intrusives can provide
the source of fluids as well as heat is, however, well
established by a detailed study of As-Sb-Au mineralisation
in the Moretons Harbour Area, Newfoundland (Kay and
Strong, 1983). Similarly in the Pb-Zn-Ag Toyoha Mine,
Japan (Shatoury et al., 1974), filling temperatures of
fluid inclusions in quartz phenocrysts in the host quartz
porphyry intrusive are similar to temperatures in the
mineralised veins, suggesting a genetic relationship.

These studies suggest that even an orthomagmatic
origin for gold-silver-base metal mineralisation associated
with porphyritic acid intrusives cannot be excluded,
although there is no known mechanism.
Fig 28 Model of gold mineralisation.
Transport of gold by secondary volatiles

(1)
Partial loss of magmatic volatiles due to volcanicity

Zoned magma chamber

Phenocryst-rich silicic magma TpI
(Upper zone)

(2)
High temperature diapir reacts with deep fluids carrying gold chloride complexes

Relatively anhydrous magma due to eruptive loss of volatiles

Intrusion of hot magma from depth - facilitates upward intrusion

(3)
Emplacement of rhyodacite domes & dykes
Degassing of secondary volatiles & associated gold mineralisation 'porphyry' style
Despite these arguments more conventional explanations, perhaps involving weak gold mineralisation at a deep level in geothermal systems from low volumes of fluid, cannot be discounted at the Gunung Pani prospect on the basis of the present data.
VII. CONCLUSIONS

(1) The geology of the Marisa hinterland is poorly known. Important components of the geology include:
(a) a suspected older, pre-Tertiary amphibolite-low K-granitoid terrain, essentially the root zone of an oceanic island arc.
(b) foliated granitoids of unknown age, compatible geochemically to acid calc-alkaline rocks, intrusive into the older amphibolite basement.
(c) the Tinombo Fm basalts, probable island arc tholeiitic basalts of Eocene age, representing a submarine volcanic facies to the subsequent Miocene Bilungala andesitic island arc. The relationship of the Tinombo Fm to the older basement terrain is unknown.
(d) the Pani Volcanics and related rocks of possible Pliocene to Recent age.

(2) The Pani Volcanic Complex is one volcanic centre, probably part of a once extensive acid volcanic field, the limits of which are undefined. For the most part the volcanic field is deeply eroded and no major areal volcanic units have been identified.
(3) Important components of the geology of the Pani Complex can be understood in terms of the structure of volcanic domes.

(4) The Una-Una volcano in the Gulf of Tomini, 60km SW of Marisa, may be an active remnant of the Pani Volcanic field. TpII volcanics bear strong resemblance to a sample collected from Una-Una.

(5) The granitoids and amphibolite basement may have contributed to generation of the Pani Volcanics by anatetic, and subduction related processes (North Sulawesi Trench).

(6) The tectonic control of the Pani Volcanics may be rift tectonism related to the opening of the Gulf of Tomini (possibly back arc rifting).

(7) The Pinogu Volcanics are clearly related to rift volcanicity along the central part of the NE arm of Sulawesi, and may be of similar age to the Pani Volcanics.

(8) The Pani Volcanics can be divided into two units: TpI and TpII. TpI volcanics composed of quartz-biotite-sanidine porphyritic rhyodacites are restricted to the Pani Volcanic Complex and its associated dyke system. TpII is the latest stage of volcanicity in the Pani Complex, of similar composition to TpI but with smaller phenocrysts and slightly higher
contents of ferromagnesian minerals, including hornblende. TpII volcanics are characteristically very fresh, with black vitreous biotite. Hornblende bearing microgranodiorites are widespread along the coastline from Tilamuta to Marisa, including the Tabulo ring-dyke Complex, and may be subvolcanic equivalents of TpII volcanics.

(9) The petrography and geochemistry of the Pani Volcanics indicates they may be classified as I-type magmas. In general the geochemistry suggests these rocks have continental rather than island arc affinity.

(10) Low grade gold, silver and minor base metal mineralisation is related only to TpI volcanics, which are the most differentiated, silica-rich and potassic rocks belonging to the Pani Volcanics.

(11) Gold mineralisation at the Gunung Pani prospect is closely associated with silicified rhyodacites, possibly lavas or intrusives. The largest of these intrusives at Gunung Baganite may be interpreted as a shallow intruded porphyritic rhyodacite dome.

(12) From a detailed study of the alteration and geochemistry in drillhole 4 it is concluded that the Baganite rhyodacite dome is compositionally
zoned, becoming potassic and silicic upward to the upper contact which is pervasively silicified and hydrofractured.

(13) The silicification and hydrofracturing of the Baganite rhyodacite dome can be compared to the volatile saturated 'silicia carapace' described by Burnham (1979) for porphyry copper deposits. Silicification of smaller porphyritic rhyodacites on Pani ridge is ascribed to mainly deuteric silicification, due to their volatile content. It is possible that the strongest alteration occurred where these intrusives encountered hydrous wall-rock conditions, but in general interaction with fluids from the surrounding environment seems to have been minimal.

(14) The alteration associated with the gold mineralisation is weak, and is not unusual for silicic igneous rocks emplaced in a hydrothermally active volcanic environment. The alteration includes pervasive silicification, Na-alkali metasomatism, chloritisation of plagioclase phenocrysts, and adularia lining vuggy fractures.

(15) Two kinds of chlorite are identified from a study of alteration in drillhole 4; CHL1 characterised by <12% MgO is related to the geothermal gradient and occurs irrespective of lithology; and CHL2
characterised by >12% MgO and variable chemistry in any one sample analysed, is spatially restricted to the distribution of the Baganite rhyodacite dome. The reasons for the chemical variations CHL2 exhibits are largely unresolved, but one possibility is alteration during cooling of the rhyodacite intrusive.

(16) Gold mineralisation is in the form of electrum with about 20% Ag and occurs with pyrite which characteristically contains galena inclusions or exhibits epitaxial intergrowths with galena, and has associated sphalerite and chalcopyrite. Gold is paragenetically the latest phase. The base metal association with gold suggests a deeper level of mineralisation than typical hot spring geothermal systems.

(17) Gold mineralisation is partly disseminated, but not necessarily matrix-held, most likely the distribution is controlled by fine fractures and presence of sulphides.

(18) In general typical epithermal alteration features are absent at the Gunung Pani prospect. Gold mineralisation shows little evidence that it was due to the passage of large volumes of fluids through the rock.

(19) It is concluded that gold mineralisation is related to the emplacement and degassing of the
porphyritic rhyodacite bodies, which also introduced the mineralised fluids from depth.

(20) Silver mineralisation is associated with quartz-hematite veins in silicified tuff on Gunung Baganite and occurs in the form of acanthite (Ag₂S) or cupriferous acanthite. The silver mineralisation post-dates gold mineralisation and is related to relatively oxidising solutions, possibly generated from the final stages of cooling of the Baganite rhyodacite dome. The nature of these veins and alteration is more akin to typical epithermal mineralisation.
VIII. REFERENCES

Ahmad M., Solomon M., and Walshe J.L., 1984
Mineralogical and Geochemical Studies
of the Emperor Gold-Telluride Deposit,
Fiji.
Econ. Geol. (in press).

Allègre C.J., and Hart S.R., (Ed)
Trace elements in igneous petrology.
Dev. in Petrol.5. Elsevier.

Aramaki S., 1984
Formation of the Aira Caldera,
Southern Kyushu, 22,000 years
ago. in Calderas and Associate
Igneous Rocks. J. Geophys Res 89,
pp 8485-8503.

Arth J.G., 1979
Some Trace Elements in Trondhjemites -
Their Implications to Magma Genesis
and Palaeotectonic Setting.
in Trondhjemites, Dacites, and
Related Rocks. F. Barker (Ed).
Dev. in Petrol. No. 6. Elsevier 1979,
pp 123-131.

Audley-Charles M.G., 1974
Sulawesi, Mesozoic - Cenozoic orogenic
belt, data for orogenic studies.
Geol. Soc. London Spec. Publ. 4,
pp 365-378.

Bargar K.E., and Beeson M.H., 1984
Hydrothermal Alteration In
Research Drill Hole Y-6, Upper
Firehole River, Yellowstone
National Park, Wyoming.
US Geol. Surv. Prof Paper 1054-B,
44p.

Barker F., 1979
Trondhjemite : Definition, Environment
and Hypothesis of Origin.
in Trondhjemites, Dacites, and
Related Rocks. F. Barker (Ed).
Dev. in Petrol. No. 6. Elsevier 1979,
pp 1-11.

Barnes H.L. (Ed), 1979
Geochemistry of hydrothermal ore
deposits : New York, John Wiley and
Sons.
Amer. Geol. Inst.

Battey M.H., 1955
Alkali metasomatism and the petrology
of some keratophyres.
Geol. Mag. 92, pp 104-126.

Bayliss P., 1975
Nomenclature of the trioctahedral
chlorites.

Beckinsdale R.D., 1979
Granite Magmatism in the Tin
Belt of South-East Asia.
in Origin of Granite Batholiths,
Geochemical Evidence. M.P. Atherton
and J. Tarney (Ed), Shiva Pub. Ltd.
UK, 1979, pp 34-44.

Bennett D.J. and Cox, R., 1981
Report on the Assessment of Gold
Potential of the Pani and Baganite
Prospects, Northern Sulawesi,
Indonesia.
Robertson Research (Australia) Pty Ltd,

Berger B.R., 1975
Trace element variations associated
with disseminated gold mineralization
at the Getchell mine.
(Abst) Econ.Geol.70, p 1318.

Berger B.R., and Eimon P.I., 1983
Conceptual models of epithermal precious
metal deposits.
in Epithermal environments in New
Convenors R.W. Henley and P. Roberts.

Geology and geochemistry of the Round
Mountain gold deposit, Nye County,
Nevada.
(Abst) in Precious Metals Symposium
Amer. Instit Mining Eng.
Reno, Nevada.

Origin of pathfinder trace-element
patterns associated with gold-silver
mineralization in late Oligocene volcanic
rocks, Round Mountain, Nye County,
Nevada.
(Abst) in Precious Metals Symposium
Amer. Instit Mining Eng.
Reno, Nevada.

Carlile J., and Hisamuddin., 1983
Quality Control Assessment of
Gold Results from Exploration Drilling
at the Gunung Pani Gold Prospect,

Casadevall T., and Ohmoto H., 1977
Sunnyside Mine, Eureka Mining District,
San Juan County, Colorado :
Geochemistry of gold and base metal
ore deposition in a volcanic
environment.
Econ. Geol. 72, pp. 1285-1320.

Chappell B.W., 1984
Source rocks of I- and S-type
Granites in the Lachlan Fold Belt,
Southeastern Australia.
in The Relative Contributions of
Mantle, Oceanic Crust and
Continental Crust to Magma Genesis.
Eds. S. Moorbath, R.N. Thompson
and E.R. Oxburgh.
Phil. Trans. Roy. Soc. Lond.

Chappell B.W., and White A.J.R., 1974
Two contrasting granite types.
Pacific Geol. 8, pp 173-174.

Geochemistry of a Pliocene-Pleistocene
oceanic-arc plutonic complex,
Guadalcanal.
Nature 300, No. 5888, pp 139-143.

Christiansen R.L., and Lipman P.W., 1972
Cenozoic volcanism and plate-tectonic
evolution of the Western United States.
II. Late Cenozoic.
Phil. Trans. Roy. Soc. Lond. A. 271,
pp 249-284.

Clemens J.D., Wall V.J., 1981
Origin and crystallization of some
peraluminous (S-type) granitic magmas.

Cloke P.L., and Kelly W.C., 1963
Solubility of gold under Inorganic
Supergene conditions.
Econ. Geol. 59, pp 259-270.

Coleman R.G., and Donato M.M., 1979
Oceanic Plagiogranite Revisited.
in Trondhjemites, Dacites, and
Related Rocks. F. Barker (Ed).
Dev. in Petrol. No. 6. Elsevier 1979,
pp 149-165.
Colley H., 1976
Mineral deposits of Fiji (Metallic Deposits), Memoir No. 1, 123p.

Cotton R.E., 1976
Pogera Gold deposits.
C.L. Knight (Ed).

Coney P.J., Jones D.L., and Monger J.W.H., 1980
Cordilleran suspect terrains.

Coulon C., and Thorpe R.S., 1981
Role of Continental Crust in Petrogenesis of Orogenic Volcanic Associations.
Tectonophysics 77, pp 79-93.

Coveney R.M., 1981
Gold Quartz Veins and Auriferous Granite at the Oriental Mine,
Alleghany District, California.
Econ. Geol. 76, pp 2176-2199.

Cummings G.L., Kesler S.E., and Krstic D., 1982
Source of lead in sulphide ore at the Pueblo Viejo Gold-Silver Oxide deposit,
Dominican Republic.
Econ. Geol. 77, pp 1939-1942.

Davies H.L., and Smith L.E., 1971
Geology of Eastern Papua.

An Introduction to the Rock Forming Minerals.
Commonwealth Printing Press Ltd., Hong Kong.
Thirteenth Impression 1982.

de Keyser F., 1961
Misima Island geology and gold mineralisation.

de Nève G.A., 1984
General view on Precious Metal (Gold & Silver).
Occurrences of Sulawesi Island (Celebes), Indonesia.

Denholm L.S., 1967
Lode structures and ore shoots at Vatukoula, Fiji.
Dostal J., Zentilli M., Caelles J.C., and Clark A.H., 1977
Geochemistry and Origin of Volcanic Rocks of the Andes (26°-28°S).

Eimon P.I., and Anctil R.J., 1981

Natural hydrothermal systems and experimental hot water/rock interactions (Part II).

Elston W.F., 1984

Emani M.H., and Micheal R., 1982

Ewart A., 1979
A review of the mineralogy and chemistry of Tertiary-Recent dacitic, latitic, rhyolitic, and related salic volcanic rocks. in Trondhjemites, Dacites, and Related Rocks. F. Barker (Ed).

Petrogenesis of the volcanic rocks of the central North Island, New Zealand, as indicated by a study of Sr87/Sr86 ratios and Sr, Rb, K, U and Th abundances.

Fernandez H.F., and Damasco F.V., 1979
Gold Deposition in the Baguio Gold District and its Relationship to Regional Geology.
Econ. Geol. 74, pp 1852-1868.
Fleming P.D., and Fawcett J.J., 1976
Upper stability of chlorite and quartz in the system MgO-FeO-Al₂O₃-SiO₂-H₂O at 2 Kbar water pressure.
Amer. Min. 61, pp 1175-1193.

Folinsbee, R.E., Kirkland K., Nekolaichuk A., and Smejkal V., 1977
Chinkuashih - a Gold-Pyrite-Enargite-Barite Hydrothermal Deposit in Taiwan.

Fridrich C.J., and Mahood G.A., 1984
Reverse zoning in the resurgent intrusions of the Grizzly Peak Cauldron, Sawatch Range, Colorado.

Fyfe W.S., and Henley R.W., 1973
Some thoughts on chemical transport processes with particular reference to gold.

Giles D.L., and Nelson C.E., 1982
Principal Features of Epithermal Lode Gold Deposits of the Circum-Pacific Rim.

Gill J.B., 1970
Geochemistry of Viti Levu, Fiji, and its evolution as an island arc.

Gill J.B., and Stork A.L., 1979
Miocene Low K-dacites and trondhjemites of Fiji.
in Trondhjemites, Dacites, and Related Rocks. F. Barker (Ed).

Hamilton W., 1979
Tectonics of the Indonesian Region.
Geol. Surv. Prof. paper 1078, 345p.

Hanson G.N., 1978
The application of trace elements to the petrogenesis of igneous rocks of granitic composition.

Hanson G.N., 1980
Rare earth elements in petrogenetic studies of igneous systems.

Helgeson H.C., and Garrels R.M., 1968
Hydrothermal Transport and Deposition of Gold.
Econ. Geol. 63, pp 622-635.

Ratman, N., 1976
Geologic Map of Toli-Toli
Quadrangle, North Sulawesi
(1 : 250,000), Geological Survey
of Indonesia.

Rebek R.J., 1976
Edie Creek and Wau Gold Lodes.
in Economic Geology of Australia
and Papua New Guinea I Metals.
C.L. Knight (Ed),
Aust. Instit. Min. and Metall., 1975,
pp 867-872.

Reksalegora W., and Djumharic, 1971
Metallic mineral deposits of
Indonesia.
in Metallogenic Provinces and Mineral
Resources in the South Western Pacific.
Bull 141.

Rhodda P., 1967
Outline of the geology of Viti Levu.

Robb L.J., 1983
Trace Element Trends in Granites
and the Distinction between Partial
Melting and Crystal Fractionation
Processes : Case Studies from
two Granites in South Africa Univ.
of Wits.

Romberger S.B., 1982
Transport and Deposition of Gold
Hydrothermal Systems at Temperatures
up to 300°C.
(Abst No 109 89) Geol.Soc.Amer. Abst,

Rye R.O., Doe B.R., and Wells J.D., 1974
Stable Isotope and Lead Isotope Study
of the Cortez, Nevada, Gold Deposit
and Surrounding Area.

Sato T., 1974
Distribution and geological setting
of Kuroko deposits.
in Geology of Kuroko Deposits.
Soc. of Mining Geol. of Japan,
pp 1-9.

Sawkins F.J., 1982
Overview of Types of Gold
Deposits in Subaerial Environments.
(Abst No 00347),
Geol. Soc. Amer. Abst. with
program, New Orleans, 1982.
Fluid inclusion and geochemical studies of gold vein deposits, Baguio district, Phillipines.
Econ. Geol. 74, pp 1420-1434.

Schilling J.G. and Winchester J.W., 1969
Rare earth contribution to the origin of Hawaiian lavas.

Seward T.M., 1973
Thio complexes of gold and the transport of gold in hydrothermal ore solutions.

Seward T.M., 1976
The stability of chloride complexes of silver in hydrothermal solutions up to 350°C.

Shatoury H.M.E., Takenouchi S., and Imai H., 1974
Nature and Temperature of Ore-Forming Fluids at Toyoha Mine in the Light of Fluid Inclusions in Mineralized Veins and Quartz Porphyry.

Sheraton J.W., and Labonne B., 1978
Petrology and Geochemistry of Acid Igneous Rocks of Northeast Queensland.

Silver E.A., McCaffrey R., Joyodiwiryo Y., and Stevens S., 1983a
in EOS 64 (34) 1983.
J. Geophys Res. (Abst) in EOS 64 (34) 1983.

Smith D.M. Jr., 1979 The significance of silver-gold ratios at the Tayoltita mine, Durango, Mexico.
Soc. Mining Engineers AIME, Trans. 266, pp 1834-1838.

Econ. Geol. 77, pp 1120-1145.

Sparks R.S.J., Sigurdsson W., and Carey S.M., 1980 The entrance of pyroclastic flows into the sea, II: Theoretical considerations on subaqueous emplacement and welding.

Sukamto R., 1973
Reconnaissance geologic map of Palu area, central Sulawesi.
Indonesia Geol. Surv.
scale 1:250,000.

Sukamto R., 1975
The Structure of Sulawesi in the Light of Plate Tectonics.

Tarney J., and Saunders A.D., 1979
Trace element constraints on the origin of Cordilleran Batholiths.
M.P. Atherton and J. Tarney (Eds).
Shiva Pub. Ltd. UK, 1979
pp 90-105.

Taylor D., and Hutchinson C.S., 1978
Patterns of mineralization in Southeast Asia, their relationship to broadscale geological features and the relevance of plate-tectonic concepts to their understanding.
in Proc. 11th Comm. Min. and Metall. Congr. Hong Kong 1978,
M.J. Jones (Ed).

Taylor H.P. Jr., 1973
$^{18}O/^{16}O$ evidence for meteoric-hydrothermal alteration and ore deposition in the Tonopah, Comstock Lode, and Goldfield mining districts, Nevada.
Econ. Geol. 68, pp 747-764.

Taylor S.R., 1966
The Application of Trace Element Data to Problems in Petrology.
in Physics and Chemistry of the Earth Vol 6, 1965, Pergamon Press,
pp 135-213.

Taylor S.R., 1980
Refractory and moderately volatile element abundances in the earth, moon and meteorites.
Proc. Lunar Planet.Sci. Conf. 11th
pp 333-348.

Tilling R.T., Gottreid D., and Rowe J., 1973
Gold abundance in Igneous Rocks : Bearing on Gold Mineralization.
Econ. Geol. 68, pp 168-186.

Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia.
Geol. Soc. Amer. Mem.159, pp 21-34.

White D.E., 1981
Active Geothermal Systems and Hydrothermal Ore deposits.

Vapour-dominated hydrothermal systems compared with hot-water systems.
Econ. Geol. 66, pp 75-77.

Williams G.J., 1974
Economic Geology of New Zealand.

Williams H., 1932
The history and character of volcanic domes.

Williams H., and McBirney A.R., 1979
Volcanology, Freeman, Cooper and Co.

Caldera Volcanoes of the Taupo Volcanic Zone, New Zealand.

Geochemical Discrimination of Different Magma Series and their Differentiation Products using Immobile Elements.
Chem. Geol. 20, pp. 325-343.

Wones D.R., 1981
Mafic silicates as Indicators of Intensive Variables in Granitic Magmas.
Mining Geology 31, pp 191-212.

Woolf D.L., Bird M.C., and Pertzel B.A., 1976
P.T. TEI Second Progress Report.
Pani Complex Gold Prospects and Associated Regional Exploration Block 2, Sulawesi, Indonesia.
Vol I, II. Unpub.
Worthington J.E., 1981

Wright J.B., 1969