USE OF THESES

This copy is supplied for purposes of private study and research only. Passages from the thesis may not be copied or closely paraphrased without the written consent of the author.
MAGMATIC AND HYDROTHERMAL EVOLUTION OF THE BROWNS CREEK INTRUSIVE COMPLEX AND ASSOCIATED GOLD MINERALISATION

Nicola Jane Kovacs

September, 2000

A thesis submitted for the degree of Master of Science of The Australian National University.
Declaration

All work, results, observations and interpretations which are presented in this thesis are my own, except where other contributions and publications are referenced.

Nicola Kovacs
Acknowledgments

The author wishes to thank Hargraves Resources N.L. for the support and contributions over the period of this thesis. Dr. Phillip Blevin is sincerely thanked for supervising this project in somewhat trying circumstances and providing help when required. Other members of the Australian National University Department of Geology are also thanked for providing technical support for geochemical analyses and thin section production. The Research School of Earth Sciences at the Australian National University, particularly Dr. Ian Williams, is thanked for allowing use of the SHRIMP and helping with the dating work performed as part of this thesis. Thanks are also extended to Dr. Paul Lennox (University of New South Wales), Dr. Colin Wilkins (University of Sydney) and various consultants to the mine for many useful discussions. A final acknowledgment to G. Kovacs for proof reading and aiding final production of this thesis.
Abstract

The Browns Creek Au-Cu deposit near Blayney, New South Wales, consists skarn-hosted, magmatically derived and structurally controlled mineralisation. The deposit is hosted by altered Blayney Volcanics and Cowriga Limestone. The skarn alteration is a result of the intrusion of the Carcoar Granodiorite, which is a member of the Browns Creek Intrusive Complex. Other members of this complex are the Long Hill Phase of the Carcoar Granodiorite, the Mine Dyke Group and the Post-Mineralisation Intrusives. The Mine Dyke Group has been responsible for the mineralisation.

The Carcoar Granodiorite is 430.4 ± 4.7 Ma old (based on U-Th-Pb dating techniques on zircons). This date is around 15 Ma older than previously determined ages for this intrusive. The granodiorite is a multiple phase intrusive. The most notable phase is the cumulate Long Hill Phase. This mafic phase was previously believed to be a separate intrusive body to the granodiorite. Greater abundances of iron, magnesium and lower abundances of aluminium and potassium are consistent with the Long Hill Phase representing a cumulate phase of the Carcoar Granodiorite. Other elements show similar abundances to the granodiorite.

Several forms of alteration are associated with the intrusion of the Carcoar Granodiorite. The granodiorite has marblised the Cowriga Limestone Member and hornfelsed the Blayney Volcanics. The dominant alteration assemblage is the skarn metasomatisation, visible at the mine and other pockets along the contact of the Carcoar Granodiorite with the country rock.

The orebody has formed close to the contact of the Carcoar Granodiorite with the Blayney Volcanics and the marblised Cowriga Limestone Member. A complex structural corridor had previously formed. Three dominant structural trends can be identified in the vicinity of the mine north-south, northwest and northeast. The north-south structural trend was the first to be activated in this area. This has created
a structural fabric that was reactivated by later structural movements. The northwest structural trend has resulted in the juxtaposition of the Carcoar Granodiorite with the Cowriga Limestone Member. Regional scale, northeast structures have controlled the dilation of pre-existing north-south structures. This has facilitated the emplacement of the Mine Dyke Group and hence the mineralisation.

The Mine Dyke Group is a series of dykes that predominantly lie within the ore zone. The dykes are mostly granitic in composition and range from aplites to pegmatites. They are mostly oriented north-south and some show evidence of intruding along north-south oriented faults and shears. The dykes have intruded syn- to post-mineralisation and two were dated using U-Th-Pb techniques on zircons. These analyses yielded ages of 430.0 ± 5.4 Ma and 432.3 ± 4.9 Ma. The Mine Dyke Group is the phase of the Browns Creek Intrusive Complex that is associated with mineralisation. As the Carcoar Granodiorite predates the mineralisation, the ages of the Mine Dyke Group in conjunction with the Carcoar Granodiorite can be utilised to obtain a date for the mineralisation event. The three dates give a mean age of 431 ± 3 Ma for this event.

The orebody is cross-cut by a late intrusive body identified in the latter part of the mine’s operation. The Post-Mineralisation Intrusive is quartz monzodioritic to granodioritic in composition and is slightly more mafic than the Carcoar Granodiorite. It has intruded after the formation of the orebody and is not associated with any mineralisation. There is a slight amount of skarn alteration that is observed with this intrusion, overprinting the pre-existing skarn and mineralisation.
Table of Contents

Abstract

1. Introduction
 1.1 Previous Studies
 1.2 Aims
 1.3 Methods

2. Regional Geology
 2.1 Regional Setting
 2.2 Blayney Volcanics
 2.3 Cowriga Limestone Member
 2.4 Forest Reefs Volcanics
 2.4.1 Intrusives Within the Forest Reefs Volcanics
 2.5 Stokehill Metagabbro
 2.6 Carcoar Granodiorite
 2.7 Events After Intrusion of the Carcoar Granodiorite

3. Mine Geology
 3.1 Intrusives
 3.1.1 Phase 1: Carcoar Granodiorite
 3.1.2 Phase 2: The Mine Dyke Group
 3.1.3 Phase 3: Post-Mineralisation Intrusive
 3.1.4 Correlation of the Three Main Phases of Intrusive Activity
 3.2 Porphyritic Monzonite
 3.3 Blayney Volcanics
 3.4 Cowriga Limestone Member
 3.5 Skarn Alteration
 3.6 Basaltic Dykes
 3.7 Clay Zones

4. Structure
 4.1 Previous Studies
 4.2 Classification of the Different Structural Trends
 4.3 North-South Structural Trend
 4.3.1 4000E Fault Zone
 4.3.2 Banding and Faulting in Marble
 4.3.3 Sheeted Intrusions - The “Ore Zone Package”
 4.3.4 Sheeted Quartz Veins
 4.4 Northwest Structural Trend
 4.4.1 Mount David Shear Zone
 4.5 NNE - Northeast Structural Trend
 4.6 East-West Structural Trend
 4.7 Synthesis

5. Mineralisation
 5.1 Ore Mineralogy
 5.2 Styles of Mineralisation
List of Figures

1.1 Location of deposit

2.1 N.S.W. structural zones and fold belts
2.2 Regional geology around the Browns Creek Mine

3.1 QAP classification diagram for the Browns Creek Intrusive Complex
3.2 a,b Open pit geology and structure
3.3 Photos of the Carcoar Granodiorite - hand specimen
3.4 Photomicrograph of Carcoar Granodiorite - general texture
3.5 Photomicrograph of zoned plagioclase in Carcoar Granodiorite
3.6 Photo of dyke from Mine Dyke Group underground showing textural and compositional variation
3.7 Photo of the Mine Dyke Group in the open pit
3.8 a,b Photos of Mine Dyke Group underground showing intrusive contacts
3.9 a,b Photos of the Mine Dyke Group - hand specimen
3.10 Photomicrograph of myrmekitic/granophyric intergrowth in Mine Dyke Group
3.11 Photomicrograph of Mine Dyke Group showing mafic minerals
3.12 Photomicrograph of titanite in altered Mine Dyke Group
3.13 a-e Photos and photomicrographs displaying alteration of the Mine Dyke Group
3.14 a,b Photos of mineralisation within the Mine Dyke Group
3.15 a,b Photos of Post-Mineralisation Intrusive underground
3.16 Photo of Post-Mineralisation Intrusive - hand specimen
3.17 Photo of porphyritic monzonite - hand specimen
3.18 a,b Photos of Blayney Volcanics - hand specimen
3.19 Photo of skarned Blayney Volcanics - hand specimen
3.20 Photo showing epidote alteration in Blayney Volcanics
3.21 a,b Photos of mineralisation in skarned Blayney Volcanics - hand specimen
3.22 a,b Photos of skarned marble
3.23 a,b Photos of mineralisation in skarned marble - hand specimen
3.24 a-c Photos and photomicrographs of garnet skarned intrusives
3.25 a,b Photos of basaltic dykes in open pit
3.26 Photo of basaltic dyke - hand specimen
3.27 Photo of clay ore zone in open pit

4.1 a-c Stereographic projection of the north-south structural trend
4.2 Photo of mylonite zone
4.3 Photo of blocks within the mylonite zone
4.4 Level plan to show location of sheeted quartz veins (10542mRL)
4.5 a-c Stereographic projection of the northwest structural trend
4.6 Schematic cross section showing hypothetical Lower Mt David Shear Zone
4.7 Photo of the Mount David Shear Zone from the open pit
4.8 Diagram of the positive flower structure
4.9 a-c Stereographic projection of the northeast structural trend
4.10 Plan of the three-dimensional ore zone showing truncation of ore to the north by a northeast fault
4.11 Photo of east-west trending faults in the Carcoar Granodiorite in the open pit
4.12 a-c Stereographic projection of the east-west structural trend

5.1 Photo of bornite in bladed wollastonite
5.2 Photo of drillcore with gold
5.3 Photo of pyrrhotite in late quartz-calcite vein
5.4 Photo of molybdenite in quartz vein
5.5 Photo of sheeted veins
5.6 a,b Photos of late chalcopyrite crystallisation
5.7 Photo of bornite in epidote alteration

6.1 Map showing supposed location of Long Hill Diorite in Carcoar Granodiorite
6.2 Variation diagrams comparing Long Hill Phase with Carcoar Granodiorite
6.3 Variation diagrams comparing the Mine Dyke Group with the Carcoar Granodiorite and Long Hill Phase
6.4 Variation diagrams for all the members of the Browns Creek Intrusive Complex
6.5 Variation diagrams for the Browns Creek Intrusive Complex, the Barry Granite and the Neville Granite
6.6 Variation diagrams for the Browns Creek Intrusive Complex and the diorites, monzodiorites and tonalites
6.7 Variation diagrams for the Browns Creek Intrusive Complex, the porphyritic monzonite and the Blayney Volcanics
6.8 Variation diagrams for the Browns Creek Intrusive Complex, the Errowan Monzonite and syenite group
6.9 Variation diagrams for the Browns Creek Intrusive Complex and the Tallwood Monzonite
6.10 Variation diagrams for the Browns Creek Intrusive Complex and intrusives of the Bathurst 1:250,000 sheet

7.1 Photo of the NH29 hand specimen
7.2 Plot of apparent Pb/U ages for NH29
7.3 Plot of weighted mean radiogenic Pb/U for NH29
7.4 Photo of the NH43 hand specimen
7.5 Photo of hourglass zoning present in zircons in NH43
7.6 Diagram of hourglass zoning (after Benisek and Finger, 1993)
7.7 Plot of apparent Pb/U ages for NH43 (batch 1)
7.8 Plot of apparent Pb/U ages for NH43 (batch 2)
7.9 Plot of weighted mean radiogenic Pb/U for NH43 (batch 2)
7.10 Photo of the NH48 hand specimen
7.11 Plot of apparent Pb/U ages for NH48
7.12 Plot of weighted mean radiogenic Pb/U for NH48
7.13 Plot of $\text{Sr}_{\text{initial}}$ versus eNd
7.14 Variation diagrams for Nd and Sr isotopes
7.15 Variation diagrams for Pb isotope ratios

8.1 Cross-section representing one model of formation (Kjolle, 1997)
8.2 The Browns Creek Intrusive Complex within the Carcoar Suite of intrusives
8.3 Block model diagram of the formation of the Browns Creek Mine
8.4 Schematic cross-section of the formation of the Browns Creek Mine
8.5 Timescale of events at the Browns Creek Mine

List of Plans

1 24725mRL and 24625mRL cross sections; looking north; displaying geology and structure
2 10285mRL underground development with geology and structure
3 10515mRL underground development with geology and structure
4 10305mRL underground development with geology and structure
5a 10532mRL underground development with structure
5b 10500mRL underground development with structure
6 10340mRL underground development with geology and structure
7 10320mRL underground development with geology and structure

List of Tables

2.1 Stratigraphic table
3.1 Correlation between old terminology and new terminology
3.2 Table of stratabound skarn assemblages in open pit
3.3 Table of vein skarn assemblages in open pit
4.1 Summary table of structural history of the Browns Creek deposit
7.1 Previous dating
7.2 Summary of dating results
7.3 Isotope measurements and calculations
8.1 Classification systems of deposits