
Computational Natural Deduction

Seppo R. Keronen

A thesis submitted for

the degree of Doctor of Philosophy

of the Australian National University

© Seppo R. Keranen

November 1991

Chapter 1

Introduction

We introduce a new, deductively complete subclass of natural deduction proofs called

atomic normal form (ANF) proofs. Natural deduction offers several outstanding ad­

vantages as a base for mechanical reasoning:

• Proofs are readily understood as formal counterparts of informal (but rigorous)

arguments constructed by humans. Powerful explanation, debugging and con­

trol facilities can be provided, based on simply inspecting the state of a proof

construction computation.

• Strictly classical reasoning is inappropriate for many deduction problems faced by

mechanical reasoners. Alternative logics are often formulated as natural deduc­

tion systems. For example, deduction systems for intuitionistic logic, and logics

that can supply coherent answers in the presence of contradictory knowledge, are

available.

Compared to resolution refutation, little is known about the efficient implementa­

tion of natural deduction based systems. The ANF scheme is designed to address this

shortcoming. The special advantages of ANF are:

• The implementation technology of resolution refutation theorem provers is di­

rectly applicable to the task of constructing ANF proofs. The fundamental oper­

ation of the inference engine is the unification of two atomic formulae.

• The extended syntactic forms of the Prolog family of logic programming lan­

guages distance them from SLD resolution. ANF provides a direct proof theo­

retic account for these languages. The procedural semantics and implementation

techniques of current languages are faithfully modeled in the new framework.

Efficient implementations for more expressive languages are suggested.

10

CHAPTERl. INTRODUCTION 11

• Each proof step is the application of a derived rule of inference justified by a par­

ticular input formula1. Reasoning in terms of derived rules results in increased

efficiency. The correspondence between derived rules and input formulae facili­

tates explanation, debugging and control of inference engine behaviour.

The following sections present an account of some of the main themes of our work in

short form. The preview here is intended to provide a supply of motivations, intuitions

and examples to be drawn on by the more formal and detailed investigations of chapters

2- 6.

The deduction systems to be described are intended for the language of first or­

der predicate calculus formulae and its sublanguages. Computational procedures are

expressed in the logic programming language Prolog. Prolog will also appear as an

object of study here. The pure logic fragment of Prolog is one of the sublanguages of

predicate calculus to be studied. In discussing language extensions, control constructs

and implementation techniques Prolog is adopted as a convenient reference point. A

basic familiarity with these languages is assumed.

1.1 Nat ural Deduction

We follow the usual practice for natural deduction formulations and enrich the language

of (well formed) formulae slightly. The symbol# (read contradiction) is admitted as a

well formed atomic formula. Also we distinguish syntactically between occurrences of

bound variables (denoted by ... , x, y, z) and free variables or parameters (denoted by

... ,X,Y,Z).

Natural deduction rules of inference can be recognized as formal counterparts of

methods used in common reasoning practice. A selection of these rules, sufficient for

the purposes of this chapter, appears in figure 1.1. Putting the rules of the figure into

words:

And introduction (J\1): The conjunction G/\H follows given both a proofiT1 for

the formula G and a proof IT2 for the formula H.

And elimination (/\E): Given a proof IT of the conjunction E/\F the formulaE

follows. Also, from the same premiss the formula F follows.

Implication introduction (::::)1): The implication F-:JG follows given a proof IT

of the consequent G. The antecedent F may be assumed as an axiom for the

purposes of the proof.

1 This principle is strictly observed for minimal logic and its subsystems only.

CHAPTER 1. INTRODUCTION

introduction rules

G H
-AI---

G/\fl

[F]
n
G

-::>1---
F-:JG

n
G

-vr---
GVH

[G]
n

-~r---

"'G

n
H

-vr---
GVH

elimination rules

n n
E/\F E/\F

-AE---

E F

n nl
G-:JF G
-::>E---

F

n
'<:/xF(x)

-VE---

F(t)

n nl

"'F F
-~E---

Figure 1.1: a selection of natural deduction rules

12

Implication elimination (:::>E): Given a proof of an implication and a proof of

its antecedent the consequent follows. This rule is also called modus ponens.

Or introduction (Vr): A disjunction follows given a proof of either disjunct.

Universal quantifier elimination (\IE): Given a proof of a formula \lxF(x) the

formula F(t) follows for any term t.

Negation introduction ("-'I): Given a proof of# (contradiction), using the for­

mula G as an assumption, the formula "'G follows. The name reductio ad

absurdum is also used for this rule.

Negation elimination ("-'E): Given the two proofs, II of "'F and 111 of F, we

have detected# (a contradiction).

Consider a subset of the above rules consisting of just the two negation rules shown

in figure 1.2. These two rules determine a deduction system intended for reasoning with

formulae constructed from propositional atoms and the negation operator only. Given

a set of formulae (axioms), the two rules of inference may be used to derive a new

formula (conclusion), that depends on a subset of the axioms (premisses). We refer to

such a derivation as a proof of the conclusion from the premisses.

CHAPTER 1. INTRODUCTION

[G]
n

-~I---

rvQ

,.,_p F
-~E---

Figure 1.2: example natural deduction system

13

Let us now focus on a particular deduction problem: Given the set of axioms {a, "'b}

prove the conclusion "'"'"'"'a using just the rules of inference shown in figure 1.2. In

symbols:

{a, "'b} ? - "'"'"'"'a
1.2

In order to solve this problem, augment the deduction system with new constructs

representing the axioms and query. Rules of inference with nothing standing above

the inference stroke represent axioms- In this case figure 1.3 (a) and (b). A rule of

inference with nothing standing below the inference stroke represents the query formula

- In this case figure 1. 3 (c).

-AXIOM­

a

(a)

-AXIOM­

rvb

(b)

Figure 1.3: axioms and query

-QUERY-

(c)

The proof displayed in figure 1.4 is a solution For the above problem. It is a

composition of instances of the available inference rules, including those representing the

axioms and the query. In more detail, a proof is a bipartite (formula nodes and inference

nodes) tree-form graph2 . The root formula node (drawn as the bottommost formula

node) is the conclusion of the proof. The leaf formula nodes are either assumptions

or premisses. Inference nodes and their associated edges are represented by horizontal

inference strokes. The mapping from assumptions to the inference rule instances that

discharge them (discharge function) is indicated by annotating inference strokes with

numbers.

On its own the constraint that every step within a proof be an instance of a rule of

inference is too weak to capture the notion that a proof should arrive at its conclusion

without unnecessary detours. Consider the deduction problem:

{a, "'b} ? - "'b
1.2

2 Generalisation to directed acyclic graph will be considered in chapter 4 in connection with asserted

disjunctions.

CHAPTER 1. INTRODUCTION

-(2)

rva
-AXIOM­

a
-~E------

-(1)

-~r-(2)

-~E------

-~r-<1)

-QUERY-

Figure 1.4: natural deduction proof

14

As well as the very direct solution of 1.5 (a), the unnecessarily complicated solution of

1.5 (b) (just one representative drawn from an infinite class) is also admitted.

-AXIOM­

rvb
-QUERY-

(a)

-AXIOM- --(2)

rvb b
-~E----

-~r-(2) --(1)

rvb b
-~E----

-~r-(1)

rvb
-QUERY-

(b)

Figure 1.5: normal and abnormal proof

The normal form for natural deduction proofs [Prawitz 65] excludes a large class of

such unnecessarily complex proofs by imposing a simple constraint on the application

of inference rules. Taking this well known normal form as a starting point, we will

impose additional constraints to arrive at proofs in atomic-normal-form (ANF).

1.2 A Meta Deduction Problem

The current section serves two purposes: Preliminary to our investigation of the control

of deduction, it introduces the basic concepts of meta language and reflection. We also

employ the example meta deduction problem of this section to illustrate the main ideas

in the remainder of this chapter.

The deduction problem of figure 1.6 encodes at the meta level the disjunction of

two object level deduction problems for the system of figure 1.2. That is, whether either

the formula a or the formula ""'a is provable given the set of axioms {a, ""'b }.

The formulae in figure 1.6 are expressions in a meta language, whereas the formulae

of the deduction problem they talk about are expressions in an object language. Object

language formulae are represented by terms in the meta language. For example, the ob­

ject language formula ""'a is here represented by the meta language term not(atom(a)).

CHAPTERl. INTRODUCTION

assertion(atom(a)) 1\ assertion(not(atom(b)))

Vx assertion(atom(x)) :J goal(atom(x)) goal(atom(a)) V
?-

15

Vy assertion(not(y)) 1\ goal(y) :J assertion(atom(#))

Vz (assertion(z) :J goal(atom(#))) :J goal(not(z))

goal (not(atom(a)))

Figure 1.6: meta deduction problem

Apart from this reflection of object language items in the meta language, we will keep

the two languages separate. In this case for instance, meta language expressions are

formed using the operators 1\, V, ::) and V, while the object language admits the rv

operator only.

The intended interpretation of the predicate goal/13 is provability of the argument

formula. The predicate assertion/1 stands for a restricted notion of provability, in

terms of which goal/1 is defined. The first axiom in the figure represents the two

object level axioms a and rvb. The last two axioms in the figure represent the two

rules of inference of the object deduction system. The notions of assertion and goal

are explained in chapter 3. The reader may wish to return to this example once that

material has been covered.

1.3 Atomic Normal Form Deduction

An outline of the ANF proof theory, by way of an example, follows. To contrast the

two approaches, we run through the meta deduction problem of figure 1.6 in both the

resolution refutation and ANF regimes.

assertion(atom(a))

assertion(not(atom(b)))

rvassertion(atom(X)) V goal(atom(X))

rvassertion(not(Y)) V rvgoal (Y) V assertion(atom(#))

assertion(Z) V goal(not(Z))

rvgoal(atom(#)) V goal(not(Z))

rvgoal (atom(a))

rv goal (not(atom(a)))

Figure 1. 7: clausal form

The resolution refutation scheme requires the translation of the axioms and negated

3 The notation name/ arity is used for predicates.

CHAPTER 1. INTRODUCTION 17

the breakdown of an axiom or query into its atomic components by the application of

natural deduction rules of inference. The inference rules appearing in this example can

be found in figure 1.1.

For resolution the problem of deducing the query from the axioms is re-represented

as: Derive the null clause, using the resolution rule of inference, starting with the clausal

translation of the axioms and negated query. In this case a number of derivations for

the null clause are possible. Three of the simplest are shown in figure 1.9.

rvgoal(atom(a)) rvassertion(atom(X)) V goal(atom(X))

~
rvassertion(atom(a)) assertion(atom(a))

~
[]

(a)

assertion(atom(a)) rvassertion(atom(X)) V goal (atom(X))

~
goal(atom(a)) rvgoal(atom(a))

~
[]

(b)

assertion(Z) V goal (not(Z)) rvgoal(not(atom(a)))

v rvgoal(atom(a)) rvassertion(atom(X)) V goal(atom(X))

~
rvassertion(atom(a)) assertion(atom(a)) ----------­[]

(c)

Figure 1.9: resolution refutations

The ANF representation of the deduction problem is more direct: Is it possible to

construct a natural deduction proof for the query by "pasting" together substitution

instances of proof components? The "glue" we use is the structural rule of inference

called cuP [Gentzen 35]. Only the one proof, displayed in 1.10 (a), is possible. The

instances of the cut rule may be removed, and the associated equality assertions applied

as substitutions, to reveal the cut free proof of figure 1.10 (b).

5 Cut is the rule of inference which allows a mathematician to use lemmas when constructing a proof.

CHAPTER 1. INTRODUCTION 18

-AXIOM--------------

assertion(atom(a)) 1\ assertion(not(atom(b)))
-AXIOM------------- -AE----------------

\;fx assertion(atom(x)) ::::> goal(atom(x))
-VE----------------

assertion(atom(X1)) ::::> goal(atom(X1))

assertion(atom(a))
=cuT X1=a
assertion(atom(XI))

-JE------------------------------
goal(atom(X1))
=cuT======== X 1=a
goal(atom(a))

-vi--------------
goal(atom(a)) V goal(not(atom(a)))

-QUERY-------------

(a)

-AXIOM------------- -AXIOM--------------

\;fx assertion(atom(x)) ::::> goal(atom(x)) assertion(atom(a)) 1\ assertion(not(atom(b)))
-VE---------------- -AE----------------

assertion(atom(a)) ::::> goal (atom(a)) assertion(atom(a))
-JE-----------------------------

goal(atom(a))
-vr--------------

goal(atom(a)) V goal(not(atom(a)))
-QUERY-------------

(b)

Figure 1.10: ANF proof

Two important points in favour of the ANF proof theory are illustrated by this

example:

• A natural deduction proof can be read directly as an argument for the query from

the axioms. Each step in the proof is an instance of a rule of inference used in

common reasoning practice.

• There are often more resolution proofs for a given deduction problem than neces­

sary. The ANF scheme is better focused, without losing deductive completeness.

1.4 Computation

The search space for solutions to a given deduction problem is a bipartite graph, sub­

graphs of which are proofs. We extend the notation of the previous section by showing

the edges associated with inference nodes- see figure 1.13. This addition enables us

to indicate that a particular formula node is the conclusion or premiss of more than

one inference node.

Computation proceeds in two stages:

Extend the input formulae into proof components. We will refer to the set of proof

components implicit in an axiom or query formula as the inferential extension

of that formula.

CHAPTER 1. INTRODUCTION 19

assertion(atom(a)) 1\ assertion(not(atom(b)))

(a)

Vx assertion(atom(x)) :J goal(atom(x))

assertion(atom(X)) :J goal(atom(X))

(b)

Vy (assertion(not(y)) 1\ goal(y)) :J assertion(atom(#))

(assertion(not(Y)) 1\ goal (Y)) :J assertion(atom(#))

(c)

Vz (assertion(z) :J goal(atom(#))) :J goal(not(z))

(assertion(Z) :J goal(atom(#))) :J goal(not(Z)) assertion(Z) :J goal(atom(#))

(d)

(e)

Figure 1.11: inferential extensions

CHAPTER 1. INTRODUCTION 20

Compose instances of proof components, by applying the cut rule of inference.

The required instances of cut are computed by unifying the atomic premiss

of one component instance with the atomic conclusion of another.

The inferential extension of an input formula is computed by an algorithm which

breaks down the formula, step by step, into its atomic components. Two classes of

formulae assertions and goals are recognised. A non-atomic assertion instantiates an

elimination rule - A non-atomic goal instantiates an introduction rule. The inferential

extensions of the axioms and query of figure 1.6 are shown in figure 1.11. In this figure,

the input formulae are framed by a heavier outline than the other, derived formulae.

A proof component may be summarized as a derived rule of inference. Consequently,

a solution may be viewed as a composition of parameter renaming instances of either

proof components or derived rules. The derived rules for the inferential extensions of

figure 1.11 are shown in figure 1.12.

assertion(not(atom(b)))

(a) (b)

(c) (d) (e)

goal(atom(a)) V goal(not(atom(a))) goal (atom(a)) V goal (not(atom(a)))

(e) (f)

Figure 1.12: derived rules of inference

The required instances of cut are computed by unifying the atomic conclusion of

one proof component instance with the atomic premiss of another. For example, two

steps of composition, given the derived rules in figure 1.12, are shown in figure 1.17.

We denote the cut rule by a double inference stroke, and explicitly display the equality

assertions (substitutions) required for successful unification.

A solution to a deduction problem is determined by the constraints:

CHAPTER 1. INTRODUCTION

assertion(not(atom(b)))

7: Y1 =atom(b)
.---'--------,

Figure 1.13: search space

21

• A solution corresponds to a solution graph [Nilsson 80] of the AND /OR search

space. A solution graph consists of:

- The query inference node.

- For every inference node all its premiss formula nodes.

- For every formula node exactly one inference node that has the formula node

as conclusion.

• The set of equality assertions, associated with the cut nodes of the solution graph,

are to be consistent. Consistency is tested in the simple syntactic equality theory

required for the well-formedness of natural deduction proofs. Closer to the imple­

mentation level, this corresponds to the well known composition of substitutions

CHAPTER 1. INTRODUCTION 22

operation [van Vaalen 75].

Additional constraints will be imposed in chapter 5 for the proper discharge of assump­

tions and to ensure that the solution arrives at its conclusion without unnecessary

detours.

For the example meta deduction problem, the search space generated by a breadth

first backward chaining search strategy is illustrated in figure 1.13. The figure is drawn

up in terms of derived rules. Only the leftmost branch of this AND/OR tree yields a

solution, corresponding to the proof of figure 1.10. For all the other solution graphs

the associated sets of equality assumptions are inconsistent.

Normally it is required that compose perform a complete search for solutions. The

associated task of recording what portion of the search space remains unexplored at

any given time is simplified by carrying out the search within the framework of a search

strategy. A backward chaining strategy is one which only looks at partial solutions that

include the query, as illustrated in figure 1.14. Each such partial solution corresponds

to a conditional proof of the query- That is, assuming the set of open premisses the

query follows. The search frontier (indicated by the dotted line in the figure) consists

of the set of open atomic premisses of conditional proofs.

axioms
•• •• open search space /

00 0 0 0
•• "

0
..

0 0
...

0
••• 0 0 0 0 0 0 0 .. 0 ..

query

Figure 1.14: backward chaining search

1.5 Logic Programming

Let us examine the relationship between the pure Prolog language and ANF proof the­

ory. The SLD resolution proof theory for Horn clause languages [Apt & vanEmden 82]

is well known. The syntactically richer Prolog formulae need first to be translated into

sets of Horn clauses for the SLD story to apply [Lloyd & Topor 84]. Most Prolog im­

plementations, however, do not rewrite formulae in this way. A subset of ANF justifies

the inferences performed by these inference engines.

The inferential extension of a Horn-clause consists of a single derived rule of infer­

ence as illustrated in figure 1.15. The prime notation here indicates that applications of

the universal quantifier elimination rule have replaced the bound variables of the clause

by parameters. The deduction system for Horn-clauses consists only of the elimination

CHAPTER 1. INTRODUCTION 23

rules for implication and the universal quantifier and introduction rules for conjunction

and the existential quantifier. Prolog implementors have, however, recognised the rela­

tive simplicity of the deductive machinery required for a richer goal syntax. To include

a particular logical connective in the goal syntax, just the introduction rule for that

connective is required.

extend
-----t

B'

A' n

Figure 1.15: inferential extension of a Horn clause

The AND/OR tree notation with explicit substitutions, introduced in the preced­

ing section, reflects the data structures found on the stacks of Prolog machines6 -

see [Bruynooghe 82], [Hogger 84]. The Prolog equality predicate(= /2) is simply the

syntactic equality theory required for well-formedness of proofs. The negation as fail­

ure (NAF) rule of inference fits neatly, as a negation introduction rule, into the ANF

framework. Failure proofs, like success proofs, can be characterized by a deduction

system.

1.6 Extended Languages

The subformula property of ANF proofs establishes a simple correspondence between

the syntax of input formulae and the deductive machinery required for implementation.

To include a particular connective in the goal syntax - augment the inference engine

with just the introduction rule(s) for that connective. Similarly for assertions -just

the corresponding elimination rule(s) are required.

Once all the usual operators(/\, V, :::>, "i/, :3 and rv) have been admitted in this way

for both assertions and goals, we have reached minimal logic. Any omissions and we

have minimal logic with syntactic restrictions. Intuitionistic logic is reached by adding

the ex falso quodlibet rule of inference to the minimal logic machinery. In the presence

of this rule, no query can fail until the theory in question has been demonstrated

contradiction free. Add excluded middle to the intuitionistic system and we have full

classical logic.

Intuitionistic, rather than classical, deducibility is appropriate when the domain of

discourse, as in the example problem of figure 1.6, is a deduction system. The problem

of provability in such systems is in general undecidable [Godel 31]. In the case of the

example problem, the query goal(F) V rvgoal(F) would receive a positive answer even

6 apart from the trail

CHAPTER 1. INTRODUCTION 24

in the case that F is undecidable in the object system. Both classical and intuitionistic

logic are inappropriate if the consistency of all the axioms in the problem statement is

not guaranteed. In this situation relevance logics can deliver some answers.

Note that resolution refutation is tightly coupled to classical logic by requiring the

rewriting of formulae using classical equivalences. Consequently neither minimal nor

intuitionistic logic has a resolution refutation proof theory. ANF makes these logics

accessible, while retaining the achievements of resolution refutation implementation

techniques.

1. 7 Control by Introspection

The search spaces for anything but very simple deduction problems are computationally

intractable. [Hayes 73) and [Kowalski 79a) have advocated a separate control compo­

nent to specify the order in which these search spaces are to be explored. This idea

is realized in Prolog by the procedural reading and embedding of control annotations

in formulae. We explore an alternative approach, still based on the control component

being supplied by the user.

problem assertions

select

subgoal

next introspect

computation state

Figure 1.16: a simple introspective architecture

A logic-based view of the control component of a deduction problem is as a separate

control theory specifying the next action of the inference engine at any given compu­

tation state. That is, control decisions are made by the inference engine based on the

introspection [Smith 86) of its own state. The major subcomponents required for a

realization of this view are:

• The upward reflection of a part of the computation state as a logical theory

accessible to introspection.

CHAPTER 1. INTRODUCTION

(a)

(c)

Figure 1.17: computation state

open(fnode(5), assertion(atom(a)))

open(fnode(3), goal(not(atom(a))))

(b)

Figure 1.18: computation state axioms

25

• The downward reflection of a theory specifying inference engine actions as com­

putational behaviour.

• A control theory to be used to derive the specification of inference engine actions

given a computation state.

We investigate a realization of these ideas based on the simple reflect and act model

of [van Harmelen 88]. The chosen architecture is illustrated in figure 1.16 and discussed

in more detail in the following paragraphs.

For our natural deduction based system, the current state of computation can be

readily understood by the person who is to write control axioms. The first three

CHAPTER 1. INTRODUCTION 26

computation states (depth first traversal) for the example meta deduction problem

are shown in figure 1.17. The conceptualization of computation state at a number of

increasingly detailed levels is possible:

• a collection of sub goals (the search frontier),

• a collection of partial solutions,

• AND/OR search space.

The upward reflected computation state theory is generated by a collection of atomic

axioms. These axioms are implemented as procedures with access to the internal data

structures of the inference engine. The closed world assumption is appropriate for this

theory. For example, the search frontier of 1.17 (b) is represented by the two axioms

in figure 1.18. The two arguments of the open/2 predicate represent the unique name

of the formula node and a substitution instance of the formula occurring in that node

respectively.

For the downward reflected action theory, a simple procedural model of the infer­

ence engine is desirable. Let us conceptualize the behaviour of the inference engine in

terms of a reflect-and-act cycle, represented by the Prolog procedure search/1 of fig­

ure 1.19. The single argument of search/1 represents a computation state. Only the

two procedures final/1 (termination condition) and select/2 (selection of subgoal

on the search frontier) are evaluated at the meta level. The more complex notions of

rule selection and backtracking are absent - All solutions are explored concurrently

without backtracking.

search(State) ·- final(State),

display(State).

search(State) not final(State),

select(State,Subgoal),

next(State,Subgoal,NextState),

search(NextState).

Figure 1.19: procedural model of inference engine

The control theory specifying inference engine actions at a given computation state

consists of a finite number of ground literals of the form final,"' final, select(Subgoal)

and rvselect(Subgoal). The final/0 and select/1 predicates of the control theory are

reflected down as the final/1 and select/2 procedures of the inference engine respec­

tively. The closed world assumption applies to final/0 but not selectjl.

CHAPTER 1. INTRODUCTION 27

In the case of our example meta deduction problem, we know that queries about the

restricted provability relation represented by the assertjl predicate are easily answered.

This control knowledge is expressed by the control axioms in figure 1.20. Applied to

the computation state of figure 1.17 (b) the result is state (c).

Vn V f open(n, assertion(!)) ::J select(n).

rv(3n3f open(n,assertion(f))) ::J (VnVJ open(n,f) ::J select(n)).

Figure 1.20: control assertions

The above is clearly not yet a practical control language. We need to simplify the

syntax and introduce the notion of a default control theory. In the presence of a default

theory: If answers are computed in acceptable time, problem-specific control assertions

need not be supplied - In case of unacceptable performance, control assertions may

be added incrementally.

1.8 Multiple Context Evaluation

The model presented in the preceding section promises a conceptually simple, yet ex­

pressive control language. A generalization of that architecture also supports unre­

stricted AND/OR parallel evaluation of deduction problems. Subgoals on the search

frontier may be selected for composition concurrently. Two such subgoals may or may

not occur as premisses of some common conditional proof, corresponding to AND and

OR parallel evaluation respectively.

To achieve these benefits the procedure next/3 carries a heavy computational bur­

den. Given a subgoal selected on advice from the control theory, all applicable proof

components are composed with all conditional proofs having that subgoal as premiss.

We consider an implementation based on ATMS7 [de Kleer 86] technology.

The computation state maintained by the inference engine is an AND/OR graph of

formula nodes and inference nodes, with equality propositions associated with inference

nodes representing instances of the cut rule (cut nodes). Every solution graph, for

which the set of all associated equality propositions is consistent, corresponds to a

conditional ANF proof. Each such conditional proof is represented by a label, being the

set of cut nodes for that proof. Each time next/3 is called the AND/OR graph and

set of labels are updated. The equality propositions generated by the unifier are tested

for consistency in the environment of every label containing the selected goal. Any

label containing an inconsistent subset of equality propositions (a nogood), is removed.

Nodes that appear in no label are pruned.

7 ATMS = assumption based truth maintenance system

CHAPTER 1. INTRODUCTION

{1, 3}

{2, 4, 6 } .._..,..,
nogood

{2, 4, 5, 7, 8, 10} .._,._.,
nogood

{2,4,5,~
nogood

{2, 4, 5, 7, 9 } .._..,..,
nogood

Figure 1.21: labels

28

For the example search space of figure 1.13, there are five solution graphs represented

by the five labels in figure 1.21. Cut nodes are numbered in order of their creation by

a backward chaining breadth first search strategy. Each label consists of a set of these

numbers. Only the first of the labels corresponds to a proof, the remainder containing

nogoods as indicated.

Chapter 2

Nat ural Deduction

The task of this chapter is to introduce natural deduction systems, and to develop

the notion of proof in atomic normal form (ANF proof) in this framework. A formal

deduction system for ANF proofs is presented. The deductive completeness of that

system is established.

2.1 Logical Preliminaries

The deduction systems to be described are intended for the language of first order

predicate calculus formulae. The use of the special symbol # for contradiction, and

the distinction of bound and free variables as two separate classes of syntactic objects,

are the only unusual features of the following formulation of this language.

Syntactic Categories: A formula is built out of symbols drawn from the following

classes:

logical constants - just the following seven symbols:

connectives: /\, V, ::J and ""

quantifiers: V and 3

formula constant: #

predicate symbols -for each n (n = 0, 1, 2, ...), a denumerable supply of

symbols of arity n. When we have no particular interpretation in mind,

we will use the lowercase letters p, q, r, s for predicate symbols.

variables - a denumerable supply of bound (by a quantifier) variables. We

will use lowercase letters towards the end of the Roman alphabet (... ,

x, y, z) for variables.

parameters - a denumerable supply of free variables. We will use the

uppercase counterparts of variables(... , X, Y, Z) to stand as parameters.

29

CHAPTER 2. NATURAL DEDUCTION 30

constant symbols -for each n (n = 0, 1, 2, ...), a denumerable supply of

symbols of arity n. In the case that we have no particular interpretation

in mind, we will use lowercase letters at the beginning of the Roman

alphabet (a, b, c, ...) as constant symbols.

auxiliary symbols - commas and parentheses used for grouping and to

avoid ambiguity.

Objects in the problem domain of interest will be represented by syntactic elements

called terms.

Term: The class of terms is determined by the inductive definition:

• A parameter is a term.

• Let f be ann-place constant symbol and let t1, i2, ... , in be terms then

f(il, i2, ... , in) is a term. In the case that n = 0 we write f rather than

f().

Propositions about the problem domain are represented by formulae. Atomic for­

mulae are basic. Compound formulae are built up by the recursive application of the

logical operators (connectives and quantifiers) to atomic formulae.

Atomic Formula: The class of atomic formulae is determined by the two clauses:

• # is an atomic formula.

• If p is an n-place predicate symbol and i1, i2, ... , in are terms then

p(i1, i2, ... , in) is an atomic formula. In the case that n = 0, we usually

just write p instead of p().

Formula: The class of (well formed) formulae is determined by the following clauses:

• An atomic formula is a formula.

• If F is a formula then so is f'oJ F.

• If E and Fare formulae then so are EI\F, EVF and E-:JF.

• If F is a formula containing one or more occurrences of a parameter X

and F' is obtained from F by replacing all occurrences of X by a variable

x then 'ixF' and 3xF' are also formulae.

The above definition implies that all but atomic formulae may be decomposed into

a collection of simpler subformulae. The notion of subformula we need incorporates

this idea together with a slight extension for negative formulae.

CHAPTER 2. NATURAL DEDUCTION 31

Subformula: With reference to the above definition of formula, the subformula

relation is determined by the following two clauses:

• E is a subformula of F if there is a construction of F from E together

with some set of atomic formulae.

• If F is of the form ""E then # is a sub formula of F,

When talking about formulae, in the language of this thesis, the following conven­

tions apply: The symbols A, Band C will stand for atomic formulae. E, F, G and H

will stand for formulae more generally, with various syntactic constraints as required.

A substitution (of terms for parameters) will be denoted by a set of equality asser­

tions in solved form [Lassez et al. 88]. For the substitution instance of formula F using

substitution E> we write FE>. For example:

p(X, Z) {X=f(Y), Z=a} evaluates to p(f(Y), a)

When talking about objects containing formulae as constituents, the following con­

ventions apply: The symbols r and ~ will stand for sets of formulae. A deduction

problem statement is denoted by ~. Proofs and solutions (graphs containing formula

occurrences as nodes) will be denoted by II and ~ respectively. The notion of substi­

tution instance is extended, in the obvious way, to cover these composite objects also.

For example, applying the substitution E> uniformly to all formula occurrences in a

proof II results in the proof TIE>.

2.2 Proof

The set of natural deduction rules characterizing first order classical logic (C) is dis­

played in figure 2.3. These rules constitute the deduction system Crr, being an inductive

definition for the notion of proof in classical logic.

Proof: The inductive definition of proof goes like this:

base An ocurrence of a formula standing alone is a proof supporting the

given formula as conclusion, and depending on just that same formula

as premiss. Such a trivial argument, for formula F, is represented by the

deducibility assertion:

{F} f- F

step The rules of inference provide the clauses of the inductive definition.

Given proofs matching each of the premisses of the rule, a proof for

CHAPTER 2. NATURAL DEDUCTION 32

the instantiated conclusion may be constructed. The new proof may

discharge some of the premisses of the component arguments as assump­

tions. Such a composite argument with conclusion G and depending on

the set of premisses { F1, F2, ... , Fn} is summarized by the deducibility

assertion;

{F1,F2, ... ,Fn} 1- G

In accordance with the above definition, proofs generated by single conclusion rules

of inference are trees. The root of the tree is the conclusion, the leaves of the tree are

either premisses or assumptions. A path is a sequence of formula occurrences, leading

from a leaf, all the way down to the root. The branches of the tree are sequences of

formula occurrences, having a leaf at the top and a minor premiss formula1 or the

conclusion of the entire proof at the bottom. The branch terminating at the conclusion

is also called the trunk. In any proof figure we draw, the trunk is the leftmost branch.

For some simple examples of proofs see chapter 1.

--(i)

E

Ill
II

(F) (F) [F]
F

--(i)

G II II2 II G

(a) (b) (c) (d) (e)

Figure 2.1: notation for proofs

Figure 2.1 introduces some notation for proofs:

(a) Proof II has conclusion G.

(b) Formula F occurs as a premiss in proof II. The conclusion depends on the

premiss.

(c) A proof II1 with conclusion F, has been grafted onto proof TI2 at an occur­

rence of F as premiss.

(d) Formula F may occur as an assumption in proof II. For each occurrence of

F as an assumption there is exactly one inference rule occurrence in II that

discharges that assumption occurrence.

(e) The inference rule annotated with (i) discharges an occurrence offormula E as

assumption. That is, F depends on the indicated occurrence of E as premiss,

whereas G no longer does so.

1 See next section for definition of minor premiss formula.

CHAPTER 2. NATURAL DEDUCTION 33

[F]
nl n2 n

G-::;F G G-::;F G G
-:::>E -::>I

F F F-::;G

(a) (b) (c)

Figure 2.2: inference rule notation

2.3 Rules of Inference

We adopt a slightly more verbose notation for inference rules than is common. For

example, instead of the conventional notation of figure 2.2 (a) for the implication elim­

ination (modus ponens) rule, we write (b). The formula F here is the conclusion of the

rule, G~F and G are premiss formulae, and II1 , II2 are premiss proofs. The leftmost

premiss is the major premiss, the remaining one the minor premiss. The rule is to be

read as the inductive clause:

If
IT,

is a proof and
G-::;F

IT2

G
is a proof then

IT, IT2

G"JF G
-:::>E---

F
is a proof.

The inverse of the implication elimination rule is the implication introduction rule

shown in figure 2.2 (c). These rules are inverse in the sense that the introduction rule

defines the conditions under which an implication may be derived as conclusion - The

elimination rule unlocks the inferential resources of an implication that has already

been proved.

For the systems discussed in this chapter inference rules involving assumptions are

free to discharge any subset of the indicated formula occurrences as assumptions. In

other words, it is not required that all, or even any, assumptions be discharged.

The rules of inference appearing in the natural deduction system for classical logic,

system Crr of figure 2.3, may be partitioned into four subsets:

Introduction Rules: The generic introduction rule, with premiss proofs II1 ••• lin

and conclusion formula G, is expressed in the pattern:

ll1 Dn
-[----

G

The premiss formulae are subformulae of the conclusion.

CHAPTER 2. NATURAL DEDUCTION 34

introduction rules elimination rules

G H
-AI---

GA.H

n
G

-vi

GVH

[F]
n
G

-::>I

F-::;G

n
--
G(X)

-'VI

'VxG(x)

n
G(t)

- 3I

3xG(x)

[GJ
n

-~I

"'G

absurdity rule

n

-#X

G

n n
EAF EAF

-AE--- -AE---

n
H

-vi

GVH

E

EVF G G
-vE-----

G

G-::;F G
-:::>E---

F

n
'VxF(x)

-vE---
F(t)

[F(X)]
n nl

3xF(x) G
-3E---

G

"'F F
-~E---

excluded middle

-Mx--­
F V "'F

x - variable

X - parameter

t - term

E, F, G, H - formula

n,nl,n2 - proof

F

Figure 2.3: system Crr -natural deduction proof for classical logic

CHAPTER 2. NATURAL DEDUCTION 35

Elimination Rules: The elimination rule with major premiss II0 , minor premisses

II1 ... lin and conclusion F is expressed in the pattern:

IIo

E II1 IIn
-E-----

F

Except for the or elimination (VE) and existential elimination (:JE) rules, all

minor premiss formulae and the conclusion are subformulae of the major pre­

miss formula. For the VE and 3E rules, all assumptions are subformulae of

the major premiss formula.

Together the introduction and elimination rules define a subsystem of classical

logic called minimal logic (M) [Johansson 36].

Absurdity Rule: This rule expresses the principle that given a proof of contra­

diction, any formula whatsoever follows. The addition of the absurdity rule

to minimal logic yields intuitionistic logic (I) [Dummett 77].

Excluded Middle: This rule expresses the principle that for any formula what­

soever either it or its negation holds. The addition of this principle to the

intuitionistic system yields the system for classical logic.

Note that the universal introduction (VI) and existential elimination (:JE) rules place

restrictions on the occurrence of parameters in proofs. Discussion of these restrictions,

and the role that parameters play in proofs more generally, is deferred until chapter 4.

Nat ural deduction proofs are constructed not only by application of the above rules

of inference. It is common practice to "graft" one proof (lemma) that establishes a

conclusion F, on top of a proof requiring F as a premiss. This principle, called cut

[Gentzen 35], is expressed by the inductive clause:

IT,

IT, F
Given a proof - and a proof (F) then =cuT= is a proof.

F IT2 (F)
IT2

We emphasize the presence of a cut in a proof by use of a double inference stroke. Cut

is sound for the system Crr of natural deduction and primitive for the system of atomic

normal form deduction to be presented shortly.

CHAPTER 2. NATURAL DEDUCTION 36

introduction rules elimination rules

IIN1 IIN2

G H
-AI---

GI\H

IIN

G
-vi

GVH

(F]
IIN

G
-:>I

F-:JG

IIN

G(X)
-VI

VxG(x)

IIN

G(t)
-3I

3xG(x)

(G]
IIN

-~I

rvG

absurdity rule

IIN

-#X

G

EI\F EI\F
-AE--- -AE---

IIN

H
-vi

GVH

E

(E] (F]
IIM IIN 1 IIN 2

EVF G G
-vE-----

G

G-:JF G
-::>E---

F

VxF(x)
-VE---

F(t)

(F(X)]
IIM IIN

3xF(x) G
-3E---

Q

rvF F
-~E---

excluded middle

-MX--­

FVrvF

x - variable

X - parameter

t - term

E, F, G, H - formula

IIM - major premiss proof

IIN, IIN 1, IIN 2 - normal form proof

F

Figure 2.4: system CrrN - normal form proof for classical logic

CHAPTER 2. NATURAL DEDUCTION 37

2.4 Normal Form

Our notion of proof, so far, places no other constraint on proofs than that they be

constructed from instances of rules of the given deduction system. In an attempt to

ensure that a proof arrive at its conclusion without unnecessary detours, we now place

further constraints on the overall form of a proof.

The inversion principle states that no deductive gain is to be had by using a formula,

constructed by an introduction rule, as the major premiss for an elimination rule.

Members of the subclass of proofs, that excludes such unproductive applications of

introduction rules, are called normal form proofs [Prawitz 65].

Normal Form Constraint: A natural deduction proof is in normal form just in

case no major premiss formula of an elimination rule is the conclusion of an

introduction rule.

We can define a deduction system, call it CrrN, that incorporates the normal form

constraint:

Normal Form Proof {liN): A major premiss proof (liM) is determined by the

rules of inference on the right (elimination rules and excluded middle) of figure

2.4. A normal form proof (liN) is then determined by the rules of inference

on the left (introduction rules and absurdity rule) of the figure, and a clause

stating that a liM is a liN.

The fact that we do not lose deductive power by confining our interest to normal

form proofs is confirmed by the following well known result.

Lemma 1 ~ f- G iff ~ f- G
err CIIN

Proof:

~ f- G ~ ~ f- G
err CIIN

Every CrrN proof is a Crr proof.

Every Crr proof may be transformed into an CrrN proof by removing all

instances of introduced major premisses by exhaustive application of the

reduction transformations below. Note that the absurdity rule is treated as

an introduction rule here.

CHAPTER2. NATURAL DEDUCTION 38

/\-reduction

II1 II2
--
F1 F2

-AI

F1AF2 IIi
-AE

(Fi) (Fi)
II II

V-reduction

IIo
[F1] [F2] IIo -

Fi II1 II2
(Fi) -vi-----

F1VF2 G G IIi
-vE

(G) (G)
II II

:)-reduction
[F]
IIo

II1
G II1

(F) -:)I---

F::)G F IIo
-:)E

(G) (G)
II II

'v'-reduction

IIo

F(X)
-VI

VxF(x) IIo(X = t)
-VE

(F(t)) (F(t))
II II

3-reduction

IIo [F(X)] IIo
F(t) II1

(F(t)) -3I---
3xF(x) G II1(X=t)
-3E

(G) (G)
II II

rv-reduction
[F]
IIo

II1
II1

(F) -~I---

"'F F IIo
-~E

(#) (#)
II II

CHAPTER 2. NATURAL DEDUCTION

#-reduction

IIo

II1
-#X--

Fo F1
-E-------

(G)
II

2.5 Cut Normal Form

-#X-

(G)
II

39

D

In this section we present an alternative formulation of normal form proof. This new

formulation emphasizes more of the structure and reflects an efficient method of con­

struction for these proofs. A normal form proof has more structure than is explicit

in the above statement of the normal form constraint. The constraint confers two

important properties on any normal form proof fiN:

Subformula Property: For the intuitionistic system, every formula occurrence

in fiN is a subformula of one of the premisses of fiN or of the conclusion of

fiN. For the classical system, negations of premisses and of the conclusion

may also occur.

Minimal Formula Property: Every branch of a fiN consists of two segments.

Tracing a branch from the top premiss or assumption, a sequence of elimi­

nation rule occurrences is followed by a sequence of introduction rule occur­

rences. The two segments are separated by a minimal formula occurrence.

The minimal formula is a subformula of both the formulae at the top and

bottom of the branch.

The above properties, recognised by [Prawitz 65], form the basis for partitioning

a proof into introduction components and elimination components. An introduction

component represents the inferential contribution of a particular goal2 formula to the

overall proof. The conclusion of a proof is an example of a goal formula. An elimination

component represents the contribution of a particular assertion formula to the overall

proof. Premisses and assumptions are assertion formulae.

A component consists of a single initial formula occurrence together with subfor­

mulae of that initial formula. Components are separated from one another by minimal

formula occurrences. More precisely:

2 The notions of goal and assertion are made precise in the next chapter.

CHAPTER 2. NATURAL DEDUCTION 40

introduction rules elimination elimination

G H
-1\I---

(G/\H)
III

G
-vi---

(GVH)
III

[F]
G

-~I---

(F-:)G)
III

G(X)
-'VI---

(VxG(x))
III

G(t)
-3I---

(3xG(x))
Ilr

[G]

-~I---

("'G)
Ilr

-#X---

(G)
III

H
-vi---

(GVH)
III

cut normal form proof

G
=CUT===

(G)
lie

x - variable

X - parameter

t - term

A - atomic formula

E, F, G, H - formula

liE

E/\F E/\F
-AE--- -AE---

E F

[E] [F]
liE Ill 112
--

EVF G G
-vE

G

liE IIr

G-:)F G
-~E

F

liE

VxF(x)
-liE

F(t)

[F(X)]
liE II

3xF(x) G
-3E

G

liE III

,_.,p F
-~E

-MX
F V ,_.,p

atomic normal form proof

A
=CUT===

(A)

III - introduction proof

liE - elimination proof

lie - cut normal form proof

IIA - atomic normal form proof

111 ,112 - cut or atomic normal form proof

Figure 2.5: systems Crrc and CrrA - cut and atomic normal form proof

CHAPTER 2. NATURAL DEDUCTION 41

Introduction Proof Component (IIr): We refer to a component generated by

a goal formula as an introduction component (IIr). A IIr is characterized by

the inductive definition:

base A formula standing alone is a IIr.

step The introduction rules shown on the top left of figure 2.5 form the

clauses of the definition. The assumptions generated by the application

of :::n and "'I rules are initial formulae of elimination components.

The inference rules here reflect the decomposition (backward chaining) of a

goal formula into subgoals and assumptions.

Elimination Proof Component (liE): We refer to a component associated with

an assertion as an elimination proof component (liE). A liE is characterized

by the inductive definition:

base A formula standing alone is a liE.

step The inference rules shown on the top right of figure 2.5 form the clauses

of the definition. Notice that introduction components may occur as

parts of an elimination component.

The inference rules here represent the decomposition (forward chaining) of an

assertion into simpler subassertions and goals.

Notice that introduction and elimination components are finite. The subformula

property limits the number of rule occurrences within a component to the number of

logical operator occurrences in the initial formula from which the component is derived.

A cut normal form proof consists of instances of introduction and elimination com­

ponents "pasted" together using the cut rule of inference as "glue". The following

definition reflects a backward chaining strategy3 for the construction of cut normal

form proofs.

Cut Normal Form Proof (lie): A cut normal form proof (lie) is determined

by the inductive definition:

base: A IIr is a lie.

step: Given a lie with premiss F, a liE with conclusion F then we can

compose the lie and liE. This step is symbolised by the CUT rule at

bottom left of figure 2.5.

3 Proof strategies are discussed in detail in the next chapter.

CHAPTER 2. NATURAL DEDUCTION 42

The simple mapping between normal form and cut normal form proofs is exhibited

by the following lemma.

Lemma 2 ..6. 1- G
CrrN

Proof:

iff

..6. 1- G ¢:: ..6. 1- G

..6. 1- G
Crrc

Every Crrc proof may be transformed into a CrrN proof by removing every cut

rule occurrence by application of the cut-reduction transformation below.

cut-reduction

Il2
-E-- Il2

F
=CUT=

(F)
-I--

- -E--

(F)
-J--

II1
II,

Every CrrN proof may be transformed into an Crrc proof by adding the

required instances of the cut rule by exhaustive application of the cut­

expansion transformation below.

cut-expansion

Il2
Il2 -E--

-E-- F
(F)

-J--

II1

=CUT=

(F)
-J--

II1

2.6 Atomic Normal Form

D

Theorem prover technology has developed largely on the assumptions that the basic

object language items to be manipulated are atomic formulae (with free variables). In

particular, resolution theorem provers and logic programming systems employ clause

indexing and unification mechanisms that incorporate this assumption. Atomic normal

form proofs are tailored to meet these technological constraints.

Atomic Normal Form Proof (ITA): A cut normal form proof is in atomic nor­

mal form (ANF) iff all occurrences of the cut rule have atomic formulae as

premiss and conclusion. The ANF CUT rule is shown at bottom right of figure

2.5.

CHAPTER 2. NATURAL DEDUCTION 43

The ANF scheme may seem wasteful in requiring that compound formulae always be

broken down by elimination rules into their atomic components only to be reassembled

by introduction rules. The two stage inference strategy presented in the next chapter

effectively limits such waste by preprocessing (partial evaluation).

Lemma 3 ~ 1- G iff ~ 1- G
crrc CIIA

Proof:

~ 1- G -¢:: ~ 1- G
crrc CIIA

Everu CrrA proof is a Crrc proof.

~1-G '* ~1-G

The transformations below may be applied to atomize the premiss and

conclusion of any CUT rule occurrence.

/\-expansion

II2
-E---

F/\G
=CUT=

(FAG)
-I---

II,

V-expansion

II2
-E---

FVG
=CUT=

(FVG)
-I---

II,

:>-expansion

II2
-E---

F:::>G
=CUT= ---+

(F:::>G)
-I---

II,

II2 II2
-E- -E-

F/\G F/\G
-AE- -AE-

F G
=CUT= =CUT=

F G
-AI---

(F/\G)
-I---

II,

-0)
F

=CUT=

II2 F
-E--

FVG FVG
-vE

(FVG)
-I--

II,

II2
-E-- --(i)

F:::>G F
-::>E---

G
=CUT=

G
-::>r-(i)

(F:::>G)
-I---

II,

-(i)

G
=CUT=

G

FVG
(i)

CHAPTER 2. NATURAL DEDUCTION

V-expansion

II,
-E--

'rfxF(x)
=CUT=

(VxF(x))
-I---

II,

3-expansion

II2
-E--

3xF(x)
=CUT=

(3xF(x))
-I---

II,

rv-expansion

II,
-E--

"'F
=CUT=

("'F)
-I---

II,

II,
-E--

'rfxF(x)
-VE--

F(X)
=CUT=
F(X)

-vi--
(VxF(x))
-I---

II,

--(i)
F(X)
=CUT=

II, F(X)
-E-----
3xF(x) 3xF(x) .
-3E (•)

(3xF(x))
-I--

II,

II,
-E--(i)

"'F F
-::>E---

=CUT=

-::>I!___(i)
("'F)

-I---

II,

44

0

The soundness and completeness of the natural deduction system Crr with re­

spect to semantic accounts of first order classical logic is well known, see for example

[Tennant 78]. Relying on this result, theorem 1 establishes soundness and completeness

for the system CrrA·

Theorem 1 .6. 1- G iff .6. 1- G
err crrA

Proof: Immediately from lemmas 1, 2 and 3 and transitivity of iff. 0

Chapter 3

Deduction Problems

The notion of a deduction problem and of a proof as its solution are introduced. A formal

deduction system is presented for solutions in atomic normal form (ANF solutions).

This deduction system incorporates knowledge about the form of the natural deduction

rules to reduce the size of the search space. Solutions are computed by a two stage

procedure. Stage 1 maps the axioms and query of a deduction problem statement into

sets of solution components. Stage 2 searches for a complete solution by composing

instances of the components, supplied by stage 1, using resolution refutation technology.

3.1 Computational Preliminaries

Our interest in deductive reasoning is focused on solving deduction problems.

Deduction Problem: Given a logic (as deduction systemS), a set of axioms ~

and a query formula G, what, if any, proofs of G from ~ exist in S? We

symbolise this problem as

~ ?- G
s

The members of~ (axioms) together with the formula G (query) are the input

formulae of the deduction problem.

Solution: Any proof in S having conclusion G and premiss set r, where r is a

subset of ~' is a solution. Such a solution is summarised by the deducibility

assertion:

r 1- c
s

Consider the example deduction problem:

{p!\q,r} ?- pV(qJ\r)
CITN

45

CHAPTER 3. DEDUCTION PROBLEMS 46

Notice that although this problem is posed for the system CrrN (full first order normal

form calculus), the resources of a simple propositional subsystem suffice. We represent

the two axioms as shown in figure 3.1 (a) and (b), and the query as in (c). Just the

two solutions shown in figure 3.2 exist.

-AXIOM­

p/\q

(a)

-AXIOM­

r

(b)

pV(q/\r)
-QUERY-

(c)

Figure 3.1: axioms and query

-AXIOM­

p/\q
-AE--

p
-vi---

pV(q/\r)
-QUERY--

(a)

-AXIOM­

p/\q
- AE -- -AXIOM-

q r
-1\l----

q/\r
-vi--

pV(q/\r)
-QUERY-

(b)

Figure 3.2: solutions

We now introduce notation which reflects more clearly the graph structures em­

ployed in computation than does the traditional inference stroke notation. These graphs

are bipartite, consisting of formula nodes and inference nodes. Directed edges, drawn

down the page, denote the premiss and conclusion relations. The two example solutions

are represented by the solution graphs in figure 3.3 (a) and (b). We have distinguished

the axioms and query (the source and sink nodes of the directed graphs) by heavily

outlined boxes.

(a) (b) (c)

Figure 3.3: solution graphs

The advantage of the graph notation, over the inference stroke notation, is that it

is possible to explicitly represent structure shared by multiple solutions. The way such

CHAPTER 3. DEDUCTION PROBLEMS 47

shared structure arises during computation is illustrated in the next section. The two

example solutions share an axiom and conclusion as illustrated by the AND/OR graph

of figure 3.3 (c). The formula nodes of the graph are OR nodes, in the sense that just

one of the incoming conclusion edges is included in a solution. The inference nodes are

AND nodes, as every incoming premiss edge is included in a solution.

In this chapter we specialize the deduction system CrrA for ANF proofs, developed in

the preceding chapter, so that it only admits proofs that are solutions. The aim of this

new system C~ (4>) is to reflect, as clearly as possible, an efficient method for computing

solutions for a given deduction problem 4>. The problem statement is represented by a

set of (degenerate) rules of inference, while the (proper) rules of inference are as shown

in figure 3.13. The rules in this figure are inherited from the system CrrA, with some

modifications. A detailed examination of each of the rules of inference, particularly their

computational properties, can be found in the next chapter. The present chapter sets

up the framework for this study by presenting a more global picture of the computation.

3.2 Search Spaces and Strategies

The purpose of this section is to highlight the computational advantages of the ANF

scheme. Both purely forward and purely backward chaining search strategies perform

poorly given the natural deduction rules. The computational reading of the C~ (4>)

system is as a combination forward backward strategy.

The process of searching for solutions to deduction problems, by the direct ap­

plication of natural deduction rules, is represented in outline by the Prolog procedure

solve/3 in figure 3.4. This procedure returns a complete AND/OR graph as the Answer

to a deduction Problem to be solved in a given Logic. Given the set of inference Rules

for Logic and an initial representation of the problem as an AND/OR Graph, the

Answer is constructed by the search/3 procedure. This procedure maintains state as

an (possibly disconnected) AND /OR Graph. At each iteration the graph is extended by

the application of Rules of inference to a part of the Graph called Focus. The search/3

procedure leaves open the search strategy to be used. In the following paragraphs the

two common strategies forward chaining and backward chaining and their relationship

to the ANF scheme are illustrated.

3.2.1 Forward Chaining Search

Forward chaining search is the computational equivalent of the kind of inductive defi­

nition given for natural deduction proofs by the system Crr in chapter 2. The strategy

starts with the axioms of the deduction problem as the initial (level 0) set of partial

CHAPTER 3. DEDUCTION PROBLEMS

solve(Problem,Logic,Answer) ·­

rules(Logic,Rules),

initial(Problem,Graph),

search(Graph,Rules,Answer).

search(Graph,Rules,Graph) ·­

complete(Graph).

search(Graph,Rules,Answer) ·-

not complete(Graph),

focus(Graph,Rules,Focus),

next(Graph,Rules,Focus,NextGraph),

search(NextGraph,Rules,Answer).

Figure 3.4: procedure solve/3

48

solutions. A new partial solution is added to the set when it is recognised that the pre­

misses of an inference rule find matching partial solutions in the set. The new partial

solution is at level m + 1, where m is the maximum of the levels of the premisses. The

solution is complete once its conclusion matches the query.

At any one time a number of rules may match a partial solution at a number of

different foci. The following specializations of the forward chaining strategy reduce

this non-determinism a little. A search strategy is breadth first if it produces all partial

solutions at each level n before any at levels greater than n. A strategy is depth first

if it never produces a partial solution at level n, unless no partial solutions at levels

greater than n can be produced.

IT, IT IT

G H EI\F EI\F
-AI-..,--- -AE--- -AE---

Gf\H E F

Figure 3.5: example forward chaining deduction system

Given the forward deduction system of figure 3.5 consider the problem:

{p/\q,r} ?- q/\r
3.5

Let us walk through the execution of the solve/3 procedure for this problem. The

CHAPTER 3. DEDUCTION PROBLEMS 49

initial/2 procedure sets up the disconnected AND/OR graph shown in figure 3.6.

The level 0 set of partial solutions consists of just the two axioms pl\q and r. The next

two levels generated by a forward chaining, breadth first search strategy are displayed

in figure 3.7.

Figure 3.6: initial AND/OR graph

From this example it is clear that the uniform forward chaining strategy results in

an intolerably large search space. We place the blame on the and introduction rule,

which generates new conjunctions irrelevant to the query at hand. The elimination

rules, on the other hand, simply break down conjunctions into their conjuncts.

partial
level solutions

0 2

1
1 6

1
2 60

Figure 3. 7: forward chaining search space

3.2.2 Backward Chaining Search

Backward chaining search corresponds to the kind of inductive definition given for

introduction proof components in the preceding chapter. The strategy starts with the

query as the only member of the level 0 set of partial solutions. A new partial solution is

added to the set when it is recognised that the conclusion of a rule of inference matches

a partial solution already in the set.

Backward chaining leaves the choice of rule and focus undetermined. As in the case

of forward chaining, the breadth first and depth first constraints may be applied.

Figure 3.9 illustrates the search space generated by the backward deduction system

CHAPTER 3. DEDUCTION PROBLEMS

G H
-1\I---

(G/\H)
II

E/\F
-AE---

(E)
II

E/\F
-AE---

(F)
II

Figure 3.8: example backward chaining deduction system

of figure 3.8 for the problem:

{p!\q, r} ?- q!\r
3.8

partial
level solutions

2 12

l
1 3

l
0 1

Figure 3.9: backward chaining search space

50

The roles of the introduction and elimination rules in generating irrelevant partial

solutions are now reversed. In the case of backward chaining, we blame the elimination

rules for bringing irrelevant conjunctions into the picture. However, a smaller number

of irrelevant conjunctions are produced by the single conclusion and elimination rules

than by the dual premiss introduction rule. Also, every partial solution contains the

query formula as conclusion, resulting in a more focused search.

3.2.3 ANF Search

The above analysis of the combinatorial weaknesses of the pure forward and backward

strategies suggests a better approach. The ingredients for the new strategy are:

1. Forward chaining employing elimination rules only.

2. Backward chaining employing introduction rules only.

3. Use of the cut rule of inference to interface the conclusions of 1 with the open

premisses of 2.

Figure 3.9 illustrates the search space generated by the combined system of figure

3.10 for the problem:

{p!\q, r} ?- q!\r
3.10

CHAPTER 3. DEDUCTION PROBLEMS

G H
-1\l---

(G/\H)
II

II

EI\F
-AE---

E

II

EI\F
-AE---

p

Figure 3.10: combination forward backward system

partial
level solutions

0 2

1
1 2

1 2

r
0 1

Figure 3.11: ANF (combined forward backward) search space

51

The applicability of introduction and elimination rules is here limited by the number

of logical constants appearing in an input formula. The exhaustive application of these

rules reduces the input formula into its atomic subformulae. The combinatorial search

is performed in terms of the cut rule of inference alone. The computational counterpart

of cut is the unification operation of [Robinson 65] for which efficient implementation

techniques are known.

The above conjunction only example illustrates the computational motivation for

the ANF scheme. The formalization and generalization of the scheme to encompass

the full first order calculus is taken up next.

3.3 Atomic Normal Form Solutions

First we formalize the notion of an ANF solution as the deduction system C1; (cp). A

second definition, in graph theoretic terms, then more clearly reveals issues in search

and representation. We also discuss some of the the major structural features of ANF

solutions.

CHAPTER 3. DEDUCTION PROBLEMS 52

3.3.1 The Deduction System C~(<I>)

For a given problem (l the deduction system C~((l) determines what is to count as an

ANF solution of (l. As already noted, the deduction system C~ ((l) consists of both a

problem independent and a problem specific set of inference rules.

Recall that an ANF proof consists of introduction and elimination proof components

glued together by instances of the cut rule of inference. Analogously, an ANF solution

consists of introduction and elimination solution components glued together by cuts.

What distinguishes solution components from proof components is that each solution

component is derived from either an axiom or a query. That is, solution components

are derived from the input formulae of a particular deduction problem.

The problem independent rules of inference, that are part of any C~ ((l) system,

are displayed in figure 3.13. These proper rules are intended to reflect the process

of proof construction in more detail than the formulations of the preceding chapter.

The appropriate substitution of terms for the quantifier rules is no longer assumed.

Consequently the quantifier rules VI, VE, 31, 3E and the structural rule CUT appear in

modified form. The CUT rule of inference here incorporates the notion of unification of

two atomic formulae, and the subsequent substitution of terms for parameters. Notice

also that the assumptions generated by the elimination rules VE and 3E are written as

conclusions for these rules. Each of the rules of inference is examined in detail in the

next chapter. For now, let us consider the structure of solutions in more global terms.

The problem specific rules of inference of C~ (q,) represent the particulars of the

deduction problem ~ at hand. A problem statement

is represented as follows:

introduction component

G
-QUERY-

(a)

elimination component

-AXIOM­

F;

(b)

Figure 3.12: query and axiom rules

Query: The query G is represented by a query rule (a rule of inference having the

single premiss formula G, but no conclusion)- figure 3.12 (a).

Axioms: For every axiom Fi an axiom rule (a rule of inference having conclusion

Fi, but no premiss) is present- figure 3.12 (b).

CHAPTER 3. DEDUCTION PROBLEMS 53

The proper inference rules generate two kinds of solution components, using the

given axiom and query rules as input. The contribution of a goal formula to the overall

solution takes the following form.

Introduction Solution Component (:Ex): A :Ex is determined by the inductive

definition:

base The query rule is a :Ex. The minor premiss formula of any elimination

rule is a :Ex.

step The clauses of the definition are supplied by the introduction rules.

Note that the assumptions thrown up by the :::>I and rvi rules give rise to

elimination solution components.

:Ex is complete if none of the clauses apply, otherwise it is partial.

The contribution of an assertion formula to the overall solution takes the following

form.

Elimination Solution Component (:EE): A :EE is determined by the inductive

definition:

base An axiom rule is a :EE. An assumption thrown up by either the impli­

cation or negation introduction rules is a :EE.

step The clauses of the definition are supplied by the elimination rules. Note

that the minor premisses of the ::JE and rvE rules give rise to introduction

solution components.

:EE is complete if none of the clauses apply, otherwise it is partial.

We are now in a position to outline a definition for the notion of an atomic normal

form solution.

Atomic Normal Form Solution (:EA): A :EA is characterized by the following

backward chaining definition:

base A :Ex is a :EA.

step Given a :EA with atomic premiss A, a :EE with atomic conclusion B and

that AE> = BE> then we may compose :EAE> and :EEE> to form a new

solution. This computational form of the cut rule is shown at the bottom

of figure 3.13.

:EA is complete if it has no premisses and no conclusion, otherwise it is

partial.

CHAPTER 3. DEDUCTION PROBLEMS 54

We also require that a complete :EA satisfies the following:

Conditions: All assumptions must be discharged. Restrictions on the occur­

rence of parameters for the VI and :3E rules must also be observed. These

conditions are detailed in chapter 4.

3.3.2 Goals and Assertions

In the preceding section we implicitly partitioned the formula occurrences of a solution

into two subsets. First, we distinguished between the query and axiom formulae of a

problem statement by representing them as query and axiom rule occurrences respec­

tively. Similarly, we partitioned the compound formula occurrences derived from the

axioms and query as either ones to be introduced or eliminated by application of a rule

of inference. Finally, any given atomic formula occurrence could be used as either the

conclusion or premiss formula of the CUT rule, but not both.

In the natural deduction literature, see for example [Prawitz 65], the two partitions

are referred to as negative and positive (sub)formulae respectively. We adopt the more

descriptive terms goals and assertions for the two kinds of fomulae. The goal or assertion

character of a formula arises from the role it plays in a solution. The following two

definitions enable one to recognise the goal and assertion occurrences in a given solution

or component.

Goal: All of the following are goal formula occurrences:

• The query.

• Any premiss formula of an introduction rule.

• The premiss # of the absurdity rule.

• Any minor premiss formula of an elimination rule.

Assertion: All of the following are assertion formula occurrences:

• An axiom.

• An assumption.

• The conclusion formula of an elimination rule.

• The conclusion formula of the excluded middle rule.

One can easily adapt the above characterization of goal and assertion ocurrences

to partition the subformulae of a deduction problem statement into goal and assertion

subformulae.

CHAPTER 3. DEDUCTION PROBLEMS 55

X

X
xs

t

e

introduction component elimination component

G H
-AI---

(G/I.H)
:EI

G
-vi---

(GVH)
:EI

[F]
G

-:)1---

(F-:JG)
:EI

G(X8)
-\>'1---

(\ixG(x))
:EI

G(X)
-:n---

(3xG(x))
:EI

[G]

-~r---

(rvG)
:EI

-#X---

(G)
:EI

- variable

H
-vi---

(GVH)
lJI

structural rule

:EE

B
=CUT===

(A)
:EA

:EE

EAF
-AE---

E

:EE

EVF
-vE---

E F

:EE :E1

-:)E---

F

:EE

\ixF(x)
-VE---

F(X)

:EE

3xF(x)
-3E---

F(X8)

:EE :E1

rvF F
-~E---

-Mx---
FVrvF

e
where:

AE>=BE>

:EE

EAF
-AE---

F

A,B - atomic formula

- parameter E,F,G,H - formula

Skolem parameter :EI - introduction component

- term :EE - elimination component

- substitution :EA - atomic normal form solution

Figure 3.13: system C~- problem independent rules of inference

CHAPTER 3. DEDUCTION PROBLEMS 56

The distinction between goal and assertion formula occurrences will be used exten­

sively in the subsequent discussion of implementation issues. The distinction is also

important for systems, such as Prolog, that implement distinct syntax for the two

kinds of formulae. Many more examples of such dual syntax languages are presented

in chapter 4.

3.3.3 Search Graphs and Solution Graphs

Two computational issues not well reflected by the above inductive definition of solution

are:

• The construction of a solution to a deduction problem involves search.

• How are solutions and search spaces to be represented?

A natural representation of proofs, solutions, search spaces and their fragments is

as bipartite acyclic graphs. The two kinds of nodes, formula nodes and inference nodes,

are connected by arcs representing the premiss and conclusion relations. By viewing a

solution, as an AND subgraph of an AND /OR graph search space, we neatly address

both of the above concerns. The OR nodes of the search graph correspond to choice

points formed from sets of pairs of goal and assertion atoms satisfying the conditions of

the CUT rule, as well as the choice of premiss for or introductions. The AND nodes arise

from the set of premisses connected to each inference node occurrence. For foundational

material on the AND /OR graph representation and associated search strategies refer

to [Nilsson 80].

The following definitions are for the general notions of search and solution graphs.

We will make use of them a little later in order to define ANF search graphs and ANF

solution graphs.

Search Graph: A search graph is a directed acyclic bipartite graph. The two

classes of nodes are formula nodes and inference nodes. The structure of the

graph is constrained by the following two clauses:

• A formula node standing alone is a search graph.

• A formula node may be the conclusion of any number of inference nodes

provided that for each inference node every one of its premisses is a search

graph.

Inference nodes are the AND nodes of the graph in the sense that all the premisses

are to be present. Formula nodes are OR nodes in the sense that for any solution

subgraph they are the conclusion of just one inference node.

CHAPTER 3. DEDUCTION PROBLEMS 57

Solution Graph: A solution graph is a finite subgraph of a search graph. A

solution graph may be either complete, in which case;

• Every formula node in the solution graph is the conclusion of exactly one

inference node.

or partial, in which case;

• Every formula node in the solution graph is the conclusion of at most

one inference node.

3.4 Extend and Compose

The deduction systems presented in chapter 2 incorporated inferential machinery com­

mon to all problem domains (the logical constants/\, V, :J, "', "i/, 3 and#). In order

to solve deduction problems more efficiently, we are now ready to replace these fine

grained, universal rules of inference by more powerful, problem specific rules.

The construction of an ANF solution proceeds in two distinct phases, extend and

compose. There are a number of perspectives on what happens during the two phases

and why this division into two phases is desirable:

• The inferential resources implicit in the query and axioms are made explicit as sets

of solution components (inferential extensions) by extend. The task of compose

is to build a solution by joining together instances of the components produced

by extend by applying the CUT rule of inference.

• In the extend phase, the introduction and elimination rules for the logical op­

erators are removed by combining rules, resulting in a reduced number of more

powerful inference rules. During compose reasoning is carried out using these

derived rules of inference.

• Current theorem prover technology has largely developed on the assumption that

the fundamental operation of an inference engine is the unification of two atomic

formulae. Extend allows us to partially evaluate the problem to be presented to

compose, which is such an inference engine.

3.4.1 Extend

Extend is a computational realization of the inductive definitions of solution compo­

nents. It maps each input formula into a set of solution components. We will refer to

such a set of solution components as the inferential extension of its input formula.

CHAPTER 3. DEDUCTION PROBLEMS 58

Extend Algorithm: Starting with the axioms and query, repeatedly apply either

of the two steps below, until neither step is applicable.

Goal Introduction: Select a compound (non-atomic) goal formula occur­

rence. Select an introduction rule with a matching conclusion formula.

Instantiate the introduction rule. The premiss formulae of the new in­

stance are goals. Any assumptions "thrown up" by the introduction rule

are assertions.

Assertion Elimination: Select a compound (non-atomic) assertion formula

occurrence. Select an elimination rule with a matching major premiss

formula. Instantiate the elimination rule. The conclusion formulae of

the new instance are assertions. Any minor premiss formulae are goals.

G
-QUERY-

F 1 Ai ... A~

AND/OR
graph

Bi ... B~

G
-QUERY-

Figure 3.14: inferential extension of a query

Bf ... B~

The extend algorithm maps a query into its inferential extension, an AND/OR

graph of the form illustrated in figure 3.14. This AND/OR graph consists of multiple

connected components, call them search components. There are two kinds of search

components here:

Query Search Component: This is a tree form AND/OR graph with the query

as root and atomic goal formulae as leaves. The solution graphs of this search

component is a set of introduction solution components.

Assumption Search Components: The reduction of a goal, that is either a

negated formula or an implication, by an introduction rule "throws up" as­

sumptions. These assumptions are to be made available for the proof of a

CHAPTER 3. DEDUCTION PROBLEMS 59

subset of the premisses of the parent introduction rule only. An assumption

search component consists of a set of elimination solution components, being

the solution graphs of this AND/OR graph.

-AXIOM-

p
-AXIOM-

p

AND/OR
graph

AND/OR
graph

Bf. .. B~

\
AND/OR I

'-----gra-ph

Figure 3.15: inferential extension of an axiom

The extend algorithm maps an axiom into an AND/OR graph of the form illustrated

in figure 3.15. This inferential extension of an axiom consists of two kinds of search

components:

Axiom Search Component: This is a directed AND/OR graph with an axiom

and a set of atoms as source nodes and a set of atoms as sink nodes. Each

solution graph consists of a single elimination component together with a set

of introduction components rooted at minor premisses of elimination rules.

Assumption Search Components: These are found in the inferential extensions

of both axioms and queries. Assumption components are of the same form

as axiom components. However, the availability of assumption components is

restricted to proving subgoals arising from its parent introduction rule occur­

rence only.

The notions of inferential extension, search components and solution components

have now been outlined for the full first order classical calculus. In their present form

these notions are not adequate for the practical implementation of an inference engine.

For example, the MX (excluded middle) rule cannot be treated the way axioms are,

lest we drown in an ocean of inferential extensions. These computational issues are

examined in subsequent chapters.

CHAPTER 3. DEDUCTION PROBLEMS 60

3.4.2 Compose

Compose is a computational realization of the inductive definitions of ANF solution.

It is confronted with the task of constructing solutions given the set of inferential

extensions produced by extend. The search space for solutions is a graph consisting of

search components connected by choice points (sets of CUT rule instances). A solution

is a subgraph of the above, consisting of solution components connected by CUT rule

instances.

As well as inferential extensions derived from distinct input formulae, multiple

copies of the one inferential extension and its various components may occur as part of

the one search space or solution. To ensure that parameters in one occurrence are not

captured by a substitution computed for another, all inferential extension occurrences,

and within these multiple copies of assumption components, need to be renamed apart.

We will refer to such renamed copies as inferential extension instances and component

instances.

Renaming Apart: A set { t7I, t72, ... , t7n} of component occurrences is renamed

apart by the set of substitutions {8I, 82, ... , 8n} with respect to the set of

parameters {XI,X2, ... ,Xm} if:

Renaming: Every substitution 8i is a full renaming substitution. That is,

8i is of the form {XI= yii, X2 = Yd, ... , Xm = Y~}, where every ~i is

a parameter that does not occur in {XI, X2, ... ,Xm}·

and

Apart: Every substitution 8i renames every Xj uniquely. That is, every

new name ~i is different from every other new name.

Multiple occurrences of the one inferential extension are renamed apart with respect

to the set of parameters appearing in its axiom or query search component. Within

a single inferential extension occurrence, multiple occurrences of the one assumption

search component are renamed apart with respect to the parameters that appear in

that component but do not appear in its parent component.

When we draw search spaces and solution graphs we indicate renaming by subscript­

ing parameter occurrences. Implementations of theorem proving systems commonly

allocate a unique memory cell for each distinct parameter, making explicit renaming

by substitution unnecessary.

CHAPTER 3. DEDUCTION PROBLEMS 61

By a CUT rule instance we mean the following:

CUT Instance: A CUT instance is a triple (A, B, 8) where A is an atomic goal

occurrence, B an atomic assertion occurrence and 8 the most general unifier

of A and B [Robinson 65], [Lassez et al. 88].

component
copy

component
copy

Figure 3.16: CUT rule instance

The notation of figure 3.16 is used for CUT instances. The substitution is explic­

itly represented, reflecting in part the structure sharing (non-copying) implementation

technique for inference engines [Boyer & Moore 72]. This is an important point for the

economical representation of multiple (partial) solutions, as required by the multiple

context evaluator discussed in chapter 5.

For search spaces we group sets of CUT instances sharing a common conclusion

formula into choice points.

Choice Point: A choice point is a triple (A, B, 8) where A is an atomic goal

occurrence, B is a tuple of atomic assertion occurrences and 8 a tuple of the

most general unifiers of the corresponding element of B and A.

Figure 3.17 illustrates a choice point.

1 e ··· 1 e
~~n

A

search
component

instance

Figure 3.17: choice point

In the interest of computational efficiency, it is important to minimize the number

of CUT instances in choice points. In the absence of any context for a goal atom A,

CHAPTER 3. DEDUCTION PROBLEMS 62

one cannot exclude any unifiable assertion B of any search component. Two kinds

of context for A enable some pruning of choice points. Call the Bs that remain the

admissible assertions for A.

Subgoal Context: If the path from A down to the query is known, only assump­

tion search components arising from :::>I and rvE rule applications on the path

need be included.

Case Argument Context: Admissible assertions arising from VE rule applica­

tions are determined by a case argument mechanism, described in section

4.5.3.

We now have on hand the ingredients needed to characterize the search space for

ANF solutions for a given deduction problem~.

ANF Search Graph: The ANF search graph for problem~ is a search graph (as

defined in section 3.3.3) satisfying the following properties:

Composition: The graph consists of a set of inferential extensions derived

from the input formulae of ~. These inferential extensions are renamed

apart.

Form: The system C~, figure 3.13, incorporates a backward chaining form of

the CUT rule. Application of this rule generates a tree form search graph

rooted at a single query search component instance.

Completeness: Every atomic goal, occurring in the graph, has a complete

choice point. A choice point is complete if every admissible assertion is

in the choice point.

A search space, as defined above, may be infinite in extent. We plan to countenance

only finite subgraphs of the search graph as solutions. Some nonterminating paths

may be pruned on the grounds that they cannot be part of any solution. Clearly

any proposed solution of the form shown in figure 3.18 (a) may be discarded, as an

unnecessarily convoluted form of (b). More generally, we have the notion of a loop free

solution:

Loop Free Solution: Any proposed solution of the form shown in figure 3.18 (c),

where A1 = A28 and ~1 does not discharge any assumptions in ~2 , should

be discarded in favour of the simpler form shown in (d).

A definition for an ANF solution for deduction problem ~ follows.

CHAPTER 3. DEDUCTION PROBLEMS 63

I: I:2

(A) (A2)
I: I: I:l I:2E>

A A A1 A1

(a) (b) (c) (d)

Figure 3.18: transformation to loop free solution

ANF Solution Graph: An ANF solution graph for cp is a finite subgraph of an

ANF search graph for cp satisfying these further constraints:

Query Relevance: The query is included as the root (single sink node) of

the solution.

Axiom Relevance: The source nodes of the solution graph are either axioms

or discharged assumptions.

Resolved Choice: Any formula node, in the solution, is the conclusion of

exactly one inference node. This implies that only a single CUT instance

from any choice point is included in the solution.

Substitution Consistency: The entire set of substitutions (composition of

substitutions [van Vaalen 75]) associated with CUT rule instances in the

solution is consistent.

Loop Freeness: Only loop free solutions, as defined above, are admitted.

The computational interpretation of the above, as a constraint satisfaction problem,

is taken up in chapter 5. A large body of research addresses the problem of efficiently

implementing resolution refutation systems. Like compose these systems are required

to recognise subgraphs, with consistent substitutions generated by a unifier, while nav­

igating within large AND /OR search spaces. Much of this work carries over directly to

inference engines for ANF natural deduction. This idea is pursued further in chapter

5.

