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Chapter 4 

Expressive Power and Inference 

Normal form natural deduction exhibits a simple correspondence between the expressive 

power of a language and the deductive machinery required for its implementation. A 

hierarchy of deduction systems properly contained in the deduction system for classical 

logic is explored incrementally. The important languages encountered along the way 

are identified. A short detour, to survey negation as failure and relevant deduction, 

concludes the chapter. 

4.1 Containment and Conservative Extension 

The normal form and atomic normal form formulations of deducibility for classical 

logic exhibit two important containment properties. The first of these is the simple 

correspondence between the expressive power of a language and the introduction and 

elimination rules required to solve deduction problems stated in that language. 

Sublanguage Property: For any solution :E of the deduction problem q,: 

• :E contains instances of introduction rules only for those operators that 

appear as the primary operator of a goal subformula of q,. 

• :E contains instances of elimination rules only for those operators that 

appear as the primary operator of an assertion subformula of q,. 

The second containment property extends the first, centering on the acceptance or 

rejection of the absurdity rule and excluded middle as acceptable principles of reasoning. 

Sublogic Property: The rejection of the rule of excluded middle (Mx) from the 

classical system yields a system for intuitionistic logic [Dummett 77]. The 

rejection of the absurdity rule (#X) from the intuitionistic system yields min­

imal logic [Johansson 36]. 

64 
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c MX (excluded middle) 

I #X (ex falso quodlibet) 

M .-vi, .-vE 

p 
1\E, VE,3E 

v :::n, VI 

e VI 

H 1\I, 3I, :::)E, VE 

Figure 4.1: key to languages and deduction systems 

In this chapter, we consider the implementation of inference engines for a hierarchy 

of properly contained subsystems of C:2;, the system for atomic normal form solution in 

classical logic. The containment of systems and corresponding languages is illustrated 

in figure 4.1. This hierarchy consists of the languages: 

H: Horn language 

e: positive Edinburgh Prolog language 

V: positive definite language 

P: positive language 

M: minimal logic 

I: intuitionistic logic 

C: classical logic 

The Horn language system is the simplest, requiring just four rules of inference. 

Each of the following systems is a conservative extension of the preceding one obtained 

by adding the inference rules indicated in figure 4.1. 

4.2 The Horn Language 

The deduction system 1-i:E, for ANF solutions for problems posed in the Horn language, 

is shown in figure 4.2. The Horn language occupies a special niche in resolution refuta­

tion proof theory [Kowalski 79b]. This is also the case for the ANF formulation, which 

supports the reading of a Horn formula as a rule of inference, as discussed below. 



CHAPTER 4. EXPRESSIVE POWER AND·INFERENCE 

introduction component 

G H 
-1\I---

(G/\H) 
~I 

G(X) 
-3I---

(3xG(x)) 
~I 

structural rule 

B 
=CUT=== 

(A) 
~A 

x variable 

X parameter 

e substitution 

elimination component 

G-:JF G 
-::>E---

F 

VxF(x) 
-\IE---

F(X) 

8 
where: 

AE>=BE> 

A, B atomic formula 

E, F assertion formula 

G, H goal formula 

~I introduction component 

~E elimination component 

~A atomic normal form solution 

Figure 4.2: system Hr. -atomic normal form solution for the Horn language 

4.2.1 Horn Formulae and Their Extensions 

66 

A feature of the Horn language, and many of the subsequent languages, is that assertion 

and goal subformulae have distinct syntax. For these dual syntax languages we use the 

syntactic variables E and F to stand for assertion formulae, and G and H for goal 

formulae. The syntax of Horn axioms and queries is illustrated in figure 4.3. The large 

prefix universal (existential) quantifiers in this figure denote the universal (existential) 

closure of the prefixed formula- that is, the formulae are in prenex form. Notice that 

although this conventional notion of Horn formulae requires prenex quantification, the 

deduction system Hr. does not. 

The inferential extension of a Horn language axiom is illustrated in figure 4.3 (a), 

the inferential extension of a query in (d). For the purpose of AND/OR graph search 
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we can prune away the input formula resulting in the simpler forms (b) and (e). For 

rule based inference, (b) and (e) may be represented as the derived rules of inference 

(c) and (f) respectively. The prime notation in the figure indicates that applications of 

the universal elimination (\iE) and existential introduction (31) rules have replaced the 

bound variables of the input formula by parameters. 

-AXIOM-

F Ai A~ ··· A~ Ai A~ ··· A~ 

~ tree w Ai A~ · · · A~ 

B' 
B' B' 

(a) (b) (c) 

Ai A~ ··· A~ Ai A~ · · · A~ 

w w Ai A~ · · · A~ 

G 
-QUERY-

(d) (e) (f) 

Figure 4.3: inferential extensions of Horn axioms and queries 

The simple correspondence between Horn formulae and derived rules of inference, 

illustrated in figure 4.3, supports a proof theoretic view of a Horn problem. Read the 

input formulae, not as formulae, but as rules of inference or the clauses of an inductive 

definition of provable atomic formulae. This view is proposed and extended towards 

more expressive languages by [Hallnas & Schraeder-Heister 90]. 

4.2.2 CUT and The Quantifier Rules VE and 31 

It is time to consider in detail the role played by parameters and unification in the 

process of constructing solutions. The story begins here and is continued, when the 

other two quantifier rules \i1 and 3E are adopted. 

A solution is a composition, by application of the CUT rule, of renaming instances 

of search components. Applications of \iE and 31 replace the bound variables of input 

formulae by parameters, so that only quantifier free atoms appear as premisses and 

conclusions of components. The cut principle requires that its premiss and conclusion 

formulae be syntactically identical. The new, more procedural version of the principle 
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is expressed by the clause: 

Given the two components :E, and (A) and a substitution E> such that (AE> =BE>) 
B :E2 

then (=cuT:· )e is a component. 
(A) 
:E2 

The VE and :31 rules allow for any term whatever to replace a parameter. Given 

the two quantifier free atoms A and B we want to find a substitution (of terms for 

parameters) E> such that AE> and BE> are the most general syntactically identical 

substitution instances of A and B. That is, E> is the most general unifier (mgu) of A 

and B. 

Most General Unifier (mgu): The mgu E> of the two atoms A and B is a set 

of equality assertions: 

E> satisfies the following constraints: 

Unifier: AE> and BE> are syntactically identical. 

Most General: Any common substitution instance of A and B IS also a 

substitution instance of AE> (BE>). 

Solved Form: Each Xi is a distinct parameter that occurs in either A or B. 

Each ti is a term containing parameters that occur in either A or B but 

none that occur as an Xi. 

The above constraints enable efficient composition of mgu's, a question considered 

in detail in chapter 5. The computation of an mgu given A and B has been extensively 

studied since the pioneering work of [Robinson 65], see for example [Lassez et al. 88]. 

4.3 The Positive Edinburgh Prolog Language 

The logic programming language Prolog developed in the proof theoretic context of 

resolution refutation for the Horn language. Prolog implementors have, however, recog­

nised the relative simplicity of the deductive machinery required for a richer goal syntax. 

Two syntactic extensions, negated and disjunctive goals were admitted by the classic 

Edinburgh dialect [Clocksin & Mellish 81]. The negation as failure (NAF) extension is 

discussed separately in section 4.9. The disjunctive goals extension is taken up here. 
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4.3.1 The Or Introduction Rules VI 

The sublanguage property states that just the introduction rules for the logical oper­

ators appearing in the goal syntax are required for a complete normal form deduction 

system. Thus to extend the deduction system 1{y:, for disjunctive goals, we simply add 

the two or introduction rules of figure 4.4 to the existing rules. 

G H 
-vr--- -vr---

(GVH) (GVH) 
~I ~I 

Figure 4.4: or introduction rules (VI) 

The form of the inferential extensions for the extended syntax is illustrated in figure 

4.5 (a) and (d). An inferential extension still consist of a single search component. The 

search component still has a single atomic conclusion. However, a search component 

may now contain OR branches, giving rise to multiple solution components. Each 

solution graph of the AND/OR graphs (b) or (e) is a derived rule of inference (c) or 

(f), featuring a subset of the atomic premisses. 

Edinburgh Axiom F: V A1 oA2o ... oAn :::> B (where: o is 1\ or V) 

-AXIOM-

p Ai A~ ··· A~ 

~ tree tree B' 
B' B' 

(a) (b) (c) 

Edinburgh Query G: 3 A1 oA2o ... oAn (where: o is 1\ or V) 

Ai A~ ·· · A~ Ai A~ · · · A~ 

G 
-QUERY-

(d) (e) (f) 

Figure 4.5: inferential extensions of Edinburgh axioms and queries 

The procedural semantics of Prolog dictate that search component AND/OR trees 

be traversed left to right with backtracking to the most recent OR node on goal failure. 

For a more focused discussion on the relationship between logic programming and 
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atomic normal form natural deduction see [Keronen 91]. 

4.4 The Positive Definite Language 

In this section we consider the deductive machinery required for a full positive goal syn­

tax. The universal quantifier introduction (VI) and implication introduction (::::n) rules 

are added to the Edinburgh system. This language is definite in the sense that disjunc­

tive and existentially quantified assertion formulae are not admitted. The conclusion 

of a rule derived from a positive definite axiom is still an atomic formula. 

4.4.1 The Quantifier Introduction Rule VI 

G(X8 ) 
-vr---

('v'xG( x)) 
~I 

Figure 4.6: universal quantifier introduction rule (VI) 

The universal quantifier introduction rule VI replaces the bound variable x in the goal 

VxG(x) by a parameter xs, resulting in the subgoal G(Xs), see figure 4.6. The super­

script S is used to distinguish the parameter generated by application of this rule as a 

Skolem parameter. Unlike the parameter generated by an application of 3I, a renamed 

Skolem parameter xis is subject to the following two constraints on its use: 

Skolem Constraint: xis is to appear literally in the solution. The mechanism to 

enforce this constraint is simply to treat the parameter as if it were a constant 

symbol, identical only to itself [Skolem 28]. That is, a Skolem parameter may 

only appear on the right hand side of any element Xi = ti of an mgu. As an 

example, the mgu in figure 4.7 (a) violates this constraint. 

Dependency Constraint: Xf may not appear in any assumption on which G(Xf) 

depends. Assumptions may be present once any of the rules ::::n, "-'I, 3E or VE 

are admitted. In general terms, enforcing the dependency constraint requires 

that mgu elements of the form xi = ~s be checked to determine that the VI 

rule responsible for ~s occurs low enough in the solution, so that all assump­

tions in which Xi occurs have been discharged. As an example, the mgu in 

figure 4. 7 (b) violates this constraint. 
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----'(1) 

p(X1) 8 
=CUT= X1 = Yi 
P(Yi8 ) 

-AXIOM- -VI---

p(a) s 
=CUT= Xl =a 
p(Xf) 

\:fyp(y) 
-:>I (1) 

p(XI):Nyp(y) 
-vr-- -3I------

Vxp(x) 3x (p(x):Ny p(y)) 
-QUERY- -QUERY-----

(a) (b) 

Figure 4.7: Skolem parameter constraint violations 

4.4.2 The Implication Introduction Rule :JI 

The deduction problem~ ?- (F:JG) is reduced by the implication introduction rule, 

shown in figure 4.8, to the problem~ U {F} ?- G. That is, the antecedent F is 

an assumption or temporary axiom that may be used for the purpose of deriving the 

conclusion G only. 

[F] 
G 

-::>I---
(F:JG) 

:EI 

Figure 4.8: implication introduction rule (:JI) 

Inferential extension may now contain assumption search components arising from 

the antecedents of goal implications, as illustrated in figure 4.9 (a) and (d). For each 

inferential extension there is a set of derived rules of inference of the form (c) or (f). 

The intended reading of these rules is: For each premiss Akx of the derived rule a set 

of derived rules Rkx is available as assumptions. This generalization of the notion of a 

rule of inference is explained in more detail in section 5.1. 

Notice that the inferential extension of a formula still consists of search components 

with a single atomic conclusion. Hence the natural deduction formulation retains the 

definite character of the deduction problem. In contrast the resolution refutation proof 

theory is more severely affected. While any Edinburgh formula can be rewritten as a 

logically equivalent set of Horn clauses, once implications as goals are admitted we are 

outside Horn clause resolution. As an example, the axiom (F:JG):JH rewrites to the 

set of clauses { FV H, "'GV H}. The multiple positive literals of the resulting clauses 

call for a full resolution refutation strategy [Chang & Lee 73]. 

Though less severe than in the case of resolution refutation, there is still a compu­

tational price to be paid for the expressive power of implications as goals. The search 

process is complicated by the presence of assumptions. The set of search components 
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Positive Definite Axiom F: 

-AXIOM-

E A 1• ···A'. 

~ tre 

B'. 
.J 

p A~l A~2 . . . A~n 

~ tree 

B' 

(a) 

VG-::;B 

E A 1. ···A1• 

~ tree 

B'. 
.J 

A~l A~2 ... A~, 

~ 
~ 

B' 

(b) 

--(i) 

Rkl 

B' 

(c) 

72 

A' 
kl (i) 

Positive Definite Query G: any formula constructed using operators 3, 'V, A, V and -::1 

E A 1• ···A'. 

~ re 

B'. 
.J 

G 
-QUERY-

(d) 

E A 1• ···A'. 

~ re 

B' . 
. J 

(e) 

--(i) 

Rkl 

(f) 

A' 
kl i) 

Figure 4.9: inferential extensions of positive definite axioms and queries 

available for constructing the choice point for a given goal atom now depends on its 

subgoal context. Recall that this context is determined by the path from the query 

to the goal atom in question. This raises the following challenges for inference engine 

implementations: 

• A choice point cannot be completely constructed until the path to the query is 

known. A simple approach to this problem is to employ backward chaining search 

in the compose phase of the inference engine. 

• Efficient logic programming engines construct choice points, as far as possible 

at compile time. In the presence of implications as goals, such a mechanism 

needs to be extended to incorporate the lookup of search components from a tree 

structured database at run time. 

• The various search components making up an inferential extension may share 

common parameters, as well as containing parameters to be renamed for each 
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A'.1 A'. · · · A'.k Z Z2 Z 

AND tree 

OR tree 

B' n 

(a) (b) 

Ai1 Ai2 · · · Aik 

B; 

(c) 

Figure 4.11: components and derived rule with /\E 

4.5.2 The Existential Elimination Rule :JE 
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The existential elimination rule 3E, shown in figure 4.12, reduces an assertion 3x F(x) 

to the quantifier free assertion F(X8 ). Like the VI rule, this rule generates a Skolem 

parameter, subject to both the Skolem and dependency constraints. 

:EE 

3xF(x) 
-3E---

F(X8) 

Figure 4.12: existential quantifier elimination rule (3E) 

As we moved from the orthodox formulation of natural deduction proof (chapter 2) 

to the more computational notion of a solution (chapter 3), we adopted new notation 

for existential elimination. Figure 4.13 (a) illustrates the orthodox notation for an 

application of existential elimination, and (b) our computational notation for the same. 

The transformation from the form (a) to the form (b) can always be performed, provided 

the existential elimination discharges its assumption. That is, the new notation does 

not permit vacuous applications of the rule. The new notation is also more convenient 

in connection with the AND/OR graph search paradigm. 

Figure 4.14 displays an example solution using the orthodox notation (a) and the 

computational notation (b). As a disadvantage of the new notation, the assumption 

does not stand out as well here as it does in the orthodox notation. Figure 4.15 

illustrates the need to carefully discharge assumptions and to check the dependency 

constraint to avoid unsound inference. 

The discharge of the assumption is a simple deterministic operation. To ensure 

completeness one must discharge the assumption as high up in the solution graph as 

possible. A simple implementation may traverse down the solution, applying substi­

tutions, until a formula occurrence that does not contain the Skolem parameter in 
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~ 

[F(X)] 3xF(x) 
(i) 

~ ~1 -3E 

(F(X5 )) 

3xF(x) G ~1 
-3E (i) 

(G) (G) 
~2 ~2 

(a) (b) 

Figure 4.13: notation for existential elimination 

-AXIOM--

-----(1) 
3y'tfxp(x,y) 

-3E (1) 

Vxp(x,Y) Vxp(x,Y;s) 
-VE--- -VE---

p(Xz, YZS) s s 
=CUT= (Xz = Xl )1\(Yi = yZ ) 

p(X,Y) 
-AXIOM-- - 3I ---

3y'tfxp(x,y) 3yp(X,y) 
- 3E (1) 

p(Xf, Yi) 
- 3I (1) 

3yp(X,y) 3yp(Xf,y) 
-vr---- -Iii 

Vx3yp(x,y) Vx3y p(x, y) 
-QUERY-- -QUERY--

(a) (b) 

Figure 4.14: existential elimination representation example 

question is encountered. A more efficient implementation would associate discharge 

requirements and capabilities with parameter occurrences in solution components to 

avoid the need for traversing the solution graph. 

-AXIOM--

'tfx3yp(x,y) 
-VE----

3yp(Xz,y) 
-3E (1) 

p(Xz, y;s) s s 
=CUT= Xz = xl ' Yi = Y2 
p(Xf, Yi) 
-\ii---

'tfx p(x, Yi) 
- 3I (1) 

3y't/xp(x,y) 
-QUERY--

Figure 4.15: dependency constraint violation 

4.5.3 The Or Elimination Rule VE 

The or elimination rule VE of figure 4.16 may be read as: The assertion EV F gives 

rise to two possible worlds, one contains E, the other F. More generally, n binary 

disjunctions give rise to 2n possible worlds. Any goal formula G is to be demonstrated 
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for all worlds. In the presence of disjunctive assertions, a solution for query G consists 

of a set of case arguments. Each case argument establishes G for a subset of worlds. 

~E 

EVF 
-vE---

E F 

Figure 4.16: or elimination rule (VE) 

For the same reasons as in the case of the :lE rule, we employ an alternative no­

tation for the computational notion of or elimination. The transformation between 

applications of the orthodox natural deduction rule and our computational rule is il­

lustrated in figure 4.17. Note that natural deduction (even in normal form) permits 

vacuous applications of the VE rule, but that such application cannot be expressed in 

the new notation. For a different perspective on multiple conclusion rules of inference 

see [Shoesmith & Smiley 78]. 

~ 

[E] [F] EVF 
~ ~1 ~2 -vE (i) 

---- (E) (F) 
EVF G G ~1 ~2 

-vE --(i) --(i) 

(G) (G) (G) 
~3 ~3 ~3 

(a) (b) 

Figure 4.17: notation for or elimination 

In the presence of the VE rule, search components contain AND related atomic con­

clusions. We have now reached the most general form for search components, illustrated 

in figure 4.18. 

The word "AND", used above to describe the relationship between conclusion 

atoms, is not totally satisfactory. It is true that a complete set of case arguments 

corresponds to a solution graph of the search space when just one disjunctive assertion 

occurs in the solution. There are two ways in which this model fails to reflect the 

application of disjunction elimination more generally: 

• Any one case argument may use only one of the disjuncts from any one solution 

component instance. The example in figure 4.19 illustrates an unsound solution, 

resulting from a failure to observe this condition. 
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A~ A~ A' A~l A~2 ... A~k m 

AND tree 

A~l A~2 ... A~k 

AND tree 
Bjl Bj2 · · · B}t 

B' 1 B' 2 B' n Bj1 Bj2 · · · Bj1 

(a) (b) (c) 

Figure 4.18: components and derived rules with VE 

{ aVb } ?- a/\b 

Figure 4.19: failure to separate cases 

• A solution must contain case arguments to cover all worlds generated by disjunc­

tive assertions. Figure 4.20 illustrates a failure on this count. 

aVb 

cVd 

( a/\c) -:J f 
(b/\d)-:) f 

?- f 

Figure 4.20: failure to cover all cases 

The set of worlds to be covered by case arguments is generated as the cartesian 

product of sets of disjunctive conclusions. For the example of figure 4.21 there are the 

four worlds: 
a b 

c w1 w2 

d w3 w4 

There are three case arguments in figure 4.21. The leftmost case argument estab­

lishes w1 as inconsistent. The middle case argument concludes f for the world w2. The 

rightmost case argument concludes f for the two worlds w3 and w4. In contrast, the 
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unsound case argument in figure 4.19 used more than one disjunct from an axis of such 

a diagram, while the set of case arguments in figure 4.20 failed to cover the two worlds 

w2 and w3. 

aVb 

cVd 

rv(al\c) 

(bl\c)~f 

d~f 

?- f 

Figure 4.21: or elimination example 

The above discussion suggests that we recognise the supervision of case arguments 

as a separate subtask for the inference engine. This supervisory level of the inference 

engine sets up the case argument context, being a set of single conclusion derived rules, 

and calls for a case argument search in that context. 

4.6 Minimal Logic 

The addition of the introduction and elimination rules for the negation operator ( rv) to 

the positive system results in a system for minimal logic [Johansson 36]. The elimina­

tion rule for negation constitutes a simple definition of the notion of contradiction. The 

subsequent use that is made of contradiction in deriving new conclusions is more con­

troversial. The introduction and elimination rules for negation highlight the inadequacy 

of pure forward or backward chaining search strategies for compose. 

(G) :EE :EI 
# 

-~I rvF F (rvG) -~E 

:EI # 

(a) (b) 

Figure 4.22: negation introduction ( rvi) and elimination ( rvE) rules 

4.6.1 The Negation Rules rvi and rvE 

The elimination rule for negation, shown in figure 4.22 (b), detects a contradiction(#), 

given that both a formula and its negation have been established. The corresponding 

introduction rule, shown in (a), can be viewed as an amalgam of two principles: 
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Reductio ad Absurdum: A familiar method of argument to establish that a 

negation formula rvG holds is by demonstrating that a contradiction can be 

derived from the assumption G together with other current assumptions and 

axioms. 

Absurdity Principle: Adherence to the semantics of classical logic demand that 

any formula whatsoever be derivable from a contradiction. 

The reductio ad absurdum principle provides us with two points, the assumption 

G and the conclusion #, around which to construct a solution. Let us distinguish this 

as a new kind of deduction problem. 

Relevant Deduction Problem: Given a set of required axioms r and a set of 

ordinary axioms~' is there a proof of G in the systemS? In symbols: 

r: ~ ?- c 
s 

Any solution to the deduction problem 

r u ~ ?- G 
s 

that features every member of r as a premiss is a solution for the corresponding 

relevant deduction problem. 

Neither the pure backward nor forward chaining search strategy makes full use of 

the constraints on premisses and conclusion. Notice that this point can also be made 

for the implication introduction rule. The absurdity principle is discussed in the next 

section. 

4. 7 Intuitionistic Logic 

Intuitionistic deducibility requires an implementation of the absurdity principle for any 

goal formula, not just the negated ones. A first reading of the absurdity rule, shown 

in figure 4.23, might then be as a kind of introduction rule to be applied for all goal 

formula occurences. 

# 
-#X---

(G) 
:EI 

Figure 4.23: absurdity rule ( #x) 

Given that the task is to find solutions to a deduction problem ~ ? - G, application 

of the absurdity rule can, however, be reduced to the following cases: 
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• Check the consistency of the original problem theory .6.. In the case that an 

inconsistency is found all queries receive an affirmative answer, until the theory 

is repaired. 

• Given the consistency of .6., a contradiction may still be derivable in some subgoal 

or case argument contexts. For each additional assumption we call for a search 

for contradiction derivable using the assumption in question. Notice that this is 

another example of a relevant deduction problem. 

Many (most) theorem prover implementations do not perform the first of the above 

checks, preferring to assume the consistency of .6.. An example of this is the set of 

support strategy for resolution refutation systems [Chang & Lee 73]. 

4.8 Classical Logic 

A system for classical logic results if any one of the constructs shown in figure 4.24 is 

added to the intuitionistic system. These constructs are: 

G G 

(a) (b) (c) (d) 

Figure 4.24: excluded middle 

(a): Axiom schema for excluded middle, 

(c): rule of classical reductio, 

(d): rule of double negation. 

(b): rule of dilemma, 

In the presence of any of these alternatives the subformula property is not strictly 

observed. To see this, consider the deduction problem 

{} ?- (a~b)V(b~a) 

There is no intuitionistic solution for this problem. The classical solution therefore 

must include at least one application of the excluded middle principle, and therefore a 

negated formula occurrence. No negated subformulae, however, occur in the statement 

of the problem. One of the possible classical solutions is shown in figure 4.26. 



CHAPTER 4. EXPRESSIVE POWER AND INFERENCE 

rules for moving in negations 

:EE 
....,a .....,H "'(E/\F) 

-"-"\I -"-"\I -"-"\E 

( .....,(G/\H)) ( .....,(G/\H)) .....,E .....,p 
:Er :Er 

:EE :EE 
....,a .....,H .....,(EVF) rv(EVF) 

-"'VI -"'VE -"'VE 

(.....,(GVH)) .....,E .....,p 
:Er 

:EE :EE 

G .....,H .....,(E:>F) .....,(E:>F) 
-~:>I -~::>E -~::>E 

( .....,( G:>H)) E rvF 
:Er 

:EE 

3x(.....,G(x)) .....,(\fxF(x)) 
-~vr -~vE 

( .....,(\fxG( x))) 3x(.....,F(x)) 
:Er 

:EE 

'v'x(.....,G(x)) .....,(3xF(x)) 
-~3I -~3E 

("'(3xG(x))) 'v'x(.....,F(x)) 
:Er 

:EE 

G .....,.....,p 
-~I -~E 

("'"'G) F 
:Er 

rules for negative literals 

(A) 
:EA 

(

=MX ) (A) ("'B) 
:EAl :EA2 E) where: 

G G AE>=BE> 

x - variable 

e - substitution 

A, B - atomic formula 

E, F - assertion formula 

.....,B B 
-~E---

# 

G, H - goal formula 

:Er - introduction component 

:EE - elimination component 

:EA - (partial) solution 

Figure 4.25: extended rules for negation 

81 
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--(1) --(2) 

rvb b 
-~E---

# 
-#X-----(1) 

b a 
- ::JI--(2) -:)1-­

a:Jb b:Ja 
-MX-- -vr--- -vr---

b V rvb (a:Jb)V(b:Ja) (a:Jb)V(b:Ja) 
-vE--------------(1) 

( a:Jb )V(b:Ja) 
-QUERY--

Figure 4.26: excluded middle example 
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The direct computational interpretation of any of the rules (b)~( d), as a kind of 

introduction rule for any formula whatever, suffers from serious combinatorial problems. 

Also, a literal implementation of alternative (a), that is the presence of all formulae of 

the form FVrvF as axioms, is not possible. 

An incomplete implementation relying on recognising occurrences of complementary 

subgoal literals is suggested by consideration of the RGR rule of [Nilsson 80]. Well 

known equivalences of classical logic, enable any formula to be rewritten so that the 

negation operator applies only to atoms. This operation of moving in negations is 

part of the process for translating formulae into clausal form for resolution. These 

equivalences may be included in our system as rules of inference, as shown in figure 

4.25. As a result of this extension the absurdity reasoning called for by negation 

introduction is confined to atoms, as indicated by the special rvi rule in the figure. The 

special MX rule may be applied whenever two complementary, unifiable atomic goals 

arise in distinct case arguments. 

4. 9 Alternative Languages 

As seen above, classical and even intuitionistic natural deduction proof theories suffer 

from severe combinatorial problems. We place the blame for this on the following two 

features of these systems: 

• The complexity of the search for contradictions. 

• The complexity of applying excluded middle. 

The Prolog family of logic programming languages avoids these problems. Negated 

goals but not assertions are admitted, removing contradictions altogether. Also, these 

languages are commonly not expressive enough to require application of excluded mid­

dle. For example the deduction problem{}?- (a-:Jb)V(b-:Ja), discussed in the preceding 
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section, cannot be expressed. Many proposed extensions of these languages, for exam­

ple [Gabbay & Reyle 84], are based on intuitionistic logic, again avoiding the need for 

excluded middle. 

Prolog has adopted the negation as failure (NAF) rule of inference [Clark 78] as 

the proof theoretic device for negated goals. The NAF rule of inference fits neatly, as 

a negation introduction rule, into a natural deduction framework. According to this 

rule, the deduction problem .6. ?- "'G receives an affirmative answer given that there 

is a failure demonstration, denoted by :!:Fin figure 4.27, for the problem .6. ?- G. 

:EF 

G 
=NAF=== 

(""G) 

Figure 4.27: negation as failure rule (NAF) 

An alternative to the Prolog approach is to still admit negated assertions, but 

to limit the search for contradictions. This can be done by rejecting the absurdity 

principle. The rejection involves removing the absurdity rule and requiring that other 

rules discharge assumptions. Conceived on the basis of philosophical objections to 

classical logic, the so called relevant (relevance) logics follow this scheme. The systems 

of [Anderson & Belnap 75] reject the absurdity rule, but retain excluded middle. The 

intuitionistic relevant logic of [Tennant 87] rejects both principles. 



Chapter 5 

Inference Engines 

The search for solutions is viewed within two paradigms: 

• deduction employing derived rules of inference 

• AND/OR graph search 

The derived rules of inference paradigm provides a simple conceptual model of the 

inference engine. AND/OR graph search, on the other hand, exposes issues relevant to 

efficient search. The impressive implementation technology of the logic programming 

language Prolog is examined. The extension of this technology to more expressive 

languages and full AND/OR parallel evaluation is considered. 

5.1 AND/OR Graphs and Derived Rules of Inference 

We began chapter 3 with a brief examination of search strategies in the context of 

the natural deduction rules of inference. The fact that this set of rules is systematic 

and fixed (for a given logic) enabled us to eliminate them, and replace each axiom and 

query by its inferential extension. In chapter 4 we saw that it is possible to think of the 

AND/OR graph, that is an inferential extension, as representing a set of derived rules 

of inference. Consequently, we now have two further perspectives on the search task: 

Deduction employing derived rules of inference: Subgraphsofinferentialex­

tensions correspond to derived rules of inference. Hence, search can be viewed 

in the context of reasoning within a deduction system consisting of a set of 

such derived rules. 

AND/OR graph search: The search space for solutions consists of AND/OR 

graph fragments (renamed search components) connected by CUT rule in­

stances. A solution to the deduction problem at hand is a solution subgraph 

of the AND/OR search space. 

84 
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A derived rule of inference is a generalisation of the notion of inference rule, as 

presented in chapter 2. The natural deduction rules are all instances of the schema 

shown in figure 5.1 (a). Such a rule leads from a set of premiss formulae {F1 ... Fn} 

to a single formula G as conclusion. The rule may also discharge assumption formulae 

E1 ... En. In contrast, a derived rule, figure 5.1 (b), leads from a set of premiss formulae 

{A1 ... An} to a set of conclusion formulae {B1 ... Bm}· The set of conclusions being 

read disjunctively. Further, the assumptions that may be discharged are not formulae 

but sets of derived rules R1 ... Rn. 

--(i) --(i) --(i) --(i) 

E1 En R1 Rn 

F1 Fn A1 An 
(i) (i) 

G Bl··· Bm 

(a) (b) 

Figure 5.1: inference rule schemas 

The set of derived rules produced by extend depends on the particular deduction 

problem statement at hand. Further, as the search proceeds, the set of available rules 

varies depending on subgoal and case argument context. The best we can do, a priori, 

is to distinguish the three subclasses of derived rules illustrated in figure 5.2. Rules 

drawn from each of these subclasses occupies a distinct niche in a complete solution: 

--(i) --(i) --(i) --(i) 

R1 Rn R1 Rn 

A1 An 
(i) 

A1 An 
(i) 

B1··· Bm B1··· Bm 

(a) (b) (c) 

Figure 5.2: subclasses of derived rules 

(a): A query rule has an empty conclusion, and is derived from the query formula. 

All paths in a solution are terminated at the bottom by a query rule instance. 

(b): A proper rule is derived from an axiom or query that contains implications or 

negations as assertion subformulae. 

(c): A fact rule has an empty set of premisses, and may be derived from an axiom 

or query. All paths of a solution are terminated at the top by a fact rule 

instance. 
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Deduction systems, such as the above, that include extended forms of inference rules 

have received some attention recently. [Shoesmith & Smiley 78] investigate the exten­

sion to rules with multiple conclusions. [Schraeder-Heister 84] argues that rules that 

discharge other rules as assumptions are a "natural extension of natural deduction". 

The account of implementation techniques in this chapter relies on both the derived 

rules and AND/OR graph search paradigms. The AND/OR graph view is strong for 

many issues in search and representation. The derived rule view comes into its own 

when we wish to present a simple user view of the inference engine, see chapter 6. 

5.2 Search as a Constraint Satisfaction Problem 

We take the definition of ANF solution graph of section 3.4.2 as a starting point for 

the exploration of implementation issues. That definition consisted of the following five 

constraints on the form of a solution graph: 

• Query Relevance 

• Axiom Relevance 

• Resolved Choice 

• Substitution Consistency 

• Loop Freeness 

As a first step towards computational realization we read this definition as a constraint 

satisfaction problem. The remainder of this chapter deals with the problem of applying 

these constraints constructively to the task of finding solutions. 

Traditionally inference engines apply either forward chaining (axiom relevance) or 

backward chaining (query relevance) elaborating a single partial solution at a time 

(resolved choice) while maintaining full substitution consistency for the current partial 

solution. The loop freeness constraint is often ignored. The Prolog inference engine, 

to be described a little later, conforms to these conventions, and provides us with a 

good point of reference. The following subsections examine the five constraints in more 

detail. 

5.2.1 Axiom and Query Relevance 

Much of the discussion in this chapter will assume a backward chaining search strategy. 

The factors that speak in favour of this approach are briefly these: 
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• As illustrated in section 3.2, the query relevance constraint is built into backward 

chaining strategies. Only those subgraphs of the search space containing the 

query are explored. 

• In cases where the search space is too large to permit exhaustive, uninformed 

search, the generic backward chaining scheme can be specialised to incorporate 

control knowledge. Backward chaining is conceptualised as simple goal reduction 

with choice of subgoal and rule. This point is expanded in section 6.2. 

• Backward chaining simplifies some implementation issues. For example the con­

struction of complete choice points is possible, as the path to the query is always 

known. Implementation techniques developed in the logic programming context 

may be applied. 

Backward chaining does not apply the axiom relevance constraint to limit search. 

This problem is painfully obvious in the case of relevant deduction problems when 

the conclusion is a contradiction, as is the case with reductio ad absurdum. Haridi 

[Haridi 81] suggests that forward chaining should be adopted for these kinds of sub­

problems. Note, however, that a forward chaining strategy does not make effective use 

of query relevance. What is called for is a search regime that is sensitive to all avail­

able constraints. A first step in this direction would seem to be to apply the relatively 

expensive substitution consistency constraint incrementally. For some suggestions in 

this direction see the work [Sickel 76] on clause interconnection graphs. 

5.2.2 Resolved Choice 

A spectrum of search strategies from depth first to breadth first is characterized by 

the number of partial solutions maintained at any one time. Common practice is to 

simplify implementation and maintain resolved choice by choosing the extreme depth 

first end of the spectrum. The full breadth first strategy, at the other extreme, is often 

impractical on combinatorial grounds. In section 5.5.3 we consider the implementation 

of strategies in the middle ground, enabling the concurrent exploration of a number of 

promising partial solutions. The following paragraphs set the scene in the context of 

backward chaining search strategies. 

The resolved choice constraint requires the selection of a single CUT instance from 

each choice point. The term "backward chaining" refers to an abstract search process, 

leaving unspecified the order in which either choice points or CUT rule instances within 

them are to be selected. In the preceding sentence we have distinguished two kinds of 

choice: 
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Subgoal Choice: Select a subset of the subgoals for expansion from the current 

set of partial solutions. In other words, given a set of partial solutions, select 

a set of choice points. For sequential, one solution at a time implementations 

both of these sets are singletons. 

Rule Choice: Given a subgoal, select the derived rules to be applied from the set 

of candidate rules. In other words, given a choice point, select a set of CUT 

rule instances. 

The above conceptual model of the choices faced by a search algorithm is commonly 

found in accounts of the Prolog language. Prolog relies on the programmer to exploit his 

understanding of a fixed choice algorithm to control the search process. In section 6.2, 

encouraged by the success of this approach, we explore an alternative control paradigm 

based on the same conceptual model. 

5.2.3 Substitution Consistency 

A simple extension of the composition of substitutions operation of [van Vaalen 75] 

replaces a set of mgu's in solved form (see section 4.2.2) {81, 82, ... , 8m} with a 

single mgu in solved form 8, such that for any term t 

Composition of MGUs: Given a set of mgu's {81, 82, ... , 8m} in solved form 

the following algorithm finds their composition if one exists and otherwise 

halts with fail status. 

step 1: Let 8 be 81 U 82 U ... U 8m. That is 8 is a set of equality assertions 

{X1 = t1, X2 = t2, ... , Xn = tn}· 

In order to reduce 8 into solved form repeat step 2 until no longer applicable. 

step 2: Choose any pair of equality assertions (Xi = ti) and (Xj = tj), such 

that the two parameters Xi and Xj are identical. If the two terms ti and 

tj unify then replace the two assertions in 8 by the set of assertions that 

is the mgu of ti and tj, otherwise halt with failure status. 

Return 8 as the answer. 

Notice that the above operation is associative, implying that there is no restriction 

on the order in which unifiers from a solution graph are composed. The operation is 

also incremental, in the sense that applications of step 2 of the above algorithm may 
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be postponed. These freedoms are often not exploited by implementors to improve 

performance. Composition of unifiers is typically the most expensive operation of an 

inference engine implementation. 

As discussed in chapter 4, the quantifier rules VI and :3E impose two further con­

straints on substitutions: 

Skolem Constraint: This condition can be maintained by restricting Skolem param­

eters to appear only on the right hand side of mgu equality assertions. 

Dependency Constraint: To maintain this condition it is necessary to check that 

any VI rule occurrences do not rely on undischarged assumptions. A very 

simple implementation can check the well formedness of a complete candidate 

solution. 

5.2.4 Loop Freeness 

The normal form for natural deduction proofs constrains the form of subproof for major 

premisses of elimination rules only. This leaves the door open for paths through minor 

premisses containing multiple occurrences of the same subproblem. In the case of a "no 

assumptions" language like Prolog a subgoal that is identical or subsumes a subgoal 

lower down on the path to the query signals the presence of a loop. In the case that 

assumptions are present, a sufficient additional condition for a loop is that the upper 

subproblem not have more premisses available to it than does the lower one. 

-AXIOM-

F F-::JE 
-::>E----

-AXIOM­

E-::JF 

E 
=CUT= 

E 
-::>E-----

F 

(a) 

Figure 5.3: proof loops 

-AXIOM-

""F F 
-~E---

# 
=CUT= 

# 
-#X--

F 

(b) 

The potential for loops exists when occurrences of the elimination rules with minor 

premisses, that is ::JE and "-'E are present. Figure 5.3 illustrates the simplest loop 

elements. Notice that in the case of "-'E, the absurdity rule #X is also involved. The 

first step in minimizing the cost of loop detection is to perform a loop check only when 

multiple instances of components containing applications of these rules are present. 
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5.3 Implementation Technology 

The purpose of this section is to establish a point of reference for inference engine imple­

mentation technology. Programs for solving deduction problems have been developed 

in a number of distinct settings: 

• Resolution refutation theorem provers. 

• Question answering systems for deductive databases. 

• Logic programming language implementations. 

• Expert systems inference engines. 

• Verification of the correctness of programs and hardware designs. 

Despite the various demands of the intended area of application, many current 

systems are based on a set of common elements: 

• Backward chaining search is used to maintain query relevance. Some systems 

incorporate a carefully limited forward chaining preprocessor. 

• A single partial solution is explored at any one time, with backtracking on failure 

or depth bound. An important exception is the processing of ground atoms by 

database operations. 

• Substitution consistency is maintained by a unification algorithm together with 

clever representation schemes for terms instantiated by unification. Substitution 

consistency is fully maintained for the single current partial solution. 

Conforming to the above model, the logic programming community has largely 

focused its attention on the development of implementation techniques for the Horn 

language. First, recall that Horn clauses are mapped into Horn rules by extend. Sec­

ond, recall that case arguments are derivations consisting of instances of Horn rules 

only. These two relationships suggest that we adopt this work as a point of refer­

ence. The remaining sections of this chapter explore implementation issues from this 

perspective. 

5.3.1 The Prolog Inference Engine 

The following paragraphs point out the key elements of current logic programming sys­

tems implementations. We focus on the structure sharing implementation technology 

developed for the Prolog language. This section deals with the the pure Horn lan­

guage only. This discussion is used as a starting point for a subsequent investigation 
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of implementation techniques for more expressive languages. For more comprehensive 

descriptions of current techniques see for example [A1t-Kaci 90], [Bruynooghe 82) and 

[Campbell 84]. 

Prolog exploits the reading of sets of formulae as programming language procedure 

definitions. This procedural semantics of Prolog determines that the AND/OR search 

space be explored sequentially in left to right and depth first order. The stack based 

representation of computation state, developed for procedural programming language 

implementations, is used. 

As an illustration, the partial solution of figure 5.4 (a) is represented by the data 

structures in (b). These data structures can be divided into a static and dynamic 

component: 

Structure Store: The static structure of the Horn rules is kept here. 

Stack: The structure and substitutions for the current (partial) solution are main­

tained as a sequence of stack frames. 

The current (partial) solution tree is mapped onto the stack in chronological order. 

There is one stack frame for each occurrence of a Horn rule instance in the solution 

being represented. A stack frame consists of a pointer to the Horn rule structure, a 

pointer to a "parent" stack frame, a vector of bindings, as well as other information left 

out of the figure for clarity. The vector of bindings contains one entry for each distinct 

parameter occurring in the rule. The result of applying this vector as a substitution to 

the rule structure is the desired rule instance. 

Each binding, an equality assertion of the form Xi = t, is represented by a binding 

vector entry. The renaming i is implicit in the context of the binding as part of a 

stack frame. The name X is associated with the vector offset. The term tis explicitly 

represented as a pair of pointers, one pointing to the term structure, the other to the 

stack frame where bindings for parameters occurring in the term structure are to be 

found. 

The fact that only a single partial solution is represented at any one time implies 

that just a single set of bindings, being the composition of unifiers for the current partial 

solution, is required. The composition of unifiers is represented by the entire set of non­

null bindings on the stack. In the case of the example of figure 5.4, the composition of 

the three unifiers 81, 82 and 83 is represented by four binding vectors. 

The above representation of the composition of unifiers has more structure than our 

textual representation as a set of equality assertions. The binding pointers form a graph 

consisting of a set of connected components. Each connected component corresponds 

to an equivalence class of terms. A pair of equivalence classes is unified by connecting 
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(b) 

Figure 5.4: stack data structure for single solution 
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two components. That is, the Prolog unifier applies the well known UNION-FIND 

algorithm (see for example [Aho, Hopcroft & Ullman 74] for a description of union­

find). For future reference note that the unifier is free to apply the path compression 

optimization of UNION-FIND. 

Figure 5.4 is a simplification. The structure of the current partial solution is repre­

sented, while the information required for conducting the search is left out. This infor­

mation consists of choice points and a trail. Two kinds of choice points are recorded 

on the stack: 

Rule Choice: This corresponds to the CUT choice point of our AND/OR graph 

model. Just a single pointer is needed to step through the sequence of rules. 

Subgoal Choice: The antecedent of a Horn clause is a flat sequence of atoms. 

A single pointer is again sufficient to maintain the state of the left to right 

traversal of this sequence. 

The trail is a chronological record of binding operations, consulted when undoing bind­

ings on backtracking. The trail also fits in with the stack discipline. 

Apart from the simplicity of the above scheme, the compilation of unification and 
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choice points, together with clever indexing schemes, contribute to the efficiency of 

Prolog implementations. 

5.4 Extended Logic Programming 

A logic programming language consists of two sublanguages, as recommended by the 

slogan 

Algorithm = Logic + Control 

of [Kowalski 79a). We shall refer to these two component languages as the problem 

language and the control language. In this section we consider the prospect of extending 

the expressive power of these two languages as well as the issue of exploiting parallel 

hardware for solving deduction problems. 

Let us first look at current proposals for extending the Prolog inference engine to 

deal with larger subsets of the full first order language as the problem language. It is 

instructive to consider goal and assertion syntax separately: 

Goal Syntax: [Gabbay & Reyle 84) and [Bollen 88) have demonstrated implementa­

tions incorporating the implication introduction rule. Implementations of the full 

positive goal syntax, based on the transformations of [Lloyd & Topor 84), also 

exist [Thorn & Zobel 88). Even negated goals, implemented by the negation as 

failure mechanism, may be regarded as intuitionistic negation with respect to a 

completed program [Clark 78), [Shepherdson 88). 

Assertion Syntax: Recall that the only operators admitted by the Prolog assertion 

syntax are '>/ and ::). The author knows of no implementations that extend the 

inference engine to deal directly with enriched assertion syntax. Several meta 

interpreters have been proposed for asserted disjunctions and negations, see for 

example [Smith & Loveland 88). 

In terms of the language hierarchy of chapter 4, direct implementations have not 

reached beyond the positive definite language P. We suggest that the reason why logic 

programming systems do not offer the expressive power of the full assertion syntax are 

at least threefold: 

Procedural Semantics: It is not clear what the procedural semantics should be 

once inferential extensions have more than a single atomic conclusion. Also, 

the procedural semantics of Prolog dictate a statically ordered backward 

chaining search, which is very inefficient in the case of relevant deduction 

subproblems. 
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Negation As Failure: Both disjunctive and existentially quantified assertions tend 

to "block" negation as failure results. The semantics of a language incorpo­

rating these constructs is not clear. 

Proof Theory: No resolution refutation proof theories are known for languages 

intermediate between the Horn language and full first order classical logic. The 

natural deduction formulation now informs us what proofs in these languages 

look like. 

Concerning the expressive power of the control language: The procedural semantics 

of Prolog determine a backward chaining, depth first, single solution search strategy. 

The knowledgeable programmer escapes these restrictions using meta programming 

techniques. That is, the control language is expressively inadequate for many applica­

tion areas. Again, the procedural semantics blocks extension of expressive power. 

Recently, the exploitation of parallel computing hardware has become a major fo­

cus for logic programming research, see for instance [Gregory 87], [Kacsuk 90] and 

[Wise 86]. The procedural semantics of Prolog enable the efficient implementation of 

the language on sequential machines. While some parallelism is available within this 

model, a fuller exploitation of parallelism cannot tolerate a sequential execution model. 

Perhaps it is obvious by now that we propose an approach to logic programming, 

that does not rely on the procedural reading of formulae. Our aim is to unblock 

the development of more expressive languages and implementations that can exploit 

full AND/OR parallelism. The prospect of an efficient inference engine based on the 

AND/OR graph paradigm is explored in the next section. Top level language design 

issues are taken up in the next chapter. 

5.5 Implementation Techniques for Extended Languages 

The following subsections present refinements of the Prolog data structure to support 

implementation of more expressive and parallel languages. The AND /OR graph repre­

sentation for solutions and search spaces suggests data structures for implementation 

of extended languages. 

5.5.1 More Expressive Sequential Languages 

We saw in chapter 4 that the increased expressive power of a language is reflected 

as an increase in the complexity of the inferential extensions of input formulae. The 

preceding discussion of Prolog implementation techniques assumed the Horn language, 

and consequently dealt with the corresponding simple Horn rule form of inferential 

extensions only. The question we address in this section is this: Can we extend the 
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stack based scheme, with each stack frame representing a derived rule of inference, for 

the more expressive languages? 

The generalisation of the implementation to the Edinburgh language is very simple. 

The only point of change concernes the subgoal choice pointer. For a Horn rule this 

pointer traverses left to right through a sequence of atoms. For the Edinburgh language 

this is generalised to a left to right, depth first enumeration of the solution trees of an 

AND /OR tree with atoms as leaves. 

The next step up in complexity of inferential extensions is the presence of assump­

tion search components. Recall that assumption components are generated by impli­

cations and logical negations as goals (the :::)I and rvi rules of inference), present in the 

positive definite language. The set of inferential extensions available for the construc­

tion of a solution to a subproblem depends now on the context in which the subproblem 

occurs. 

The necessary extension of data structures is illustrated in figure 5.5. A context 

pointer is allocated in each stack frame. A context being a set of assumption search 

components, each sharing some of their bindings with the stack frame that created the 

assumption. The representation of an assumption component in the structure store 

includes a list of common parameters the component shares with other components of 

the inferential extension. This information is needed to initialize binding vectors for 

the component's stack frame. Contexts are stored in a tree structured data base. 

structure 

r- parent 

context 

vector of 
bindings 

f-------+-

f-------+-

structure store 

tree structured 
database of 
assumptions 

Figure 5.5: extended stack data structure 

The most general form of search component contains an AND/OR tree of conclu­

sions, as well as premisses. A stack based inference engine can still be used to construct 

the case arguments from which a solution is built. A case argument supervisor issues a 
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sequence of calls to the inference engine, each resulting in either a case argument being 

returned or in failure. 

The data structure illustrated in figure 5.5 is adequate for representing a case ar­

gument. The context mechanism, however, needs to be extended to provide a wider 

range of services. A non-empty initial context may be supplied to the inference engine 

to direct the search for a case argument. As well as a context of assumptions, a case 

argument is associated with an "anti-context" of assumptions. The anti-context is the 

set of assumptions not available in the world of the case argument. 

5.5.2 Single Solution AND Parallelism 

While appropriate for sequential implementations, a stack based representation cannot 

be maintained when a set of asynchronous processes co-operate to build up a solution. 

If we abandon the stack discipline, we arrive at the data structure displayed in figure 

5.6. This data structure is a graph, maintained in a heap store, perhaps distributed 

across a number of processors. This AND graph data structure is also appropriate 

for implementations designed to avoid unnecessary recomputation of subgoals on back­

tracking. 

R3: -
B3 
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1 
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B4 
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A1 
2 

B1 
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vector of 
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R3 

I 
vector of 
bindings 

vector of 
bindings 

R2 R4 

I I 
vector of 
bindings 

Rl 

(b) 

Figure 5.6: AND data structure for single solution 

Notice that this data structure still represents just a single (partial) solution, and 

therefore can only support single solution AND parallelism. It is common in the liter­

ature to distinquish two forms of single solution AND parallelism: 

Restricted AND Parallelism: This form occurs when the partial solution graph 

is extended concurrently at a number of subgoals that do not share variables. 
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Stream AND Parallelism: This form occurs when concurrent subgoals share 

variables. 

The distinction shows up in our AND graph model in two ways: Firstly, concurrent 

access to shared bindings must be controlled to maintain the integrity of the compo­

sition of unifiers operation. Secondly, a bindings dependency analysis is required to 

determine the consequences of a failure on concurrent subgoals. For a more detailed 

discussion of AND parallelism see [Gregory 87]. 

5.5.3 Multiple Solutions AND/OR Parallelism 

A further refinement of the data structure is required to represent multiple solutions. 

Let us suppose that the premisses Ai and A~, of the example in the preceding sec­

tion, also unify with R5 and R6, as shown in figure 5.7 (a). Depending on the success 

of the composition of unifiers operation, there are from zero to four well formed par­

tial solutions here. The data structure, shown in (b), represents the four candidate 

solutions. 

The reader may have noticed already that, unlike in the simple motivational pre­

sentation of chapter 1, bindings are not associated with unifiers but with derived rule 

occurrences. The advantage of the current scheme is that the binding for any specified 

parameter is readily located at a fixed vector offset. 

When multiple partial solutions are represented, a number of binding vectors may 

be associated with a single derived rule occurrence. That is, a rule occurrence in this 

data structure may stand for a number of distinct substitution instances of the rule. 

The data structure of figure 5. 7 stands for a set of candidate solutions. We need a 

second level representation to pick out the well formed (substitution consistent and loop 

free) solutions from among these candidates. The representation we propose here is a 

refinement of the ATMS labelling scheme introduced in chapter 1. The graph structure 

of a solution is represented explicitly by a label, while the composition of substitutions 

is not, as explained below. 

The graph structure of a solution is uniquely determined by its set of binding vectors. 

Further, only the ambiguity of multiple binding vectors for the one subgoal needs to 

be resolved. For the example of figure 5.7, the structures of the candidate solutions 

are picked out by the labels shown in figure 5.8. Only labels corresponding to the well 

formed (partial) solutions are to be kept. Any label for a (partial) solution containing 

an inconsistent set of bindings or a loop (a nogood) is removed. Search effort should 

not be wasted on those portions of the AND/ 0 R data structure that do not appear in 

any label. Many implementations would garbage collect such structures. 

The set of non-null bindings associated with a solution can no longer be maintained 
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Figure 5.7: AND/OR data structure for multiple solutions 

{'l'l, 1:'4} 

{'l'l, 1:'8} 

{1:'6, 1:'4} 

{1:'6, 1:'8} 

Figure 5.8: labels 
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as the composition of substitutions in solved form, since a number of bindings may 

exist for the one parameter. Also, the path compression optimization cannot always 

be applied. Two options for implementing the composition of substitutions are: 

• Call on the unifier to determine the composed binding for a parameter dynami­

cally. In this case, the degree to which the set of bindings approximates solved 

form is critical to performance. 
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• Maintain an explicit representation of the composition with the label. This may 

well be feasible when restricted to a critical subset of parameters. 

The above description of AND/OR parallel evaluation omits discussing mechanisms 

to support backtracking search. The reason for this omission is that the author's exper­

imental implementation work has focussed on the non-backtracking language described 

in the introduction. It has also assumed that only Horn rules are present. A compre­

hensive description of feasible implementation techniques for more expressive parallel 

languages has to wait on further experimental work. 



Chapter 6 

Exploiting the Representation 

A natural deduction solution can be readily understood as an argument leading from 

a set of axioms, by way of simple principles of deduction, to the query. Atomic normal 

form extends this explanative power of natural deduction. The very detailed steps of 

reasoning are replaced by derived rules of inference, each justified by a particular input 

formula. This perspicuous representation can be exploited as follows: 

• As a graphic display, it may be used for purposes of explanation, testing and 

debugging. 

• Reflected as a theory accessible to introspection, it may be used for purposes of 

control and to meet other practical demands placed on the reasoner. 

6.1 Visualization 

Having presented a mechanical reasoner with a deduction problem ~ ? - G and a finite 

amount of time for computation, we expect to receive as the answer a set (possibly 

empty) of proofs, together with an indication of whether this set contains all the proofs 

there are. Each of the proofs is to be a solution for the given deduction problem, that 

is they are proofs of r r G (where: r ~ ~). 
In this setting, we can think of a proof as explaining which subset of the axioms, and 

by what methods of reasoning, lead to the conclusion G. The following two subsections 

treat explanation in this sense only. The aim is to display a solution in such a way 

that it can readily be grasped as an explanation. The third subsection extends this 

treatment to the display of partial solutions, for the purposes of testing and debugging. 

The aim being to observe the progress being made in covering the search space. 

100 
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6.1.1 Flat Explanation 

Given that some primitive principles of reasoning, their representation as rules of infer­

ence and the instantiation and composition of these rules are understood and accepted, 

a proof in any formal system may claim to explain its conclusion. In addition, the nat­

ural deduction rules claim to represent principles actually used when the most detailed 

account of an argument is presented by a human mathematician. Why don't we just 

present the user with the ANF natural deduction proof as explanation? 

A weakness of the ANF form of natural deduction is illustrated in figure 6.1. The 

ANF solution for the deduction problem { al\b}?- al\b is shown in (a), whereas the very 

simple solution in (b) is clearly better as an explanation. The atomization transforma­

tions (Lemma 3 in Chapter 2) can be applied in reverse to remove such unnecessary 

elimination-introduction pairs for any of the connectives. 

-AXIOM­

al\b 
-AE-­

a 

-AXIOM­

al\b 
-AE--

b 
-1\I-----

al\b 
-QUERY-

(a) 

-AXIOM­

al\b 
-QUERY-

(b) 

Figure 6.1: atomization example 

The person reading the explanation is likely to be familiar with many sound rules 

of inference, which need to be derived when using the natural deduction rules. For 

example, the commutativity result, established in figure 6.2, may be displayed as in 

(b). Such transformations for the commutative and associative operators 1\ and V can 

significantly simplify the presentation of a solution. 

-AXIOM­

al\b 
-AE--

b 

-AXIOM­

al\b 
-AE-­

a 
-1\I-----

bl\a 
-QUERY-

(a) 

-AXIOM­

al\b 

bl\a 
-QUERY-

(b) 

Figure 6.2: commutativity example 

In chapter 1 resolution proofs were criticized on the grounds that refutations are 

not as perspicuous as direct proofs. Yet, the negation introduction rule (reductio ad 

absurdum) calls on a kind of refutation for the proof of a negated goal. Some appli­

cations of reductio may be removed by transformations. For example, the solution in 

figure 6.3 (a) may be simplified into the form shown in (b), being a single application 
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of modus tollens. More generally however, the reductio rule remains. 

-AXIOM­

a-:Jb 
---(1) 

a 
-AXIOM- - :::>E ----

rvb b 
-~E-----------

# 
-~J-(1) 

-QUERY-

(a) 

-AXIOM­

a-:Jb 
-AXIOM­

rvb 

rva 
-QUERY-

(b) 

Figure 6.3: reductio example 
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In the presence of disjunctive assertions, a solution consists of a set of case arguments 

for the query. For such solutions, the case arguments may be presented separately. 

Recall, from chapter 4, that some of the cases may lead to absurdity, requiring a 

terminal application of the absurdity rule. The example of figure 6.4 (a) illustrates this 

complication. As in this example, some applications of or elimination may be presented 

as disjunctive syllogism, as shown in (b). 

-AXIOM-

-AXIOM­

aVb 
-vE-------

a b 
-~E----- -QUERY-

# 
-#¥..-

b 
-QUERY-

(a) 

-AXIOM - -AXIOM-

aVb rva 

b 
-QUERY-

(b) 

Figure 6.4: proof by cases example 

Even after the above simplifications, natural deduction solutions for all but the 

most trivial problems are too large and detailed to have much more than a curiosity 

value. In the next subsection we exploit the notions of solution fragment and derived 

rule of inference to improve the situation. 

6.1.2 Structured Explanation 

It is possible to partition any given ANF solution into a set of fragments, each justi­

fied by a particular axiom or query. Alternatively, the solution can be seen as being 

composed of applications of derived rules of inference, again justified by a particular 

input formula. For these reasons, the ANF scheme can also be characterized as input 

form natural deduction. We now claim that this feature of the ANF schme extends the 

explanative power of natural deduction. 

The structure of ANF solutions, as a composition of derived rules of inference or so-
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alpinist( tony) 

alpinist( mike) 

alpinist(john) 

likes( tony, rain) 

likes( tony, snow) 

"i/u alpinist(u) :J (skier(u) V climber(u)) 

"i/v climber(v) :J rvlikes(v, rain) 

"i/w skier(w) :J likes(w, snow) 

"i/x likes( tony, X) :J rv[ikes(mike, X) 

"i/y rvlikes(tony, y) :J likes( mike, y) 

Figure 6.5: b..alps- example problem theory 
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lution components, is not exploited by the flat explanations of the preceding subsection. 

The idea is to suppress the display of the detailed internal structure of these compo­

nents. The mapping of formulae into derived rules of inference for the Horn language 

is a very simple one. Many current systems exploit this mapping implicitly for their 

explanation facilities. What are the issues raised by the more expressive languages? 

Consider the problem theory b..alps, for the so called alpinist puzzle1, of figure 6.5. 

As examples of structured explanations, figure 6.6 (a) and (b) offer solutions to the two 

deduction problems 

b..alps ?- :Jz rvskier(z) 

and 

b..atps ?- :lz climber(z) 

respectively. Each derived rule instance is displayed here as an inference stroke an­

notated with the input formula that justifies it. In the event that the derived rule 

involves assumptions (contains applications of :JI or rvi), both the inference stroke and 

the assumption are annotated with a unique number. In (a) the formula skier(mike) 

is such an assumption. The solution in (b) consists of two case arguments. 

For existentially quantified queries it is often important that we be able to extract 

from the solution the so called answer substitution. For natural deduction solutions 

the answer substitution is simply a set of pairs, each pair (x, t), extracted from an 

occurrence of the existential introduction rule: 
G(t) 

-3!.....;...:. __ 

:JxG(x) 

1 This puzzle appeared in the comp.lang.prolog group of the internet news distribution. 
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k . ( .k ) (1) s zer mz e 

Vwskier(w):) likes(w,snow) 

likes( mike, snow) likes( tony, snow) 

Vx likes( tony, X) :) rvlikes( mike, X) 

3z rvskier(z) 

(a) 

Vu alpinist( u) :) (skier( u) V climber( u)) 

climber( mike) skier (mike) 

Vw skier( w):) likes( w, snow) 

likes( tony, snow) 

3z climber(z) 

3zclimber(z) 

(b) 

Figure 6.6: structured explanations 

As illustrated by the examples in figure 6.6 the substitution is not always easily spotted 

in the structured display. For both examples the answer substitution is just { (z, mike)}. 

Where the solution consists of case arguments, the answer substitution may differ 

between arguments. The answer substitution may even be absent, as in (b), where a 

case argument terminates in an application of the absurdity rule. 
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6.1.3 Testing and Debugging 

In the event that an unexpected solution, caused by an erroneous axiomatization of 

the problem, is found, an explanation display can reveal the error. Where the solution 

is not found within acceptable time or fails to be found altogether, displays of the 

search space and partial solutions can be useful. The following discussion is limited 

to these issues only. For a thorough treatment of testing and debugging, in the logic 

programming context, see [Shapiro 83]. 

{ 
VvVwedge(v,w)-:Jpath(v,w) } 

Vx VyVz path(x, y)/\path(y, z):; path(x, z) 

(a) 

(b) (c) 

Figure 6.7: b..path- path axioms 

We will use the axiomatization b..path, shown in figure 6.7 (a), to illustrate the 

discussion in the remainder of this chapter. The path/2 predicate is intended to be 

interpreted as path in a directed graph. The example problems may also be read at the 

meta level - think of the directed graph as representing a search space for solutions. 

The two rules of inference derived from the axioms are shown in (b) and (c). In this 

section we diagnose a number of problems in applying these derived rules to solve 

problems. In section 6.2 we express meta knowledge needed to apply the rules more 

intelligently. 

The search space generated by the two derived rules is illustrated by the connection 

graph2 display of figure 6.8. Circuits in this figure represent recursive application of 

rules. Solutions are obtained by creating fresh renaming instances of nodes, "unrolling" 

such circuits. For the example problem the warning is clear- Rules need to be applied 

carefully to avoid wasted computation on path/2 subgoals, due to violation of the loop 

freeness constraint. 

The normal form for natural deduction solutions does not prevent the construction 

2 Although the connection graph paradigm was developed by (Kowalski 75) for the resolution refuta­

tion proof theory, many of the ideas are equally applicable here. We go no further in this direction than 

to point out that this kind of display can be very useful in analysing the computational characteristics 

of a set of rules. 
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Figure 6.8: connection graph display for b.path 

of multiple solutions for the one query relying on identical premisses. A set of axioms 

b. chain, and its intended model, for use in conjunction with b. path are shown in figure 

6.9. Given the deduction problem 

b.path U b.chain ? - path( a, d) 

two solutions, as shown in figure 6.10 (a) and (b), are possible. Once we notice that 

these two solutions rely on the same set of axioms, we are likely to be disappointed by 

this state of affairs. We will suggest remedies in section 6.2. 

{ 
edge( a, b) } 
edge(b, c) 

edge(c, d) 
a_,..b_,..c_,..d 

Figure 6.9: b.chain -simple directed graph 

Even when the inference engine enforces the loop freeness constraint, as best it 

can, solutions may fail to appear when expected. Two kinds of failure are commonly 

distinguished: 

Finite Failure: An inference engine can, at least in principle, complete the search 

in finite time without finding any solutions. 

Non Termination: The search does not terminate within any finite interval of 

time. 

From a pragmatic point of view we distinguish two kinds of finite failure: 

Constructed Non-demonstrability: The inference engine completes the search 

within acceptable time without finding any solutions. 
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(a) 

(b) 

Figure 6.10: tl.path U fl.chain ?- path( a, d) 

Inefficient Search: Solutions are not returned within acceptable time, although 

in principle the search completes in finite time. 

NO MATCH OPEN LOOP 

Figure 6.11: tl.path U fl.chain ?- path(b, a) 

As an example of constructed non-demonstrability consider the annotated fragment 

of search space, shown in figure 6.11, for the query path(b, a), given the set of axioms 

tl.path U fl. chain. There are three partial solutions here, each of which incorporates, as 

a leaf, a goal atom A that is either: 
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No Match: No derived rule of inference has a conclusion that matches A. 

Loop: A subsumes another goal that occurs on the path from A to the query. 

Notice again that care is required in selecting which goal to expand. Expansion of 

either of the two "OPEN" goals in the figure is wasted effort. 

(a) 

(b) 

Figure 6.12: inefficient search for tree path problem 

Both solutions and finite failure demonstrations represent the final state of a com­

putation. In the presence of either inefficient search or non-termination we need to 

understand the progress of the computation in covering the search space. Consider the 

path problem for the tree form directed graph shown in figure 6.12 (a). The partial 

solution shown in (b) displays an intermediate state for a search that traverses the tree 

left to right bottom up. Clearly a more efficient regime for this problem would traverse 

down the tree, and if possible in parallel starting from the two end points. 

6.2 Introspection 

As well as the nominated purposes, the discussion in the first half of this chapter 

was intended to support the claim that search spaces, solutions and perhaps even the 

process of search can be readily conceptualized and understood. In the remainder we 

argue that such conceptualization and understanding can be harnessed to solve many 

of the problems that arise in practical applications of computational logic. 
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6.2.1 An Extended Introspective Architecture 

Chapter 1 introduced the idea of introspection, and its application to the task of con­

trolling the selection of subgoals on behalf of the object level inference engine. The 

application was described as a two level architecture, being: 

Object Level: An axiomatization of the object problem domain used by an object 

level inference engine to construct solutions in response to deduction problems. 

Meta Level: An axiomatization of the choice of subgoal problem used by a meta 

level inference engine to choose a subgoal in response to a query from the 

object level. 

Figure 6.13 illustrates an extension of the introspective arhitecture, of chapter 1. 

This extended architecture is designed to allow control of performance critical activities 

by meta language assertions, as well as enabling the exploitation of parallel hardware. 

The current state of the search is maintained as an AND/OR graph in a blackboard 

[Waterman & Hayes-Roth 78] memory, accessible to inspection and change by a number 

of agents. A parallel implementation will need to support concurrent access to the 

blackboard. 

object language 
assertions 

meta language 
assertions procedures meta language 

assertions 

! ! ! ! 
ex:pand graph consistency models axioms search maintenance 

l I I I 
computation state blackboard 

I I I I 
pruning loop query debugfaing 

detection interface inter ace 

i i i i 
meta language 

assertions 
meta language 

assertions 
meta language 

assertions 
meta language 

assertions 

Figure 6.13: extended introspective architecture 

For the subsequent discussion of this model, we once again rely on Prolog as a point 

of reference. A Prolog program is more than just a set of assertions about the problem 



CHAPTER 6. EXPLOITING THE REPRESENTATION 110 

domain. The assertions are organized as a set of procedures, each procedure consisting 

of a sequence of statements. A Prolog statement is more than just a logical formula. A 

statement is an expression constructed recursively as an operator applied to a sequence 

of expressions. Some of the operators may be read as logical connectives, others have 

only a procedural reading. Some primitive expressions may be read as atomic formulae 

of either the object or meta language with the remainder again having just a procedural 

reading. 

The introspective architecture attempts to build on the successes of Prolog, while 

addressing its shortcomings. In broad terms, the issues are these: 

Language: In Prolog knowledge about the problem domain is expressed in logic, 

while the knowledge that directs subgoal and rule selection, search space prun­

ing, input/output etc. is not. Also, the failure to separate knowledge about 

the various domains can make it difficult to understand, modify and reuse 

programs. 

We suggest that knowledge about each distinct domain be regarded as a dis­

tinct theory. The problem domain theory being axiomatized in the object 

language, the multiple other theories in the meta language. 

Search: The range of available search strategies in Prolog is limited. The statically 

determined search strategy is not sensitive to the instantiation of parameters 

and other runtime context. Recent implementations feature a range of "meta 

predicates" in an effort to overcome this limitation. Also, search is restricted 

to a single solution at a time with chronological backtracking on failure. 

In principle, the introspective architecture suffers from none of these limita­

tions. The identification of practical alternatives is, however, a challenging 

problem. As a starting point for such an investigation, we can retain back­

ward chaining and adopt the Prolog "meta predicates" as part of the meta 

language. 

Parallelism: The sequential procedural semantics of a Prolog program locks away 

parallelism. Many attempts have, however, been mounted in an effort to 

identify useful non-sequential operational readings. 

In contrast the introspective architecture of figure 6.13 suggests a parallel 

implementation, based on a set of co-operating processes. 

Figure 6.13 represents just one intermediate point in a range of possible architectures 

for introspective computation. There is no a priori assignment of functionality between 

the object and meta levels. At the one extreme, every action is encoded as meta level 
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assertions. At the other extreme, every action is performed by a monolithic object level 

inference engine. The former extreme gives total control of every action to the meta 

level assertions, while the latter provides none. While very efficient implementation 

techniques are known for object level engines, expressive power at the meta level is 

bought at a relatively high cost in computation speed. Experience with theorem proving 

and logic programming systems suggests a compromise, where the following issues are 

addressed by meta language assertions: 

• Ordering the Search 

• Detecting Loops 

• Pruning the Search Space 

• Negation As Failure 

• Allocating Computational Resources 

• Exploiting Models 

• Specifying Communication 

These issues are discussed in a little more detail in the remaining sections. We focus 

on meta language assertions of the form: 

condition :J action 

Recall from chapter 1, that the condition is tested by introspecting the current compu­

tation state, while the action reflects down, specifying a computation to be performed. 

In the examples that follow, a condition is expressed in terms of a goal/2 predicate, 

which picks out the atomic goal formula nodes in the current computation state. Some 

of the condition and action predicates are borrowed from the Prolog language, the 

remainder being proposed new constructs. 

6.2.2 Ordering the Search 

For any real machine the speed of computation is limited, the size of partial solutions is 

bounded by available storage and the number of concurrent operations is bounded by 

the number of available processors. These limitations imply that the order in which the 

search space is explored is often crucial to performance. This order may be specified 

declaratively by assertions in the meta language. 

Often we have only limited knowledge (perhaps none) to bring to bear on the 

problem of deciding which, of a number of available expansions of the AND fOR graph, 
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to pursue next. For a computation state for which the user supplied theory is mute, 

the choice may be determined by a default theory. If it turns out that the defaults lead 

to difficulties, the user supplied theory may be incrementally strengthened. We can go 

further and recognise a number of useful knowledge sources: 

Catchall: A simple, uniform search strategy enables one to reliably predict the 

effects of overriding assertions. Prolog's left to right, depth first choice order 

is an example of such a catchall theory for a sequential implementation. 

Static: Search advice computed from the static structure of the problem (analysis 

of connection graph for instance), can reduce the amount of overriding user 

supplied knowledge required for acceptable performance. 

Dynamic: Search decisions may depend on an analysis of the dynamic behaviour 

of the system. Such "learned" strategies may further reduce the amount of 

user intervention. 

User: The user may be in possession of knowledge about the intended interpreta­

tion of the problem axioms and the range of queries likely to be encountered. 

This knowledge may be put to use as search advice. 

The kind of default theory determines, to a large extent, the kind of overriding assertions 

needed. For example, a depth first strategy is easily trapped by infinite branches, while 

space can quickly become a problem for a breadth first strategy. 

As an illustration of the formulation of search advice, consider the path axioms llpath 

of figure 6.7. For this problem breadth first search is a reasonable catchall theory. A 

static analysis of the problem can reveal that the edge/2 relation is defined entirely by 

a set of atomic axioms. We may thus regard edge/2 goals as relatively tractable, and 

specify that they be selected whenever they occur. The syntax for this piece of advice 

might be: 

If we know that !lpath is to be applied to the kind of tree shown in figure 6.12 (a), 

we may specify preferential selection of path/2 goals that have an instantiated second 

argument. 

Many current logic programming languages provide constructs to suppress the se­

lection of a goal atom that contains non-ground terms. The preferential selection of 

goals, illustrated above, is not available in any of the languages known to the author. 
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6.2.3 Detecting Loops 

Advice about the conditions under which loops may occur and the frequency of checks 

may be specified by meta language assertions. The knowledge sources for a loop detec­

tion strategy may be diverse: 

Catchall: A simple strategy is to check for a loop in the event that a predetermined 

depth bound is exceeded, or even, as a last resort, when memory space is 

exhausted. 

Static: An analysis of circuits and the associated substitutions in the connection 

graph can identify potential loops. 

User: The user may wish to override decisions derived from the above sources. 

For the example tl.path axioms, path/2 goals that do not have both arguments 

ground can recur as part of a loop. We might make use of this knowledge by specifying 

that loop checking be performed for such goals. The assertion might look like this: 

Vg Vn1 Vn2 goal(g,path(n1, n2)) 1\ (var(n1)Vvar(n2)) ::::> loopcheck(g) 

We propose that controlled loop detection, as illustrated above, be incorporated 

into logic programming systems. 

6.2.4 Pruning the Search Space 

Large portions of search space can often be removed by careful application of knowledge 

about the problem axiomatization and the current state of search. In Prolog such 

pruning is effected by use of the ! (cut) and once constructs. We suggest that pruning 

be specified by assertions in the meta language. 

Where a computationally expensive subproblem occurs more than once, an oppor­

tunity exists to reduce the size of the search space by sharing results. Whenever a new 

subproblem arises, two knowledge sources may be consulted: 

Introspect: In the event that two identical subproblems are concurrently repre­

sented, results may be fully shared. Partial sharing may be possible when one 

of the subproblems subsumes the other. 

Memorize: In the normal course of events, subproblems fail. due to the no match 

or loop conditions, as was illustrated in figure 6.11. The failure of a subgoal 

implies the failure of any partial solution that incorporates that subgoal. In 

terms of the AND/OR graph paradigm, the failure propagates to siblings and 

the parent node at AND nodes and to the parent node at exhausted OR nodes. 
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The space taken up by these data structures is normally reclaimed, making 

them inaccessible to introspection. The retention of crucial failure results may 

be specified by meta language assertions. 

The checking of every new subgoal against these knowledge sources is likely to be 

infeasible. The user may identify subgoals to be checked by declarations in the meta 

language. 

An opportunity for pruning the search space exists when duplicate solutions, like 

the ones illustrated in figure 6.10, occur. This situation is commonly referred to as 

don't care nondeterminism in the logic programming literature. For our path example, 

we might phrase the request for a single solution like this: 

Vg Vn1 Vn2 goal(g,path(n1, n2))1\ground(n1)1\ground(n2) :J once(g) 

More generally, we can provide constructs for the arbitrary pruning of choice points. 

For the example path problem we may confine the search to proceed as a sequential 

left-to-right edge following search thus: 

The chop/2 construct here is a generalization of the Prolog ! (cut). In this case any 

element of goal 91's choice point that would reduce the goal to a further path/2 subgoal 

is removed. 

Ideally, each meta language assertion that specifies pruning of the search space can 

be read as a theorem about proof search for the intended problem domain. Failure on 

this point results in the loss of solutions. 

6.2.5 Negation As Failure 

Our knowledge about a problem axiomatization .6. may include the fact that it is 

complete for a particular predicate pjn. That is, 

if and only if p(a1, ... , an) is true in the intended domain, and 

if and only if "'P(al, ... , an) is true. In this case the negation as failure (NAF) rule of 

inference 

.6. f p(a1, ... ,an) 

.6. 1- "'P(al, ... ,an) 
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is sound. Recall that in section 4.9 we suggested that the deduction system for the 

object language could be extended to include an inductive definition of the notion of a 

failure demonstration. We now propose that negation as failure reasoning be applied 

whenever it is sound, and reductio reasoning otherwise to answer negative goals. 

The knowledge that the axiomatization of the example path /2 predicate is complete 

might be expressed in the meta language like this: 

Within the first order language the knowledge of completeness of predicate p / n may 

be expressed by the syntactic transformation of completing the axiomatization for pjn. 

Clark [Clark 78] introduced this transformation for the Horn language. Although this 

work generalizes easily to the positive definite language, the extension to disjunctive 

assertions is more problematic. As an example of the completion transformation see 

the axiomatization flcomp of figure 6.14, being the result of completing flpath U flchain· 

Arguably the completed axiomatization is less readable and modular than the original. 

{ 
'1/v'llw edge(v,w) = ((v = a)/\(w =b)) V ((v = b)/\(w =c)) V ((v = c)/\(w =d)) } 

'1/x '1/y 'liz path(x, z) = edge(x, z) V (path(x, y)/\path(y, z)) 

Figure 6.14: flcomp: completion of flpath U flchain 

A solution for the query "-'path(b, a) for the completed axiomatization is shown 

in figure 6.15. The form of the solution, a set of case arguments embedded in an 

application of reductio ad absurdum, is the expected response for negated queries from 

completed axiomatizations. Recall that a backward chaining search strategy is not well 

suited to the task of finding such solutions. 

Comparing the reductio solution with the finite failure demonstration of figure 6.11 

we note that: The failure demonstration is simpler and therefore likely to be more 

readily understood as an explanation. Further, the failure demonstration appears as 

a subgraph of the reductio solution. We conjecture that this is the case generally, 

and that a procedure for translating failure demonstrations into reductio solutions is 

feasible. 

6.2.6 Allocating Computational Resources 

Meta language assertions may address the problem of allocating limited computational 

resources: 

Time: The user may wish to impose a time limit on a computation, or perhaps 

specify a time dependent search strategy. 
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Figure 6.15: .6.comp ? - rvpath(b, a) 

Space: Once memory is exhausted, rollback may be specified for the less promis­

ing partial solutions. For distributed memory implementations, advice for 

memory allocation may be given. 

Processors: Concurrent AND /OR search can exhibit genuine superlinear speedup. 

In practice worthwhile computational tasks need to be identified and allocated 

to the various processors with care. 

As an example consider .6.path with an arbitrary directed graph. We may wish to 

specify concurrent search by two processes, working in from the two endpoints of any 

given goal path. 

Vg Vn1 Vn2 goal(g,path(nt, n2))/\ground(n1)/\ground(n2):) 

:lp1 :lp2process(g,p1)/\strategy(pl, LeftToRight)/\ 

process(g,p2)/\strategy(p2, RightToLeft) 

The two search strategies LeftToRight and RightToLeft are simple variants of the edge 

following search illustrated in section 6.2.4 above. Once either of the processes reaches 

a decision, the other may be terminated on the grounds of duplication. This may be 

achieved by using the once/1 construct, also discussed in section 6.2.4. 

6.2. 7 Exploiting Models 

Models for a problem domain can be used to speed up computation in two ways: 
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Counterexamples: In his pioneering work, [Gelernter 59] used diagrams as coun­

terexamples for proposed theorems of geometry. This idea generalizes to mod­

els for any domain. Such testing against models may be specified in the meta 

language. 

Procedural Attachment: Efficient algorithms are known for many problems. As 

an example, many arithmetic functions are commonly provided for directly 

in machine hardware. Such procedural attachment may be specified declara­

tively. 

For the example path problem, it may be the case that even carefully controlled 

deduction does not yield acceptable performance. As a last resort, we can write a 

procedure, call it PathFinder, to decide these goals. We then specify a procedural 

attachment in the meta language. 

Vg Vn1 Vn2 goal(g,path(n1, n2))/\ground(n1)/\ground(n2) :J attach(g, PathFinder) 

6.2.8 Specifying Communication 

The relationship between the computation state and any interaction with the system's 

environment may be specified by assertions in a meta language. The facilities that may 

be provided include: 

Read/Write: Prolog programmers have found it useful to embed various input and 

output requests in their programs. We can specify that a given input/output 

action take place once the computation state satisfies a given condition. 

Debugging: The idea of declarative debugging can be realized in the introspective 

framework. A debugging action is specified to occur in response to the given 

condition being met by the current computation state. 

Carelessness in pruning the search space may result in unexpected failures. In the 

case of our example path problem we can attempt to diagnose the problem thus: 

Vg Vn1 Vn2 goal(g,path(n1, n2))/\ground(n1)/\ground(n2)/\jailed(g) :J 

display(g) 

The display/1 construct will generate a failure demonstration display, such as the one 

illustrated in figure 6.11. 



Chapter 7 

Conclusion 

The formalization of the notion of a logically sound argument, as a natural deduction 

proof, offers the prospect of a computer program capable of constructing such argu­

ments in response to queries. We have presented a constructive definition for a new 

subclass of natural deduction proofs, called atomic normal form (ANF) proofs. We 

have argued that this is the right framework for mechanical reasoning on both proof 

theoretic and computational grounds. 

7.1 Proof Theory 

ANF is a well motivated normal form for natural deduction. In chapter 2, we demon­

strate that ANF proofs form a deductively complete subclass of the normal form proofs 

of [Prawitz 65]. In subsequent sections we propose that both these normal forms be 

strengthened as follows1: 

No Vacuous Applications of Inference Rules: Every occurrence of the exis­

tential elimination, or elimination and negation introduction rules must dis­

charge assumptions. See sections 4.5.2, 4.5.3 and 4.6.1. 

Absurdity Rule: The absurdity rule may only occur as the terminal rule appli­

cation for: 

• the entire deduction, 

• a case argument (minor premiss of disjunction elimination), 

• premiss of implication introduction 

See section 4. 7. 

1 These remarks address the intuitionistic and classical systems. Some modifications are required for 

minimal logic and other subsystems. 
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Discharging Assumptions: Assumption discharge is to occur as early in the 

proof as is permitted by the discharge constraints. See sections 4.4.1 and 

4.5.2. 

Loop Free: The proof must be loop free. See section 5.2.4. 

These additional constraints do not affect what is deducible in the intuitionistic or 

classical systems. Further, any proof that does not observe these constraints, violates 

the claim: 

"A deduction in normal form proceeds from the assumptions of the 

deduction to the conclusion in a direct and rather perspicuous way without 

detours" - [Prawitz 65] p 8. 

We therefore submit that there is a need for a strong normal form for natural deduction, 

and that these constraints be incorporated. 

In section 3.4.1 we propose that, for the purpose of deduction, an assertion or 

query formula be represented by its inferential extension. Further, each inferential 

extension may be read as a set of derived rules of inference. These derived rules take 

on an interesting form that incorporates the extensions of [Shoesmith & Smiley 78] and 

[Schroeder-Heister 84], as described in section 5 .1. 

The notion of constructed non-demonstrability, introduced in section 6.1.3, 1s an 

important contribution of logic programming research to proof theory. In section 6.2.5 

we conjecture that failure demonstrations can be translated to reductio proofs. 

7. 2 Languages 

A wide range of languages and logics are available as natural deduction systems. In 

chapter 4, we present a spectrum of subsystems of the classical first order calculus. For 

these systems the ANF formulation exhibits a simple tradeoff between the expressive 

power of the language in which a problem is expressed and the deductive machinery 

required to solve that problem. This analysis offers simple, natural deduction based 

accounts for many current logic programming languages. It also reveals the deduc­

tive machinery required for the implementation of more expressive logic programming 

languages. 

In chapter 4 we also raise possible objections to the application of classical principles 

of reasoning in automated theorem proving: 

Excluded Middle: The rejection of excluded middle distinguishes the intuition­

istic from the classical reasoner. 
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Absurdity Rule: Rejection of the absurdity rule is required for coherent reasoning 

in the presence of contradictions. 

The application of these principles can be computationally extremely expensive. This 

point is implicitly acknowledged by the many mechanical reasoners that fail to imple­

ment them. Much more research on computationally tractable logics in this neighbour­

hood is required. 

7.3 Computation 

ANF inference engines make use of well known computational techniques. We introduce 

the computation, as AND /OR graph search, in section 3.3.3. An alternative view of the 

computation, as deduction employing derived rules of inference, is presented in section 

5.1. The fundamental operation of the ANF inference engine is the unification of two 

atomic formulae, see sections 4.2.2 and 5.2.3. 

Chapter 5 investigates the application and extension of logic programming imple­

mentation technology for ANF inference engines. The application of truth maintenance 

techniques is developed in sections 1.8 and 5.5.3. 

The exploitation of parallel computing hardware for logic programming is an area 

of much current research. The AND/OR graph search model is related to the popular 

AND/OR process model of [Conery 83]. Implementation data structures, based on 

the AND/OR graph search model are analysed in section 5.5.3. The introspective 

architecture, described in section 6.2, is designed to support parallel evaluation. 

Our investigation is confined to the classic forward and backward chaining search 

strategies. As pointed out in section 5.2, such strategies do not constitute the best 

possible use of all the available search constraints. Relevant deduction problems, are 

particularly poorly served by these strategies. Work is needed to identify more appro­

priate search strategies for these problems. 

The representation of arguments as natural deduction proofs provides a good foun­

dation for research on efficiency gain by emulating human reasoning abilities. A char­

acteristic of human reasoning in a particular domain is the incremental accumulation of 

reasoning expertise for problems in that domain. Two related aspects of this expertise 

are: 

Lemmas: derived rules of inference, carefully selected for their expected utility in 

solving problems. 

Analogy: the recognition of a class of problems which may be solved by the in­

stantiation of a common proof schema. 
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7.4 Visualization 

The visualization of proofs, failure demonstrations and search spaces is considered 

in section 6.1. A natural deduction proof can be understood as an argument that 

leads from a set of premisses, by way of simple rules of inference, to the conclusion 

of interest. ANF extends this explanative power of natural deduction. The argument 

may be presented in terms of derived rules of inference, each justified by a particular 

input formula. 

In section 6.2 we propose that control and other pragmatics be formulated as de­

duction problems at the meta level. An advantage of this approach is that the work on 

visualization can be carried over to explanation, testing and debugging of these meta 

level functions also. 

Visualization of the process of search is discussed only very briefly. Much more 

work is needed to identify useful schemes here. 

7.5 Introspection 

We present an introspection based architecture for ANF inference engines, see sections 

1. 7 and 6.2. The architecture is aimed to exploit both parallel computing hardware 

and the perspicuous natural deduction representation of reasoning to overcome the 

combinatorial and other practical problems faced by computational logic applications. 

The model represents an extension of the schema [Kowalski 79a] 

Algorithm = Logic + Control 

The new schema looks something like this 

Algorithm Deduction Problem + 
Search Control + 
Resource Allocation + 
Computational Models + 
Input/ Output 

Each of the components on the right hand side represents a distinct logical theory. 

The deduction problem consists of a set of axioms and a query formula expressed in 

an object language. The remaining theories are expressed as sets of axioms in a meta 

language. 

Our experiments have been confined to a Horn meta language and the simple con­

ceptualization of the computation state as a frontier of atomic goals. The conceptual­

ization and some of the meta predicates were borrowed from current logic programming 
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languages. Even within this restricted framework we were able to identify several useful 

new constructs. 

The efficient implementation of meta level inference is crucial for achieving accept­

able performance for implementations of the architecture. The introspective model 

is based on the notoriously expensive operations of pattern matching, associative re­

call and logical deduction. More work is needed to determine the practicality of this 

approach. 
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