
Computational Natural Deduction

Seppo R. Keronen

A thesis submitted for

the degree of Doctor of Philosophy

of the Australian National University

© Seppo R. Keranen

November 1991

Chapter 4

Expressive Power and Inference

Normal form natural deduction exhibits a simple correspondence between the expressive

power of a language and the deductive machinery required for its implementation. A

hierarchy of deduction systems properly contained in the deduction system for classical

logic is explored incrementally. The important languages encountered along the way

are identified. A short detour, to survey negation as failure and relevant deduction,

concludes the chapter.

4.1 Containment and Conservative Extension

The normal form and atomic normal form formulations of deducibility for classical

logic exhibit two important containment properties. The first of these is the simple

correspondence between the expressive power of a language and the introduction and

elimination rules required to solve deduction problems stated in that language.

Sublanguage Property: For any solution :E of the deduction problem q,:

• :E contains instances of introduction rules only for those operators that

appear as the primary operator of a goal subformula of q,.

• :E contains instances of elimination rules only for those operators that

appear as the primary operator of an assertion subformula of q,.

The second containment property extends the first, centering on the acceptance or

rejection of the absurdity rule and excluded middle as acceptable principles of reasoning.

Sublogic Property: The rejection of the rule of excluded middle (Mx) from the

classical system yields a system for intuitionistic logic [Dummett 77]. The

rejection of the absurdity rule (#X) from the intuitionistic system yields min

imal logic [Johansson 36].

64

CHAPTER 4. EXPRESSIVE POWER AND INFERENCE 65

c MX (excluded middle)

I #X (ex falso quodlibet)

M .-vi, .-vE

p
1\E, VE,3E

v :::n, VI

e VI

H 1\I, 3I, :::)E, VE

Figure 4.1: key to languages and deduction systems

In this chapter, we consider the implementation of inference engines for a hierarchy

of properly contained subsystems of C:2;, the system for atomic normal form solution in

classical logic. The containment of systems and corresponding languages is illustrated

in figure 4.1. This hierarchy consists of the languages:

H: Horn language

e: positive Edinburgh Prolog language

V: positive definite language

P: positive language

M: minimal logic

I: intuitionistic logic

C: classical logic

The Horn language system is the simplest, requiring just four rules of inference.

Each of the following systems is a conservative extension of the preceding one obtained

by adding the inference rules indicated in figure 4.1.

4.2 The Horn Language

The deduction system 1-i:E, for ANF solutions for problems posed in the Horn language,

is shown in figure 4.2. The Horn language occupies a special niche in resolution refuta

tion proof theory [Kowalski 79b]. This is also the case for the ANF formulation, which

supports the reading of a Horn formula as a rule of inference, as discussed below.

CHAPTER 4. EXPRESSIVE POWER AND·INFERENCE

introduction component

G H
-1\I---

(G/\H)
~I

G(X)
-3I---

(3xG(x))
~I

structural rule

B
=CUT===

(A)
~A

x variable

X parameter

e substitution

elimination component

G-:JF G
-::>E---

F

VxF(x)
-\IE---

F(X)

8
where:

AE>=BE>

A, B atomic formula

E, F assertion formula

G, H goal formula

~I introduction component

~E elimination component

~A atomic normal form solution

Figure 4.2: system Hr. -atomic normal form solution for the Horn language

4.2.1 Horn Formulae and Their Extensions

66

A feature of the Horn language, and many of the subsequent languages, is that assertion

and goal subformulae have distinct syntax. For these dual syntax languages we use the

syntactic variables E and F to stand for assertion formulae, and G and H for goal

formulae. The syntax of Horn axioms and queries is illustrated in figure 4.3. The large

prefix universal (existential) quantifiers in this figure denote the universal (existential)

closure of the prefixed formula- that is, the formulae are in prenex form. Notice that

although this conventional notion of Horn formulae requires prenex quantification, the

deduction system Hr. does not.

The inferential extension of a Horn language axiom is illustrated in figure 4.3 (a),

the inferential extension of a query in (d). For the purpose of AND/OR graph search

CHAPTER 4. EXPRESSIVE POWER AND INFERENCE 67

we can prune away the input formula resulting in the simpler forms (b) and (e). For

rule based inference, (b) and (e) may be represented as the derived rules of inference

(c) and (f) respectively. The prime notation in the figure indicates that applications of

the universal elimination (\iE) and existential introduction (31) rules have replaced the

bound variables of the input formula by parameters.

-AXIOM-

F Ai A~ ··· A~ Ai A~ ··· A~

~ tree w Ai A~ · · · A~

B'
B' B'

(a) (b) (c)

Ai A~ ··· A~ Ai A~ · · · A~

w w Ai A~ · · · A~

G
-QUERY-

(d) (e) (f)

Figure 4.3: inferential extensions of Horn axioms and queries

The simple correspondence between Horn formulae and derived rules of inference,

illustrated in figure 4.3, supports a proof theoretic view of a Horn problem. Read the

input formulae, not as formulae, but as rules of inference or the clauses of an inductive

definition of provable atomic formulae. This view is proposed and extended towards

more expressive languages by [Hallnas & Schraeder-Heister 90].

4.2.2 CUT and The Quantifier Rules VE and 31

It is time to consider in detail the role played by parameters and unification in the

process of constructing solutions. The story begins here and is continued, when the

other two quantifier rules \i1 and 3E are adopted.

A solution is a composition, by application of the CUT rule, of renaming instances

of search components. Applications of \iE and 31 replace the bound variables of input

formulae by parameters, so that only quantifier free atoms appear as premisses and

conclusions of components. The cut principle requires that its premiss and conclusion

formulae be syntactically identical. The new, more procedural version of the principle

CHAPTER 4. EXPRESSIVE POWER AND INFERENCE 68

is expressed by the clause:

Given the two components :E, and (A) and a substitution E> such that (AE> =BE>)
B :E2

then (=cuT:·)e is a component.
(A)
:E2

The VE and :31 rules allow for any term whatever to replace a parameter. Given

the two quantifier free atoms A and B we want to find a substitution (of terms for

parameters) E> such that AE> and BE> are the most general syntactically identical

substitution instances of A and B. That is, E> is the most general unifier (mgu) of A

and B.

Most General Unifier (mgu): The mgu E> of the two atoms A and B is a set

of equality assertions:

E> satisfies the following constraints:

Unifier: AE> and BE> are syntactically identical.

Most General: Any common substitution instance of A and B IS also a

substitution instance of AE> (BE>).

Solved Form: Each Xi is a distinct parameter that occurs in either A or B.

Each ti is a term containing parameters that occur in either A or B but

none that occur as an Xi.

The above constraints enable efficient composition of mgu's, a question considered

in detail in chapter 5. The computation of an mgu given A and B has been extensively

studied since the pioneering work of [Robinson 65], see for example [Lassez et al. 88].

4.3 The Positive Edinburgh Prolog Language

The logic programming language Prolog developed in the proof theoretic context of

resolution refutation for the Horn language. Prolog implementors have, however, recog

nised the relative simplicity of the deductive machinery required for a richer goal syntax.

Two syntactic extensions, negated and disjunctive goals were admitted by the classic

Edinburgh dialect [Clocksin & Mellish 81]. The negation as failure (NAF) extension is

discussed separately in section 4.9. The disjunctive goals extension is taken up here.

CHAPTER 4. EXPRESSIVE POWER AND INFERENCE 69

4.3.1 The Or Introduction Rules VI

The sublanguage property states that just the introduction rules for the logical oper

ators appearing in the goal syntax are required for a complete normal form deduction

system. Thus to extend the deduction system 1{y:, for disjunctive goals, we simply add

the two or introduction rules of figure 4.4 to the existing rules.

G H
-vr--- -vr---

(GVH) (GVH)
~I ~I

Figure 4.4: or introduction rules (VI)

The form of the inferential extensions for the extended syntax is illustrated in figure

4.5 (a) and (d). An inferential extension still consist of a single search component. The

search component still has a single atomic conclusion. However, a search component

may now contain OR branches, giving rise to multiple solution components. Each

solution graph of the AND/OR graphs (b) or (e) is a derived rule of inference (c) or

(f), featuring a subset of the atomic premisses.

Edinburgh Axiom F: V A1 oA2o ... oAn :::> B (where: o is 1\ or V)

-AXIOM-

p Ai A~ ··· A~

~ tree tree B'
B' B'

(a) (b) (c)

Edinburgh Query G: 3 A1 oA2o ... oAn (where: o is 1\ or V)

Ai A~ ·· · A~ Ai A~ · · · A~

G
-QUERY-

(d) (e) (f)

Figure 4.5: inferential extensions of Edinburgh axioms and queries

The procedural semantics of Prolog dictate that search component AND/OR trees

be traversed left to right with backtracking to the most recent OR node on goal failure.

For a more focused discussion on the relationship between logic programming and

CHAPTER 4. EXPRESSIVE POWER AND INFERENCE 70

atomic normal form natural deduction see [Keronen 91].

4.4 The Positive Definite Language

In this section we consider the deductive machinery required for a full positive goal syn

tax. The universal quantifier introduction (VI) and implication introduction (::::n) rules

are added to the Edinburgh system. This language is definite in the sense that disjunc

tive and existentially quantified assertion formulae are not admitted. The conclusion

of a rule derived from a positive definite axiom is still an atomic formula.

4.4.1 The Quantifier Introduction Rule VI

G(X8)
-vr---

('v'xG(x))
~I

Figure 4.6: universal quantifier introduction rule (VI)

The universal quantifier introduction rule VI replaces the bound variable x in the goal

VxG(x) by a parameter xs, resulting in the subgoal G(Xs), see figure 4.6. The super

script S is used to distinguish the parameter generated by application of this rule as a

Skolem parameter. Unlike the parameter generated by an application of 3I, a renamed

Skolem parameter xis is subject to the following two constraints on its use:

Skolem Constraint: xis is to appear literally in the solution. The mechanism to

enforce this constraint is simply to treat the parameter as if it were a constant

symbol, identical only to itself [Skolem 28]. That is, a Skolem parameter may

only appear on the right hand side of any element Xi = ti of an mgu. As an

example, the mgu in figure 4.7 (a) violates this constraint.

Dependency Constraint: Xf may not appear in any assumption on which G(Xf)

depends. Assumptions may be present once any of the rules ::::n, "-'I, 3E or VE

are admitted. In general terms, enforcing the dependency constraint requires

that mgu elements of the form xi = ~s be checked to determine that the VI

rule responsible for ~s occurs low enough in the solution, so that all assump

tions in which Xi occurs have been discharged. As an example, the mgu in

figure 4. 7 (b) violates this constraint.

CHAPTER 4. EXPRESSIVE POWER AND INFERENCE 71

----'(1)

p(X1) 8
=CUT= X1 = Yi
P(Yi8)

-AXIOM- -VI---

p(a) s
=CUT= Xl =a
p(Xf)

\:fyp(y)
-:>I (1)

p(XI):Nyp(y)
-vr-- -3I------

Vxp(x) 3x (p(x):Ny p(y))
-QUERY- -QUERY-----

(a) (b)

Figure 4.7: Skolem parameter constraint violations

4.4.2 The Implication Introduction Rule :JI

The deduction problem~ ?- (F:JG) is reduced by the implication introduction rule,

shown in figure 4.8, to the problem~ U {F} ?- G. That is, the antecedent F is

an assumption or temporary axiom that may be used for the purpose of deriving the

conclusion G only.

[F]
G

-::>I---
(F:JG)

:EI

Figure 4.8: implication introduction rule (:JI)

Inferential extension may now contain assumption search components arising from

the antecedents of goal implications, as illustrated in figure 4.9 (a) and (d). For each

inferential extension there is a set of derived rules of inference of the form (c) or (f).

The intended reading of these rules is: For each premiss Akx of the derived rule a set

of derived rules Rkx is available as assumptions. This generalization of the notion of a

rule of inference is explained in more detail in section 5.1.

Notice that the inferential extension of a formula still consists of search components

with a single atomic conclusion. Hence the natural deduction formulation retains the

definite character of the deduction problem. In contrast the resolution refutation proof

theory is more severely affected. While any Edinburgh formula can be rewritten as a

logically equivalent set of Horn clauses, once implications as goals are admitted we are

outside Horn clause resolution. As an example, the axiom (F:JG):JH rewrites to the

set of clauses { FV H, "'GV H}. The multiple positive literals of the resulting clauses

call for a full resolution refutation strategy [Chang & Lee 73].

Though less severe than in the case of resolution refutation, there is still a compu

tational price to be paid for the expressive power of implications as goals. The search

process is complicated by the presence of assumptions. The set of search components

CHAPTER 4. EXPRESSIVE POWER AND INFERENCE

Positive Definite Axiom F:

-AXIOM-

E A 1• ···A'.

~ tre

B'.
.J

p A~l A~2 . . . A~n

~ tree

B'

(a)

VG-::;B

E A 1. ···A1•

~ tree

B'.
.J

A~l A~2 ... A~,

~
~

B'

(b)

--(i)

Rkl

B'

(c)

72

A'
kl (i)

Positive Definite Query G: any formula constructed using operators 3, 'V, A, V and -::1

E A 1• ···A'.

~ re

B'.
.J

G
-QUERY-

(d)

E A 1• ···A'.

~ re

B' .
. J

(e)

--(i)

Rkl

(f)

A'
kl i)

Figure 4.9: inferential extensions of positive definite axioms and queries

available for constructing the choice point for a given goal atom now depends on its

subgoal context. Recall that this context is determined by the path from the query

to the goal atom in question. This raises the following challenges for inference engine

implementations:

• A choice point cannot be completely constructed until the path to the query is

known. A simple approach to this problem is to employ backward chaining search

in the compose phase of the inference engine.

• Efficient logic programming engines construct choice points, as far as possible

at compile time. In the presence of implications as goals, such a mechanism

needs to be extended to incorporate the lookup of search components from a tree

structured database at run time.

• The various search components making up an inferential extension may share

common parameters, as well as containing parameters to be renamed for each

CHAPTER 4. EXPRESSIVE POWER AND INFERENCE

A'.1 A'. · · · A'.k Z Z2 Z

AND tree

OR tree

B' n

(a) (b)

Ai1 Ai2 · · · Aik

B;

(c)

Figure 4.11: components and derived rule with /\E

4.5.2 The Existential Elimination Rule :JE

74

The existential elimination rule 3E, shown in figure 4.12, reduces an assertion 3x F(x)

to the quantifier free assertion F(X8). Like the VI rule, this rule generates a Skolem

parameter, subject to both the Skolem and dependency constraints.

:EE

3xF(x)
-3E---

F(X8)

Figure 4.12: existential quantifier elimination rule (3E)

As we moved from the orthodox formulation of natural deduction proof (chapter 2)

to the more computational notion of a solution (chapter 3), we adopted new notation

for existential elimination. Figure 4.13 (a) illustrates the orthodox notation for an

application of existential elimination, and (b) our computational notation for the same.

The transformation from the form (a) to the form (b) can always be performed, provided

the existential elimination discharges its assumption. That is, the new notation does

not permit vacuous applications of the rule. The new notation is also more convenient

in connection with the AND/OR graph search paradigm.

Figure 4.14 displays an example solution using the orthodox notation (a) and the

computational notation (b). As a disadvantage of the new notation, the assumption

does not stand out as well here as it does in the orthodox notation. Figure 4.15

illustrates the need to carefully discharge assumptions and to check the dependency

constraint to avoid unsound inference.

The discharge of the assumption is a simple deterministic operation. To ensure

completeness one must discharge the assumption as high up in the solution graph as

possible. A simple implementation may traverse down the solution, applying substi

tutions, until a formula occurrence that does not contain the Skolem parameter in

CHAPTER 4. EXPRESSIVE POWER AND INFERENCE 75

~

[F(X)] 3xF(x)
(i)

~ ~1 -3E

(F(X5))

3xF(x) G ~1
-3E (i)

(G) (G)
~2 ~2

(a) (b)

Figure 4.13: notation for existential elimination

-AXIOM--

-----(1)
3y'tfxp(x,y)

-3E (1)

Vxp(x,Y) Vxp(x,Y;s)
-VE--- -VE---

p(Xz, YZS) s s
=CUT= (Xz = Xl)1\(Yi = yZ)

p(X,Y)
-AXIOM-- - 3I ---

3y'tfxp(x,y) 3yp(X,y)
- 3E (1)

p(Xf, Yi)
- 3I (1)

3yp(X,y) 3yp(Xf,y)
-vr---- -Iii

Vx3yp(x,y) Vx3y p(x, y)
-QUERY-- -QUERY--

(a) (b)

Figure 4.14: existential elimination representation example

question is encountered. A more efficient implementation would associate discharge

requirements and capabilities with parameter occurrences in solution components to

avoid the need for traversing the solution graph.

-AXIOM--

'tfx3yp(x,y)
-VE----

3yp(Xz,y)
-3E (1)

p(Xz, y;s) s s
=CUT= Xz = xl ' Yi = Y2
p(Xf, Yi)
-\ii---

'tfx p(x, Yi)
- 3I (1)

3y't/xp(x,y)
-QUERY--

Figure 4.15: dependency constraint violation

4.5.3 The Or Elimination Rule VE

The or elimination rule VE of figure 4.16 may be read as: The assertion EV F gives

rise to two possible worlds, one contains E, the other F. More generally, n binary

disjunctions give rise to 2n possible worlds. Any goal formula G is to be demonstrated

CHAPTER 4. EXPRESSIVE POWER AND INFERENCE 76

for all worlds. In the presence of disjunctive assertions, a solution for query G consists

of a set of case arguments. Each case argument establishes G for a subset of worlds.

~E

EVF
-vE---

E F

Figure 4.16: or elimination rule (VE)

For the same reasons as in the case of the :lE rule, we employ an alternative no

tation for the computational notion of or elimination. The transformation between

applications of the orthodox natural deduction rule and our computational rule is il

lustrated in figure 4.17. Note that natural deduction (even in normal form) permits

vacuous applications of the VE rule, but that such application cannot be expressed in

the new notation. For a different perspective on multiple conclusion rules of inference

see [Shoesmith & Smiley 78].

~

[E] [F] EVF
~ ~1 ~2 -vE (i)

---- (E) (F)
EVF G G ~1 ~2

-vE --(i) --(i)

(G) (G) (G)
~3 ~3 ~3

(a) (b)

Figure 4.17: notation for or elimination

In the presence of the VE rule, search components contain AND related atomic con

clusions. We have now reached the most general form for search components, illustrated

in figure 4.18.

The word "AND", used above to describe the relationship between conclusion

atoms, is not totally satisfactory. It is true that a complete set of case arguments

corresponds to a solution graph of the search space when just one disjunctive assertion

occurs in the solution. There are two ways in which this model fails to reflect the

application of disjunction elimination more generally:

• Any one case argument may use only one of the disjuncts from any one solution

component instance. The example in figure 4.19 illustrates an unsound solution,

resulting from a failure to observe this condition.

CHAPTER 4. EXPRESSIVE POWER AND INFERENCE 77

A~ A~ A' A~l A~2 ... A~k m

AND tree

A~l A~2 ... A~k

AND tree
Bjl Bj2 · · · B}t

B' 1 B' 2 B' n Bj1 Bj2 · · · Bj1

(a) (b) (c)

Figure 4.18: components and derived rules with VE

{ aVb } ?- a/\b

Figure 4.19: failure to separate cases

• A solution must contain case arguments to cover all worlds generated by disjunc

tive assertions. Figure 4.20 illustrates a failure on this count.

aVb

cVd

(a/\c) -:J f
(b/\d)-:) f

?- f

Figure 4.20: failure to cover all cases

The set of worlds to be covered by case arguments is generated as the cartesian

product of sets of disjunctive conclusions. For the example of figure 4.21 there are the

four worlds:
a b

c w1 w2

d w3 w4

There are three case arguments in figure 4.21. The leftmost case argument estab

lishes w1 as inconsistent. The middle case argument concludes f for the world w2. The

rightmost case argument concludes f for the two worlds w3 and w4. In contrast, the

CHAPTER 4. EXPRESSIVE POWER AND INFERENCE 78

unsound case argument in figure 4.19 used more than one disjunct from an axis of such

a diagram, while the set of case arguments in figure 4.20 failed to cover the two worlds

w2 and w3.

aVb

cVd

rv(al\c)

(bl\c)~f

d~f

?- f

Figure 4.21: or elimination example

The above discussion suggests that we recognise the supervision of case arguments

as a separate subtask for the inference engine. This supervisory level of the inference

engine sets up the case argument context, being a set of single conclusion derived rules,

and calls for a case argument search in that context.

4.6 Minimal Logic

The addition of the introduction and elimination rules for the negation operator (rv) to

the positive system results in a system for minimal logic [Johansson 36]. The elimina

tion rule for negation constitutes a simple definition of the notion of contradiction. The

subsequent use that is made of contradiction in deriving new conclusions is more con

troversial. The introduction and elimination rules for negation highlight the inadequacy

of pure forward or backward chaining search strategies for compose.

(G) :EE :EI

-~I rvF F (rvG) -~E

:EI #

(a) (b)

Figure 4.22: negation introduction (rvi) and elimination (rvE) rules

4.6.1 The Negation Rules rvi and rvE

The elimination rule for negation, shown in figure 4.22 (b), detects a contradiction(#),

given that both a formula and its negation have been established. The corresponding

introduction rule, shown in (a), can be viewed as an amalgam of two principles:

CHAPTER 4. EXPRESSIVE POWER AND INFERENCE 79

Reductio ad Absurdum: A familiar method of argument to establish that a

negation formula rvG holds is by demonstrating that a contradiction can be

derived from the assumption G together with other current assumptions and

axioms.

Absurdity Principle: Adherence to the semantics of classical logic demand that

any formula whatsoever be derivable from a contradiction.

The reductio ad absurdum principle provides us with two points, the assumption

G and the conclusion #, around which to construct a solution. Let us distinguish this

as a new kind of deduction problem.

Relevant Deduction Problem: Given a set of required axioms r and a set of

ordinary axioms~' is there a proof of G in the systemS? In symbols:

r: ~ ?- c
s

Any solution to the deduction problem

r u ~ ?- G
s

that features every member of r as a premiss is a solution for the corresponding

relevant deduction problem.

Neither the pure backward nor forward chaining search strategy makes full use of

the constraints on premisses and conclusion. Notice that this point can also be made

for the implication introduction rule. The absurdity principle is discussed in the next

section.

4. 7 Intuitionistic Logic

Intuitionistic deducibility requires an implementation of the absurdity principle for any

goal formula, not just the negated ones. A first reading of the absurdity rule, shown

in figure 4.23, might then be as a kind of introduction rule to be applied for all goal

formula occurences.

-#X---

(G)
:EI

Figure 4.23: absurdity rule (#x)

Given that the task is to find solutions to a deduction problem ~ ? - G, application

of the absurdity rule can, however, be reduced to the following cases:

CHAPTER 4. EXPRESSIVE POWER AND INFERENCE 80

• Check the consistency of the original problem theory .6.. In the case that an

inconsistency is found all queries receive an affirmative answer, until the theory

is repaired.

• Given the consistency of .6., a contradiction may still be derivable in some subgoal

or case argument contexts. For each additional assumption we call for a search

for contradiction derivable using the assumption in question. Notice that this is

another example of a relevant deduction problem.

Many (most) theorem prover implementations do not perform the first of the above

checks, preferring to assume the consistency of .6.. An example of this is the set of

support strategy for resolution refutation systems [Chang & Lee 73].

4.8 Classical Logic

A system for classical logic results if any one of the constructs shown in figure 4.24 is

added to the intuitionistic system. These constructs are:

G G

(a) (b) (c) (d)

Figure 4.24: excluded middle

(a): Axiom schema for excluded middle,

(c): rule of classical reductio,

(d): rule of double negation.

(b): rule of dilemma,

In the presence of any of these alternatives the subformula property is not strictly

observed. To see this, consider the deduction problem

{} ?- (a~b)V(b~a)

There is no intuitionistic solution for this problem. The classical solution therefore

must include at least one application of the excluded middle principle, and therefore a

negated formula occurrence. No negated subformulae, however, occur in the statement

of the problem. One of the possible classical solutions is shown in figure 4.26.

CHAPTER 4. EXPRESSIVE POWER AND INFERENCE

rules for moving in negations

:EE
....,a,H "'(E/\F)

-"-"\I -"-"\I -"-"\E

(.....,(G/\H)) (.....,(G/\H)),E,p
:Er :Er

:EE :EE
....,a,H,(EVF) rv(EVF)

-"'VI -"'VE -"'VE

(.....,(GVH)),E,p
:Er

:EE :EE

G,H,(E:>F),(E:>F)
-~:>I -~::>E -~::>E

(.....,(G:>H)) E rvF
:Er

:EE

3x(.....,G(x)),(\fxF(x))
-~vr -~vE

(.....,(\fxG(x))) 3x(.....,F(x))
:Er

:EE

'v'x(.....,G(x)),(3xF(x))
-~3I -~3E

("'(3xG(x))) 'v'x(.....,F(x))
:Er

:EE

G,.....,p
-~I -~E

("'"'G) F
:Er

rules for negative literals

(A)
:EA

(

=MX) (A) ("'B)
:EAl :EA2 E) where:

G G AE>=BE>

x - variable

e - substitution

A, B - atomic formula

E, F - assertion formula

.....,B B
-~E---

G, H - goal formula

:Er - introduction component

:EE - elimination component

:EA - (partial) solution

Figure 4.25: extended rules for negation

81

CHAPTER 4. EXPRESSIVE POWER AND INFERENCE

--(1) --(2)

rvb b
-~E---

-#X-----(1)

b a
- ::JI--(2) -:)1-

a:Jb b:Ja
-MX-- -vr--- -vr---

b V rvb (a:Jb)V(b:Ja) (a:Jb)V(b:Ja)
-vE--------------(1)

(a:Jb)V(b:Ja)
-QUERY--

Figure 4.26: excluded middle example

82

The direct computational interpretation of any of the rules (b)~(d), as a kind of

introduction rule for any formula whatever, suffers from serious combinatorial problems.

Also, a literal implementation of alternative (a), that is the presence of all formulae of

the form FVrvF as axioms, is not possible.

An incomplete implementation relying on recognising occurrences of complementary

subgoal literals is suggested by consideration of the RGR rule of [Nilsson 80]. Well

known equivalences of classical logic, enable any formula to be rewritten so that the

negation operator applies only to atoms. This operation of moving in negations is

part of the process for translating formulae into clausal form for resolution. These

equivalences may be included in our system as rules of inference, as shown in figure

4.25. As a result of this extension the absurdity reasoning called for by negation

introduction is confined to atoms, as indicated by the special rvi rule in the figure. The

special MX rule may be applied whenever two complementary, unifiable atomic goals

arise in distinct case arguments.

4. 9 Alternative Languages

As seen above, classical and even intuitionistic natural deduction proof theories suffer

from severe combinatorial problems. We place the blame for this on the following two

features of these systems:

• The complexity of the search for contradictions.

• The complexity of applying excluded middle.

The Prolog family of logic programming languages avoids these problems. Negated

goals but not assertions are admitted, removing contradictions altogether. Also, these

languages are commonly not expressive enough to require application of excluded mid

dle. For example the deduction problem{}?- (a-:Jb)V(b-:Ja), discussed in the preceding

CHAPTER 4. EXPRESSIVE POWER AND INFERENCE 83

section, cannot be expressed. Many proposed extensions of these languages, for exam

ple [Gabbay & Reyle 84], are based on intuitionistic logic, again avoiding the need for

excluded middle.

Prolog has adopted the negation as failure (NAF) rule of inference [Clark 78] as

the proof theoretic device for negated goals. The NAF rule of inference fits neatly, as

a negation introduction rule, into a natural deduction framework. According to this

rule, the deduction problem .6. ?- "'G receives an affirmative answer given that there

is a failure demonstration, denoted by :!:Fin figure 4.27, for the problem .6. ?- G.

:EF

G
=NAF===

(""G)

Figure 4.27: negation as failure rule (NAF)

An alternative to the Prolog approach is to still admit negated assertions, but

to limit the search for contradictions. This can be done by rejecting the absurdity

principle. The rejection involves removing the absurdity rule and requiring that other

rules discharge assumptions. Conceived on the basis of philosophical objections to

classical logic, the so called relevant (relevance) logics follow this scheme. The systems

of [Anderson & Belnap 75] reject the absurdity rule, but retain excluded middle. The

intuitionistic relevant logic of [Tennant 87] rejects both principles.

Chapter 5

Inference Engines

The search for solutions is viewed within two paradigms:

• deduction employing derived rules of inference

• AND/OR graph search

The derived rules of inference paradigm provides a simple conceptual model of the

inference engine. AND/OR graph search, on the other hand, exposes issues relevant to

efficient search. The impressive implementation technology of the logic programming

language Prolog is examined. The extension of this technology to more expressive

languages and full AND/OR parallel evaluation is considered.

5.1 AND/OR Graphs and Derived Rules of Inference

We began chapter 3 with a brief examination of search strategies in the context of

the natural deduction rules of inference. The fact that this set of rules is systematic

and fixed (for a given logic) enabled us to eliminate them, and replace each axiom and

query by its inferential extension. In chapter 4 we saw that it is possible to think of the

AND/OR graph, that is an inferential extension, as representing a set of derived rules

of inference. Consequently, we now have two further perspectives on the search task:

Deduction employing derived rules of inference: Subgraphsofinferentialex

tensions correspond to derived rules of inference. Hence, search can be viewed

in the context of reasoning within a deduction system consisting of a set of

such derived rules.

AND/OR graph search: The search space for solutions consists of AND/OR

graph fragments (renamed search components) connected by CUT rule in

stances. A solution to the deduction problem at hand is a solution subgraph

of the AND/OR search space.

84

CHAPTER 5. INFERENCE ENGINES 85

A derived rule of inference is a generalisation of the notion of inference rule, as

presented in chapter 2. The natural deduction rules are all instances of the schema

shown in figure 5.1 (a). Such a rule leads from a set of premiss formulae {F1 ... Fn}

to a single formula G as conclusion. The rule may also discharge assumption formulae

E1 ... En. In contrast, a derived rule, figure 5.1 (b), leads from a set of premiss formulae

{A1 ... An} to a set of conclusion formulae {B1 ... Bm}· The set of conclusions being

read disjunctively. Further, the assumptions that may be discharged are not formulae

but sets of derived rules R1 ... Rn.

--(i) --(i) --(i) --(i)

E1 En R1 Rn

F1 Fn A1 An
(i) (i)

G Bl··· Bm

(a) (b)

Figure 5.1: inference rule schemas

The set of derived rules produced by extend depends on the particular deduction

problem statement at hand. Further, as the search proceeds, the set of available rules

varies depending on subgoal and case argument context. The best we can do, a priori,

is to distinguish the three subclasses of derived rules illustrated in figure 5.2. Rules

drawn from each of these subclasses occupies a distinct niche in a complete solution:

--(i) --(i) --(i) --(i)

R1 Rn R1 Rn

A1 An
(i)

A1 An
(i)

B1··· Bm B1··· Bm

(a) (b) (c)

Figure 5.2: subclasses of derived rules

(a): A query rule has an empty conclusion, and is derived from the query formula.

All paths in a solution are terminated at the bottom by a query rule instance.

(b): A proper rule is derived from an axiom or query that contains implications or

negations as assertion subformulae.

(c): A fact rule has an empty set of premisses, and may be derived from an axiom

or query. All paths of a solution are terminated at the top by a fact rule

instance.

CHAPTER 5. INFERENCE ENGINES 86

Deduction systems, such as the above, that include extended forms of inference rules

have received some attention recently. [Shoesmith & Smiley 78] investigate the exten

sion to rules with multiple conclusions. [Schraeder-Heister 84] argues that rules that

discharge other rules as assumptions are a "natural extension of natural deduction".

The account of implementation techniques in this chapter relies on both the derived

rules and AND/OR graph search paradigms. The AND/OR graph view is strong for

many issues in search and representation. The derived rule view comes into its own

when we wish to present a simple user view of the inference engine, see chapter 6.

5.2 Search as a Constraint Satisfaction Problem

We take the definition of ANF solution graph of section 3.4.2 as a starting point for

the exploration of implementation issues. That definition consisted of the following five

constraints on the form of a solution graph:

• Query Relevance

• Axiom Relevance

• Resolved Choice

• Substitution Consistency

• Loop Freeness

As a first step towards computational realization we read this definition as a constraint

satisfaction problem. The remainder of this chapter deals with the problem of applying

these constraints constructively to the task of finding solutions.

Traditionally inference engines apply either forward chaining (axiom relevance) or

backward chaining (query relevance) elaborating a single partial solution at a time

(resolved choice) while maintaining full substitution consistency for the current partial

solution. The loop freeness constraint is often ignored. The Prolog inference engine,

to be described a little later, conforms to these conventions, and provides us with a

good point of reference. The following subsections examine the five constraints in more

detail.

5.2.1 Axiom and Query Relevance

Much of the discussion in this chapter will assume a backward chaining search strategy.

The factors that speak in favour of this approach are briefly these:

CHAPTER 5. INFERENCE ENGINES 87

• As illustrated in section 3.2, the query relevance constraint is built into backward

chaining strategies. Only those subgraphs of the search space containing the

query are explored.

• In cases where the search space is too large to permit exhaustive, uninformed

search, the generic backward chaining scheme can be specialised to incorporate

control knowledge. Backward chaining is conceptualised as simple goal reduction

with choice of subgoal and rule. This point is expanded in section 6.2.

• Backward chaining simplifies some implementation issues. For example the con

struction of complete choice points is possible, as the path to the query is always

known. Implementation techniques developed in the logic programming context

may be applied.

Backward chaining does not apply the axiom relevance constraint to limit search.

This problem is painfully obvious in the case of relevant deduction problems when

the conclusion is a contradiction, as is the case with reductio ad absurdum. Haridi

[Haridi 81] suggests that forward chaining should be adopted for these kinds of sub

problems. Note, however, that a forward chaining strategy does not make effective use

of query relevance. What is called for is a search regime that is sensitive to all avail

able constraints. A first step in this direction would seem to be to apply the relatively

expensive substitution consistency constraint incrementally. For some suggestions in

this direction see the work [Sickel 76] on clause interconnection graphs.

5.2.2 Resolved Choice

A spectrum of search strategies from depth first to breadth first is characterized by

the number of partial solutions maintained at any one time. Common practice is to

simplify implementation and maintain resolved choice by choosing the extreme depth

first end of the spectrum. The full breadth first strategy, at the other extreme, is often

impractical on combinatorial grounds. In section 5.5.3 we consider the implementation

of strategies in the middle ground, enabling the concurrent exploration of a number of

promising partial solutions. The following paragraphs set the scene in the context of

backward chaining search strategies.

The resolved choice constraint requires the selection of a single CUT instance from

each choice point. The term "backward chaining" refers to an abstract search process,

leaving unspecified the order in which either choice points or CUT rule instances within

them are to be selected. In the preceding sentence we have distinguished two kinds of

choice:

CHAPTER 5. INFERENCE ENGINES 88

Subgoal Choice: Select a subset of the subgoals for expansion from the current

set of partial solutions. In other words, given a set of partial solutions, select

a set of choice points. For sequential, one solution at a time implementations

both of these sets are singletons.

Rule Choice: Given a subgoal, select the derived rules to be applied from the set

of candidate rules. In other words, given a choice point, select a set of CUT

rule instances.

The above conceptual model of the choices faced by a search algorithm is commonly

found in accounts of the Prolog language. Prolog relies on the programmer to exploit his

understanding of a fixed choice algorithm to control the search process. In section 6.2,

encouraged by the success of this approach, we explore an alternative control paradigm

based on the same conceptual model.

5.2.3 Substitution Consistency

A simple extension of the composition of substitutions operation of [van Vaalen 75]

replaces a set of mgu's in solved form (see section 4.2.2) {81, 82, ... , 8m} with a

single mgu in solved form 8, such that for any term t

Composition of MGUs: Given a set of mgu's {81, 82, ... , 8m} in solved form

the following algorithm finds their composition if one exists and otherwise

halts with fail status.

step 1: Let 8 be 81 U 82 U ... U 8m. That is 8 is a set of equality assertions

{X1 = t1, X2 = t2, ... , Xn = tn}·

In order to reduce 8 into solved form repeat step 2 until no longer applicable.

step 2: Choose any pair of equality assertions (Xi = ti) and (Xj = tj), such

that the two parameters Xi and Xj are identical. If the two terms ti and

tj unify then replace the two assertions in 8 by the set of assertions that

is the mgu of ti and tj, otherwise halt with failure status.

Return 8 as the answer.

Notice that the above operation is associative, implying that there is no restriction

on the order in which unifiers from a solution graph are composed. The operation is

also incremental, in the sense that applications of step 2 of the above algorithm may

CHAPTER 5. INFERENCE ENGINES 89

be postponed. These freedoms are often not exploited by implementors to improve

performance. Composition of unifiers is typically the most expensive operation of an

inference engine implementation.

As discussed in chapter 4, the quantifier rules VI and :3E impose two further con

straints on substitutions:

Skolem Constraint: This condition can be maintained by restricting Skolem param

eters to appear only on the right hand side of mgu equality assertions.

Dependency Constraint: To maintain this condition it is necessary to check that

any VI rule occurrences do not rely on undischarged assumptions. A very

simple implementation can check the well formedness of a complete candidate

solution.

5.2.4 Loop Freeness

The normal form for natural deduction proofs constrains the form of subproof for major

premisses of elimination rules only. This leaves the door open for paths through minor

premisses containing multiple occurrences of the same subproblem. In the case of a "no

assumptions" language like Prolog a subgoal that is identical or subsumes a subgoal

lower down on the path to the query signals the presence of a loop. In the case that

assumptions are present, a sufficient additional condition for a loop is that the upper

subproblem not have more premisses available to it than does the lower one.

-AXIOM-

F F-::JE
-::>E----

-AXIOM

E-::JF

E
=CUT=

E
-::>E-----

F

(a)

Figure 5.3: proof loops

-AXIOM-

""F F
-~E---

=CUT=

-#X--

F

(b)

The potential for loops exists when occurrences of the elimination rules with minor

premisses, that is ::JE and "-'E are present. Figure 5.3 illustrates the simplest loop

elements. Notice that in the case of "-'E, the absurdity rule #X is also involved. The

first step in minimizing the cost of loop detection is to perform a loop check only when

multiple instances of components containing applications of these rules are present.

CHAPTER 5. INFERENCE ENGINES 90

5.3 Implementation Technology

The purpose of this section is to establish a point of reference for inference engine imple

mentation technology. Programs for solving deduction problems have been developed

in a number of distinct settings:

• Resolution refutation theorem provers.

• Question answering systems for deductive databases.

• Logic programming language implementations.

• Expert systems inference engines.

• Verification of the correctness of programs and hardware designs.

Despite the various demands of the intended area of application, many current

systems are based on a set of common elements:

• Backward chaining search is used to maintain query relevance. Some systems

incorporate a carefully limited forward chaining preprocessor.

• A single partial solution is explored at any one time, with backtracking on failure

or depth bound. An important exception is the processing of ground atoms by

database operations.

• Substitution consistency is maintained by a unification algorithm together with

clever representation schemes for terms instantiated by unification. Substitution

consistency is fully maintained for the single current partial solution.

Conforming to the above model, the logic programming community has largely

focused its attention on the development of implementation techniques for the Horn

language. First, recall that Horn clauses are mapped into Horn rules by extend. Sec

ond, recall that case arguments are derivations consisting of instances of Horn rules

only. These two relationships suggest that we adopt this work as a point of refer

ence. The remaining sections of this chapter explore implementation issues from this

perspective.

5.3.1 The Prolog Inference Engine

The following paragraphs point out the key elements of current logic programming sys

tems implementations. We focus on the structure sharing implementation technology

developed for the Prolog language. This section deals with the the pure Horn lan

guage only. This discussion is used as a starting point for a subsequent investigation

CHAPTER 5. INFERENCE ENGINES 91

of implementation techniques for more expressive languages. For more comprehensive

descriptions of current techniques see for example [A1t-Kaci 90], [Bruynooghe 82) and

[Campbell 84].

Prolog exploits the reading of sets of formulae as programming language procedure

definitions. This procedural semantics of Prolog determines that the AND/OR search

space be explored sequentially in left to right and depth first order. The stack based

representation of computation state, developed for procedural programming language

implementations, is used.

As an illustration, the partial solution of figure 5.4 (a) is represented by the data

structures in (b). These data structures can be divided into a static and dynamic

component:

Structure Store: The static structure of the Horn rules is kept here.

Stack: The structure and substitutions for the current (partial) solution are main

tained as a sequence of stack frames.

The current (partial) solution tree is mapped onto the stack in chronological order.

There is one stack frame for each occurrence of a Horn rule instance in the solution

being represented. A stack frame consists of a pointer to the Horn rule structure, a

pointer to a "parent" stack frame, a vector of bindings, as well as other information left

out of the figure for clarity. The vector of bindings contains one entry for each distinct

parameter occurring in the rule. The result of applying this vector as a substitution to

the rule structure is the desired rule instance.

Each binding, an equality assertion of the form Xi = t, is represented by a binding

vector entry. The renaming i is implicit in the context of the binding as part of a

stack frame. The name X is associated with the vector offset. The term tis explicitly

represented as a pair of pointers, one pointing to the term structure, the other to the

stack frame where bindings for parameters occurring in the term structure are to be

found.

The fact that only a single partial solution is represented at any one time implies

that just a single set of bindings, being the composition of unifiers for the current partial

solution, is required. The composition of unifiers is represented by the entire set of non

null bindings on the stack. In the case of the example of figure 5.4, the composition of

the three unifiers 81, 82 and 83 is represented by four binding vectors.

The above representation of the composition of unifiers has more structure than our

textual representation as a set of equality assertions. The binding pointers form a graph

consisting of a set of connected components. Each connected component corresponds

to an equivalence class of terms. A pair of equivalence classes is unified by connecting

CHAPTER 5. INFERENCE ENGINES

Rl:

le T 1

A1
1

R4: -·
B4

le T 3

A1
2

B1

(a)

-

4-

structure -I--

parent

vector of
bindings

structure ---
r- parent

vector of
bindings

structure --
parent

vector of
bindings

structure --
parent

vector of
bindings

(b)

Figure 5.4: stack data structure for single solution

92

two components. That is, the Prolog unifier applies the well known UNION-FIND

algorithm (see for example [Aho, Hopcroft & Ullman 74] for a description of union

find). For future reference note that the unifier is free to apply the path compression

optimization of UNION-FIND.

Figure 5.4 is a simplification. The structure of the current partial solution is repre

sented, while the information required for conducting the search is left out. This infor

mation consists of choice points and a trail. Two kinds of choice points are recorded

on the stack:

Rule Choice: This corresponds to the CUT choice point of our AND/OR graph

model. Just a single pointer is needed to step through the sequence of rules.

Subgoal Choice: The antecedent of a Horn clause is a flat sequence of atoms.

A single pointer is again sufficient to maintain the state of the left to right

traversal of this sequence.

The trail is a chronological record of binding operations, consulted when undoing bind

ings on backtracking. The trail also fits in with the stack discipline.

Apart from the simplicity of the above scheme, the compilation of unification and

CHAPTER 5. INFERENCE ENGINES 93

choice points, together with clever indexing schemes, contribute to the efficiency of

Prolog implementations.

5.4 Extended Logic Programming

A logic programming language consists of two sublanguages, as recommended by the

slogan

Algorithm = Logic + Control

of [Kowalski 79a). We shall refer to these two component languages as the problem

language and the control language. In this section we consider the prospect of extending

the expressive power of these two languages as well as the issue of exploiting parallel

hardware for solving deduction problems.

Let us first look at current proposals for extending the Prolog inference engine to

deal with larger subsets of the full first order language as the problem language. It is

instructive to consider goal and assertion syntax separately:

Goal Syntax: [Gabbay & Reyle 84) and [Bollen 88) have demonstrated implementa

tions incorporating the implication introduction rule. Implementations of the full

positive goal syntax, based on the transformations of [Lloyd & Topor 84), also

exist [Thorn & Zobel 88). Even negated goals, implemented by the negation as

failure mechanism, may be regarded as intuitionistic negation with respect to a

completed program [Clark 78), [Shepherdson 88).

Assertion Syntax: Recall that the only operators admitted by the Prolog assertion

syntax are '>/ and ::). The author knows of no implementations that extend the

inference engine to deal directly with enriched assertion syntax. Several meta

interpreters have been proposed for asserted disjunctions and negations, see for

example [Smith & Loveland 88).

In terms of the language hierarchy of chapter 4, direct implementations have not

reached beyond the positive definite language P. We suggest that the reason why logic

programming systems do not offer the expressive power of the full assertion syntax are

at least threefold:

Procedural Semantics: It is not clear what the procedural semantics should be

once inferential extensions have more than a single atomic conclusion. Also,

the procedural semantics of Prolog dictate a statically ordered backward

chaining search, which is very inefficient in the case of relevant deduction

subproblems.

CHAPTER 5. INFERENCE ENGINES 94

Negation As Failure: Both disjunctive and existentially quantified assertions tend

to "block" negation as failure results. The semantics of a language incorpo

rating these constructs is not clear.

Proof Theory: No resolution refutation proof theories are known for languages

intermediate between the Horn language and full first order classical logic. The

natural deduction formulation now informs us what proofs in these languages

look like.

Concerning the expressive power of the control language: The procedural semantics

of Prolog determine a backward chaining, depth first, single solution search strategy.

The knowledgeable programmer escapes these restrictions using meta programming

techniques. That is, the control language is expressively inadequate for many applica

tion areas. Again, the procedural semantics blocks extension of expressive power.

Recently, the exploitation of parallel computing hardware has become a major fo

cus for logic programming research, see for instance [Gregory 87], [Kacsuk 90] and

[Wise 86]. The procedural semantics of Prolog enable the efficient implementation of

the language on sequential machines. While some parallelism is available within this

model, a fuller exploitation of parallelism cannot tolerate a sequential execution model.

Perhaps it is obvious by now that we propose an approach to logic programming,

that does not rely on the procedural reading of formulae. Our aim is to unblock

the development of more expressive languages and implementations that can exploit

full AND/OR parallelism. The prospect of an efficient inference engine based on the

AND/OR graph paradigm is explored in the next section. Top level language design

issues are taken up in the next chapter.

5.5 Implementation Techniques for Extended Languages

The following subsections present refinements of the Prolog data structure to support

implementation of more expressive and parallel languages. The AND /OR graph repre

sentation for solutions and search spaces suggests data structures for implementation

of extended languages.

5.5.1 More Expressive Sequential Languages

We saw in chapter 4 that the increased expressive power of a language is reflected

as an increase in the complexity of the inferential extensions of input formulae. The

preceding discussion of Prolog implementation techniques assumed the Horn language,

and consequently dealt with the corresponding simple Horn rule form of inferential

extensions only. The question we address in this section is this: Can we extend the

CHAPTER 5. INFERENCE ENGINES 95

stack based scheme, with each stack frame representing a derived rule of inference, for

the more expressive languages?

The generalisation of the implementation to the Edinburgh language is very simple.

The only point of change concernes the subgoal choice pointer. For a Horn rule this

pointer traverses left to right through a sequence of atoms. For the Edinburgh language

this is generalised to a left to right, depth first enumeration of the solution trees of an

AND /OR tree with atoms as leaves.

The next step up in complexity of inferential extensions is the presence of assump

tion search components. Recall that assumption components are generated by impli

cations and logical negations as goals (the :::)I and rvi rules of inference), present in the

positive definite language. The set of inferential extensions available for the construc

tion of a solution to a subproblem depends now on the context in which the subproblem

occurs.

The necessary extension of data structures is illustrated in figure 5.5. A context

pointer is allocated in each stack frame. A context being a set of assumption search

components, each sharing some of their bindings with the stack frame that created the

assumption. The representation of an assumption component in the structure store

includes a list of common parameters the component shares with other components of

the inferential extension. This information is needed to initialize binding vectors for

the component's stack frame. Contexts are stored in a tree structured data base.

structure

r- parent

context

vector of
bindings

f-------+-

f-------+-

structure store

tree structured
database of
assumptions

Figure 5.5: extended stack data structure

The most general form of search component contains an AND/OR tree of conclu

sions, as well as premisses. A stack based inference engine can still be used to construct

the case arguments from which a solution is built. A case argument supervisor issues a

CHAPTER 5. INFERENCE ENGINES 96

sequence of calls to the inference engine, each resulting in either a case argument being

returned or in failure.

The data structure illustrated in figure 5.5 is adequate for representing a case ar

gument. The context mechanism, however, needs to be extended to provide a wider

range of services. A non-empty initial context may be supplied to the inference engine

to direct the search for a case argument. As well as a context of assumptions, a case

argument is associated with an "anti-context" of assumptions. The anti-context is the

set of assumptions not available in the world of the case argument.

5.5.2 Single Solution AND Parallelism

While appropriate for sequential implementations, a stack based representation cannot

be maintained when a set of asynchronous processes co-operate to build up a solution.

If we abandon the stack discipline, we arrive at the data structure displayed in figure

5.6. This data structure is a graph, maintained in a heap store, perhaps distributed

across a number of processors. This AND graph data structure is also appropriate

for implementations designed to avoid unnecessary recomputation of subgoals on back

tracking.

R3: -
B3

Rl:

lo T =2

le T 1

A1
1

R4: -·
B4

le T 3

A1
2

B1

(a)

vector of
bindings

R3

I
vector of
bindings

vector of
bindings

R2 R4

I I
vector of
bindings

Rl

(b)

Figure 5.6: AND data structure for single solution

Notice that this data structure still represents just a single (partial) solution, and

therefore can only support single solution AND parallelism. It is common in the liter

ature to distinquish two forms of single solution AND parallelism:

Restricted AND Parallelism: This form occurs when the partial solution graph

is extended concurrently at a number of subgoals that do not share variables.

CHAPTER 5. INFERENCE ENGINES 97

Stream AND Parallelism: This form occurs when concurrent subgoals share

variables.

The distinction shows up in our AND graph model in two ways: Firstly, concurrent

access to shared bindings must be controlled to maintain the integrity of the compo

sition of unifiers operation. Secondly, a bindings dependency analysis is required to

determine the consequences of a failure on concurrent subgoals. For a more detailed

discussion of AND parallelism see [Gregory 87].

5.5.3 Multiple Solutions AND/OR Parallelism

A further refinement of the data structure is required to represent multiple solutions.

Let us suppose that the premisses Ai and A~, of the example in the preceding sec

tion, also unify with R5 and R6, as shown in figure 5.7 (a). Depending on the success

of the composition of unifiers operation, there are from zero to four well formed par

tial solutions here. The data structure, shown in (b), represents the four candidate

solutions.

The reader may have noticed already that, unlike in the simple motivational pre

sentation of chapter 1, bindings are not associated with unifiers but with derived rule

occurrences. The advantage of the current scheme is that the binding for any specified

parameter is readily located at a fixed vector offset.

When multiple partial solutions are represented, a number of binding vectors may

be associated with a single derived rule occurrence. That is, a rule occurrence in this

data structure may stand for a number of distinct substitution instances of the rule.

The data structure of figure 5. 7 stands for a set of candidate solutions. We need a

second level representation to pick out the well formed (substitution consistent and loop

free) solutions from among these candidates. The representation we propose here is a

refinement of the ATMS labelling scheme introduced in chapter 1. The graph structure

of a solution is represented explicitly by a label, while the composition of substitutions

is not, as explained below.

The graph structure of a solution is uniquely determined by its set of binding vectors.

Further, only the ambiguity of multiple binding vectors for the one subgoal needs to

be resolved. For the example of figure 5.7, the structures of the candidate solutions

are picked out by the labels shown in figure 5.8. Only labels corresponding to the well

formed (partial) solutions are to be kept. Any label for a (partial) solution containing

an inconsistent set of bindings or a loop (a nogood) is removed. Search effort should

not be wasted on those portions of the AND/ 0 R data structure that do not appear in

any label. Many implementations would garbage collect such structures.

The set of non-null bindings associated with a solution can no longer be maintained

CHAPTER 5. INFERENCE ENGINES

R3:
B3

lo T =z

R4: -
B4

Al
Rl:------

(a)
T3·

vector of
bindings

R3

T2: I T5:
vector of T7: vector of
bindings vector of bindings

bindings

R2 R5 R4

Tl: I T6: I T4: I
vector of
bindings

vector of
bindings

vector of
bindings

Rl

(b)

T9:
vector of
bindings

R6

T8: I
vector of
bindings

Figure 5.7: AND/OR data structure for multiple solutions

{'l'l, 1:'4}

{'l'l, 1:'8}

{1:'6, 1:'4}

{1:'6, 1:'8}

Figure 5.8: labels

98

as the composition of substitutions in solved form, since a number of bindings may

exist for the one parameter. Also, the path compression optimization cannot always

be applied. Two options for implementing the composition of substitutions are:

• Call on the unifier to determine the composed binding for a parameter dynami

cally. In this case, the degree to which the set of bindings approximates solved

form is critical to performance.

CHAPTER 5. INFERENCE ENGINES 99

• Maintain an explicit representation of the composition with the label. This may

well be feasible when restricted to a critical subset of parameters.

The above description of AND/OR parallel evaluation omits discussing mechanisms

to support backtracking search. The reason for this omission is that the author's exper

imental implementation work has focussed on the non-backtracking language described

in the introduction. It has also assumed that only Horn rules are present. A compre

hensive description of feasible implementation techniques for more expressive parallel

languages has to wait on further experimental work.

Chapter 6

Exploiting the Representation

A natural deduction solution can be readily understood as an argument leading from

a set of axioms, by way of simple principles of deduction, to the query. Atomic normal

form extends this explanative power of natural deduction. The very detailed steps of

reasoning are replaced by derived rules of inference, each justified by a particular input

formula. This perspicuous representation can be exploited as follows:

• As a graphic display, it may be used for purposes of explanation, testing and

debugging.

• Reflected as a theory accessible to introspection, it may be used for purposes of

control and to meet other practical demands placed on the reasoner.

6.1 Visualization

Having presented a mechanical reasoner with a deduction problem ~ ? - G and a finite

amount of time for computation, we expect to receive as the answer a set (possibly

empty) of proofs, together with an indication of whether this set contains all the proofs

there are. Each of the proofs is to be a solution for the given deduction problem, that

is they are proofs of r r G (where: r ~ ~).
In this setting, we can think of a proof as explaining which subset of the axioms, and

by what methods of reasoning, lead to the conclusion G. The following two subsections

treat explanation in this sense only. The aim is to display a solution in such a way

that it can readily be grasped as an explanation. The third subsection extends this

treatment to the display of partial solutions, for the purposes of testing and debugging.

The aim being to observe the progress being made in covering the search space.

100

CHAPTER 6. EXPLOITING THE REPRESENTATION 101

6.1.1 Flat Explanation

Given that some primitive principles of reasoning, their representation as rules of infer

ence and the instantiation and composition of these rules are understood and accepted,

a proof in any formal system may claim to explain its conclusion. In addition, the nat

ural deduction rules claim to represent principles actually used when the most detailed

account of an argument is presented by a human mathematician. Why don't we just

present the user with the ANF natural deduction proof as explanation?

A weakness of the ANF form of natural deduction is illustrated in figure 6.1. The

ANF solution for the deduction problem { al\b}?- al\b is shown in (a), whereas the very

simple solution in (b) is clearly better as an explanation. The atomization transforma

tions (Lemma 3 in Chapter 2) can be applied in reverse to remove such unnecessary

elimination-introduction pairs for any of the connectives.

-AXIOM

al\b
-AE-

a

-AXIOM

al\b
-AE--

b
-1\I-----

al\b
-QUERY-

(a)

-AXIOM

al\b
-QUERY-

(b)

Figure 6.1: atomization example

The person reading the explanation is likely to be familiar with many sound rules

of inference, which need to be derived when using the natural deduction rules. For

example, the commutativity result, established in figure 6.2, may be displayed as in

(b). Such transformations for the commutative and associative operators 1\ and V can

significantly simplify the presentation of a solution.

-AXIOM

al\b
-AE--

b

-AXIOM

al\b
-AE-

a
-1\I-----

bl\a
-QUERY-

(a)

-AXIOM

al\b

bl\a
-QUERY-

(b)

Figure 6.2: commutativity example

In chapter 1 resolution proofs were criticized on the grounds that refutations are

not as perspicuous as direct proofs. Yet, the negation introduction rule (reductio ad

absurdum) calls on a kind of refutation for the proof of a negated goal. Some appli

cations of reductio may be removed by transformations. For example, the solution in

figure 6.3 (a) may be simplified into the form shown in (b), being a single application

CHAPTER 6. EXPLOITING THE REPRESENTATION

of modus tollens. More generally however, the reductio rule remains.

-AXIOM

a-:Jb
---(1)

a
-AXIOM- - :::>E ----

rvb b
-~E-----------

-~J-(1)

-QUERY-

(a)

-AXIOM

a-:Jb
-AXIOM

rvb

rva
-QUERY-

(b)

Figure 6.3: reductio example

102

In the presence of disjunctive assertions, a solution consists of a set of case arguments

for the query. For such solutions, the case arguments may be presented separately.

Recall, from chapter 4, that some of the cases may lead to absurdity, requiring a

terminal application of the absurdity rule. The example of figure 6.4 (a) illustrates this

complication. As in this example, some applications of or elimination may be presented

as disjunctive syllogism, as shown in (b).

-AXIOM-

-AXIOM

aVb
-vE-------

a b
-~E----- -QUERY-

-#¥..-

b
-QUERY-

(a)

-AXIOM - -AXIOM-

aVb rva

b
-QUERY-

(b)

Figure 6.4: proof by cases example

Even after the above simplifications, natural deduction solutions for all but the

most trivial problems are too large and detailed to have much more than a curiosity

value. In the next subsection we exploit the notions of solution fragment and derived

rule of inference to improve the situation.

6.1.2 Structured Explanation

It is possible to partition any given ANF solution into a set of fragments, each justi

fied by a particular axiom or query. Alternatively, the solution can be seen as being

composed of applications of derived rules of inference, again justified by a particular

input formula. For these reasons, the ANF scheme can also be characterized as input

form natural deduction. We now claim that this feature of the ANF schme extends the

explanative power of natural deduction.

The structure of ANF solutions, as a composition of derived rules of inference or so-

CHAPTER 6. EXPLOITING THE REPRESENTATION

alpinist(tony)

alpinist(mike)

alpinist(john)

likes(tony, rain)

likes(tony, snow)

"i/u alpinist(u) :J (skier(u) V climber(u))

"i/v climber(v) :J rvlikes(v, rain)

"i/w skier(w) :J likes(w, snow)

"i/x likes(tony, X) :J rv[ikes(mike, X)

"i/y rvlikes(tony, y) :J likes(mike, y)

Figure 6.5: b..alps- example problem theory

103

lution components, is not exploited by the flat explanations of the preceding subsection.

The idea is to suppress the display of the detailed internal structure of these compo

nents. The mapping of formulae into derived rules of inference for the Horn language

is a very simple one. Many current systems exploit this mapping implicitly for their

explanation facilities. What are the issues raised by the more expressive languages?

Consider the problem theory b..alps, for the so called alpinist puzzle1, of figure 6.5.

As examples of structured explanations, figure 6.6 (a) and (b) offer solutions to the two

deduction problems

b..alps ?- :Jz rvskier(z)

and

b..atps ?- :lz climber(z)

respectively. Each derived rule instance is displayed here as an inference stroke an

notated with the input formula that justifies it. In the event that the derived rule

involves assumptions (contains applications of :JI or rvi), both the inference stroke and

the assumption are annotated with a unique number. In (a) the formula skier(mike)

is such an assumption. The solution in (b) consists of two case arguments.

For existentially quantified queries it is often important that we be able to extract

from the solution the so called answer substitution. For natural deduction solutions

the answer substitution is simply a set of pairs, each pair (x, t), extracted from an

occurrence of the existential introduction rule:
G(t)

-3!.....;...:. __

:JxG(x)

1 This puzzle appeared in the comp.lang.prolog group of the internet news distribution.

CHAPTER 6. EXPLOITING THE REPRESENTATION 104

k . (.k) (1) s zer mz e

Vwskier(w):) likes(w,snow)

likes(mike, snow) likes(tony, snow)

Vx likes(tony, X) :) rvlikes(mike, X)

3z rvskier(z)

(a)

Vu alpinist(u) :) (skier(u) V climber(u))

climber(mike) skier (mike)

Vw skier(w):) likes(w, snow)

likes(tony, snow)

3z climber(z)

3zclimber(z)

(b)

Figure 6.6: structured explanations

As illustrated by the examples in figure 6.6 the substitution is not always easily spotted

in the structured display. For both examples the answer substitution is just { (z, mike)}.

Where the solution consists of case arguments, the answer substitution may differ

between arguments. The answer substitution may even be absent, as in (b), where a

case argument terminates in an application of the absurdity rule.

CHAPTER 6. EXPLOITING THE REPRESENTATION 105

6.1.3 Testing and Debugging

In the event that an unexpected solution, caused by an erroneous axiomatization of

the problem, is found, an explanation display can reveal the error. Where the solution

is not found within acceptable time or fails to be found altogether, displays of the

search space and partial solutions can be useful. The following discussion is limited

to these issues only. For a thorough treatment of testing and debugging, in the logic

programming context, see [Shapiro 83].

{
VvVwedge(v,w)-:Jpath(v,w) }

Vx VyVz path(x, y)/\path(y, z):; path(x, z)

(a)

(b) (c)

Figure 6.7: b..path- path axioms

We will use the axiomatization b..path, shown in figure 6.7 (a), to illustrate the

discussion in the remainder of this chapter. The path/2 predicate is intended to be

interpreted as path in a directed graph. The example problems may also be read at the

meta level - think of the directed graph as representing a search space for solutions.

The two rules of inference derived from the axioms are shown in (b) and (c). In this

section we diagnose a number of problems in applying these derived rules to solve

problems. In section 6.2 we express meta knowledge needed to apply the rules more

intelligently.

The search space generated by the two derived rules is illustrated by the connection

graph2 display of figure 6.8. Circuits in this figure represent recursive application of

rules. Solutions are obtained by creating fresh renaming instances of nodes, "unrolling"

such circuits. For the example problem the warning is clear- Rules need to be applied

carefully to avoid wasted computation on path/2 subgoals, due to violation of the loop

freeness constraint.

The normal form for natural deduction solutions does not prevent the construction

2 Although the connection graph paradigm was developed by (Kowalski 75) for the resolution refuta

tion proof theory, many of the ideas are equally applicable here. We go no further in this direction than

to point out that this kind of display can be very useful in analysing the computational characteristics

of a set of rules.

CHAPTER 6. EXPLOITING THE REPRESENTATION 106

Figure 6.8: connection graph display for b.path

of multiple solutions for the one query relying on identical premisses. A set of axioms

b. chain, and its intended model, for use in conjunction with b. path are shown in figure

6.9. Given the deduction problem

b.path U b.chain ? - path(a, d)

two solutions, as shown in figure 6.10 (a) and (b), are possible. Once we notice that

these two solutions rely on the same set of axioms, we are likely to be disappointed by

this state of affairs. We will suggest remedies in section 6.2.

{
edge(a, b) }
edge(b, c)

edge(c, d)
a_,..b_,..c_,..d

Figure 6.9: b.chain -simple directed graph

Even when the inference engine enforces the loop freeness constraint, as best it

can, solutions may fail to appear when expected. Two kinds of failure are commonly

distinguished:

Finite Failure: An inference engine can, at least in principle, complete the search

in finite time without finding any solutions.

Non Termination: The search does not terminate within any finite interval of

time.

From a pragmatic point of view we distinguish two kinds of finite failure:

Constructed Non-demonstrability: The inference engine completes the search

within acceptable time without finding any solutions.

CHAPTER 6. EXPLOITING THE REPRESENTATION 107

(a)

(b)

Figure 6.10: tl.path U fl.chain ?- path(a, d)

Inefficient Search: Solutions are not returned within acceptable time, although

in principle the search completes in finite time.

NO MATCH OPEN LOOP

Figure 6.11: tl.path U fl.chain ?- path(b, a)

As an example of constructed non-demonstrability consider the annotated fragment

of search space, shown in figure 6.11, for the query path(b, a), given the set of axioms

tl.path U fl. chain. There are three partial solutions here, each of which incorporates, as

a leaf, a goal atom A that is either:

CHAPTER 6. EXPLOITING THE REPRESENTATION 108

No Match: No derived rule of inference has a conclusion that matches A.

Loop: A subsumes another goal that occurs on the path from A to the query.

Notice again that care is required in selecting which goal to expand. Expansion of

either of the two "OPEN" goals in the figure is wasted effort.

(a)

(b)

Figure 6.12: inefficient search for tree path problem

Both solutions and finite failure demonstrations represent the final state of a com

putation. In the presence of either inefficient search or non-termination we need to

understand the progress of the computation in covering the search space. Consider the

path problem for the tree form directed graph shown in figure 6.12 (a). The partial

solution shown in (b) displays an intermediate state for a search that traverses the tree

left to right bottom up. Clearly a more efficient regime for this problem would traverse

down the tree, and if possible in parallel starting from the two end points.

6.2 Introspection

As well as the nominated purposes, the discussion in the first half of this chapter

was intended to support the claim that search spaces, solutions and perhaps even the

process of search can be readily conceptualized and understood. In the remainder we

argue that such conceptualization and understanding can be harnessed to solve many

of the problems that arise in practical applications of computational logic.

CHAPTER 6. EXPLOITING THE REPRESENTATION 109

6.2.1 An Extended Introspective Architecture

Chapter 1 introduced the idea of introspection, and its application to the task of con

trolling the selection of subgoals on behalf of the object level inference engine. The

application was described as a two level architecture, being:

Object Level: An axiomatization of the object problem domain used by an object

level inference engine to construct solutions in response to deduction problems.

Meta Level: An axiomatization of the choice of subgoal problem used by a meta

level inference engine to choose a subgoal in response to a query from the

object level.

Figure 6.13 illustrates an extension of the introspective arhitecture, of chapter 1.

This extended architecture is designed to allow control of performance critical activities

by meta language assertions, as well as enabling the exploitation of parallel hardware.

The current state of the search is maintained as an AND/OR graph in a blackboard

[Waterman & Hayes-Roth 78] memory, accessible to inspection and change by a number

of agents. A parallel implementation will need to support concurrent access to the

blackboard.

object language
assertions

meta language
assertions procedures meta language

assertions

! ! ! !
ex:pand graph consistency models axioms search maintenance

l I I I
computation state blackboard

I I I I
pruning loop query debugfaing

detection interface inter ace

i i i i
meta language

assertions
meta language

assertions
meta language

assertions
meta language

assertions

Figure 6.13: extended introspective architecture

For the subsequent discussion of this model, we once again rely on Prolog as a point

of reference. A Prolog program is more than just a set of assertions about the problem

CHAPTER 6. EXPLOITING THE REPRESENTATION 110

domain. The assertions are organized as a set of procedures, each procedure consisting

of a sequence of statements. A Prolog statement is more than just a logical formula. A

statement is an expression constructed recursively as an operator applied to a sequence

of expressions. Some of the operators may be read as logical connectives, others have

only a procedural reading. Some primitive expressions may be read as atomic formulae

of either the object or meta language with the remainder again having just a procedural

reading.

The introspective architecture attempts to build on the successes of Prolog, while

addressing its shortcomings. In broad terms, the issues are these:

Language: In Prolog knowledge about the problem domain is expressed in logic,

while the knowledge that directs subgoal and rule selection, search space prun

ing, input/output etc. is not. Also, the failure to separate knowledge about

the various domains can make it difficult to understand, modify and reuse

programs.

We suggest that knowledge about each distinct domain be regarded as a dis

tinct theory. The problem domain theory being axiomatized in the object

language, the multiple other theories in the meta language.

Search: The range of available search strategies in Prolog is limited. The statically

determined search strategy is not sensitive to the instantiation of parameters

and other runtime context. Recent implementations feature a range of "meta

predicates" in an effort to overcome this limitation. Also, search is restricted

to a single solution at a time with chronological backtracking on failure.

In principle, the introspective architecture suffers from none of these limita

tions. The identification of practical alternatives is, however, a challenging

problem. As a starting point for such an investigation, we can retain back

ward chaining and adopt the Prolog "meta predicates" as part of the meta

language.

Parallelism: The sequential procedural semantics of a Prolog program locks away

parallelism. Many attempts have, however, been mounted in an effort to

identify useful non-sequential operational readings.

In contrast the introspective architecture of figure 6.13 suggests a parallel

implementation, based on a set of co-operating processes.

Figure 6.13 represents just one intermediate point in a range of possible architectures

for introspective computation. There is no a priori assignment of functionality between

the object and meta levels. At the one extreme, every action is encoded as meta level

CHAPTER 6. EXPLOITING THE REPRESENTATION 111

assertions. At the other extreme, every action is performed by a monolithic object level

inference engine. The former extreme gives total control of every action to the meta

level assertions, while the latter provides none. While very efficient implementation

techniques are known for object level engines, expressive power at the meta level is

bought at a relatively high cost in computation speed. Experience with theorem proving

and logic programming systems suggests a compromise, where the following issues are

addressed by meta language assertions:

• Ordering the Search

• Detecting Loops

• Pruning the Search Space

• Negation As Failure

• Allocating Computational Resources

• Exploiting Models

• Specifying Communication

These issues are discussed in a little more detail in the remaining sections. We focus

on meta language assertions of the form:

condition :J action

Recall from chapter 1, that the condition is tested by introspecting the current compu

tation state, while the action reflects down, specifying a computation to be performed.

In the examples that follow, a condition is expressed in terms of a goal/2 predicate,

which picks out the atomic goal formula nodes in the current computation state. Some

of the condition and action predicates are borrowed from the Prolog language, the

remainder being proposed new constructs.

6.2.2 Ordering the Search

For any real machine the speed of computation is limited, the size of partial solutions is

bounded by available storage and the number of concurrent operations is bounded by

the number of available processors. These limitations imply that the order in which the

search space is explored is often crucial to performance. This order may be specified

declaratively by assertions in the meta language.

Often we have only limited knowledge (perhaps none) to bring to bear on the

problem of deciding which, of a number of available expansions of the AND fOR graph,

CHAPTER 6. EXPLOITING THE REPRESENTATION 112

to pursue next. For a computation state for which the user supplied theory is mute,

the choice may be determined by a default theory. If it turns out that the defaults lead

to difficulties, the user supplied theory may be incrementally strengthened. We can go

further and recognise a number of useful knowledge sources:

Catchall: A simple, uniform search strategy enables one to reliably predict the

effects of overriding assertions. Prolog's left to right, depth first choice order

is an example of such a catchall theory for a sequential implementation.

Static: Search advice computed from the static structure of the problem (analysis

of connection graph for instance), can reduce the amount of overriding user

supplied knowledge required for acceptable performance.

Dynamic: Search decisions may depend on an analysis of the dynamic behaviour

of the system. Such "learned" strategies may further reduce the amount of

user intervention.

User: The user may be in possession of knowledge about the intended interpreta

tion of the problem axioms and the range of queries likely to be encountered.

This knowledge may be put to use as search advice.

The kind of default theory determines, to a large extent, the kind of overriding assertions

needed. For example, a depth first strategy is easily trapped by infinite branches, while

space can quickly become a problem for a breadth first strategy.

As an illustration of the formulation of search advice, consider the path axioms llpath

of figure 6.7. For this problem breadth first search is a reasonable catchall theory. A

static analysis of the problem can reveal that the edge/2 relation is defined entirely by

a set of atomic axioms. We may thus regard edge/2 goals as relatively tractable, and

specify that they be selected whenever they occur. The syntax for this piece of advice

might be:

If we know that !lpath is to be applied to the kind of tree shown in figure 6.12 (a),

we may specify preferential selection of path/2 goals that have an instantiated second

argument.

Many current logic programming languages provide constructs to suppress the se

lection of a goal atom that contains non-ground terms. The preferential selection of

goals, illustrated above, is not available in any of the languages known to the author.

CHAPTER 6. EXPLOITING THE REPRESENTATION 113

6.2.3 Detecting Loops

Advice about the conditions under which loops may occur and the frequency of checks

may be specified by meta language assertions. The knowledge sources for a loop detec

tion strategy may be diverse:

Catchall: A simple strategy is to check for a loop in the event that a predetermined

depth bound is exceeded, or even, as a last resort, when memory space is

exhausted.

Static: An analysis of circuits and the associated substitutions in the connection

graph can identify potential loops.

User: The user may wish to override decisions derived from the above sources.

For the example tl.path axioms, path/2 goals that do not have both arguments

ground can recur as part of a loop. We might make use of this knowledge by specifying

that loop checking be performed for such goals. The assertion might look like this:

Vg Vn1 Vn2 goal(g,path(n1, n2)) 1\ (var(n1)Vvar(n2)) ::::> loopcheck(g)

We propose that controlled loop detection, as illustrated above, be incorporated

into logic programming systems.

6.2.4 Pruning the Search Space

Large portions of search space can often be removed by careful application of knowledge

about the problem axiomatization and the current state of search. In Prolog such

pruning is effected by use of the ! (cut) and once constructs. We suggest that pruning

be specified by assertions in the meta language.

Where a computationally expensive subproblem occurs more than once, an oppor

tunity exists to reduce the size of the search space by sharing results. Whenever a new

subproblem arises, two knowledge sources may be consulted:

Introspect: In the event that two identical subproblems are concurrently repre

sented, results may be fully shared. Partial sharing may be possible when one

of the subproblems subsumes the other.

Memorize: In the normal course of events, subproblems fail. due to the no match

or loop conditions, as was illustrated in figure 6.11. The failure of a subgoal

implies the failure of any partial solution that incorporates that subgoal. In

terms of the AND/OR graph paradigm, the failure propagates to siblings and

the parent node at AND nodes and to the parent node at exhausted OR nodes.

CHAPTER 6. EXPLOITING THE REPRESENTATION 114

The space taken up by these data structures is normally reclaimed, making

them inaccessible to introspection. The retention of crucial failure results may

be specified by meta language assertions.

The checking of every new subgoal against these knowledge sources is likely to be

infeasible. The user may identify subgoals to be checked by declarations in the meta

language.

An opportunity for pruning the search space exists when duplicate solutions, like

the ones illustrated in figure 6.10, occur. This situation is commonly referred to as

don't care nondeterminism in the logic programming literature. For our path example,

we might phrase the request for a single solution like this:

Vg Vn1 Vn2 goal(g,path(n1, n2))1\ground(n1)1\ground(n2) :J once(g)

More generally, we can provide constructs for the arbitrary pruning of choice points.

For the example path problem we may confine the search to proceed as a sequential

left-to-right edge following search thus:

The chop/2 construct here is a generalization of the Prolog ! (cut). In this case any

element of goal 91's choice point that would reduce the goal to a further path/2 subgoal

is removed.

Ideally, each meta language assertion that specifies pruning of the search space can

be read as a theorem about proof search for the intended problem domain. Failure on

this point results in the loss of solutions.

6.2.5 Negation As Failure

Our knowledge about a problem axiomatization .6. may include the fact that it is

complete for a particular predicate pjn. That is,

if and only if p(a1, ... , an) is true in the intended domain, and

if and only if "'P(al, ... , an) is true. In this case the negation as failure (NAF) rule of

inference

.6. f p(a1, ... ,an)

.6. 1- "'P(al, ... ,an)

CHAPTER 6. EXPLOITING THE REPRESENTATION 115

is sound. Recall that in section 4.9 we suggested that the deduction system for the

object language could be extended to include an inductive definition of the notion of a

failure demonstration. We now propose that negation as failure reasoning be applied

whenever it is sound, and reductio reasoning otherwise to answer negative goals.

The knowledge that the axiomatization of the example path /2 predicate is complete

might be expressed in the meta language like this:

Within the first order language the knowledge of completeness of predicate p / n may

be expressed by the syntactic transformation of completing the axiomatization for pjn.

Clark [Clark 78] introduced this transformation for the Horn language. Although this

work generalizes easily to the positive definite language, the extension to disjunctive

assertions is more problematic. As an example of the completion transformation see

the axiomatization flcomp of figure 6.14, being the result of completing flpath U flchain·

Arguably the completed axiomatization is less readable and modular than the original.

{
'1/v'llw edge(v,w) = ((v = a)/\(w =b)) V ((v = b)/\(w =c)) V ((v = c)/\(w =d)) }

'1/x '1/y 'liz path(x, z) = edge(x, z) V (path(x, y)/\path(y, z))

Figure 6.14: flcomp: completion of flpath U flchain

A solution for the query "-'path(b, a) for the completed axiomatization is shown

in figure 6.15. The form of the solution, a set of case arguments embedded in an

application of reductio ad absurdum, is the expected response for negated queries from

completed axiomatizations. Recall that a backward chaining search strategy is not well

suited to the task of finding such solutions.

Comparing the reductio solution with the finite failure demonstration of figure 6.11

we note that: The failure demonstration is simpler and therefore likely to be more

readily understood as an explanation. Further, the failure demonstration appears as

a subgraph of the reductio solution. We conjecture that this is the case generally,

and that a procedure for translating failure demonstrations into reductio solutions is

feasible.

6.2.6 Allocating Computational Resources

Meta language assertions may address the problem of allocating limited computational

resources:

Time: The user may wish to impose a time limit on a computation, or perhaps

specify a time dependent search strategy.

CHAPTER 6. EXPLOITING THE REPRESENTATION 116

Figure 6.15: .6.comp ? - rvpath(b, a)

Space: Once memory is exhausted, rollback may be specified for the less promis

ing partial solutions. For distributed memory implementations, advice for

memory allocation may be given.

Processors: Concurrent AND /OR search can exhibit genuine superlinear speedup.

In practice worthwhile computational tasks need to be identified and allocated

to the various processors with care.

As an example consider .6.path with an arbitrary directed graph. We may wish to

specify concurrent search by two processes, working in from the two endpoints of any

given goal path.

Vg Vn1 Vn2 goal(g,path(nt, n2))/\ground(n1)/\ground(n2):)

:lp1 :lp2process(g,p1)/\strategy(pl, LeftToRight)/\

process(g,p2)/\strategy(p2, RightToLeft)

The two search strategies LeftToRight and RightToLeft are simple variants of the edge

following search illustrated in section 6.2.4 above. Once either of the processes reaches

a decision, the other may be terminated on the grounds of duplication. This may be

achieved by using the once/1 construct, also discussed in section 6.2.4.

6.2. 7 Exploiting Models

Models for a problem domain can be used to speed up computation in two ways:

CHAPTER 6. EXPLOITING THE REPRESENTATION 117

Counterexamples: In his pioneering work, [Gelernter 59] used diagrams as coun

terexamples for proposed theorems of geometry. This idea generalizes to mod

els for any domain. Such testing against models may be specified in the meta

language.

Procedural Attachment: Efficient algorithms are known for many problems. As

an example, many arithmetic functions are commonly provided for directly

in machine hardware. Such procedural attachment may be specified declara

tively.

For the example path problem, it may be the case that even carefully controlled

deduction does not yield acceptable performance. As a last resort, we can write a

procedure, call it PathFinder, to decide these goals. We then specify a procedural

attachment in the meta language.

Vg Vn1 Vn2 goal(g,path(n1, n2))/\ground(n1)/\ground(n2) :J attach(g, PathFinder)

6.2.8 Specifying Communication

The relationship between the computation state and any interaction with the system's

environment may be specified by assertions in a meta language. The facilities that may

be provided include:

Read/Write: Prolog programmers have found it useful to embed various input and

output requests in their programs. We can specify that a given input/output

action take place once the computation state satisfies a given condition.

Debugging: The idea of declarative debugging can be realized in the introspective

framework. A debugging action is specified to occur in response to the given

condition being met by the current computation state.

Carelessness in pruning the search space may result in unexpected failures. In the

case of our example path problem we can attempt to diagnose the problem thus:

Vg Vn1 Vn2 goal(g,path(n1, n2))/\ground(n1)/\ground(n2)/\jailed(g) :J

display(g)

The display/1 construct will generate a failure demonstration display, such as the one

illustrated in figure 6.11.

Chapter 7

Conclusion

The formalization of the notion of a logically sound argument, as a natural deduction

proof, offers the prospect of a computer program capable of constructing such argu

ments in response to queries. We have presented a constructive definition for a new

subclass of natural deduction proofs, called atomic normal form (ANF) proofs. We

have argued that this is the right framework for mechanical reasoning on both proof

theoretic and computational grounds.

7.1 Proof Theory

ANF is a well motivated normal form for natural deduction. In chapter 2, we demon

strate that ANF proofs form a deductively complete subclass of the normal form proofs

of [Prawitz 65]. In subsequent sections we propose that both these normal forms be

strengthened as follows1:

No Vacuous Applications of Inference Rules: Every occurrence of the exis

tential elimination, or elimination and negation introduction rules must dis

charge assumptions. See sections 4.5.2, 4.5.3 and 4.6.1.

Absurdity Rule: The absurdity rule may only occur as the terminal rule appli

cation for:

• the entire deduction,

• a case argument (minor premiss of disjunction elimination),

• premiss of implication introduction

See section 4. 7.

1 These remarks address the intuitionistic and classical systems. Some modifications are required for

minimal logic and other subsystems.

118

CHAPTER 7. CONCLUSION 119

Discharging Assumptions: Assumption discharge is to occur as early in the

proof as is permitted by the discharge constraints. See sections 4.4.1 and

4.5.2.

Loop Free: The proof must be loop free. See section 5.2.4.

These additional constraints do not affect what is deducible in the intuitionistic or

classical systems. Further, any proof that does not observe these constraints, violates

the claim:

"A deduction in normal form proceeds from the assumptions of the

deduction to the conclusion in a direct and rather perspicuous way without

detours" - [Prawitz 65] p 8.

We therefore submit that there is a need for a strong normal form for natural deduction,

and that these constraints be incorporated.

In section 3.4.1 we propose that, for the purpose of deduction, an assertion or

query formula be represented by its inferential extension. Further, each inferential

extension may be read as a set of derived rules of inference. These derived rules take

on an interesting form that incorporates the extensions of [Shoesmith & Smiley 78] and

[Schroeder-Heister 84], as described in section 5 .1.

The notion of constructed non-demonstrability, introduced in section 6.1.3, 1s an

important contribution of logic programming research to proof theory. In section 6.2.5

we conjecture that failure demonstrations can be translated to reductio proofs.

7. 2 Languages

A wide range of languages and logics are available as natural deduction systems. In

chapter 4, we present a spectrum of subsystems of the classical first order calculus. For

these systems the ANF formulation exhibits a simple tradeoff between the expressive

power of the language in which a problem is expressed and the deductive machinery

required to solve that problem. This analysis offers simple, natural deduction based

accounts for many current logic programming languages. It also reveals the deduc

tive machinery required for the implementation of more expressive logic programming

languages.

In chapter 4 we also raise possible objections to the application of classical principles

of reasoning in automated theorem proving:

Excluded Middle: The rejection of excluded middle distinguishes the intuition

istic from the classical reasoner.

CHAPTER 7. CONCLUSION 120

Absurdity Rule: Rejection of the absurdity rule is required for coherent reasoning

in the presence of contradictions.

The application of these principles can be computationally extremely expensive. This

point is implicitly acknowledged by the many mechanical reasoners that fail to imple

ment them. Much more research on computationally tractable logics in this neighbour

hood is required.

7.3 Computation

ANF inference engines make use of well known computational techniques. We introduce

the computation, as AND /OR graph search, in section 3.3.3. An alternative view of the

computation, as deduction employing derived rules of inference, is presented in section

5.1. The fundamental operation of the ANF inference engine is the unification of two

atomic formulae, see sections 4.2.2 and 5.2.3.

Chapter 5 investigates the application and extension of logic programming imple

mentation technology for ANF inference engines. The application of truth maintenance

techniques is developed in sections 1.8 and 5.5.3.

The exploitation of parallel computing hardware for logic programming is an area

of much current research. The AND/OR graph search model is related to the popular

AND/OR process model of [Conery 83]. Implementation data structures, based on

the AND/OR graph search model are analysed in section 5.5.3. The introspective

architecture, described in section 6.2, is designed to support parallel evaluation.

Our investigation is confined to the classic forward and backward chaining search

strategies. As pointed out in section 5.2, such strategies do not constitute the best

possible use of all the available search constraints. Relevant deduction problems, are

particularly poorly served by these strategies. Work is needed to identify more appro

priate search strategies for these problems.

The representation of arguments as natural deduction proofs provides a good foun

dation for research on efficiency gain by emulating human reasoning abilities. A char

acteristic of human reasoning in a particular domain is the incremental accumulation of

reasoning expertise for problems in that domain. Two related aspects of this expertise

are:

Lemmas: derived rules of inference, carefully selected for their expected utility in

solving problems.

Analogy: the recognition of a class of problems which may be solved by the in

stantiation of a common proof schema.

CHAPTER 7. CONCLUSION 121

7.4 Visualization

The visualization of proofs, failure demonstrations and search spaces is considered

in section 6.1. A natural deduction proof can be understood as an argument that

leads from a set of premisses, by way of simple rules of inference, to the conclusion

of interest. ANF extends this explanative power of natural deduction. The argument

may be presented in terms of derived rules of inference, each justified by a particular

input formula.

In section 6.2 we propose that control and other pragmatics be formulated as de

duction problems at the meta level. An advantage of this approach is that the work on

visualization can be carried over to explanation, testing and debugging of these meta

level functions also.

Visualization of the process of search is discussed only very briefly. Much more

work is needed to identify useful schemes here.

7.5 Introspection

We present an introspection based architecture for ANF inference engines, see sections

1. 7 and 6.2. The architecture is aimed to exploit both parallel computing hardware

and the perspicuous natural deduction representation of reasoning to overcome the

combinatorial and other practical problems faced by computational logic applications.

The model represents an extension of the schema [Kowalski 79a]

Algorithm = Logic + Control

The new schema looks something like this

Algorithm Deduction Problem +
Search Control +
Resource Allocation +
Computational Models +
Input/ Output

Each of the components on the right hand side represents a distinct logical theory.

The deduction problem consists of a set of axioms and a query formula expressed in

an object language. The remaining theories are expressed as sets of axioms in a meta

language.

Our experiments have been confined to a Horn meta language and the simple con

ceptualization of the computation state as a frontier of atomic goals. The conceptual

ization and some of the meta predicates were borrowed from current logic programming

CHAPTER 7. CONCLUSION 122

languages. Even within this restricted framework we were able to identify several useful

new constructs.

The efficient implementation of meta level inference is crucial for achieving accept

able performance for implementations of the architecture. The introspective model

is based on the notoriously expensive operations of pattern matching, associative re

call and logical deduction. More work is needed to determine the practicality of this

approach.

Bibliography

[Aho, Hopcroft & Ullman 74]

Alfred V. Aho, John E. Hopcroft and Jeffery D. Ullman. The Design and Anal

ysis of Computer Algorithms. Addison Wesley, 1974.

[A!t-Kaci 90]

Hassan A!t-Kaci. The WAM: A (Real} Tutorial. Report No. 5, Digital, Paris

Research Laboratory, 1990.

[Anderson & Belnap 75]

Alan R. Anderson and Nuel D. Belnap. Entailment: the logic of relevance and

necessity. Princeton University Press, 1975.

[Apt & vanEmden 82]

Krzysztof R. Apt and M. H. van Emden. Contributions to the Theory of Logic

Programming. Journal of the Association for Computing Machinery, 29(3) 841-

862, 1982.

[Bollen 88]

Andrew W. Bollen. Conditional Logic Programming. PhD Thesis, Department

of Computer Science, Australian National University, 1988.

[Bowen & Kowalski 82]

Kenneth A. Bowen and Robert A. Kowalski. 'Amalgamating Language and

Metalanguage in Logic Programming'. inK. L. Clark and S-A. Tarnlund (eds).

Logic Programming. Academic Press, 1982.

[Boyer & Moore 72]

R. S. Boyer and J. S. Moore. 'The Sharing of Structure in Theorem-proving

Programs'. in B. Meltzer and D. Michie (eds). Machine Intelligence Vol 7.

Edinburgh University Press, 1972.

[Bruynooghe 82]

Maurice Bruynooghe. 'The Memory Management of Prolog Implementations'.

123

BIBLIOGRAPHY 124

inK. L. Clark and S-A. Tarnlund (eds). Logic Programming. Academic Press,

1982.

[Campbell 84]

J. A. Campbell (ed). Implementations of Prolog. Ellis Horwood, 1984.

[Chang & Lee 73]

C. L. Chang and R. C. Lee. Symbolic Logic and Mechanical Theorem Proving.

Academic Press, 1973.

[Clark 78]

Keith L. Clark. 'Negation as Failure'. in H. Gallaire and J. Minker (eds). Logic

and Data Bases. Plenum Press, 1978.

[Clocksin & Mellish 81]

W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag,

1981.

[Conery 83]

John S. Conery. The AND/OR Process Model for Parallel Interpretation of

Logic Programs. PhD Thesis, Department of Information and Computer Sci

ence, University of California, Irvine, 1983.

[Curry 77]

Haskell B. Curry. Foundations of Mathematical Logic. Dover, 1977.

[Davis76]

Randall Davis. 'Applications of Meta Level Knowledge in the Construction,

Maintenance and Use of Large Knowledge Bases'. in R. Davis and D. Lenat.

Knowledge-Based Systems in Artificial Intelligence. McGraw-Hill, 1980.

[de Kleer 86]

Johan de Kleer. An Assumption-based TMS. Artificial Intelligence 28 127-162,

1986.

[Doyle 79]

Jon Doyle. 'A Truth Maintenance System'. in B. L. Webber and N. J. Nilsson

(eds). Readings in Artificial Intelligence. Tioga, 1981.

[Dummett 77]

Michael Dummett. Elemwnts of Intuitionism. Oxford: Clarendon Press, 1977.

BIBLIOGRAPHY 125

[Dyckhoff 91)

Roy Dyckhoff. Theorem Proving in Intuitionistic Logic. St. Andrews University

(draft of paper), 1991.

[Fuller & Abramsky 88)

David A. Fuller and Samson Abramsky. Mixed Computation of Prolog Pro

grams. New Generation Computing 6 119-141, 1988.

[Gabbay & Reyle 84)

D. M. Gabbay and U. Reyle. N-Prolog: An Extension of Prolog with Hypothet

ical Implications. Journal of Logic Programming 4 319-355, 1984.

[Gallaire & Lasserre 82)

Herve Gallaire and Claudine Lasserre. 'Metalevel Control for Logic Programs'.

inK. L. Clark and S-A. Tarnlund (eds). Logic Programming. Academic Press,

1982.

[Gelernter 59)

Herbert Gelernter. 'Realization of a Geometry Theorem-proving Machine'. in

Proceedings of the International Conference on Information Processing. UN

ESCO, 1959.

[Genesereth & Nilsson 87)

Michael R. Genesereth and Nils J. Nilsson. Logical Foundations of Artificial

Intelligence. Morgan Kaufmann, 1987.

[Gentzen 35)

Gerhard Gentzen. Untersuchungen iiber das logische Schliessen. Mathematische

Zeitschrift 39 176-210, 405-431, 1935. English translation in M. E. Szabo (ed).

The Collected Papers of Gerhard Gentzen. North Holland, 1969.

[Gregory 87)

Steve Gregory. Parallel Logic Programming in Parlog. Addison Wesley, 1987.

[Godel 31)

Kurt Godel. Uber formal unentscheidbare Siitze der Principia Mathematica

und verwandter Systeme. Monatshefte fiir Mathematik und Physik 38 173-198,

1931. English translation in J. van Heijenoort (ed). From Frege to Godel: a

sourcebook in mathematical logic) 1879-1931. Harvard University Press, 1967

[Hallnas & Schroeder-Heister 90)

Lars Hallnas and Peter Schroeder-Heister. A Proof Theoretic Approach to Logic

Programming 1. Journal of Logic and Computation, 1(3) 1990.

BIBLIOGRAPHY 126

[Haridi 81]

Seif Haridi. Logic Programming Based on a Natural Deduction System. Techni

cal Report TRITA-CS-8104, Dept. of Telecommunication Systems- Computer

Systems, The Royal Institute of Technology, Stockholm, Sweden.

[Hayes 73]

Patrick J. Hayes. Computation and Deduction. Mathematical Foundations of

Computer Science - 2nd Symposium. Czechoslovakian Academy of Sciences,

1973.

[Hogger 84]

Christopher J. Hogger. Introduction to Logic Programming. Academic Press,

1984.

[Johansson 36]

Ingebrigt Johansson. Der Minimalkalkiil, ein reduzierter intuitionistischer For

malismus. Compositio mathematica 4 119-136, 1936.

[Kacsuk 90]

Peter Kacsuk. Execution Models of Prolog for Parallel Computers. MIT Press,

1990.

[Keranen 91]

Seppo Keranen. Natural Deduction Proof Theory for Logic Programming. Tech

nical Report, Department of Computer Science, Australian National University,

1991.

[Kowalski 75]

Robert Kowalski. A Proof Procedure Using Connection Graphs. Journal of the

Association for Computing Machinery, 22(4) 572-595, 1975.

[Kowalski 79a]

Robert Kowalski. Algorithm = Logic + Control. Communications of the ACM

22(7) 424-436, 1979.

[Kowalski 79b]

Robert Kowalski. Logic for Problem Solving. North-Holland, 1979.

[Lassez et al. 88]

J-1. Lassez, M. J. Maher and K. Marriott. 'Unification Revisited'. in Jack

Minker (ed). Foundations of Deductive Databases and Logic Programming,

Morgan Kaufmann, 1988.

BIBLIOGRAPHY 127

[Lloyd 84]

John W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.

[Lloyd & Topor 84]

John W. Lloyd and Rodney W. Topor. Making Prolog More Expressive. Journal

of Logic Programming 3 225-240, 1984.

[Maes & Nardi 88]

Pattie Maes and Daniele Nardi (eds). Meta-Level Architectures and Reflection.

Elsevier, 1988.

[McCarthy & Hayes 69]

John McCarthy and Patrick J. Hayes 'Some Philosophical Problems from the

Standpoint of Artificial Intelligence'. in B. Meltzer and D. Michie (eds). Ma

chine Intelligence 4. Edinburgh University Press, 1969.

[Minker 88]

Jack Minker (ed). Foundations of Deductive Databases and Logic Programming,

Morgan Kaufmann, 1988.

[Nakamura 84]

K. Nakamura. 'Associative Evaluation of Logic Programs'. in J.A. Campbell

(ed). Implementations of Prolog. Ellis Horwood, 1984.

[Nilsson 80]

Nils J. Nilsson. Principles of Artificial Intelligence. Tioga, 1980.

[Paulson 87]

Lawrence C. Paulson. Logic and Computation (Interactive Proof with Cam

bridge LCF). Cambridge University Press, 1987.

[Pereira 84]

L. M. Pereira. 'Logic Control with Logic'. in J.A. Campbell (ed). Implementa

tions of Prolog. Ellis Horwood, 1984.

[Prawitz 65]

Dag Prawitz. Natural Deduction (A Proof-Theoretical Study). Almqvist & Wik

sell, 1965.

[Robinson 65]

J. Alan Robinson. A Machine-Oriented Logic Based On the Resolution Princi

ple. JACM, 12(1) 23-41, 1965.

BIBLIOGRAPHY 128

[Schroeder-Heister 84]

Peter Schroeder-Heister. A Natural Extension of Natural Deduction. The Jour

nal of Symbolic Logic, 49(4) 1284-1300, 1984.

[Sergot 83]

M.J. Sergot. 'A Query-the-User Facility for Logic Programming'. in P. Degano

and E. Sandewall (eds). Integrated Interactive Computer Systems. North

Holland, 1983.

[Shepherdson 88]

John C. Shepherdson. 'Negation in Logic Programming'. m Deductive

Databases and Logic Programming, Morgan Kaufmann, 1988.

[Shapiro 83]

Ehud Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

[Shoesmith & Smiley 78]

D. J. Shoesmith and T. J. Smiley. Multiple-conclusion Logic. Cambridge Uni

versity Press, 1978.

[Sickel 76]

Sharon Sickel. A Search Technique for Clause Interconnectivity Graphs. IEEE

Transactions on Computers C-25(8) 823-835, 1976.

[Skolem 28]

Thoralf Skolem. 'On Mathematical Logic'. in J. van Heijenoort (ed). From

Frege to Godel: A Source Book in Mathematical Logic. Harvard University

Press, 1967.

[Smith 86]

Brian C. Smith. 'Varieties of Self-Reference'. in J. Y. Halpern (ed). Reasoning

About Knowledge. Morgan Kaufmann, 1986.

[Smith 89]

David E. Smith. Controlling Backward Inference. Artificial Intelligence 39 145-

208, 1989.

[Smith & Loveland 88]

Bruce T. Smith and Donald W. Loveland. 'A Simple near-Horn Prolog Inter

preter'. R. A. Kowalski and K. A. Bowen (eds). Logic Programming, Proceedings

of the Fifth International Conference and Symposium. MIT Pree, 1988.

BIBLIOGRAPHY 129

[Tennant 78]

Neil W. Tennant. Natural Logic. Edinburgh University Press, 1978.

[Tennant 87]

Neil W. Tennant. Anti-Realism and Logic. Oxford University Press, 1987.

[Thorn & Zobel 88]

James A. Thorn and Justin Zobel (eds). NU-Prolog Reference Manual (version

1.3). University of Melbourne, 1988.

[van Harmelen 88]

Frank van Harmelen. 'A Classification of Meta-Level Architectures'. in

J. W. Lloyd (ed). Proceedings of the Workshop on Meta-Programming in Logic

Programming. University of Bristol, 1988.

[van Vaalen 75]

J. van Vaalen. An extension of unification to substitutions with an application

to automatic theorem proving. in IJCAI-4, 1975.

[Waterman & Hayes-Roth 78]

D. A. Waterman and Frederick Hayes-Roth (eds). Pattern-directed Inference

Systems. Academic Press, 1978.

[Weybrauch 80]

R. Weybrauch. Prolegomena to a Theory of Mechanized Formal Reasoning.

Artificial Intelligence 13 133-170, 1980.

[Whitehead & Russell 1910-1913]

A. N. Whitehead and B. Russell. Principia Mathematica (3 volumes). Cam

bridge University Press, 1910-1913.

[Wise 86]

Michael J. Wise. Prolog Multiprocessors. Prentice-Hall, 1986.

